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ABSTRACT

The majority of deep learning methods for detecting image forgery fail to accurately
detect and localize the tampering operations. Furthermore, they only support a single
image tampering type. Our method introduces three key innovations: (1) A spatial
perception module that combines the spatial rich model (SRM) with constrained
convolution, enabling focused detection of tampering traces while suppressing
interference from image content; (2) A hierarchical feature learning architecture that
integrates Swin Transformer with UperNet for effective multi-scale tampering
pattern recognition; and (3) A comprehensive optimization strategy including
auxiliary supervision, self-supervised learning, and hard example mining, which
significantly improves model convergence and detection accuracy. Comprehensive
experiments are performed on two established datasets; namely MixTamper and
DocTamper with 19,600 and 170,000 images, respectively. The experimental findings
demonstrate that the proposed model enhances the IoU index by 13% compared to
the leading algorithms. Additionally, it can accurately detect multiple tampering
types from a single image.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer Vision,
Optimization Theory and Computation, Neural Networks
Keywords Image manipulation localization, Attention mechanism, Deep learning

INTRODUCTION

As computer vision rapidly advances, numerous image tampering techniques are
continuously emerging. Image forgery entails intentionally altering pixels in digital images
to mislead perceptions of authenticity, often through techniques like copy-move forgery,
where a part of the image is replicated within itself; splicing forgery, which inserts content
from another image; smearing forgery, which distorts or blurs pixels to obscure details;
erasing forgery, by removing or covering content to alter the image’s appearance; text-
generating forgery, through artificially creating text to modify a document’s content; and
hybrid forgery, where multiple forgery types are combined to increase complexity and
detection difficulty, as shown in Fig. 1, with tampered areas marked by red boxes.
Detecting these forgeries relies on analyzing inconsistencies in texture, lighting, edges, and
other image features to reveal tampering traces.
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Figure 1 Examples of forgery types with tampered areas highlighted in red. Full-size Kal DOI: 10.7717/peerj-cs.2775/fig-1

In order to detect the specific ways of image tampering, researchers have proposed
image tampering detection algorithms. Most of the existing image tampering detection
methods typically rely on various convolutional neural network (CNN)-based feature
extractors to detect the unique inconsistent traces resulting from tampering (Liu et al,
2023; Li et al., 2023; Guillaro et al., 2023; Wang et al., 2022). CNNs are generally better
suited for tasks that involve semantic understanding, such as object detection, as they excel
at identifying meaningful features within objects. However, tampering traces often appear
around the periphery of objects and are non-semantic in nature. To effectively identify the
inconsistencies between traces and original regions, it is crucial to compare relationships
across different areas. Given the need to capture feature differences between manipulated
and authentic regions, we argue that self-attention mechanisms offer a more effective
solution. Self-attention mechanisms can explicitly model relationships between any areas,
regardless of their visual semantic relevance, making them particularly effective for
capturing dependencies between non-adjacent regions. Additionally, the sliding window
mechanism significantly reduces the computational overhead caused by processing the
entire image as input. Therefore, Swin Transformer (Swin-T) (Liu et al., 2021b) emerges as
an ideal choice for this task.

Spatial domain information in images is diverse and rich, encompassing content details,
noise, traces, texture features, and artifacts resulting from various attacks, such as
compression and geometric distortions. As a result, the task of detecting image tampering
must direct the model to concentrate on the boundaries of altered areas and understand
their distribution to improve detection performance. We propose a spatial domain sensing
module that directs the model’s focus towards the periphery of the tampered regions,
further distinguishing it from traditional object detection tasks.

In datasets, the proportion of tampered areas compared to the entire image area varies
greatly among different types of tampering. For example, copy-move forgeries often
occupy a large portion of the image, whereas smearing or erasing forgeries cover only a
small number of pixels. This discrepancy poses a challenge for the design of our multi-label
classification network. Swin-T (Liu et al., 2021b) adopts a hierarchical structure where the
resolution of feature maps progressively decreases across layers, while the semantic
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information of the features is gradually enhanced. This multi-scale representation is highly
effective for capturing details of varying sizes. To fully leverage these features, we propose
an improved feature pyramid structure.

Existing studies have achieved an excellent accuracy for image tampering detection and
have shown good performance for tampering classification tasks. However, the accuracy of
the algorithms with respect to tamper localization still needs some improvements. Many
image tampering detection algorithms can effectively detect the approximate region of
forgery, but it fails to determine exactly the boundary of the tampering region. In
particular, the sensitivity of the existing algorithms appears to be insufficient when
confronted with subtle traces of tampering. In addition, due to the design principle of the
multi-classification module, image forgery detection algorithms can only detect a single
type of tampering from the image based on the prediction results. This means that when
multiple tampering types are presented in a single image, the classifier tends to select the
category with more tampering for recognition. Therefore, the existing image forgery
detection algorithms are limited to deal with the complex situations of multiple tampering
types.

The key innovations presented in this article can be summarized as follows:

(1) We improve UperNet (Xiao et al., 2018) and design a Multi-resolution Fusion
UperNet network (MRF-UperNet) for segmentation based on Swin-T. The network is then
used for multi-label classification tampering detection, which utilizes the unique self-
attention mechanism and multi-resolution fusion structure in the network to achieve more
accurate detection of document image tampering details.

(2) The spatial domain sensing module is innovatively designed in the first layer of the
network. This module incorporates constrained convolution, Spatial Rich Model (SRM)
convolution and ordinary convolution. This approach enhances the network’s sensitivity
to tampering features while minimizing the impact of irrelevant features, thereby
improving detection accuracy.

(3) The introduction of auxiliary detection heads for co-training helps the network to
better cope with more complex patterns of document tampering.

(4) To address the problems of sample imbalance and differences in training difficulty,
we introduce a mixed loss function and enhance the proposed model using hard sample
mining and self-supervised dataset augmentation to boost tampering detection
performance.

