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ABSTRACT
The escalating frequency and severity of cyber-attacks have presented formidable
challenges to the safeguarding of cyberspace. Named Entity Recognition (NER)
technology is utilized for the rapid identification of threat entities and their
relationships within cyber threat intelligence, enabling security researchers to be
promptly informed of the occurrence of cyber threats, thereby enhancing the
efficiency of security defense and analysis. However, current models for identifying
network threat entities and extracting relationships suffer from limitations such as
the inadequate representation of textual semantic information, insufficient
granularity in threat entity recognition, and errors in relationship extraction
propagation. To address these issues, this article proposes a novel model for Network
Threat Entity Recognition and Relationship Extraction (CtiErRe). Additionally, it
redefines seven network threat entities and two types of relationships between threat
entities. Specifically, first, domain knowledge is collected to build a domain
knowledge graph, which is then embedded using graph convolutional networks
(GCN) to enhance the feature representation of threat intelligence text. Next, the
features from domain knowledge graph embedding and those generated by the
bidirectional encoder representations from transformers (BERT) model are fused
using the Layernorm algorithm. Finally, the fused features are processed using the
GlobalPointer algorithm to generate both the threat entity type matrix and the threat
entity relation type matrix, thereby enabling the identification of threat entities and
their relationships. To validate our proposed model, we conducted extensive
experiments, and the results demonstrate its superiority over existing models. Our
model performs remarkably in threat entity recognition tasks, with accuracy and F1
scores reaching 92.13% and 93.11%, respectively. In the relationship extraction task,
our model achieves accuracy and F1 scores of 91.45% and 92.45%, respectively.
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INTRODUCTION
With the rapid development of Internet technology, various information systems are
widely used in people’s lives, thereby making social development more efficient and
orderly. However, this high degree of informatization has also brought many security risks
in the field of cyberspace, leading to an increasingly serious situation in network security
(Siddiqui, Yadav & Husain, 2018). According to statistics, more than 23,000 novel
instances of malware and 20 fresh vulnerabilities are disseminated on a daily basis, with the
occurrence of approximately 110,000 cyber assaults each hour (Samtani et al., 2020). To
defend against network attacks and eliminate network security risks, traditional network
security protection methods often rely on deploying network security tools at critical
points within the organization or at network boundaries. These security tools include
firewalls (Wu et al., 2023), intrusion detection systems (IDS) (Thakkar & Lohiya, 2023)
and intrusion prevention systems (IPS) (Kumar et al., 2022). Such security protection
systems primarily execute network security static control policies based on feature
detection and predefined rule matching, monitoring network threats from multiple
dimensions. The content of detection and monitoring mainly includes viruses, malware,
vulnerabilities, malware, and traffic (Kumar et al., 2022). However, with the rapid
development of emerging fields such as cloud computing, big data, and artificial
intelligence, security threats are evolving towards generalization and complexity. As
network attacks become increasingly creative, exhibiting greater concealment and
persistence, they present more challenges to network security defense (Sun et al., 2022). In
response to these evolving threats, security researchers have collected and analyzed a vast
array of network threat information to discern current and emerging attack trends, an
initiative known as Cyber Threat Intelligence (CTI) (Wagner et al., 2019; Eltayeb, 2024). By
gathering multi-source CTI data, security professionals can gain a comprehensive view of
the threat landscape and uncover threat detection indicators that might otherwise remain
obscured in isolated sources. CTI refers to the collected and analyzed knowledge about
network threats, encompassing attackers’ motivations, objectives, and methods. Business
professionals can utilize this curated knowledge of network threats to safeguard their
organization’s core assets against potential attacks (Sun et al., 2023). Constructing cyber
threat intelligence involves a wide spectrum of knowledge related to network security
threats, including attack behaviors, threat actors, targets, attack tools, malware, and
vulnerabilities (Barnum, 2012). To swiftly comprehend the ever-evolving landscape of
network threats and shield against complex, persistent, organized, and weaponized
cyberattacks, organizations worldwide are increasingly inclined to engage in information
sharing via CTI. Furthermore, there is a growing adoption of various CTI formats and
standards. Structured Threat Information eXpression (STIX) (Barnum, 2012; Sun et al.,
2023), Trusted Automated eXchange of Indicator Information (TAXII) (Kokkonen, 2016),
Cyber Observable eXpression (Cybox) (Qamar et al., 2017; Densham, 2015), Malware
Attribute Enumeration and Characterization (MAEC) (Kirillov et al., 2011; Noor, Abbas &
Shahid, 2018), and other standards have been successively proposed. These standards
facilitate the construction of threat intelligence reports from various levels of network
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threats and threat indicators. However, in most cases, descriptions of network threats are
published in natural language text, and transforming these texts into well-defined threat
intelligence formats requires a significant amount of manual effort, which can be quite
laborious. Automatically, accurately, and rapidly extracting threat behavioral entities from
a massive volume of threat intelligence texts has become a focal point of attention in both
academia and industry. Understanding complex behavioral relationships within network
threat technical texts is recognized as a challenge in the field of natural language processing
(NLP).

