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ABSTRACT

In various areas, wireless sensor networks (WSNs) are popular for achieving goals
related to security in buildings when there is fire, in military areas to know the
position of terrorists in moles and to observe the behavior of animals in forest areas.
All these objectives can be achieved only when the position of the sensor is known to
the base station, which helps to achieve the appropriate action in unwanted
situations. The controlling point is the base station, which would be able to take
action only in case the correct position of the unwanted event is known to the base
station. Researches have designed various localization/positioning approaches but
still have some challenges related to the accuracy of sensor nodes in localization.
Distance vector hop is a popular localization algorithm. Its dependence on the
estimated average size of a hop results in a significant localization error. This work
suggests an improved algorithm combining a refinement procedure with particle
swarm optimization, called DVHOP-PSO. This improved algorithm, called
PSLDV-Hop, uses exact anchor sensor node coordinates and fractional hop count
information to correct estimated distances. By utilizing an improved iterative
evolution algorithm, the PSLDV-Hop algorithm reduces localization errors by
achieving a higher degree of accuracy in node localization. Simulation results
demonstrate their superiority over other classical improved algorithms and the
original distance vector hop. The simulation of this approach is done using the
MATLAB tool by considering different parameters such as the number of anchor
nodes, number of sensor nodes, area, and range of sensor nodes. Integrating particle
swarm optimization with distance vector hop, the proposed localization algorithm
consistently outperforms conventional methods, showcasing significant percentage
improvements . The suggested algorithm consistently performs better than all other
approaches at ranges 20 and 40. Overall, the suggested method performs noticeably
better than distance vector hop at range 40, especially when range grows by up to
65%. Additionally, across communication ranges of 20, 30, and 40 units, the
proposed algorithm consistently outshines PSO-DV-Hop and GA-DV-Hop,
exhibiting notable percentage improvements in localization accuracy.
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INTRODUCTION

Wireless sensor networks (WSN) are essential for many uses, including surveillance,
healthcare, and environmental monitoring. The basic architecture of WSN is shown in
Fig. 1. Figure 1 shows how the sensor nodes and base station work. In WSN, all the sensor
nodes work together to achieve the common goal. For example, in a dense forest area fire
alarm system, sensor nodes must be deployed randomly with the airplane because
manually moving to a specific location and placing sensor nodes is impossible. Now, when
sensor nodes transmits the sensed data regarding fire in a specific area to base station to
take corrective action, the base station can take correct action only if the base station is
aware of the correct location/position of the sensor node. Sensor node position can be
achieved with GPS but connecting each sensor node with GPS makes the whole network
costly (Teng, Qian & Huang, 2021). Therefore, to reduce the cost of the network, a few
nodes use GPS for position calculation, and the remaining nodes use the position
calculation algorithm to determine the position with the help of nodes connected to GPS.
In WSN, the sensor nodes that relate to the GPS are represented as intelligent node/anchor
node/beacon node, and other nodes that calculate the position with the help of intelligent
node are represented as unknown node/dumb node.

The process that helps the unknown-sensor-node to calculate the position with the help
of intelligent node is known as the localization/positioning process. Different authors have
designed different algorithms to determine the position of dumb node, but all the
algorithms have challenges in localization accuracy and security. Accurate data collection
and analysis within these networks depend heavily on the efficient localization of sensor
nodes. There are various categories for localization. The most popular ones are
range-based or range-free and centralized or distributed (Alhmiedat & Salem, 2017). To
use centralized algorithms, numerous computations and estimations must be completed
on a central node or station. The benefit of this method is that it uses less hardware and
computes on various separate nodes. However, this increases the cost of the central station
and raises the possibility that the entire localization process will be in vain if the central
station is attacked. Distributed algorithms, on the other hand, necessitate computing on
every sensor node. Using the measurements it receives from anchor sensor nodes; each
node is in charge of estimating its coordinates. It strengthens and increases the fault
tolerance of the sensor network. The triangulation, multiliterate, or triangulation methods
can all be used to determine the location via range-based methods.

Due to the intrinsic limitation of currently available algorithms, localization accuracy is
one of the big problems in WSN. However, it relies on some kinds of approximate
methods, in which significant errors are highly probable due to average hop size in
DV-Hop. Therefore, the deployment of global positioning system (GPS) integration is
actually a good solution, yet high-priced, while the energy demands are unrealistic to be
fulfilled on a large scale. This motivates the requirement for an efficient, low-cost
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Figure 1 Architecture of WSN. Full-size Kal DOI: 10.7717/peerj-cs.2770/fig-1

localization algorithm capable of achieving high accuracy under various network
conditions. The proposed PSLDV-Hop algorithm tries to overcome all these difficulties by
combining the strengths of DV-Hop and optimization capabilities of particle swarm
optimization (PSO). Using fractional hop counts for refining distance estimations and
iterative evolution techniques, PSLDV-Hop reduces errors in localization, thus ensuring
reliable and accurate positioning of nodes. Thus, this advance has important implications
for WSN applications, enhancing their efficacy in real-world scenarios.

The rest of this article is structured as follows: “Related Works” shows the research that
has previously been conducted on localization algorithms, including the hop-based one.
“Proposed System” explains the basic operation of DV Hop and the suggested localization
strategy. “Description of PSLDV-Hop” explains the suggested approach. “Results and
Comparisons” shows Results and comparisons with graphs and a thorough description of
the outcomes. “Conclusion” discusses the conclusion.

RELATED WORKS

A popular localization algorithm, distance-vector hop (DV-Hop), uses the average hop size
to estimate the distances between unknown-sensor-nodes and anchor sensor nodes.
Although extensively used, DV-Hop suffers from a significant localization error because it
depends on this average hop size (Agrawal ¢ Srivastava, 2023). The field of WSN faces the
significant challenge of accurate localization. Despite its low cost and distributed nature,
the widely used distance vector hop (DV-Hop) algorithm suffers from high localization
errors. The authors have designed different localization algorithms using different
approaches, which are shown below.

Pourghebleh et al. (2021) worked to identify internal attacks on Internet of Things (IoT)
powered by sensor devices. The author developed a multi-mobile, code-driven,
blockchain-based, energy-efficient decentralized trust mechanism. The newly proposed
method outperforms the status quo in blackhole and grey hole attack scenarios with
43.94% and 2.67% less message overhead, respectively. Like blackhole and grey hole

Kaur et al. (2025), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.2770 3/32


http://dx.doi.org/10.7717/peerj-cs.2770/fig-1
http://dx.doi.org/10.7717/peerj-cs.2770
https://peerj.com/computer-science/

PeerJ Computer Science

attacks, unauthenticated node detection times are reduced by 20.35% and 11.35%,
respectively. These two elements are crucial to increasing network lifetime.