RELATED WORK

CNN and variants

CNNs are among the most iconic neural network types, extensively utilized in various
image processing tasks. They generally feature a hierarchical architecture comprising
convolutional layers, batch normalization layers, fully connected layers, and additional
layers. In the literature, there are many advanced and efficient neural network structures
that have been introduced, e.g., AlexNet (Krizhevsky, Sutskever ¢» Hinton, 2012), fully
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connected network (FCN) (Long, Shelhamer ¢ Darrell, 2015), ResNet (He et al., 2015),
HR-Net (Sun et al., 2019), and UperNet (Xiao et al., 2018). Bondi et al. (2017) trained a
CNN to extract features specific to the device that captured the image. The algorithm
determines that an image has been tampered if an image includes two or more features of
the capturing device. Qian et al. (2021) introduced a CNN model for image tampering
detection that leverages an image preprocessing algorithm. They combined the traditional
support vector machine and machine learning methods to extract the features from
qualification certificates for image tampering detection. To further enhance the detection
accuracy of the convolutional network, the researchers adjusted the network structure by
deepening the layers of the convolutional network, based on residuals, and further adding
attention mechanisms. In this article, we utilize FCN (Long, Shelhamer ¢ Darrell, 2015) to
process input images of any size and eventually restore them to their original dimensions
through upsampling, to further assist the network in achieving pixel-level tampering
classification training. Furthermore, we improve pyramid structure of the UperNet (Xiao
et al., 2018) network to fully integrate image features at different resolutions (hereafter
referred to as MRF-UperNet).

Image manipulation detection/localization

Initial studies mainly focused on detecting particular types of manipulations, such as
splicing (Cozzolino, Poggi ¢ Verdoliva, 2015b; Huh et al., 2018; Kniaz, Knyaz &
Remondino, 2019), copy-move (Cozzolino, Poggi ¢ Verdoliva, 2015a; Rao & Ni, 2016), and
removal (Zhu et al., 2018). Nevertheless, the precise nature of the manipulation is
frequently uncertain in the practical situations. This uncertainty has driven a growing body
of research focused on developing methods for general manipulation detection. Alshanbari
(2021) employed Discrete Wavelet Transform (DWT) decomposition for medical images.
Gonzilez Ferndndez et al. (2018) initially calculated the likelihood of each pixel being
interpolated and then applied the Discrete Cosine Transform (DCT) on small blocks of the
probability map to identify tampered regions within the image. PSCCNet (Liu et al,
2021a) extracts hierarchical features via a top-down approach and assesses whether an
input image has been manipulated using a bottom-up approach. RRU-Net (Bi et al., 2019)
integrates residual blocks within both the encoder and decoder to address the vanishing
gradient issue in deep networks and employs recurrent units in the skip connections.
MVSS-Net (Dong et al., 2021) uses multi-perspective feature learning to collect
information from various perspectives and applies multi-scale supervision to enhance
detection accuracy by combining features across multiple resolutions. Zhou et al. (2023)
employ a contrastive learning approach to tackle the issue of data insufficiency in image
tampering detection. Ma et al. (2023) enhanced the method at the patch level instead of the
pixel or image level, utilizing Vision Transformer for benchmarking and proposing several
evaluation metrics. Qu et al. (2024) classified tampered images into two categories based on
foreground and background, facilitating the automatic and precise pixel-level labeling of
numerous manually forged images obtained from the web. In this article, we employ a
multi-class network structure for tampering detection, achieving precise localization by
capturing spatial information.
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Transformer-based backbones

The Transformer architecture was first introduced in 2017. Its ability to effectively capture
long-range feature dependencies quickly made it a dominant machine learning framework
for natural language processing tasks (Vaswani et al., 2017). However, its application in the
field of image processing is limited due to its huge computational complexity and inability
to handle image information with high resolution. To decrease computational demands
and fully leverage the benefits of the Transformer, some researchers innovatively
introduced the Vision Transformer (ViT) (Dosovitskiy et al., 2020). ViT and its follow-ups
(Touvron et al., 2021; Yuan et al., 2021; Chu et al., 2021; Han et al., 2021; Wang et al., 2021)
adapted the Transformer architecture for computer vision, where its attention mechanism
effectively captured long-range dependencies among different elements in a sequence,
enhancing sequence processing.

In the context of image tampering detection, several recent Transformer-based
approaches have shown promising results but face significant limitations. TransForensics
(Hao et al., 2021) combines self-attention encoders with dense correction modules,
achieving rich point interactions and multi-scale correction. However, it suffers from
resolution constraints and high memory usage, limiting its practical application.
ObjectFormer (Wang et al., 2022) introduces object-level attention and RGB-frequency
fusion for global semantic understanding, but its limited frequency learning capability and
sensitivity to compression artifacts restrict its performance in real-world scenarios. IML-
ViT (Ma et al., 2023) employs a pure Vision Transformer backbone with edge supervision,
offering high-resolution processing capabilities but at the cost of excessive computational
requirements.

After comprehensive comparison of these approaches, we identified Swin Transformer
(Swin-T) (Liu et al., 2021b) as the most promising foundation for our work. As a
subsequent innovation following ViT, Swin-T introduces a sliding window mechanism
that effectively balances global and local information processing while maintaining
computational efficiency. Unlike TransForensics’s memory constraints, ObjectFormer’s
limited frequency learning, and IML-ViT’s computational overhead, Swin-T provides an
optimal balance of feature extraction capability and practical efficiency. Building upon this
foundation, we enhance Swin-T with our spatial domain sensing module and multi-
resolution fusion structure, specifically designed for tampering detection while preserving
its computational advantages. In this article, we employ a segmentation backbone network
built on Swin-T.

METHODS

In this study, we introduce a multi-classification tampering detection algorithm utilizing a
spatial domain Swin-T segmentation network. The core structure of the proposed model is
depicted in Fig. 2. The algorithm is composed of four modules: the spatial domain sensing
module, the Swin-T backbone network module, the MRF-UperNet decoding network
module, and the auxiliary detection head FCN module. The process is as follows: initially,
the image is fed into the spatial domain sensing module for preprocessing, and the
resulting output is processed through the Swin-T module, which performs feature
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Figure 2 Overall structure of the proposed tamper detection model.
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extraction across four stages. Subsequently, the features extracted are sent to the
MREF-UperNet decoder network for multi-scale fusion. Ultimately, this yields the multi-
classification tampering mask of the input image. Additionally, to expedite network
convergence, we incorporate an auxiliary detection head FCN module, which receives
output from the Swin-T and computes the joint loss function as an additional training
branch.

Meanwhile, we implement a series of measures to optimize the network during its
training process. Specifically, a self-supervised augmentation measure is employed to
expand the document tampering dataset by generating samples possessing with more
complex tampering types. Additionally, a hard sample mining strategy is employed to
increase the sensitivity of the model to subtle tampering traces. Finally, a joint loss function
is innovatively proposed to fully consider both the classification of different tampering
types and the disparity between positive and negative instances. Consequently, the
proposed model effectively overcomes the limited recognition capabilities of current state-
of-the-art methods when dealing with complex tampering operations.