In order to obtain descriptive or static CTI data from unstructured texts, researchers
have proposed a variety of information extraction methods (Cook & Jensen, 2019; Liao
et al., 2016; Zhu & Dumitras, 2018; Dong et al., 2019; Zhao et al., 2020). While these
methods have achieved promising results, they still face several challenges:

1) Existing methods lack an understanding of semantic knowledge specific to the field of
cybersecurity in terms of word vector representations and pretraining models, and they
also show suboptimal performance in recognizing nested threat entities.

2) The identification of threat behavioral entities primarily focuses on indicators of
compromise (IOC), but threat intelligence encompasses various behaviors, with IOCs
being just one part of it.

3) Most threat entity relation extraction methods in the field of cybersecurity use recursive
and discriminative approaches to confirm relationships. However, due to the lack of
domain knowledge about threat entities, these methods perform poorly in recognizing
relationships between new threat entities.

To address the issues in threat entity extraction and relationship extraction mentioned
above, we propose a new model for threat entity recognition and relationship extraction,
named the CtiErRe model. The training process of the CtiErRe model is illustrated in
Fig. 1, and it can be broadly divided into two modules: the data processing module and the
model construction module. This model combines graph neural networks (GCN) (Zhou
et al., 2020), bidirectional encoder representation from transformers (BERT) (Devlin,
2018), and the GlobalPointer algorithm (Su et al., 2022). Specifically, we first employ web
crawling techniques to collect text of network threat entities. We compile a list of words
related to threat behaviors through word frequency statistics. We calculate an overall
word-domain knowledge matrix using the Pointwise Mutual Information (PMI)
algorithm. This knowledge matrix is used to construct a domain knowledge graph for the
text. Next, The GCN model is utilized to learn text features with structural information
from the generated domain knowledge graph. Subsequently, the LayerNorm algorithm is
employed to integrate the text features with structural information obtained from the GCN
model with the features derived from the BERT model. Finally, we use the GlobalPointer
algorithm to classify the fused features. This classification involves distinguishing between
seven types of threat behavioral entities and two types of entity relationships. The CtiErRe
model employs a GCN to extract structural information from threat-related texts. It
utilizes a BERT model to capture textual features of the threats. Furthermore, it applies the
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GlobalPointer algorithm for the ultimate identification of entities and relationships,
thereby mitigating the propagation of errors and enhancing the precision of recognizing
nested relationships. To broaden the scope of threat behavioral entities, we have delineated
seven specific types: threat actor, intrusion set, attack pattern, tool, malware, vulnerability,
and threat object. Additionally, we have defined the relationships between these entities,
categorizing them into “uses” and “targets”. These relationships are illustrated in Fig. 2.
Concurrently, our model’s performance has been verified, with an F1 score of 93.11% for
entity recognition and 92.45% for relationship recognition.

In summary, the main contributions of this study are as follows:

. A textual knowledge graph matrix within the domain of cyber threat intelligence was
constructed, analyzing the semantic relationships between threat entities, thereby
providing structural textual information for the tasks of threat entity recognition and
relationship extraction.

. To enhance domain knowledge representation and improve the recognition of nested
network threat entities, we designed the CtiErRe model. This model combines the GCN
model, BERT model, and the GlobalPointer algorithm. The multi-model integration
approach enables the extraction and analysis of threat entities and their relationships
from different perspectives. The model is capable of simultaneously performing network
threat entity extraction and relation extraction between entities.

. Due to the differences between the knowledge features extracted by the GCN model and
the textual features extracted by the BERT model, a more effective feature fusion
approach is needed. In this article, we propose a layer normalization fusion
method, which normalizes features from different statistical domains into a common
statistical scale.