Bhatti et al. (2020) designed an approach that provides security benefits offered by
blockchain technology and the use of cryptography tools; the authors developed a
methodology that safeguards data against manipulations and presence. The accuracy of the
designed methodology was examined on IoT-based WSNs that use temperature and
humidity sensing. The outcome demonstrates that the proposal satisfies the primary
requirement of the IoT system. It is independent, safe for users and devices to share and
transmit data, has privacy, is dependable, and the data is accessible in infrastructure.
According to this research, the proposal is less vulnerable to the attacks that target IOT
systems the most frequently, such as Man in the Middle, linking attacks, and distributed
denial of service attacks.

Ali et al. (2020) designed a range reduction localization (RRBL) approach to improve
accuracy in various fields; this algorithm combines the advantages of hop-based and
centroid methods. In this algorithm, the location dumb nodes locate themselves by locating
and reducing their probable range of existence from nearby neighbors within a predefined
threshold. The least squares method was used to localize the nodes that do not have enough
neighbors. The algorithm was tested under various erratic and heterogeneous
circumstances. The outcomes of these algorithms were evaluated against a few cutting-edge
hop-based and centroid-based localization methods. Compared to other localization
algorithms, the results of the new algorithm showed an improvement in localization
accuracy of 28% at a 10% reference node ratio and 26% at a 20% reference node ratio.

Wei (2024) designed the bat optimization algorithm (BOA). The original bat
optimization algorithm is faster to compute. It has a lower mean localization error than
other algorithms, but its localization efficiency is lower than 100%, and it frequently
becomes stuck at a local optimal value. In order to address these issues, two
modifications to the original BOA are proposed in this article. Better global and local
search strategies are used to modify the proposed BOA variants 1 and 2 in order to
enhance their exploration and exploitation capabilities. This makes it possible to find the
best optimum solutions.

Sadeeq & Abdulazeez (2022) presented a three-dimensional localization algorithm based
on improved A* and DV-Hop algorithms in WSN, enhancing localization accuracy by
addressing the limitations of traditional methods in 3D space. Alhmiedat (2023) focused on
smart agriculture, addressing the challenges of path loss in WSNs deployed in farm fields.
They formulated accurate path-loss models using PSO, outperforming previous models and
ensuring robust communication between sensor nodes. Kagi ¢ Mathapati (2022) conducted
a survey on swarm intelligence-based performance optimization for mobile WSN,
highlighting the adaptability and robustness of swarm intelligence algorithms such as PSO,
the ant colony optimization algorithm (ACO), artificial fish swarm algorithm (AFSA),
artificial bee colony algorithm (ABC), and shuffled frog leaping (SFL) algorithm.

Chen et al. (2021) conducted a weight convergence analysis of the DV-Hop localization
algorithm with genetic algorithms, providing insights into the relationship between
weights, hops, and positioning error. Recent research has significantly improved WSN
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localization accuracy, data collection protocols, and privacy-preserving schemes. These
advancements leverage various algorithms, including Nature-Inspired Algorithms and
swarm intelligence, showcasing a multidimensional approach to enhancing the capabilities
and efficiency of WSN (Al-Rashdan & Tahat, 2020).

WSNs comprise millions of sensor nodes that collect environment data, but the benefit
of this data is only beneficial if the location where this data was collected can be accurately
identified. Localization of sensor nodes, therefore, proves to be an important concern in
applications ranging from healthcare, weather monitoring, and industrial automation to
military use. Due to the high cost of equipping every sensor node with a GPS receiver,
alternative localization schemes have been explored to deal with this challenge (Alfawaz
et al., 2023).

Traditional methods like GPS are not suitable for WSNs due to the energy consumption
and cost factor. Due to this, researchers have developed various meta-heuristic algorithms
to optimize the localization process. Among them, the rat swarm optimization (RSO) has
gained popularity due to its competitive performance and unique problem-solving
capabilities in comparison with other algorithms. However, improvements to RSO were
sought to make it more efficient (Yadav & Sharma, 2022).

Wang, Er ¢ Zhang (2020) the modified Rat Swarm Optimizer (MRSO), that modified
towards resolving the problem of node localization in WSNs. MRSO was tested with
original RSO as well as with other metaheuristic algorithms such as variants of the Bat
Optimization Algorithm (BOA). Results indicated that MRSO decreased the activiation
likeihood estimation (ALE) by 68.52%, 71.75%, 70.58%, and 66.81% compared to RSO,
BOA, BOA Variant 1, and BOA Variant 2, respectively. Such enhanced performance
signifies that MRSO can enhance localization accuracy in WSN applications.

The literature emphasizes the criticality of localization in enabling WSNs to deliver
actionable insights with the limitations of traditional methods in place. Emergence in
advanced meta-heuristic approach like RSO and many of its modifications illustrates the
continuity of efforts towards enhancing techniques of localization. The systematic
comparative analysis and consistent betterment of performance metrics would signify a
robust advancement while addressing the WSN challenges of localization.

Lakshmi et al. (2023) have considered the problem of localization of the sensor node in
WSNss as traditional methods of localization, such as GPS, are expensive and not feasible
for large-scale deployment. Localization is significant for health, weather, industrial, and
military applications as it makes environmental data meaningful by pinpointing the
location of data collection. To improve this, the authors came up with the modified RSO
termed MRSO but based on the newly conceived and very promising RSO variant.
Basically, the MRSO algorithm is a variation from it that tries to reduce location errors of
unknown nodes along with any degradation in performance metrics.

The article makes a comparative evaluation of MRSO with the original RSO and other
metaheuristics, namely BOA and its variants. The result demonstrates that MRSO
surpasses the rest of the alternatives by reducing ALE to 68.52% compared to the RSO, and
similarly large reductions against BOA and its variants. According to Maghdid et al.
(2020), the accuracy and efficiency with MRSO to solve the localization problem and its
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excellent improvement in the optimization technique that can be applied in WSNs were
revealed as high in findings.

Some authors point out the importance of meta-heuristic algorithms in solving
optimization problems within WSNs, which the MRSO has capabilities overcoming
weaknesses associated with traditional algorithms. This innovation not only allows for the
practical deployment of WSNs in varied applications but also contributes to a broader field
of optimization methodologies that depict how modified swarm-based algorithms might
offer novel optimizations such as the MRSO presented (Shen et al., 2021).

The work of Ren et al. (2020) considers one of the most important problems in WSNs:
localization of the sensor nodes without the use of receivers GPS, which are very costly to
be integrated. Therefore, the research article argues that localization of the sensor node is
the most critical step in the WSN applications in many domains such as healthcare,
weather monitoring, industrial automation, and military operations. The authors state that
traditional localization schemes such as GPS are not very effective in WSN
implementations because of cost and infrastructure constraints. Instead, they emphasize
the meta-heuristic algorithms’ ability to successfully optimize the process of localization.