Network design

Spatial domain sensing module

The spatial image information is rich and diverse, not only contains content information,
but also may be mixed with noise, edge details and potential tampering information. For
those subtle tampering of document images that are difficult to recognize with the naked
eye. Accurate detection based solely on the image’s visual information is challenging,
necessitating the detection and analysis of tampering information concealed within the
image. To allow the network to grasp more spatial information, the spatial domain sensing
module has been designed. This module applies three different convolutional operations:

Li et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2775 6/29


http://dx.doi.org/10.7717/peerj-cs.2775/fig-2
http://dx.doi.org/10.7717/peerj-cs.2775
https://peerj.com/computer-science/

PeerJ Computer Science

SRMConv2D (Zhou et al., 2018), BayarConv2D (Bayar ¢ Stamm, 2018) and classical
Conv2D layers to the spatial information, and combine the extracted features by a simple
concatenation operation.

SRMConv2D uses three SRM filters, whose weights are shown in Fig. 3. We froze the
weights so that local noise features are extracted more efficiently by utilizing the difference
between a pixel’s actual value and its estimated value, obtained through interpolation from
adjacent pixel values, thus detecting tampering artifacts that are difficult to detect in the
RGB channels.

BayarConv2D achieves effective perception of image edge information and detection of
tampering traces by introducing specific constraints in the convolution operation. These
constraints are shown in Eq. (1), where wy denotes the kth convolution filter and the center
value of the convolution filter is denoted by (0,0). The constraints dictate that the center
value of the convolutional filter must be —1, while the sum of the weights at all non-center
positions must equal one. This design allows the convolutional layer to build up
information with residuals to better capture edge details and potential tampering traces in
the image.

{Z wi(0,0) = —1, (1)

m,n#0 Wk(m’ f’l) =1,

Backbone network Swin-T

The backbone network is employed to extract high-level features indicative of tampering.
This subsection refers to different models in selecting the backbone network, and
comparatively analyzes the efficacey of different backbone networks such as ResNet

(He et al., 2015), U-Net (Ronneberger, Fischer ¢ Brox, 2015), HRNet (Sun et al., 2019) and
Swin-T (Liu et al., 2021b), and finally selects Swin-T based on the experimental effects and
training speed. Then, we introduce the relevant principle of Swin-T network and its
construction process.

Principle
Swin-T (Liu et al., 2021b) is an innovative visual Transformer, functioning as a
convolutional neural network built upon the Transformer architecture. Compared to the
traditional Transformer, Swin-T aims to reduce the computational burden on high-
resolution image processing. It employs a staged image processing strategy, where a large-
size input image is decomposed into multiple small-size image blocks, each of which is
called a patch. Inside the patch, Swin-T performs self-attentive computation and
establishes patch-to-patch dependencies with sliding window operations. Therefore, it
significantly reduces the computational complexity.

Swin-T innovatively proposes two main modules:

(1) Module for changing sequence length

Swin-T can modify the module structure, increase the number of channels, and create a
hierarchical design while reducing computational load through three operations: the patch
partition layer, linear embedding layer, and patch merging layer. The patch partition layer
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segments and stacks the channel modules, the linear embedding layer alters the feature
dimensions, and the patch merging layer functions similarly to a pooling layer. The patch
merging layer executes a down-sampling operation prior to each processing step, by
selecting elements in the direction of rows and columns through intervals and then
recombining them into new patches, and hence feature resolution reduction can be
achieved. Its structure is shown in Fig. 4. Unlike the traditional pooling operation, the
Patch merging layer focuses more on feature selection and reorganization. So, it can extract
and deliver key information more effectively.

(2) Multi-head attention module based on windows

It primarily comprises two types of modules: Window Multi-Head Self-Attention (W-
MSA) and Shifted Window Multi-Head Self-Attention (SW-MSA). W-MSA begins by
partitioning the feature map into non-overlapping windows and independently executing
self-attention computations within each window, thereby significantly reducing
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computational complexity. The W-MSA module conducts self-attention computations
solely within its respective window, which may result in an inability to exchange
information between windows. Therefore, the SW-MSA module is created. As shown in
Fig. 5, the SW-MSA changes the relative positions of the image blocks, which is equivalent
to re-segmenting the image blocks, and then calculates the self-attention between the
windows. W-MSA and SW-MSA are generally used consecutively as a pair, if W-MSA is
applied in the I-th layer, then SW-MSA is applied in the (I + 1)-th layer. Due to the
window shift, in the (I 4 1)-th layer, when determining self-attention for the windows,
information exchange occurs with the windows from the I-th layer. This addresses the
issue of inability to exchange information between different windows.

Network construction process

The Swin-T network is used to extract image tampering features, and its structure is
illustrated in Fig. 6. Initially, in this article, the extracted features from spatial domain
sensing module are input into the Swin-T network. These features are then divided into N
non-overlapping patch tokens and concatenated along the channels to create a high-
dimensional patch sequence. A Linear Embedding layer subsequently transforms the
feature dimensions from 48 to a chosen dimension C. Subsequently, these processed
features are fed into a self-attentive module (i.e., Swin-T Block) with multiple sliding
windows. After that, the height (H) and width (W) of each group with 2 x 2 adjacent
patches are reduced by half, i.e., transforming from H/4 x W/4 to H/8 x W/8. Meanwhile,
the dimensionality of the patch tokens is doubled, i.e., increasing from 2C to 4C.

In each processing stage, the features pass through either a linear embedding layer or a
patch merging layer and then through several pairs of attention modules with sliding
windows, and thus constructing a hierarchical tampering feature representation. Such a
design reduces the computational cost while reasonably utilizing self-attention to capture
the correlation between different patches and better capture the tampering traces of the
document images.
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Decoder network MRF-UperNet

As the backbone network deepens, the size of the image features diminishes, and the deep
feature maps are rich in information but have low resolution, that make it more difficult to
capture precise locations. In contrast, shallow feature maps contain clear positional
information but have weak representational capacity, that make them unable to capture
tampering information. To accurately detect the target location, fusing the semantic
information from both deep and shallow layers is essential. Given that the proposed model
adopts the structure of Swin-T, which possesses multilevel feature maps, this section
introduces the pyramid structure of UPerNet (Xiao et al., 2018) as the architecture for the
decoding network and incorporates the design of multiresolution fusion on the basis of this
structure.