Figure 1 Entity recognition and relationship extraction model of threat behavior.
Full-size DOI: 10.7717/peerj-cs.2769/fig-1
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RELATED WORKS
Research on network threat intelligence
The essence of cyber threat intelligence is a form of manifestation of big data in
cybersecurity. It is not merely the collection and summarization of threat information, but
an integrated data service that encompasses both intelligence sharing and analysis. To
facilitate its rapid distribution and sharing, the industry established a series of related
standards that make intelligence executable, i.e., machine-readable. These standards
include STIX (Barnum, 2012; Sun et al., 2023), TAXII (Kokkonen, 2016), Cybox (Qamar
et al., 2017; Densham, 2015), and the Common Attack Pattern Enumeration and
Classification (CAPEC) (Riera et al., 2022; Kotenko & Doynikova, 2015). Furthermore, to
effectively utilize threat intelligence, it is necessary to employ diverse technological means
to gather large-scale, fragmented threat-related information from various sources. This
information should then be centrally deep-mined, refined, and integrated to form a
collection of threat indicators closely linked to core information system assets. Based on
the correlation analysis of threat elements, this collection can guide users in devising
effective security response strategies.

Figure 2 Entity relationship diagram of threatening behavior.
Full-size DOI: 10.7717/peerj-cs.2769/fig-2
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STIX is a language and serialization format for exchanging cyber threat intelligence in
cyberspace (Barnum, 2012; Sun et al., 2023). Defined and developed by The MITRE
Corporation, STIX has evolved to version 2.0. The language aims to cover all aspects of
threat information and make the expression of threat intelligence as comprehensive as
possible. It also strives to ensure that threat intelligence data is flexible, scalable,
automated, and interpretable. STIX consists of nine key components and is applicable in
four different scenarios, employing XML for encoding. Adhering to STIX format standards
allows for the comprehensive representation of all forms of cyber threat intelligence,
enabling consistent sharing, storage, and analysis of threat intelligence data in a
standardized manner.

TAXII is a standard for information exchange used to share cyber threat intelligence
across product lines, services, and organizational boundaries (Kokkonen, 2016). It provides
the transport mechanism for STIX’s structured threat information and supports three
modes: source/subscription, centralized, and peer-to-peer. TAXII offers four services:
discovery, collection management, inbox, and information retrieval. Users can select and
combine these services to meet their specific needs, creating composite services as needed.

CybOX is a method for representing computer observable objects and network
dynamics and entities (Qamar et al., 2017;Densham, 2015). It was integrated into STIX 2.0.
Observable objects were static assets or dynamic events. The CybOX specification provides
a standardized and extensible syntax for describing all content that can be observed from a
computing system and operation. It can be used for threat assessment, log management,
malware feature description, indicator sharing, event response, and more.

CAPEC is a publicly available classification method dedicated to providing a common
taxonomy of common attack patterns (Riera et al., 2022; Kotenko & Doynikova, 2015). Its
purpose is to assist users in understanding how adversaries exploit vulnerabilities in
applications and other network-supporting capabilities to carry out attacks. CAPEC
currently encompasses over 500 attack types. The format of CAPEC is structurally similar
to the CWE Vulnerability Classification Library and includes three classification tables and
one reference table. The classification tables categorize information based on different
dimensions.

Research on entity identification of network threat intelligence
The cyber threat intelligence is mostly described in the form of natural language text and
published on network platforms. This text-based description of network threats is
unstructured. The current research focus is on how to quickly identify relevant threat
behavioral entities from this unstructured text. Liao et al. (2016) proposed a method that
uses NLP to automatically extract IOC from blog articles. Husari et al. (2017) introduced
the TTPDrill algorithm, which utilizes NLP and information retrieval (IR) to extract threat
actions from unstructured CTI text. Gao et al. (2020) designed a threat intelligence
metamodel to describe the semantic relevance of infrastructure nodes. They trained a
network threat intelligence model using a heterogeneous information network, which can
integrate various types of infrastructure nodes and their rich relationships (Gao et al.,
2020). Zhao, Lang & Liu (2017) proposed a unified ontology-based model to handle
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heterogeneous cyber threat intelligence information. In their model, they mapped threat
intelligence from various sources into a unified model, achieving a consistent
representation and thereby improving the efficiency of threat intelligence sharing and
analysis. They also implemented an intelligent integration framework based on a unified
intelligence model and the open-source intelligence collection tool IntelMQ (Zhao, Lang &
Liu, 2017). Jo, Lee & Shin (2022) introduced an automated method for extracting and
analyzing network threat intelligence from unstructured text. This method is tailored to
the field of network security and includes a neural language model-based Named Entity
Recognition (NER) and Relationship Extraction (RE) model (Jo, Lee & Shin, 2022).
Al-Hawawreh et al. (2020) proposed a novel threat intelligence solution based on deep
learning technology, designed to discover network threat intelligence from the Space, Air,
Ground, and Sea (SAGS) network. This solution comprises three modules: deep pattern
extractor, threat intelligence-driven detection, and threat intelligence attack type
identification. The deep pattern extractor module aims to uncover hidden patterns in the
Internet of Things (IoT) network, with its output serving as input for threat intelligence-
driven detection. Threat intelligence attack type identification is used to identify attack
types of malicious patterns, helping in response to security incidents (Al-Hawawreh et al.,
2020).