RSO, which is relatively a recent addition to meta-heuristic algorithms, has been
considered due to its competitive performance and different results compared with other
optimization techniques. Still, the article reveals weaknesses of the original RSO and
develops the modified rat swarm optimizer called MRSO by focusing on solving the node
localization problem in WSNs. The work presents a comparative study of MRSO
compared to the original RSO and other popular meta-heuristic approaches such as BOA
and its variants.

The proposed MRSO has considerable performance concerning localization error
minimization with respect to its variants. The study reports the average localization error
(ALE) of 68.52% compared with RSO, 71.75% compared with BOA, 70.58% compared
with BOA variant 1, and 66.81% compared with BOA variant 2. These results underline
the efficiency and robustness of MRSO in better accuracy for localization of node,
providing an alternative source of choice for WSN-based scenarios away from traditional
meta-heuristic approaches. This way, the authors help in enhancing the localization of
WSNs, thus making their use more reliable and cost-effective for real applications.

PROPOSED SYSTEM

In WSN sensor nodes are typically distributed at random, there are differences between
average-hop-distance on the network and the actual hop distance. The precision of
localization is greatly impacted by distance. Thus, we have suggested a new approach to
overcome the shortcomings of DV-Hop, this article presents DVHOP-PSO, an improved
technique that combines the optimization of particle swarms with a refinement process
(Cai et al., 2020).

Basic operation of DV-Hop algorithm
Stage 1: Determine the nodes minimal hop count with one another: The information is
broadcast by each anchor in the first step, which includes the anchor-node id, hop-count,
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which is set to 0 at starting, and the coordinates of its own position. The hop-count is
incremented at every in-between node and included in broadcast messages. Until all
shortest pathways are determined, this continual broadcasting procedure will continue.
This stage results in a lesser-hop-count, which indicates how far apart the anchors are from
one another.

The network relies on continuous broadcasting to propagate information throughout
the sensor nodes. Each anchor node sends its unique identification, its initial hop-count
(which will be zero), and coordinates. The neighboring nodes will increase the hop-count
to include the additional distance incurred. It ensures that the minimal number of hops
required to reach each node from any anchor is recorded accurately.

The broadcasting is repetitive and enables the information to propagate throughout the
network. With each message, in case a node receives a shorter path from another anchor, it
updates its data for hop-count. That way, only the shortest paths between nodes are
preserved. It eventually stabilizes with time as the messages propagate, and updates are
done. As soon as all nodes have updated their minimal hop-count relative to each anchor,
the process stops.

It hence gives a full network mapping, with each node being associated with its closest
anchor through the minimal hops. Information is then crucial in subsequent stages of
localization as it reduces computational complexity and enhances accuracy. This approach
therefore ensures effective communication while creating a platform for accurate
localization of nodes.

Stage 2: Determine average hop size and node distance: The average hop size is then
broadcast by all the anchors in the network after each anchor computes it in the

second phase using its own coordinates and hop count. The anchor sensor node uses Eq.
(1) to get the average hop size. Following this, each node multiplies the hop-distance by the
average hop-size to determine the distance to the anchor sensor nodes. Once the
unknown-sensor-node has the average hop size, it will save the first one and broadcast
the average hop size further. The unknown sensor node uses Eq. (2) to determine the
distance between itself and the anchor sensor node when it receives the detail from

the anchor.

Localization involves finding the average hop size and computing distances between
nodes and anchor nodes. Every anchor node calculates its average hop size by dividing the
known physical distance from itself to other anchor nodes by the minimal hop count
determined during Stage 1. This value represents a typical measurement of the physical
distance that corresponds to one hop in the network.

Every anchor broadcasts the computer average hop size to its neighboring nodes. This is
a process that makes all nodes in the network have a uniform perception of hop size. An
unknown sensor node which receives this information stores the first received
average_hop_size and propagates it to other nodes, thus ensuring it reaches all nodes in the
network.

This phase provides an approximate physical distance for each node relative to the
anchor nodes. The distribution of this information will ensure that even unknown sensor
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nodes can calculate their relative distances efficiently, which would be the basis for proper
localization in the network.

X — Xg)' = (Yia — Y4)°
Av — hop — Size; = E\/( 22‘ ‘ ( ) (1)
ia,aj

Stage 3: Determine the coordinates of unknown sensor node: Using the calculated
distances into the triangulation method, the third step determines unknown-sensor-node
coordinate. Here, the unknown-sensor-node coordinates are (X, Y.,), the
anchor_sensor_node coordinates are (X4,, Ya,), and the total amount of anchor-sensor-
node is tn. Distance is defined as D, and Eq. (3) is used to obtain the coordinates.

This will focus on the determination of the coordinates of the unknown sensor node
using the method of triangulation. Considering the distances to several anchor nodes
determined at Stage 2, geometric relationships are used in locating the unknown sensor
node. The basis of triangulation depends on the fact that it is possible to determine a node’s
position if its distances from at least three non-collinear anchor nodes.

D; = Av — hOp — Size; * hiu,aj (2)
(Xun - X1)2 + (Yun - Y1)2 - D%
(Xun = X2)* + (Yun = Y2)* = D 3)

(Xun — Xan)® + (Yun — Yan)* = D3,

Now Eq. (3) is expressed in following way as per Eq. (4).

X%_Xin_Fle_Yf{n_D%_szﬁn:
2X Xy X (X1 — Xan) +2 X Yy X (Y1 — Yy)
Xg_Xin—i_YZZ_Yf{n_D%_szﬁn:

2 X Xun X (Xp — Xan) +2 X Yyu X (Yo — Yon) @

Xin—l - Xin + Yin—l - Yin - D124n—1 - D124n =
_2 X Xun X (XAnfl _XAn) +2 X Yun X (YAnfl - Yun)_
Now Eq. (4) is shown as P and Q, A and b like PXun = Q,

(Xl - XAn)(Yl - YAn)
(Xz — Xan) (Y2 — Zan)

(5)

(XAnfl - XAn)(YAnfl - YAn)
X%_Xf\n+Y12 - Yfz\n_D% _D.%\n
X%-Xin+Y22— Yin_D% _Din
o- ; ®

2 2 2 2 2 2
XAnfl _XAn + YAnfl - YAn - DAnfl - DAn
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Xun = (PTP)7'PTQ (8)

The unknown-sensor-node coordinates are calculated using final Eq. (8).

Mathematic exploration of error for DV-Hop

In the DV-Hop localization approach, hop-based distance calculation is the main reason
for error addition, as mentioned in Eq. (2). Every node in network is considering that avg
hop distance and multiplying with the hop count. But in the real scenario it’s completely
different as shown in Fig. 2. In Fig. 2, average hop size is calculated by node Al, A2, A3
using Eq. (1). The hop distance among A1-A2 is 4, A1-A3 is 4, A2-A3 is 4, A2-Al is 4,
A3-Al is 4 and, A3-A2 is 4 as per Fig. 2. As per the DV Hop using Eq. (1), Avg-Hop-
Distance is calculated as below for A1, A2 and A3.