Essentially, multi-label classification for document image tamper detection is a semantic
segmentation task, enabling the identification and localization of different tampered
regions at the pixel level. In this article, the part of UPerNet network for region
segmentation is selected and an improved UPerNet structure is designed. The primary
structure of the original UPerNet is illustrated in Fig. 7A. UPerNet utilizes the standard
Feature Pyramid Network (FPN) design, incorporating a top-down feature fusion
pathway. FPN progressively passes and integrates high-level, semantically rich feature
maps into lower-level, high-resolution feature maps, achieving multi-scale feature
integration. It receives inputs from different scales extracted from the Swin-T backbone
network and unifies the number of channels in the different layers by a 1 x 1 convolution.
Beginning with the top layer of the backbone network (stage 4), the most profound features
are extracted and processed through the Pyramid Pooling Module (PPM) to achieve multi-
scale feature fusion Fj, and then upsampling it to the same size as that of stage 3 by 1 x 1
convolution, then perform the addition operation for feature fusion to obtain F,. The
similar process are performed on F, and F; to get the corresponding fused features. After
that, the fused features F;, F,, F3, and F4 are combined using a 3 x 3 convolution and up-
sampling with a uniform scale. The features are further fused to obtain information from
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different levels. PPM extracts global contextual information from feature maps through
multi-scale pooling operations. This global information helps the network understand the
overall structure of the scene, enhancing its perception of large-scale regions. PPM
emphasizes global information, while FPN focuses on multi-scale, detailed, and local
features. By concatenating the outputs of PPM and FPN and feeding them into the
prediction module, the network can simultaneously utilize both global and local
information, enhancing the accuracy and robustness of segmentation results. In this
article, we enhance the primary structure of UPerNet by incorporating new convolution
and fusion modules, as illustrated in Fig. 7B. F, is fused with the module extracted in stage
3 using 3 x 3 convolution and upsampling. This process is repeated on the subsequent
modules to achieve continuous feature integration. Meanwhile, features of the same size in
each stage are repeatedly utilized and continuously fused in each iteration through a 1 x 1
convolutional join. Therefore, we can obtain fully integrating information from multiple
resolutions.

Additionally, we introduce a multi-resolution fusion network (MREF-UperNet) built
upon the enhanced UPerNet, drawing inspiration from the human eye’s repetitive
observation process. Our goal is to detect traces of image tampering by continuously fusing
high-resolution and low-resolution information. This design capitalizes on the richness of
the network encoder’s features at different resolutions, and also enhances the network’s
ability to perceive subtle tampering cues in images.

Auxiliary detection head FCN module
During the backbone network’s feature extraction process, the subsequent deep layers of
the decoding network can lead to an increasing in the training difficulty and slow network
convergence during joint training. Consequently, we propose a lightweight auxiliary
detection head module, which adopts the basic fully convolutional network (FCN) (Long,
Shelhamer & Darrell, 2015).

FCN is extensively utilized for semantic segmentation tasks. Generally, traditional
convolutional networks add multiple fully connected layers following the last
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convolutional layer to transform the convolutional feature maps into feature vectors for
fixed-scale classification prediction, whereas FCN substitutes the fully connected layers
with convolutional layers, allowing it to accept inputs of any size. The final feature map
classification layer is upsampled using a 1 x 1 transposed convolutional layer, restoring it
to the original image size to deliver pixel-level segmentation.

The auxiliary detection head module only works when the model is trained. During
model validation and testing, only the base network combination of the backbone network
and the encoder is used for the detection, and it isn’t depend on the auxiliary detection
head. Thus, only a few basic convolutional layers are employed to structure the output of
the feature maps trained by the Swin-T backbone network. The primary details of the
auxiliary detection head module are presented in Table 1, where Conv2d represents the
convolutional layer, ConvSeg denotes the inverse convolutional layer, filters indicate the
count of convolutions, K represents the count of kernels, S denotes the stride, P denotes the
padding, BN denotes the batch normalization layer, and ReLU denotes the activation
function. The input feature map for predictive classification has 512 channels. The
input features are convolved once with a 3 x 3 kernel, then transforming them into values
with 256 channels, and then an inverse convolutional layer is used for pixel-level
classification.

The auxiliary detection header plays a significant role in the training process. It not only
aids in the network’s learning process but also enhances the model’s sensitivity and
accuracy in detecting tampering traces. Especially during the initial phase of network
training, the auxiliary detection head module effectively mitigates the problem of
vanishing or exploding gradients by providing additional gradient information. Therefore,
it can accelerate the convergence of the network.

Self-supervised augmentation and hard example mining strategies
Self-supervised augmentation

To address the challenge of limited mixed-type tampering samples in existing datasets, we
developed a systematic self-supervised augmentation approach. Our method first applies
conventional data augmentation techniques, including random vertical and horizontal
flipping, random zooming, and image warping, to increase the basic dataset diversity.

For generating mixed-type tampering samples, we implement a sequential tampering
process. We first preserve existing tampered regions in single-type tampered images, then
systematically apply additional tampering operations. These operations include copy-
move (duplicating content within specific regions), splicing (inserting external content),
text tampering (generating synthetic text), erasing (removing content patches), and
smearing (applying local blur effects).

To ensure the realism of generated samples, we apply several post-processing
techniques including color adjustment to match surrounding regions, subtle noise
addition, boundary smoothing, and contrast-brightness adjustment. Each augmented
sample is accompanied by a detailed mask indicating the location and type of each
tampering operation, including regions where different tampering types intersect.
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Table 1 Parameters of the auxiliary detection head module.

Layer name Param

Conv2d Filters: 256 K: 3 x 3,S: 1, P: 1
BN Channel 256

ReLU -

ConvSeg Filters: 6 K: 1 x 1, S: 1, P: 1

This comprehensive augmentation process enables us to generate diverse mixed-type
tampering scenarios while maintaining realistic visual appearance and providing accurate
ground-truth annotations. Through this approach, the network can access more features of
different tampering types during training, improving its ability to recognize and handle
complex tampering situations.

Hard example mining

Image tampering detection algorithms typically suffer from imbalanced classes problem,
where the real regions constitute a larger percentage from the entire image, while the
tampered regions, especially the small forged regions that constitute a smaller percentage
are difficult to be detect easily. However, these small tampered regions are often contain
more important information. These areas are often the most difficult to accurately detect in
a dataset. To address this challenge, we employ an online hard sample mining (OHEM)
technique with a confidence threshold of 0.7 to identify and focus on challenging samples
during training.

Loss function

The experiments in this article originally use a multiclassification cross-entropy loss
function, which is crafted to ensure accurate prediction of both real and tampered regions.
However, it does not fully consider the classification differences between different
tampering types and the different effects when real and tampered regions are incorrectly
predicted. During the training process, the gradient descent algorithm may fall into local
optimal solutions, especially if the distribution of feature values is relatively sporadic, and
the gradient of some features may disappear, thus significantly slowing down training
speed.