Research on entity relationship extraction of network threat
intelligence
In terms of extracting security entity relationships, Perera et al. (2018) employs natural
language processing techniques to automatically classify sentences in input news texts
based on the described network attack events. They then complement this with named
entity recognition to swiftly detect key elements potentially related to network attacks.
Finally, they use rules to extract relationships between these key elements (Perera et al.,
2018). To facilitate research on security entity relationship extraction, Phandi, Silva & Lu
(2018) has released a dataset for network security report relationship extraction. This
dataset defines a total of four categories of relationships, all of which are defined based on
the semantic roles between entities (Phandi, Silva & Lu, 2018). Satyapanich, Finin &
Ferraro (2019) used a deep learning information extraction pipeline to extract network
security events and the relationships between them. However, due to the simplicity of the
model, it could not capture the interaction features between entities, resulting in poor
performance. In addition, Gasmi, Laval & Bouras (2019) employed long short-term
memory (LSTM) and dependency syntax features to extract relationships between entities.
The inclusion of syntax features improved the performance of relationship extraction,
indicating that incorporating syntax features can enhance the performance of security
entity relationship extraction. The aforementioned works did not consider the connection
between entity recognition and relationship extraction tasks, as well as the problem of
insufficient labeled corpora for model training (Gasmi, Laval & Bouras, 2019). Zhang et al.
(2024) proposed an end-to-end network security knowledge triple extraction method that
integrates adversarial active learning. In the field of network threat intelligence
information extraction systems, Georgescu (2020) constructed an entity relationship
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extraction system using IBM tools on their self-defined ontology model. Unfortunately,
this system is not open source (Georgescu, 2020). While these methods excel in establishing
relationships between entities, they do not effectively handle issues related to relationship
overlap and error propagation. Joshi et al. (2021) have constructed a series of “semantic
triplets” (including subjects, objects, and their mutual relationships) by elaborating on the
interactions between cybersecurity entities. They employed graph convolutional neural
network technology to analyze and score these triplets. This approach enables researchers
to validate and utilize data within cybersecurity knowledge graphs more precisely, thereby
conducting research and responding to cybersecurity incidents more efficiently (Joshi
et al., 2021). Lin et al. (2024) and his team proposed a scheme that combines graph
convolutional networks (GCN) and graph attention networks (GAT) for detecting
ransomware. They used Cuckoo Sandbox to record malicious ransomware behavior and
extracted API call sequences from the generated JSON reports for detection (Li, Qiang &
Ma, 2024). Li, Qiang & Ma (2024) designed a method that strengthens cybersecurity
through graph neural networks (GNN). Specifically, they integrated cyber threat
intelligence data into knowledge graphs and used graph neural networks to conduct in-
depth analysis and processing of these graphs (Lin et al., 2024).

METHODS
Predefined knowledge
Definition 1 Threat intelligence entities: Given that cybercriminals frequently exploit
online resources for malicious activities, we categorize network threat entities into seven
main types: attack activity entities, vulnerability entities, attack object entities, malware
entities, tool entities, threat actor entities, and intrusion entities.

Threat-actor: an individual, group, or organization deemed to be malicious.

Intrusion-set: an act with the intent to attack.

Attack campaign: a clearly defined attack.

Tool: This is the software or program code used by the threatened subject to carry out an
attack.

Malwate: Malware is used for capturing the confidentiality, integrity, or availability of a
victim’s data or system.

Vulnerability: a software error that can be used directly by a hacker to access the system or
network.

Threat-object: an attacked organization, individual, or object with a specific identity.

Definition 2 Threat intelligence entity identification: This refers to the identification of
a possible threat entities E, E1(w1;w2;w3Þ,…, Enðwn�2;wn�1;wn) from the sentence
S ¼ ðw1;w2;w3;w4; . . .w5Þ. E represents the set of entities, E1, En 2 E, S represents a
sentence where w represents the word that constitutes the sentence.

Definition 3 Threat intelligence entity relationship extraction: This refers to identifying
all existing entities E from sentence S, and extracting the relationships R between entities,
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represented as RðE1; E2Þ, where E1 and E2 represent threat entities, and Rð:Þ represents the
relationship between entities.