(ActualDistancebetween Al and A2)
+ (Actual Distancebetween Al and A3) 40 +40
(HopCountBetween Al and A2) 444

+ (HopCountBetween Al and A3)

Avg-Hop-Distance (Al) is :

(ActualDistancebetween A2 and A3)
+ (Actual Distancebetween A2 and A1) 30 + 40

Avg-Hop-Dist A2)is: =8.75
vg-Hop-Distance (A2) s (HopCountBetween A2 and A3) 4+4
+ (HopCountBetween A2 and Al)
(ActualDistancebetween A3 and Al)
Actual Dist bet A3 and A2) 40+ 30
Avg-Hop-Distance (A3) is : + (Actual Distancebetween A3 an ) 40+ =8.75

(HopCountBetween A3 and Al) 4+4
+ (HopCountBetween A3 and A2)

Now unknown-sensor-node will use nearest anchor sensor node avg-hop-distance in
Fig. 2 U node will receive the data firstly from Al, Al hop distance is 10. But the
actual distance between the Al and U is 3. Here actual distance—calculated distance is
(10 — 3 = 7) So, 7 is error that increases the localization error in real scenario.

A proposed algorithm based on PSO and refinement process

In WSN sensor nodes are typically distributed at random, there are differences between
average-hop-distance on the network and the actual hop distance. The precision of
localization is greatly impacted by distance. Thus, we have suggested a new approach to
overcome the shortcomings of DV-Hop; this article presents DVHOP-PSO, an improved
localization algorithm that combines PSO with a refinement process PSO (Annepu ¢
Anbazhagan, 2019). This new algorithm, called PSLDV-Hop, attempts to greatly increase
the precision of node localization in WSN. In its traditional configure duration, DV-Hop
assumes a constant hop size throughout the network to estimate distances. This
assumption might not hold true in real-world situations, which would result in inaccurate
distance estimates. Node mobility, signal propagation characteristics, and environmental
factors can all cause variations in the average hop size (Kim, Han & Rhee, 2020). As a
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Figure 2 Exploration of error diagram. The Hop distance among A1-A2 is 4, A1-A3 is 4, A2-A3 is 4,
A2-Al is 4, A3-Al is 4 and, A3-A2 is 4. Full-size K&l DOT: 10.7717/peerj-cs.2770/fig-2

result, the DV-Hop localization error can be significant and affect WSN performance. We

suggest the PSLDV-Hop algorithm, a novel strategy that combines a refinement procedure
and PSO, to get around the drawbacks of DV-Hop (PSO). The goal of this combination is
to improve node localization accuracy and distance estimations (Sajjad et al., 2020). The

key components of the proposed algorithm are detailed below:

a.

Refinement process: To address the errors in distance estimates, the refining procedure
is applied. The algorithm uses connectivity data and corrected distance measurements to
refine sensor node positions through iterative evaluations. Node locations are more

precisely determined thanks to this iterative refinement (Vashishtha ¢ Kumar, 2021).

. Particle swarm optimization (PSO): PSO, an optimization method inspired by nature,

is integrated into PSLDV-Hop to increase node localization accuracy even further
(Jawad et al., 2020). PSO optimizes a solution iteratively by imitating the social behavior
of particles. PSO is used in the PSLDV-Hop framework to maximize the estimation of
unknown-sensor-node locations while taking anchor sensor node coordinates and
corrected distance measurements into account (Chopra & Ansari, 2022).

. Correctional average size of a hop: PSLDV-Hop, in contrast to DV-Hop, corrects the

estimated distances by adding precise anchor sensor node coordinates and fractional
hop count data. This corrective method lowers the total localization error by helping to
determine distances more precisely (Kaur et al., 2021).

PSO within the proposed algorithm
With the integration of PSO in proposed PSLDV-Hop, localization accuracy in WSNs is

seen to improve in three important ways, including the updated particle mechanism to

improve velocity and position adjustments throughout the optimization process. This
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simplification avoids local convergence too early, and therefore, it allows the algorithm to
keep a better search performance on the global space, bringing more accuracy into the
localization outcome. In addition, the partial hop counts between any two nodes are
accounted for in the hop count integration so that fractional hop count integration could
improve the distance information accuracy. This simplification reduces the estimation
error amount for distance so that the unknown sensor nodes have greater positioning
accuracy. Furthermore, this algorithm uses adaptive parameters in the process of PSO by
adjusting inertia weights and acceleration coefficients dynamically. That adaptative
technique has obtained the proper mix between exploration activity in finding newly
opened parts in the solution search space and exploration that enhances improved already
good-quality solution parts. Due to these optimization mechanisms for this specific
PSLDV-Hop in applying it within PSO framework, enhanced accuracy, as well as better
solutions robust localization outcomes will be offered regarding very diversified as well as
evolving nature of diverse and complex WSNss.

PSLDV-Hop algorithm: To validate the effectiveness of PSLDV-Hop, extensive
simulations are conducted, comparing its performance against the original DV-Hop and
other classical improved algorithms. The results demonstrate that PSLDV-Hop
consistently outperforms its counterparts, exhibiting lower localization errors and higher
localization accuracy. The suggested PSLDV-Hop algorithm is a potential remedy for the
issues raised by the DV-Hop localization algorithm. PSLDV-Hop significantly improves
node localization accuracy in WSN by combining PSO with a refinement process
(Abualigah et al., 2021). Later sections of this article provide a thorough understanding of
the algorithm’s capabilities and benefits by delving into its implementation, simulation
methodology, and specific results.

a. Stage 1 PSO localization: In the realm of WSN, the accurate positioning of nodes is
paramount for various applications, ranging from environmental monitoring to target
tracking. One approach to localization is the integration of PSO with Distance-Vector
Hop (DV-Hop) algorithms (Chen, Hou ¢ Sun, 2022). This amalgamation seeks to
address the inherent localization errors associated with DV-Hop, providing a more
refined and precise node localization process. In Fig. 3 localization process has been
shown.

b. Stage 2 initialization: At the onset, the localization process begins with the
initialization of the unknown-sensor-node preliminary location (X? ), typically
performed through an appropriate initialization function. The iterative optimization
process is kickstarted with an iteration counter (k) set to zero, and a prescribed tolerance
(€) is defined to determine convergence.

c. Stage 3: PSO optimization loop: The heart of the proposed approach lies in the
iterative PSO optimization loop, aiming to improve the precision of node localization.
The loop encompasses the following key steps:

O Particle swarm optimization (PSO): PSO is employed to optimize the unknown-
sensor-node location, considering the hop-count and average-hop-distance
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(Yang et al., 2022). The PSO algorithm iteratively refines the preliminary location,
seeking an optimal solution within the solution space using Eq. (9).

Xk+1 = apply—PSO (Xlljnkoww hopwu”t’ averagehopdistum) (9)

optimised

O Update preliminary location: The preliminary position of the unknown-sensor-
node is updated on the basis of optimized solution obtained through PSO using
Eq. (10).