For small object segmentation tasks, especially for images involving subtle tampering,
the difference in distribution between different tampering types may be very small. This
increases the risk of the model incorrectly predicting all regions as non-tampered regions,
as it may be difficult for the model to accurately distinguish subtle tampering traces. To
address this problem, we add Lovasz-Softmax (Berman ¢ Blaschko, 2017) loss to
multiclassified cross-entropy, whose design concept is derived from a performance metric
called the Jaccard index, also referred to as the IoU score. For the predicted value M and
true value T of multiclass segmentation, the set of c-class wrongly predicted pixels is defined
as M., which is shown in Eq. (2). The corresponding Jaccard loss A, is shown in Eq. (3).
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The set of predicted pixels in the above equation is organized to obtain the expression of
Lovasz-Softmax for multi-class semantic segmentation as shown in Eq. (4), where m(c) is
the pixel error vector defined in Eq. (5), and ¢;(c) is denoted as the output score of the c-th
class. The loss function obtained after Lovasz-Extension smoothing is a continuous convex
function, which is conducive to the optimization of the loss function.

Lis = Ay (m(c)) (4)
_J1—=¢i(c) ifc=T
m(c) = { ¢;(c)  otherwise’ ®)

The decoder network’s loss function, Lgecode, is determined as per Eq. (6), while the
auxiliary detector head network’s loss function, Ly, is determined as per Eq. (7). Here,
L¢g stands for the cross-entropy loss, and Ls stands for the Lovasz-Softmax loss.

LdECOde = LCEdecode + LLSdecode (6)
Laux = LCEdecode + LLSaux' (7)

RESULTS AND DISCUSSION

Dataset construction and experimental setup

The scarcity of comprehensive document tampering datasets presents a significant
challenge in current research. Most existing datasets are limited in both sample size and
tampering diversity. For instance, the Tampered-SROIE dataset contains only 626
samples, which is insufficient for training deep learning models effectively. Moreover,
existing datasets typically focus on single tampering methods without detailed type
annotations, making multi-class tampering detection particularly challenging.

To address these limitations, we developed a new dataset by utilizing two source
datasets: the StaVer Dataset and SCUT-EnsExam. The former comprises document images
containing various elements such as colored logos and stamps, while the latter consists of
handwritten exam sheets. We implemented a systematic processing pipeline to create our
comprehensive tampering dataset:

First, we standardized all images to 512 x 512 pixels through random cropping. For the
StaVer Dataset, we extracted three distinct regions from each image, while for SCUT-
EnsExam, we selected ten regions per image. This initial processing resulted in a base
collection of images suitable for tampering manipulation.

Our tampering generation process focused on five distinct manipulation types that
commonly occur in real-world document forgeries:

The final dataset comprises over 30,000 images, with approximately 80% allocated for
training and 20% for testing. Each tampering category is well-represented, with
distribution as shown in Table 2. Figure 1 illustrates examples of each tampering type.
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Table 2 Statistics of the document tamper dataset (MixTamper).

Category Types Counts Characteristics
Tampering types Copy-move 6,650 Local duplication
Splicing 6,510 External content insertion
Text-generating 6,678 Artificial text addition
Smearing 6,300 Local pixel distortion
Erasing 4,060 Content removal
Dataset split Training 24,160 80% of total
Testing 6,038 20% of total

Our dataset construction process followed systematic criteria to ensure diversity and
minimize potential biases. We carefully selected source documents from both StaVer
Dataset (containing colored logos and stamps) and SCUT-EnsExam (handwritten exam
sheets), ensuring coverage of different document styles and content types. To maintain
data quality and reduce potential biases, we implemented balanced sampling across
tampering types (as shown in Table 2), with each type having approximately 6,000 samples
except for erasing operations. The tampering operations were deliberately applied at
varying locations and scales to ensure comprehensive coverage of different document
regions and forgery patterns.

For comprehensive evaluation, we also incorporated the DocTamper dataset (Qu et al.,
2023) as an external validation set. This dataset contains 170,000 document images in both
Chinese and English, providing an independent benchmark for assessing our model’s
generalization capabilities. While DocTamper lacks detailed tampering type annotations,
its diverse collection of document styles and languages makes it particularly valuable for
validating our model’s performance beyond the training distribution. The subsequent
comparative experiments will be conducted on both our self-constructed dataset (hereafter
referred to as MixTamper, as detailed in Table 3) and the publicly available DocTamper
dataset to demonstrate the model’s robust performance across different document
scenarios.

Our dataset offers several key advantages: it provides a substantial number of samples,
includes multiple tampering types with precise annotations, and represents both English
and Chinese document scenarios. The tampering operations are designed to be subtle and
localized, closely mimicking real-world forgery patterns. However, we acknowledge certain
limitations: the document types are primarily confined to specific categories, and the fixed
image dimensions may not fully represent all real-world scenarios.

For the experimental implementation, we employed the Adam optimizer with f values
0f (0.9,0.999) and a weight decay rate of 0.01. The learning rate was managed using a poly
strategy, initialized at 0.0001, with a linear warm-up period of 1,500 iterations. The
training process incorporated both multicategorical cross-entropy and Lovasz-Extension
loss, weighted equally, over 300 epochs.
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Table 3 Ablation results for the backbone and decoder network structure on DocTamper dataset.

Network structure P R F IoU
U-Net 86.44 75.11 80.38 67.2
ResNet+UperNet 86.36 68.24 76.24 61.6
HRNet+UperNet 89.66 68.00 74.72 66.29
Swin-T+FPN 88.63 71.76 87.30 77.39
SwinT+UperNet 90.88 89.66 90.27 82.26

Visualization results

In order to show the prediction results more intuitively, tests are conducted on the
MixTamper dataset and the corresponding prediction masks are generated. Some of the
prediction results are selected as shown in Fig. 8, selected results are displayed from left to
right: the tampered image (forgery), the ground-truth image (GT), and the prediction
output of the proposed method (mask). In GT and mask, various colors are employed to
distinguish between types of tampering: red for copy-move tampering (our work for copy-
move forgery detection is only focus on the detection of target regions), green for splicing
tampering, blue for text-generating tampering, yellow for smearing tampering, and purple
for erasing tampering.