Definition 4 Domain knowledge graph: Domain knowledge refers to the collection of
knowledge texts in a certain field to form a new set K, and the analysis of the data in set K to
obtain the relationships between the words in the domain knowledge text denoted as R. R
generates the domain knowledge graph for words in sentence S, represented as GðS;RÞ. G is
represented as a graph structure, and S represents the sentence, S = (w1,w2,w3,w4, …,wn). R
represents the set of relationships between words, R = (<w1, w2>, <w4, w5>,… <wn�1, wn>)
where <w1,w2> indicates a relationship between words w1 and w2.

Model overview
To accurately identify threat behavioral entities and extract relationships between them
from a vast amount of network threat text, we propose the CtiErRe model. This model
introduces a text feature extraction algorithm based on domain knowledge embeddings
and incorporates structural information from the text into the features using GCN.
Additionally, it employs the BERT model to extract character features from the text. The
structural and character feature information is merged using the LayerNorm algorithm.
Finally, the GlobalPointer algorithm is employed to predict threat behavioral entities and
relationships. The overall mathematical feature representation of the model is shown in
Eq. (1), and the structural diagram of the overall model is depicted in Fig. 3.

FL�n�n ¼ fgp flayernorm fBERT Xb�n�768ð Þ : fGCN Fb�n�768;Gb�n�nð Þð Þ� �
(1)

where FL�n�n represents the model’s output features in the form of an L � n � n matrix,
where L is the sum of the number of entity types and relationship types, and n is the length
of the text. fgp, flayernorm, fBERT , and fGCN represent the GlobalPointer operation, LayerNorm

Figure 3 Threat intelligence entity identification and entity relationship extraction model.
Full-size DOI: 10.7717/peerj-cs.2769/fig-3
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feature fusion algorithm, BERT model operation, and GCN model operation, respectively.
Xb�n�768 and Fb�n�768 represent the character feature matrix, where b is the batch size of
text, n is the text length, and 768 is the word feature dimension. Gb�n�n represents the text
adjacency matrix based on the domain knowledge graph.

Domain knowledge embedding
To improve the predictive accuracy of tasks in natural language, it is necessary to enhance
the feature representation of text. While using the BERT model for text feature
representation has yielded good results in many common NLP tasks, for specific domain
NLP tasks, relying solely on features generated by the BERT model for task computation
sometimes does not perform very well. To address this issue, this article proposes a domain
knowledge embedding algorithm.

The core idea of the domain knowledge embedding algorithm is to collect domain-
specific vocabulary, construct a relevance matrix M among these domain knowledge
words, and for any sentence S, generate a word relevance adjacency matrix ML within the
sentence using the M matrix. The obtained ML matrix, along with word features FW , is
then used for domain knowledge embedding through the GCN network, as represented in
Eqs. (2) and (3), which express the mathematical feature representation of domain
knowledge embedding.

FR ¼ fGCN ML; FWð Þ (2)

ML ¼ ML;i;j ¼ Swiwj ; if wi ¼ wj

ML;i;j ¼ 0; if wi 6¼ wj

�
(3)

FR, FW , wi, and fGCN represents the domain knowledge embedding, which serves as the
feature output, along with the word feature of the ith word in the sentence and the GCN
model.

The specific construction method of domain knowledge embedding is as follows:

(1) Collect large amounts of threat intelligence text and mark them by pre-defined entity
rules. Collect the tagged entities into a text collection.

(2) The analysis of all the resulting entity text sets gives the word setW often present in the
field, and the word frequency matrix MP is constructed by analyzing the frequency of
each word appearing in W.

(3) PMI calculations are applied to the word frequency matrix MP, as shown in Eq. (4),
to obtain the relationship matrix MPMI between each word and the rest of the
words in W.

PMIðA;BÞ ¼ log2
PðA;BÞ

PðAÞ � PðBÞ (4)

where A, B are two words, P (A, B), the frequency of co-occurrence of A and B, P (A), the
frequency of word A, and P (B), the frequency of word B.
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(4) Using the MPMI matrix, an intra-sentence word-to-word correlation adjacency matrix
ML is generated for threat intelligence information sentence S. The values in theMPMI

matrix are used for word pairs that exist in it, while 0 is used to represent those that
do not.

(5) The matrix ML and the word features from sentence S are input into the GCN model
for computation, resulting in the embedded text features of the final domain
knowledge.

Graph convolutional network
To better integrate the domain knowledge features of the text into the text features, this
article uses the domain knowledge text graph to generate a new neighbor matrix with the
neighborhood knowledge (Bhatti et al., 2023). It integrates the neighborhood knowledge
into the text features through GCN (Phan, Nguyen & Hwang, 2023).

The essence of the GCN network is to propagate node representations through the
adjacency matrix, and the propagation formula is shown in Eq. (5).