Xk+1 — ykt1 (10)

unkown optimised

O Increment iteration counter: The iteration counter (k) is incremented, allowing for
the tracking of the optimization process (Eq. (11)):

k=k+1 (11)
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Table 1 Comparative analysis of DV-Hop and DV-Hop with PSO.

Feature DV-Hop Localization DV-Hop with PSO Localization
Distance estimation method Average hop size Fractional hop count and accurate anchor_sensor_node coordinates
Optimization process None Particle-Swarm-Optimization (PSO)

Precision
Accuracy

Error

Limited

Higher

Vulnerable to inaccuracies in distance estimation Improved due to correctional approach and PSO optimization

Significant

Reduced

O Convergence check: A crucial aspect of the iterative process is the determination of
convergence. The Euclidean distance (difference) between consecutive preliminary
locations is calculated using Eq. (12).

n
. ; - 2
dszerence = E :(Xsnkown[l] - lejnklown) (12)
i=1

O Check for convergence: The algorithm checks if the calculated difference is below the
prescribed tolerance (e). If so, the loop is exited, indicating convergence. The
culmination of the iterative optimization loop yields the final preliminary location
(Xfinal_tocation) of the unknown-sensor-node as per Eq. (13). The comparative
evaluation has been depicted in Table 1.

DESCRIPTION OF PSLDV-HOP

The objective of PSLDV-Hop algorithm is to minimize localization error. This algorithm
accompanies multiple phases. All of the phases are demonstrated in this section.

Initialization

The foundational parameters and entities for the WSN simulation are established during
the initialization phase of the research methodology. The number of sensor and anchor
sensor nodes, the maximum number of hops that the DV-Hop algorithm allows, and the
size of the simulated area are examples of defined variables. The network under
investigation operational and spatial properties are determined by these parameters
(Abualigah et al., 2022). The creation of initial node positions is an important step after
parameter definition. To generate random coordinates for sensor and anchor sensor
nodes, the initialization procedure uses a method called initialize Nodes. Since they are
fixed reference points with predefined locations, the anchor sensor nodes are essential in
establishing ground truth for later assessments (Ma et al., 2023). The spatial deployment of
sensor and anchor sensor nodes is represented in this study using a scatter plot
visualization technique, which offers a thorough visual understanding of the initial
network configuration uration. The precise coordination of node positioning during
initialization is essential, as it establishes the foundation for subsequently complex
algorithms (Zhu et al., 2023). The way nodes are distributed and arranged in space directly
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affects how well the localization techniques are used in later phases of the research work.
As a result, the initialization stage plays a crucial role in establishing the WSN structural
framework and determining how accurate the subsequent localization processes are.

PSO-DV-Hop localization

DV-Hop estimates distance, and PSO, which fine-tunes sensor node positions, combine to
form the dvhop PSO function, which captures a crucial component of WSN localization.
In the larger framework of WSN research, this function plays a crucial role in helping to
accurately localize sensor nodes within a given network (Jamazi et al., 2024). The main
function is to use PSO to optimize the positions of sensor nodes. With 20 particle sizes of
swarm and a maximum of 100 iterations, the PSO algorithm parameters are set to balance
exploration and exploitation. These variables affect how the PSO algorithm converges,
guaranteeing a thorough search for the best locations (Lyu et al., 2021). The average hop
count mechanism followed for this purpose is shown in Fig. 4.

The PSO framework objective function is designed to minimize the discrepancy
between estimated and actual distances. An essential component of the DV-Hop
algorithm, which uses hop distances to deduce the spatial relationships between nodes, is
this function (Ding et al., 2023). The optimization process is based on the objective
function, which captures the complex interaction between estimated and actual distances.
Particle swarm, a metaheuristic optimization algorithm motivated by fish and bird social
behavior, performs the optimization. Particle positions are updated iteratively in a
multi-dimensional search space by the algorithm, which eventually converges to the best
answer (Tu et al., 2021). The lower and upper bounds define the PSO search space, where
the position of each sensor node is expressed as a two-dimensional coordinate. The
function takes the solution vector and extracts the ideal locations for the sensor nodes after
the PSO optimization is finished. The solution vector is reshaped to create a matrix that
shows the localized locations of each sensor node in the network. To improve the precision
of the sensor node localization in the wireless network, these optimized positions are
essential. To summaries, the function dvhopPSO combines DV-Hop and PSO in a
sophisticated way, utllizing the advantages of both approaches to fine-tune sensor node
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locations in a WSN. The overall objective of attaining accurate and dependable localization
in intricate and ever-changing wireless environments is greatly aided by this combination
of distance estimation and optimization techniques (Ou et al., 2022).

Hop distance generation and correction

Accurately estimating the distances between nodes is essential for localization algorithms
in WSN. Hop distances, a measure of the number of communication hops between sensor
nodes, are initially generated at random by the script using a simulation technique
(Ghorpade, Zennaro & Chaudhari, 2021).

This randomness serves as a stand-in for the DV-Hop distance measurement method
and mimics the inherent uncertainty in wireless communication. Using the correct Hop
Distances function, the randomly generated hop distances are corrected in the following
phase. This function is intended to improve the accuracy of distance measurements by
mitigating potential errors introduced during the initial randomization (Zhao, Gao ¢
Chen, 2022). A correction factor, a tuning parameter that modifies the randomly generated
distances to better match the actual spatial relationships between nodes, controls the
correction process. The overall process is represented in Fig. 5.

Refinement using iterative evaluation

The algorithm that is being presented highlights a crucial aspect of WSN research: the
iterative optimization of node positions to improve network localization accuracy. This
algorithm represents a sophisticated method to fine-tune the spatial configuration of
sensor nodes in a dynamically changing environment (Shi et al., 2021). It works within the
domain of iterative evaluation and optimization. Fundamentally, the method starts with an
initial set of node positions, called initial Positions, which act as the basis for the process of
iterative refinement. Within the WSN under consideration, these positions capture the
spatial distribution of sensor nodes. A connectivity matrix, which is a basic representation
of the network communication links, powers the algorithm (Zhong, Li & Meng, 2022). The
foundation for fine-tuning nodes positions is formed by the matrix, which records the
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connectivity relationships between them. Under the direction of the parameter num
Iterations, the iterative refinement takes place over a predefined number of iterations. This
iterative process is unique and consistent with the idea of ongoing localization accuracy
improvement (Elma, Kamala & Saraswathi, 2024). The algorithm mimics the realistic
communication scenarios in the WSN by dynamically calculating estimated distances
between nodes based on their current positions within each iteration. The computation of
the difference between estimated distances and the target distances, mentioned by current
Target Distances, is the central process of the refinement. The difference between the
desired or ground truth distances and the network perceived spatial relationships is
measured by this differential assessment. To align the estimated and target distances, the
optimization goal is to minimize this difference. The algorithm uses a gradient descent
method to accomplish this. With respect to the node positions, the gradient of the error is
computed, which shows the direction and magnitude of the steepest ascent in the error
landscape. Iteratively navigating towards a configuration that minimizes the difference
between estimated and target distances is done in a principled manner by multiplying this
gradient by the connectivity matrix and then adjusting node positions via a learning rate
(Abd El Ghafour, Kamel ¢» Abouelseoud, 2021). With each iteration, the algorithm repeats
this refinement process and gets closer to an optimal set of node positions. The step size in
the optimization landscape is influenced by the learning rate selection, which strikes a
balance between stability and convergence speed requirements (Li ef al., 2020). The
strategy that is being presented captures the essence of ongoing improvement by
simulating real-world situations in which WSN dynamically adjust to shifting
environmental conditions.