Figure 8 displays the experimental results. The first image contains a combination of five
forgery types, which are challenging for existing state-of-the-art (SOTA) methods to
detect. However, our proposed method can accurately identify and label each type, which
demonstrates the model’s excellent performance in dealing with multiple types of
tampering, especially the erasure tampering, which is detected accurately by the algorithm
even though the tampered area is very small. The second image contains two types of
tampering: copy-move tampering and erasure tampering. The copy-move tampering
moves the text below the basketball image to the right side of the number 2, which is
relatively hidden, our algorithm is still able to accurately locate the tampering position. The
third image contains two types of tampering: splicing tampering and text-generating
tampering. Splicing tampering is more hidden, although its detection results are not clear
at the tampering boundary, it is still able to accurately identify the general location, while
text-generating tampering also achieves the desired effect. The fourth image involves copy-
move, splicing and text generation tampering, all of which can be accurately detected. The
fifth image incorporates four types of tampering, including copy-move, splicing, text
generation and erasure tampering, in which the erasure tampering and text generation
tampering means are intertwined, our method not only accurately recognizes each type of
tampering, but also accurately locates the tampered area. Overall, our proposed model is
capable of accurately identifying tampering types even in complex tampering scenarios.

Ablation experiments and analysis
To evaluate the effectiveness of the proposed algorithm for detecting multiple types of
forgery based on the Swin-T segmentation network in the spatial domain, an ablation
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Figure 8 Experimental visualization results for multiple forgery detection on MixTamper dataset.
Full-size Kal DOI: 10.7717/peerj-cs.2775/fig-8
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experiments are designed. On one hand, the performance of various backbone and decoder
networks is compared, and detailed adjustments to the network structure are made. This
allows for an analysis of how specific network structures impact the algorithm’s
performance. On the other hand, to verify the effectiveness of network optimization
strategies, adjustments are made not only to the loss function but also by introducing hard
sample mining and self-supervised augmentation methods. Corresponding ablation
experiments are designed to support these analyses. Through these experiments, the
positive effects of these optimization strategies in enhancing the performance of tamper
detection algorithms are successfully verified.

Ablation experiments based on network structures

Due to the data richness of DocTamper’s dataset, it is more suitable for the experiments of
the backbone network selection and it is also favorable for Transformer model training,
which is utilized to perform ablation experiments on the network module. In this
experiment, we employ backbone models such as U-Net, ResNet, and HRNet. Since U-Net
inherently includes multi-scale information fusion, it does not require the addition of
UPerNet. However, both ResNet and HRNet incorporate UPerNet as a decoder after
feature extraction. Additionally, in the decoder module, we compare FPN network and
UPerNet network through ablation studies. We thoroughly assess the network’s
performance using four metrics: precision (P), recall (R), F1-score (F), and intersection
over union (IoU). The results of the ablation experiments are shown in Table 3.

From the comparison between the data in the first three rows and the fifth row, it can be
seen that Swin-T’s backbone network is improved in all four metrics compared with other
backbone networks such as U-Net, ResNet, HRNet, etc. This could be attributed to Swin-
T’s ability to directly compute image correlations using the multi-head self-attention
mechanism and acquire multi-scale features via the sliding window, enabling it to capture
both local and global image features simultaneously. This enables better detection of
tampering features. Meanwhile, from Table 3, the use of the UperNet network structure
results in improvements across all four metrics compared to the FPN network structure.
This is because UperNet introduces richer contextual information and more effective
feature fusion strategies, which enhance the network’s adaptability to complex scenarios
and various types of tampering.

In addition, based on Swin-T+UperNet structure, we further introduce the Spatial
domain Perception Module (SPM) and the Multi-Resolution Fusion Module (MRF), and
carry out ablation experiments on the self-built dataset MixTamper. These experiments
extend the original dichotomous (0-1 segmentation) problem into a multichotomous (0-C
segmentation) problem to cope with five different tampering types contained in the
dataset: copy-paste tampering (copy-move), splicing tampering (splice), text-generation
tampering (text), smearing (smearing) tampering, and erasure (erasure) tampering. The
experiments are evaluated for these tampering types using IoU and F1 metrics, and the
experimental findings are displayed in Table 4, from which it can be seen that the IoUs of
copy-move and splice are improved by 3.77% and 3.18%, respectively, with the addition of
the spatial domain perception module. This enhancement is due to the module’s ability to
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Table 4 Ablation results for SPM and MRF module on MixTamper dataset.

Network structure Copy-move Splice Text Smearing Erasure

IoU F1 IoU F1 IoU F1 IoU F1 IoU F1
w/o SPM 69.15 81.86 7591 86.36 77.79 83.27 88.75 94.03 93.17 96.47
w/o MRF 72.59 84.13 78.63 88.05 78.38 87.76 89.64 94.48 94.21 97.02
Ours 72.92 84.34 79.09 88.32 78.43 87.79 89.94 94.71 94.48 97.16

Table 5 Ablation results for the network optimization module on MixTamper dataset.

Network structure Copy-move Splice Text Smearing Erasure

IoU F1 IoU F1 IoU F1 IoU F1 IoU F1
w/o ADH 67.76 80.91 74.16 85.23 77.56 87.25 88.37 93.34 92.54 96.27
w/o HEM 69.36 81.84 76.09 86.53 78.41 87.77 89.84 94.64 94.17 97.12
w/o SSA 71.44 83.38 77.53 87.37 78.20 87.65 89.39 94.25 93.92 97.11
Ours 72.92 84.34 79.09 88.32 78.43 87.79 89.94 94.71 94.48 97.16

extract richer information about the spatial domain, which often contains noise, edge
details, and other potential tampering fingerprints. Meanwhile, the IoU for copy-move and
splice also shows a slight improvement. This improvement is credited to the module for
multi-resolution fusion’s ability to effectively combine datas from both high and low
resolutions, allowing the network to access richer information and make more precise
tampering assessments.

Ablation experiments based on network optimization strategies

We conducted comprehensive ablation experiments to evaluate three key components of
our architecture: the auxiliary detection head (ADH), hard example mining (HEM) and

self-supervised augmentation (SSA). Each component was evaluated for both performance
metrics and training dynamics. Table 5 presents the ablation results.

The ablation results demonstrate the significant impact of each component:

The ADH improves both model performance and training efficiency. Without ADH,
performance degrades across all tampering types (IoU drops of 5.16% for Copy-move,
4.93% for Splice). More importantly, ADH accelerates convergence—the model converges
in 180 epochs with ADH compared to 245 epochs without it. This improvement stems
from ADH’s intermediate supervision signals, which provide better gradient flow during
training.

The HEM significantly enhances the model’s ability to detect challenging tampering
cases. After introducing HEM, the IoU for complex tampering types (Copy-move and
Splice) improved by 3.56% and 3% respectively. Moreover, HEM reduces training
fluctuations and helps maintain stable convergence by focusing on informative samples.

The SSA provides consistent improvements across all tampering types (IoU increases of
0.23-1.48%). Beyond accuracy improvements, SSA enhances training stability and reduces
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Table 6 Analysis of component impact on model convergence.