Hkþ1 ¼ r ~D
�1

2eA~D
�1

2HkWk

� �
(5)

where k represents the number of layers of the convolution. d represents an activation
function, which can be a ReLU or Tanh function. H represents the characteristics of the
node. A represents the adjacency matrix, ~A = A + I, I is a unit matrix. ~D is a diagonal
matrix, eDii ¼

P
j
~Aij. W is a weight parameter that needs to be learned.

For further analysis, the operation of each GCN node to summarize the information
from its neighbors is shown in Eq. (6).

Hk
i ¼ r

X
j2fNðiÞ[ig

~Aijffiffiffiffiffiffiffiffiffiffiffi
~Dii~Djj

q Hk�1
j Wk

0
B@

1
CA (6)

where N(i) represents the neighbor set of node i. GCN updates the new representation
calculation and Eq. (7) by combining aggregated information from the neighbor node with
the representation from the current node.

Hk
i ¼ r

X
j2fNðiÞg

Aijffiffiffiffiffiffiffiffiffiffiffi
~Dii~Djj

q Hk�1
j Wk þ 1

~Di
Hk�1

i Wk

0
B@

1
CA: (7)

BERT
Bidirectional encoder representations from transformers (BERT) is a pre-trained language
model based on the Transformer architecture, designed to understand the semantics of
language through deep bidirectional context. Unlike traditional unidirectional language
models, BERT is trained by considering both the preceding and following context in the
sentence, enabling it to capture word meanings and sentence structures more accurately.
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The BERT model employs the encoder component of a multilayer Transformer to learn
general knowledge through pretraining tasks, which is then transferred to perform
downstream tasks. The BERT architecture is composed of multiple layers of embedding
(Koroteev, 2021). Specifically, the embedding layer in BERT consists of three components:
token embeddings, segment embeddings, and position embeddings. The token embedding
layer is a standard embedding layer. The segment embedding layer is used to handle the
sentence pair classification task, while the position embedding layer encodes the positions
of words within a sentence. In summary, the BERT model integrates multiple embedding
layers with attention mechanisms. Together, the embedding layers and attention
mechanisms form the Transformer model, with BERT consisting of multiple Transformer
layers (Jawahar, Sagot & Seddah, 2019).

Feature fusion
To well integrate the text features obtained based on the BERT model and the text feature
information obtained based on the GCN, we carried out the feature fusion method. The
fusion method is shown in Eq. (8).

F ¼ fMLP layernorm cat Xb : Xg
� �� �� �

(8)

where cat(:) indicates that the two matrices are joined according to the last dimension. Xb

represents the text features of BERT model output. Xg represents the textual features of the
GCN model output. The LayerNorm algorithm is a feature fusion technique that
transforms two input tensors into features with identical dimensionality, which is
conducive to the execution of downstream tasks. Among them, layernorm(.) The
calculation method is shown in Algorithm 1. fMLP is a fully connected neural network.

GlobalPointer algorithm
GlobalPointer uses a global normalization approach to predict tasks. This algorithm class
is similar to a multi-head attention mechanism, the number of heads is the number of
labels in the task. The core idea of the method is as follows: First, expand the input feature
tensor X 2 RL�d to Xnew 2 RL�d�n; then perform a linear transformation on Xnew to obtain

Algorithm 1 The LayerNorm feature fusion.

Input: The features output by the BERT model are denoted as Xb, and those by the HAN model are denoted as Xg

Output: Fused features XF

1: Xnew g ⇐ Reshape(Xg ;Xb) #The tensor shape of Xg is unified with the tensor shape of Xb

2: β ⇐ Xnew g*W1 #Take a linear transformation of Xnew g with W1 as the argument

3: γ ( Xnew g*W2 #Take a linear transformation of Xnew g with W2 as the argument

4: µ ⇐ Mean(Xb) #Calculate the mean of Xb

5: σ ⇐ Variance(Xb) #Calculate the variance of Xb

6: Xnew b ⇐ (Xb - µ) / sqrt(σ) #Recalculate Xb using the normal distribution

7: XF ( c*Xnew b+β #Two tensors are fused

8: return XF
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the Q and K tensors, and use the rotation-based encoding to regenerate QRoPE and KRoPE;
finally, calculate the inner product of QRoPE and KRoPE to obtain the G 2 RL�L�n tensor.
Equations (9) to (12) represent the mathematical expression of the entire algorithm.