Proposed system justification

The traditional DV-Hop algorithm carries a significant disadvantage due to its use of
estimated averages in determining hop size, which frequently results in critical localization
errors. This vulnerability is particularly devastating in applications requiring reasonably
higher levels of accuracy. PSLDV-Hop replaces this deficiency with fractional hop counts
and provides the hope for distance estimation at higher precision along with considerable
error reductions as found in the traditional DV-Hop. This improvement contributes to
better and more accurate locationing, increasing the applicability of PSLDV-Hop for
high-resolution applications like surveillance, fire or forest detection and wildlife
monitoring. Therefore, in domains such as this, where one requires accurate position
location for real time decision-making support, PSLDV-Hop stands out significantly for its
positioning accuracy.

The use of PSO also gives PSLDV-Hop greater adaptability because it is possible to
adjust node positions in the network dynamically. This is a critical characteristic of the
environments in which node placements and network conditions are unpredictable or
changing constantly. With the inclusion of PSO, PSLDV-Hop can work efficiently in
diverse and unpredictable WSN environments. Therefore, PSLDV-Hop is a promising
solution to scenarios where accuracy and adaptability need to coexist with each other, that
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in fact offers a more enhanced approach towards localization in complex and dynamic
settings.

Results and comparisons

The experimental setup involves simulating a WSN localization scenario using PSO with
DV-Hop in MATLAB. The network consists of 100 sensor-nodes deployed in a 100 x
100-m area. Each sensor node has a communication range of 10 m. Among them, four
nodes act as anchor sensor nodes with known positions.

The PSO algorithm aims to optimize the positions of sensor nodes in a 2D space,
considering the constraints imposed by the communication range (Luomala, 2022). The
DV-Hop localization technique estimates distances between nodes, incorporating a
maximum hop limit of three. The distances obtained from DV-Hop are then adjusted
based on the communication range. The PSO algorithm iteratively refines the positions of
sensor nodes, guided by an objective function (Lin, Yu ¢ Li, 2022). Parameters such as
correction factors, learning rate, and the number of refinement iterations influence the
convergence of the PSO algorithm. The experimental setup includes visualizing the sensor
network at each iteration, saving node positions to a file, and calculating the localization
error between true and estimated positions (Messous et al., 2021). The overall goal is to
evaluate the effectiveness of PSO in localizing sensor nodes within the network under
realistic communication constraints. Overall experimental setup is described in Table 2.
The integration of PSO with DV-Hop for node localization presents a robust methodology
for refining the accuracy of preliminary node locations. The iterative optimization loop
harnesses the power of PSO to fine-tune the node position, ultimately mitigating the
localization errors associated with DV-Hop (Zhao, Zhang ¢» Wang, 2020). In Fig. 6, the
random deployment of nodes is shown in the network as per the above table parameter in
which the Dimensions of the simulation area (in meters) is 100 x 100, Total number of
sensor nodes in the network is 100, the number of anchor sensor nodes with known
positions is 4 and range of sensors (in meters) is 10 for communication.

For the localization error calculation, Eq. (13) is used.

Error = \/(Xu — X)) = (Y, — Yo)? (13)

where (X, Y,) the coordinates of unknown-sensor-nodes and (X,, Y,) are the coordinates
of anchor_sensor_nodes.

Further more additional experimental setup for the simulation is given in Table 3 below.

These parameters address key factors that can affect the accuracy and efficiency of the
localization system in real-world scenarios.

The experimental setup parameters are made to test the performance of a WSN
localization system based on PSO with DV-Hop under realistic conditions. Noise and
Error Factors mimic real-world inaccuracies in sensor measurements and anchor
placement. This is usually done by introducing 5% noise in distance measurements, and a
+1 m error in anchor node positions to account for sensor imprecision and environmental
interference. The node density variations parameter investigates the impact of varying
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Table 2 Experimental setup with parameter values.

Parameter Description Value
Range Communication Range of the sensors (in meters) 10
numNodes Total number of sensor nodes in the network 100
numAnchors Number of anchor_sensor_nodes with known positions 4
maxHops Maximum number of hops for DV-Hop 3
areaWidth and areaHeight Dimensions of the simulation area (in meters) 100
correctionFactor Correction factor for PSO 0.01
learningRate Learning rate for PSO 0.5
numRefinementIterations Number of iterations for refinement 100
Epsilon Epsilon value for the objective function 0.00001
numParticles Number of particles in PSO 100
numDimensions Number of dimensions (assuming 2D coordinates) 2
maxIterationsPSO Maximum number of PSO iterations 50
100 Wireless Sensor Network Initiz2, 2 =" @ & )
T T T T O
O e9)
e) O X | O sensorNodes
90 O O x o O| % Anchor Nodes | 1
o) ) © O @)
oro © %o e %01
'e) O O
- 00
@)
i ¢ o x © o |
60 O o oX
2 ®) X 0©
§ 50 0 Oop© O ]
> O O 0O QO
40 - ©) OO O 8 1
O O % 'e)
30 o ® 1
O O o0 O o o o
20 - © ) @) |
10 o O . O% % o
I O O O
0O O o O o
0 o) | \ )
0 20 40 60 80 100
X-axis

Figure 6 Deployment of nodes.
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network sizes, testing with node counts from 50 to 200 nodes to determine the impact on

localization accuracy and system performance. Anchor node placement evaluates how the

positioning of anchor nodes influences the effectiveness of the localization algorithm.

Strategically located anchoring may be used throughout the simulation area to test the

different configurations, while anchors might be placed randomly. Then, obstacle

simulation involves 10% obstacle density in the environment to simulate obstacles that can

cause signal blocking and even non-line-of-sight (NLOS) conditions among nodes and

between them. It’s a real-world challenge as it introduces blocked signals; this will test how

robust the algorithm is when the said challenges occur. These parameters together ensure
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Table 3 Experimental setup with additional parameters.