Method Mean IoU Training epochs Convergence loss Training time
Baseline 0.682 350 0.198 1.0x
With ADH 0.715 300 0.185 1.2x
With HEM 0.743 245 0.165 1.2x
With Both 0.829 180 0.142 1.3x

overfitting by introducing additional self-supervised tasks. The training loss converges
more smoothly with SSA, indicating better feature learning.

To quantitatively evaluate the impact of the ADH and HEM on model convergence and
training dynamics:

While Table 5 presents the detailed performance breakdown for each tampering type,
Table 6 focuses on the convergence behavior of different model configurations. The results
demonstrate the complementary effects of ADH and HEM on training dynamics, mean
IoU is calculated as the weighted average across all tampering types. ADH improves
convergence by providing intermediate supervision signals, reducing required epochs from
350 to 300 and improving mean IoU from 0.682 to 0.715. HEM further enhances
optimization through focused learning on informative samples, achieving better
convergence (loss of 0.165) with fewer epochs (245). When combined, these components
show synergistic effects, achieving the best performance (mean IoU 0.829) with
significantly faster convergence (180 epochs) despite a modest increase in per-epoch
training time. This demonstrates that both components are essential for efficient model
optimization and superior detection performance.

To determine the optimal configuration for our online hard example mining (OHEM)
strategy, we conducted extensive parameter analysis experiments. We evaluated different
confidence thresholds (0.5, 0.6, 0.7, 0.8, 0.9) and their impact on model performance:

As shown in Table 7, a threshold of 0.7 achieves the optimal balance between
performance and training stability measured by loss variance in final 10 epochs. Lower
thresholds (0.5-0.6) include too many easy samples, diluting the training focus, while
higher thresholds (0.8-0.9) may overlook moderately difficult samples that are valuable for
training. The selected threshold of 0.7 maintains approximately 32% of samples as hard
examples, providing sufficient challenging cases while ensuring stable training.

Analysis of combined loss function
To understand the effectiveness of our combined loss function, we conducted detailed
experiments analyzing both individual components and their combination. The cross-
entropy loss Lcg focuses on pixel-wise classification accuracy, while the Lovasz-Softmax
loss Lyg directly optimizes the IoU metric. We hypothesized that combining these losses
would leverage their complementary strengths.

Our experiments reveal distinct characteristics and limitations of each loss function. As
shown in Table 8, the cross-entropy loss (Lcg) shows rapid initial convergence but
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Table 7 Impact of OHEM confidence threshold on detection performance.

Confidence threshold Mean IoU Training stability Hard sample ratio
0.5 0.795 0.156 45%
0.6 0.812 0.148 38%
0.7 0.829 0.142 32%
0.8 0.801 0.165 25%
0.9 0.783 0.189 18%

Table 8 Training convergence analysis with different loss functions.

Epoch Lcg Lis Lcg + Lis
20 0.685 0.592 0.701
40 0.723 0.634 0.758
60 NaN 0.651 0.792
80 NaN 0.663 0.815
100 NaN 0.670 0.831

Table 9 Loss function ablation experiments.

Loss function  Copy-move Splice Text Smearing Erasure

IoU F1 IoU F1 IoU F1 IoU F1 IoU F1
Lcg 5245 69.79 61.00 76.03 6654 79.87 81.65 89.82 83.10 90.81
Lis 21.90 3658 2882 4579 8332 90.75 87.70 9431 9198 95.83
Leg + Lis 7292 8434 79.09 8832 7843 8779 89.94 9471 9448 97.16

becomes unstable after epoch 50, leading to NaN values. This instability arises because Lcg
struggles with the inherent class imbalance in tampering detection, where tampered
regions often constitute a small percentage of the image.

The Lovasz-Softmax loss (Lis) shows slower but stable convergence throughout
training. However, its final performance varies significantly across tampering types. While
it excels at detecting tampering types with clear boundaries and uniform regions (Text:
83.32% IoU, Erasure: 91.98% IoU), it significantly underperforms on complex
tampering types that require fine-grained feature discrimination (copy-move: 21.90% IoU,
splice: 28.82% IoU), as displayed in Table 9.

Our combined loss (L¢g + Lis with 1:1 ratio) achieves both stable convergence and
superior performance across all tampering types. As evidenced by Table 8, it
maintains steady improvement throughout training while avoiding the instability of L¢cg
alone. This improvement can be attributed to the complementary nature of the two
losses: Lcg provides strong pixel-level supervision that helps with fine detail
preservation, while L;s optimizes the IoU metric directly, ensuring robust segmentation of
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tampering regions regardless of their size. The combination particularly benefits
complex tampering types, showing dramatic improvements in copy-move

(72.92% vs 52.45% IoU) and splice (79.09% vs 61.00% IoU) detection compared to using
either loss alone.

Comparative experiments and analysis

To highlight the advantages of the proposed method, this section offers a detailed
comparison of its performance with that of the existing RRU-Net (Bi et al., 2019),
DenseFCN (Zhuang et al., 2021) and PSCC-Net (Liu et al., 2021a) for image tampering
detection. To ensure comprehensive comparisons, we conducted comprehensive
experiments on both our MixTamper dataset and the external DocTamper dataset.

For evaluation metrics, we use IoU and F1-score. For the DocTamper dataset, which
only provides binary annotations, we compute these metrics directly on the binary
prediction masks. For the MixTamper dataset with multi-class annotations, we calculate
mean IoU (mlIoU) and F1-score as follows:

The mIoU is computed by first calculating per-class IoU values and then averaging
across all classes:

1 N Tpl
IoU = — 8
mio NZi:l TP; + FP; + FN; ®

where N is the number of classes (N = 6 in our case, including the background class), TP;,
FP;, and FN; represent true positives, false positives, and false negatives for class i,
respectively.

The F1-score is similarly computed per-class and then averaged:

1 N ZTP,
F1=— . 9
N D i 2TP; + FP; + FN; ®)

We use unweighted averaging across classes to ensure that each tampering type
contributes equally to the final score, regardless of its frequency in the dataset.

As shown in Table 10, our method demonstrates consistent superior performance
across both datasets. On the external DocTamper dataset, which contains 170,000 diverse
document images in both Chinese and English, our method achieves an IoU of 84.16% and
F1-score of 91.40%, significantly outperforming existing approaches. This strong
performance on an independent external dataset confirms that our model’s improvements
are not overly specialized to our training set. Similarly, on the MixTamper dataset, we
achieve an mIoU of 82.97% and F1-score of 90.46%, demonstrating excellent detection
accuracy across different tampering types. The consistent performance between
DocTamper and MixTamper (variance < 2% in both metrics) validates our model’s robust
generalization capability across different document styles and languages, while the
significant margin over SOTA methods (improving IoU by >11% on both datasets)
demonstrates the effectiveness of our approach.
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Table 10 Performance evaluation results on two different datasets.