Xnew ¼ exp end dimðX; nÞ;X 2 RL�d;Xnew 2 RL�d�n (9)

QRoPE ¼ < �W1 � Xnew (10)

KRoPE ¼ < �W2 � Xnew (11)

G ¼ QT
EoPE � KEoPE ¼ XT

new �WT
1 � <T � < �W2 �Wnew (12)

where expend_dim(.) represents dimension expansion of tensors;W1 andW2 represent the
parameters of linear transformation; RoPE stands for Rotation-based Positional Encoding;
< is a rotation encoding matrix. The specific approach of the GlobalPointer algorithm is
presented in Algorithm 2.

The GlobalPointer algorithm transforms traditional sequence prediction into a matrix
coordinate format. This format is no longer limited to predicting labels for individual
words but extends to predicting labels for spans of text. As shown in Fig. 4, the threat
entities in the sentence are converted into a matrix, where the red positions in the matrix
represent the coordinates of the threat entities within the sentence. For example, the
“Threat Actor” entity in the sentence has red position coordinates (1, 2), indicating that the
text from position 1 to position 2 corresponds to the “Threat Actor” entity (with the first
position starting at 0).

To further tailor the model for the threat entity relation extraction task, we improved
the representation of relationships between threat entities. We adopted a full-combination

Algorithm 2 GlobalPointer algorithm.

Input: Attention mechanism head number, heads, the size of each head, head size, and the input data,
inputs.

Output: (inputs:shape½0�,heads,
inputs:shape½1�,inputs:shape½1�)type of tensor

1: inputs ( dense(inputs) #The dense is a Dense operation

2: inputs ( split(inputs, self.heads, axis ¼ �1) #split is a segmentation function

3: inputs ( Keras.stack(inputs, axis ¼ �2) #Merge the tensors in the inputs list in the penultimate
dimension.

4: qw ( inputs½…; : headsize�
5: kw ( inputs½…; headsize :�
6: qw; kw ( RoPE(qw,kw) #RoPE rotary encoding

7: logits ( qw� kw #Calculate the internal product

8: logits ( sequence_masking(logits,mask) #exclude the padding mask as a mask

9: mask ( Compute the lower trigonometric matrix of logits

10: logits ( logits� ð1�maskÞ � e12
11: Return logits ( logits / self :headsize � �0:5
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approach between threat entities, combining corresponding words between entities, and
marked the positions in the matrix accordingly. For instance, the “uses” relation between
the threat entity at position (1, 2) and the threat entity at position (7, 8) is represented by
the full combination of positions, with the corresponding positions (1, 7), (1, 8), (2, 7), and
(2, 8) marked in red. Through these operations, we can simultaneously extract both the
threat entities and the relationships between them in the sentence.

EXPERIMENT AND DISCUSSION
Data set
To verify the effectiveness of our proposed model, the data provided in the literature
was utilized for validation (https://github.com/MuYu-z/CDTier; Zhou et al., 2023).
Modifications were made to the labels, resulting in a total of 9,549 entity tags. Following
the STIX format, this article defined seven network threat entities, namely: threat-actor
(TA), intrusion-set (IS), attack campaign (AC), tool (TO), malware (MW), vulnerability
(VUL), and threat-object (TOB). The specific distribution of each entity is as follows: there
are 1,353 campaign entities, 2,052 vulnerability entities, 1,486 threat-object entities, 1,100
malware entities, 906 tool entities, 1,094 threat-actor entities, and 1,558 intrusion-set
entities. Figure 5 shows the distribution of each entity intuitively. At the same time, we
annotated the relationships of entities, totaling 2,193 relational data entries. These entities
communicate with each other through both uses and targets. In this article, we identified a
total of 8,038 relationships, with 3,396 classified as “uses” and 4,642 as “Targets”. As not all
of the seven entities interact with each other, we have re-defined 20 specific relationship
triples of threat entities by the STIX framework. The specific relationship triples are shown
in Table 1. Figure 6 is the distribution of relational triples, where 1,2,…,20, indicates the
serial number of each triplet (https://github.com/RENWENO/CTIER).

Figure 4 Flowchart of network threat entity and relationship extraction based on GlobalPointer.
Full-size DOI: 10.7717/peerj-cs.2769/fig-4
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Figure 5 Distribution of threat entities in the dataset. Full-size DOI: 10.7717/peerj-cs.2769/fig-5

Table 1 Describes the relational triples of 20 threat entities.