Parameter Description Value/Range

Noise and error Random noise in distance measurements and errors in anchor 5% noise in measurements; =1 meter error in anchor placement
factors placement

Node density Varying the number of sensor nodes in the network 50, 100, 150, 200 nodes
variations

Anchor node Different configurations of anchor nodes within the area Corners, edges, random placement
placement

Obstacle Introduction of obstacles and NLOS conditions affecting 10% area occupied by obstacles
simulation distance measurement

that the localization method is tested for its real-world performance under practical
scenarios of variation.

In each scenario the parameters are changed as no. of anchor nodes, no, of total nodes,
range of nodes and for each particular scenario specific iterations are performed and then
average error is calculated. As node deployment in all the scenarios is random. So, 2 to 3
points error results can vary at each execution.

Total number of node amount based comparison

This approach holds promise for enhancing the reliability and precision of node
localization in WSN, paving the way for improved performance in diverse applications
(Mohapatra et al., 2023). The obtained data on the proposed localization error and
comparative results for different localization algorithms, including DV-Hop, Average DV-
Hop, genetic algorithm-based DV-Hop (GA-DV-Hop), and PSO-based DV-Hop, across
varying numbers of nodes and communication ranges. In Fig. 7, where range is 20, anchor
nodes are 4 depicts that proposed algorithm offers more accurate localization than any
other algorithms. The error in proposed algorithm is between 39 and 42, demonstrating
greater precision than standard DV-Hop and average DV-Hop, which produce more error
beyond and GA-DV-Hop frequently surpasses 55 m. Although PSO-DV-Hop performs
reasonably well, the proposed approach yields more reliable results. DV-Hop, Average
DV-Hop, GA-DV-Hop, and PSO-DV-Hop exhibit their respective errors for each node
count.

The proposed algorithm consistently outperforms DV-Hop and Average DV-Hop,
indicating its effectiveness in achieving lower localization errors. GA-DV-Hop and
PSO-DV-Hop show competitive results, and the proposed algorithm maintains superior
performance across various scenarios. In Fig. 8, results are shown where range is 30,
anchor nodes are 4 depicts that, when proposed algorithms are compared to other
algorithms as DV-Hop, average DV-Hop, GA-DV-Hop, and PSO-DV-Hop, the proposed
algorithm consistently yields the lowest localization error. The proposed approach
maintains the error mostly between 34 and 43, whereas regular DV-Hop frequently
produces error over 60, and other algorithms as GA-DV-Hop and PSO-DV-Hop still
display errors in the range of 40 to 50. This indicates that the proposed algorithm estimates
the nodes correct positions with more accuracy. The proposed localization algorithm
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consistently outshines DV-Hop and average DV-Hop, showcasing its robustness across
different communication ranges. The errors for GA-DV-Hop and PSO-DV-Hop are also
presented for comparison. In Fig. 9, results are shown where range is 40, anchor nodes are
4 depicts that, the proposed algorithm yields less error, primarily between 17 and 34,
whereas traditional DV-Hop and average DV-Hop consistently show high errors ranging
from about 47 to 66, and the enhanced methods like GA-DV-Hop and PSO-DV-Hop
show errors between 28 and 43 m. This shows that the suggested approach provides a far
more accurate estimate of unknown node than the others. The data underscores the
scalability and adaptability of the proposed algorithm, reinforcing its potential for accurate

localization in scenarios with varying communication ranges and node counts.

Total amount of anchor sensor node and range based comparison
When in network number of anchor sensor nodes and range gets increases the localization
error reduces. In Figs. 10, 11 and 12, localization error is shown when the number of
anchor sensor nodes and range increases parallelly. The error is reducing due to correction
in error with the PSLDV-Hop algorithm. In Fig. 10, the proposed localization algorithm is
evaluated alongside other localization methods (DV-Hop, GA-DV-Hop, PSO-DV-Hop,
and Average DV-Hop) under a communication range of 20 units and varying numbers of
anchor sensor nodes. Figure 10 depicts results where proposed approach gradually lowers
the error, going from about 37.94 to 32.73 m as anchor nodes increase from 5 to 45,
whereas traditional DV-Hop and average DV-Hop maintain errors primarily above 45,
and in other algorithms GA-DV-Hop and PSO-DV-Hop remain above 37. This indicates
that the suggested approach not only begins with greater accuracy but also gets better with
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more anchor nodes. The proposed approach is the most accurate and consistent way to

find unknown nodes in a network. Data suggests that the proposed algorithm is robust and
effective in achieving accurate localization in environments with different anchor sensor
node configurations.
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Figure 11 depicts results where range is 30 and anchor nodes amount is also changing.
The proposed algorithms yield less error, mostly between 33.73 and 36.83, in contrast to
DV-Hop and average DV-Hop, which exhibit continuously large localization errors
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around 57 to 60 and other algorithms as GA-DV-Hop and PSO-DV-Hop produce errors
around 34 to 41. This suggests that the suggested approach is more reliable and accurate,
particularly as the number of anchor nodes rises. The data highlights the robustness of the
proposed algorithm in achieving accurate localization across different communication
ranges and varying numbers of anchor sensor nodes. Figure 12 depicts the results depicts
results where range is 40 and anchor nodes amount is also changing. Improved methods as
GA-DV-Hop and PSO-DV-Hop have errors ranging from 29 to 41 m, while traditional
DV-Hop and average DV-Hop show very high localization errors around 69 to 74. In
contrast, the proposed algorithm yields low error, remaining between 24.73 and 24.94
across all anchor node counts. The proposed algorithm continues to exhibit a lower
localization error than DV-Hop and average DV-Hop, emphasizing its scalability and
effectiveness in environments with an extended communication range. GA-DV-Hop and
PSO-DV-Hop errors are also provided for reference. The consistent outperformance of the
proposed algorithm reaffirms its suitability for scenarios with larger communication
ranges and varying anchor sensor node configure durations. Overall, the data supports the
conclusion that the proposed localization algorithm is robust, scalable, and capable of
achieving accurate results in diverse WSN setups.

Comparison of range based

Comparison is shown based on parameter as shown in Table 2 in which Dimensions of the
simulation area (in meters) is 100 x 100, Total amount of sensor nodes in the network is
100, Number of anchor sensor nodes with known positions is 4 and range of
communication for the sensors (in meters) is changing. The performance of multiple
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localization methods across varying communication ranges is depicted in Fig. 13 (20, 30,
and 40 units). In all ranges, the proposed localization algorithm beats conventional
Distance Vector Hop (DV-Hop) and average DV-Hop techniques, demonstrating its
ability to produce more precise outcomes. The suggested approach achieves a
much-reduced localization error of 33.53 at a range of 20 units in comparison to DV-Hop
(47.24) GA-DV-Hop (52.01), PSO-DV-Hop (38.50) and average DV-Hop (46.38). This
finding suggests that the algorithm under consideration significantly enhances the
accuracy of localization.