Model DocTamper MixTamper

Indicator IoU F1 mloU F1
RRU-Net (Bi et al., 2019) 37.77 50.74 36.38 50.08
DenseFCN (Zhuang et al., 2021) 40.34 51.25 39.66 50.43
PSCC-Net (Liu et al., 2021a) 72.26 77.08 69.39 80.34
ours 84.16 91.40 82.97 90.46

Analysis of mixed-type tampering strategy

Most existing deep learning approaches for document tampering detection focus on binary
localization without distinguishing between different tampering types. For instance,
ObjectFormer, a state-of-the-art method, outputs a binary mask (H x W X 1) to indicate
tampered regions and uses a classifier to determine authenticity. While effective for single-
type tampering detection, this approach cannot effectively handle cases where multiple
tampering types coexist. In contrast, our method treats tampering detection as a unified
multi-class segmentation task, where each pixel is directly classified into one of six
categories (original:0, copy-move:1, splicing:2, text:3, smearing:4, erasing:5).

To validate the effectiveness of our approach and justify the necessity of mixed-type
tampering training, we conducted comprehensive experiments comparing ObjectFormer
and our method under both single-type and multi-type scenarios. For fair comparison, we
trained ObjectFormer on our dataset following its original configuration, while only
considering localization accuracy (IoU and F1 score) in multi-type scenarios since
ObjectFormer cannot predict specific tampering types. Table 11 presents the performance
comparison:

The experimental results provide strong evidence supporting our mixed-type tampering
strategy. In single-type scenarios (specifically copy-move tampering), ObjectFormer
achieves slightly better performance, demonstrating its effectiveness in traditional
tampering detection tasks. However, when handling multi-type tampering cases,
ObjectFormer’s performance drops significantly (IoU decreases by 15.8%), while our
method maintains robust performance (only 1.4% decrease in IoU).

This performance gap can be attributed to two key factors: (1) Our unified multi-class
segmentation approach preserves the spatial and semantic relationships between different
tampering types (2) Training with mixed-type samples enables the model to learn complex
feature interactions that commonly occur in real-world document forgeries.

These results clearly demonstrate that our mixed-type tampering strategy is not only
theoretically sound but also practically beneficial. While existing methods like
ObjectFormer excel in single-type scenarios, they struggle with real-world cases where
multiple tampering types coexist. Our approach successfully addresses this limitation while
maintaining comparable performance in traditional single-type detection tasks.
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Table 11 Performance comparison: ObjectFormer vs. our method.

Method Scenario IoU F1 score

ObjectFormer Single-type (Copy-move) 0.843 0.915
Multi-type 0.685 0.712

Ours Single-type (Copy-move) 0.826 0.901
Multi-type 0.812 0.885

Table 12 Model performance under different image distortions.

Distortion type Copy-move Splice Text Smearing Erasure

JPEG compression (IoU %)

q=90 61.65 70.98 77.94 69.85 73.37

q =280 54.35 59.34 77.48 60.33 56.50

q=75 51.79 55.72 72.10 53.17 51.10

Gaussian noise (c)

o =0.01 65.82 72.45 75.89 71.23 75.41

o =0.02 58.93 65.34 73.56 64.87 68.92

o =0.03 52.76 58.91 70.23 57.45 61.34

Gaussian blur (kernel size)

3x3 67.89 74.56 76.92 73.45 77.82

5x5 61.23 67.89 74.51 65.92 70.34

7%x7 54.67 60.23 71.34 58.76 63.45

Robustness analysis

To evaluate our model’s robustness against real-world image distortions, we conducted

comprehensive tests with various types of degradations:

Our analysis reveals that performance degradation varies significantly across different

tampering types and distortions in Table 12. For JPEG compression, text tampering shows

the strongest robustness, with only a 6.33% IoU decrease at q = 75, likely due to the high-

contrast nature of text modifications. In contrast, Erasure tampering exhibits the most

severe degradation (IoU drops by 43.38% at q = 75), as removed areas appear as uniform

background regions that compression algorithms tend to oversimplify. Copy-move, splice,

and smearing tampering show moderate but significant degradation (IoU drops of 21.13%,

23.37%, and 36.77%, respectively at q = 75), primarily due to compression artifacts

masking fine-grained tampering traces.

Similar patterns emerge under Gaussian noise, where text tampering maintains

relatively stable performance (7.54% IoU drop at ¢ = 0.03) due to its distinct contrast

patterns. However, copy-move and splice detection suffer more severe degradation

(20.16% and 19.18% IoU drops respectively at ¢ = 0.03) as noise obscures the subtle

similarities between copied regions and spliced content. For Gaussian blur, the

performance impact is generally less severe than compression or noise, but follows similar
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patterns across tampering types. Text tampering remains the most robust (7.09% IoU drop
at 7 x 7 kernel), while complex tampering types like copy-move and splice show greater
sensitivity to the loss of high-frequency details (18.25% and 19.33% IoU drops respectively
at 7 x 7 kernel).

Based on these findings, we propose several potential improvements for future research.
These include incorporating distorted images during training to enhance model
adaptation, developing more robust feature extraction mechanisms that preserve both
local and global tampering evidence under distortions, and implementing adaptive
detection thresholds based on estimated image quality. While implementing these
improvements is beyond our current scope, they represent promising directions for
enhancing the practical applicability of tampering detection systems.

CONCLUSIONS

In this study, we present a multi-classification tamper detection algorithm utilizing Swin-
T. This approach leverages the self-attention mechanism of Swin-T and the multi-
resolution fusion decoder of the MRF-UperNet network for detecting multiple classes of
image tampering. We propose multiple convolutional spatial domain perception module
in the first layer of the network to enhance document tampering feature targeting. While in
the network optimization, an auxiliary detection header is introduced to enhance the
performance and an improved loss function is applied. Furthermore, a hard sample
mining is implemented and a self-supervised augmentation is performed to expand the
dataset. Experiments indicate that the proposed adjustments to the network structure and
optimization measures significantly enhance the algorithm’s convergence speed and
detection accuracy. However, the proposed algorithm still suffers from some robustness
problems, especially when facing image compression attack, the segmentation index
decreases significantly, which limits the breadth and reliability of the tamper detection
algorithm in the practical applications.
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