The proposed method performs better even when the communication range increases
to 30 units. It exhibits a superior localization error of 37.83 compared to DV-Hop (58.32),
GA-DV-Hop (37.59), PSO-DV-Hop (38.84) and average DV-Hop (58.35). This implies
that the efficacy of the suggested algorithm remains consistent as the communication
range of the network expands, rendering it versatile for situations with greater spatial
coverage. The performance of the suggested method remains superior even in scenarios
involving a communication range of 40 units. Significantly less localization error (24.83) is
seen in comparison to DV-Hop (70.35), GA-DV-Hop (28.17), PSO-DV-Hop (38.85) and
Average DV-Hop (68.37). Moreover, the juxtaposition of the suggested algorithm with
GA-DV-Hop and PSO-DV-Hop underscores its competitive edge in attaining precise
localization outcomes. This suggests that the algorithm under consideration demonstrates
exceptional accuracy and resilience when confronted with diverse communication ranges.
In brief, the data highlights the proposed localization algorithm’s superior performance
compared to conventional approaches across various communication ranges. The constant
reduction in localization errors observed in different settings underscores the potential of
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this technology to improve the precision and dependability of WSN, especially in use cases
that need accurate location data.

Figure 14 is a bar chart, where five algorithms, namely the proposed algorithm,
DV-Hop, average DV-Hop, GA-DV-Hop, and PSO-DV-Hop, are plotted against the
success rates. The y-axis here represents the success rate in percent values between 0% and
100%. Along with the x-axis, the algorithms are specified. From this graph, it is concluded
that the proposed algorithm performs better than all the algorithms as it has a 95% success
rate. Then follows DV-Hop at a success rate of 85%, and average DV-Hop, GA DV-Hop,
and PSO-DV-Hop have a marginally higher success rate compared to DV-Hop and
indicate that it is comparatively better in performance. This plot indicates that the
proposed algorithm is more efficient or effective in achieving successful outcomes in the
given task. The color difference between the bars makes it easier to visually compare the
success rates of the different algorithms.

Figure 15 depicts the convergence behavior of the same five algorithms over 100
iterations. The x-axis represents the number of iterations, and the y-axis shows the
solution quality or fitness or error. As a thumb rule, the lower the value, the better the
performance. The above discussion can be summarized and therefore, the proposed
algorithm seems to converge the fastest in the highest decline in solution quality starting
from a larger error value and rapidly decreasing to a low error value. This suggests that this
proposed algorithm converges into near-optimal solutions more rapidly. The other
algorithms, namely DV-Hop average, GA-DV-Hop, and PSO-DV-Hop, tend to have
poorer convergence properties wherein, their error values decrease only gradually with
time. This plot shows the efficiency of the proposed algorithm concerning convergence
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and gives an insight into the better solution that is achieved with fewer iterations than
those obtained using other methods, making it a time-efficient choice for optimization
tasks.

Statistical evaluation and validity of experimental results for PSO with
DV-Hop in WSN localization

The following is a statistical analysis of PSO-enhanced DV-Hop. This assesses WSN
localization using such an enhanced method. Here, the maximum likelihood estimation
(MLE) it measured as computed based on differences of estimated to actual locations of the
sensor nodes were frequently smaller in comparison for the proposed algorithm in contrast
to those obtained with the traditional DV-Hop, average DV-Hop, GA-DV-Hop, and the
standard PSO-DV-Hop algorithms. For example, on having the range of 20 units
communication, the presented method got error of 33.53 with the traditional approach of
DV-Hop 47.24 while the standard deviation (SD) was highly decreased, so the proposed
approach performed stable as well as reliable under various run simulations. The root
mean square error further established the method as accurate since large errors were
penalized more than smaller ones; in this metric, the proposed algorithm outperformed the
others. Success rate was defined as the percentage of successful localizations within a
certain error threshold; the proposed method reached 95%, outperforming DV-Hop with
85%. Further analysis of the convergence showed that the proposed algorithm required
fewer numbers of iterations to achieve optimal solutions and stabilizes in most cases before
reaching 50 iterations, where other algorithms took more numbers of iterations to stabilize.
For confirmation of these improvements, a paired t-test was conducted. The p-values
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obtained were less than 0.05, indicating that the differences in localization errors were
statistically significant. In short, these evaluations prove the high precision, consistency,
and performance that the PSO-enhanced DV-Hop algorithm guarantees for WSN
localization.

Validity of results

From such key aspects that support the valid experimental results from the PSO-enhanced
DV-Hop algorithm toward WSN localization, it assures internal validity where controlled
experimental conditions that ensure consistent values of network parameters, such as node
density and number and placement of anchor nodes, to the same and fixed communication
ranges for all implemented algorithms. Random initialization of PSO particles and
multiple runs of the simulation were carried out to avoid any bias or random errors so that
the outcome was solely a result of the performance of the algorithm. External validity was
ensured by testing the algorithm under a variety of real-world scenarios, including node
densities of 50, 100, 150, and 200 nodes, different anchor node placements such as corners,
edges, and random, and environmental challenges such as 5% measurement noise and 10%
obstacle-induced NLOS conditions. This wide testing ensures the generalizability of the
performance of the algorithm in practical WSN deployments. Construct validity is satisfied
as widely known performance metrics in WSN localization research, such as mean
localization error, root mean square error, and success rate, have been utilized to ensure
reflection of the capabilities of an algorithm in localization correctly. The outcome
reliability was met through different independent runs of simulation, say 50 times, and the
proposed algorithm performed better than competitors for numerous independent runs
and therefore consistency and repeatability. Furthermore, the robustness analysis ensured
that the algorithm could adapt itself in maintaining high levels of performance even when
subjected to harsh conditions with measurement noise and environmental obstacles. All
these factors together strengthen the high validity and reliability of the experimental
results, underlining the efficiency and practicality of the proposed algorithm within real
WSN scenarios.

CONCLUSION

PSLDV-Hop improves the accuracy of node localization by utilizing a refinement process
in conjunction with PSO. This is achieved by adjusting predicted distances by including
fractional hop count information and accurate anchor sensor node coordinates. PSO and
the iterative refining process contribute to the reduction of localization errors, enhancing
the accuracy and dependability of node localization in dynamic WSN situations. The
exhaustive experimental findings indicate that PSLDV-Hop outperforms conventional
DV-Hop and other classically enhanced algorithms, such as GA-DV-Hop and PSO-DV-
Hop. PSLDV-Hop regularly demonstrates superior performance to alternative methods,
regardless of the communication range or number of nodes. This substantiates its
scalability, adaptability, and efficacy in attaining precise localization outcomes.
Collectively, the corrective average size of a hop, the refinement process, and PSO
contribute to the algorithm success in minimizing localization mistakes. This study makes
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a substantial contribution to the progress of WSN by introducing a resilient algorithm that
optimizes and refines node localization methods to improve their precision. Based on the
observed enhancements in localization accuracy and dependability, PSLDV-Hop emerges
as a highly promising resolution for domains that necessitate precise spatial data, such as
healthcare, environmental monitoring, surveillance, and WSN.
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