Number Triplet type Description

1 TA uses AC Indicates that there is a use relationship between the threat actor (TA) and the attack campaign (AC).

2 TA uses TO Indicates that there is a use relationship between the threat actor (TA) and the tool (TO).

3 TA uses VUL Indicates that there is a use relationship between a threat actor (TA) and a vulnerability (VUL).

4 TA uses MW Indicates that there is a uses relationship between a threat actor (TA) and malware (MW).

5 TA uses TOB Indicates that there is a use relationship between the threat actor (TA) and the threat object (TOB).

6 TA uses IS Indicates that there IS a use relationship between a threat actor (TA) and an intrusion set (IS).

7 IS uses AC Indicates that there IS a use relationship between the intrusion set (IS) and the attack campaign (AC).

8 AC uses TO Indicates that there is a relationship between the attack campaign (AC) and the tool (TO).

9 AC uses MW Indicates that there is a use relationship between the attack campaign (AC) and the malware (MW).

10 IS uses TO Indicates that there IS a relationship between the intrusion set (IS) and the tool (TO).

11 IS uses VUL Indicates that there IS a use relationship between an intrusion set (IS) and a vulnerability (VUL).

12 IS uses MW Indicates that there IS a use relationship between the intrusion set (IS) and malware (MW).

13 MW uses VUL Indicates a use relationship between malware (MW) and vulnerability (VUL).

14 AC targets VUL Indicates that there is a target relationship between attack campaign (AC) and vulnerability (VUL).

15 AC targets TOB Indicates that there is a target relationship between attack campaign (AC) and threat object (TOB).

16 TO targets VUL Indicates that there is a target relationship between the tool (TO) and the vulnerability (VUL).

17 MW targets TOB Indicates that there is a target relationship between malware (MW) and threat object (TOB).

18 TA targets TOB Indicates that there is a target relationship between threat subject (TA) and threat object (TOB).

19 IS targets TOB Indicates that there is a target relationship between intrusion set (IS) and threat object (TOB).

20 VUL targets TOB Indicates that there is a target relationship between vulnerability (VUL) and threat object (TOB).
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Metrics
The evaluation metrics that we used in this study mainly include precision ðPÞ (Eq. 13),
recall ðRÞ (Eq. 14), F1 (Eq. 15), and accuracy (acc) (Eq. 16).

Precision ¼ TP
TP þ FP

(13)

Recall ¼ TP
TP þ FN

(14)

F1 ¼ 2� Precision� Recall
Precisionþ Recall

(15)

acc ¼ TP þ TN
TP þ TNþ FP þ FN

(16)

Baselines
BI LSTM+CRF (BC) model: This model is a deep learning approach that combines
bidirectional long short-term memory (Bi-LSTM) networks with conditional random
fields (CRF). It is primarily used for sequence labeling tasks, particularly excelling in NER
tasks in NLP (Gasmi, Bouras & Laval, 2018).

BERT+BI LSTM+CRF (BBC) model: This model combines the contextual
understanding capability of BERT, the bidirectional information capture ability of Bi-
LSTM, and the sequence labeling optimization power of CRF. It leverages BERT’s deep
semantic understanding, Bi-LSTM’s ability to capture long- and short-term dependencies,
and CRF’s ability to predict globally optimal label sequences. Compared to single models,
the BBC model demonstrates higher accuracy in experiments (Li et al., 2022).

ABERT+BI LSTM+CRF (ABC) model: This model integrates the lightweight
characteristics of ALBERT, the bidirectional contextual capturing ability of Bi-LSTM, and
the sequence labeling optimization capability of CRF. It is particularly suited for NER
tasks, providing precise entity boundaries and category labels. ALBERT reduces the
number of model parameters while maintaining BERT’s performance and improving

Figure 6 Quantity distribution of 20 threat entity relationship triples.
Full-size DOI: 10.7717/peerj-cs.2769/fig-6
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efficiency; Bi-LSTM handles long- and short-term dependencies; CRF ensures globally
optimal label sequences (Ren et al., 2022).

CasRel model: This model is an innovative framework for relation extraction, designed
to extract relational triples from unstructured text. The core idea of the model is to treat
relations as functions that map the subject to the object, rather than treating relations as
discrete labels (Wei et al., 2019).

AGGCN model: This model distinguishes the correlations between nodes and edges by
converting the dependency tree into a weighted graph, thereby capturing the dependencies
within a sentence more effectively. Unlike fully connected graphs, AGGCNs preserve the
structure of the original dependency tree and dynamically adjust the importance of nodes
and edges through an attention mechanism, enabling more precise relation extraction
(Guo, Zhang & Lu, 2019).

Hyperparameter selection
When training the models mentioned in this article, the main hyperparameter we focused
on was the learning rate. In this study, we experimented with learning rates ranging from
1e-1 to 1e-10. During the experimental process, we observed that when the learning rate
was higher than 1e-3, gradient vanishing occurred, and when the learning rate was lower
than 1e-7, the gradient also vanished. Therefore, we selected a learning rate between 1e-4
and 1e-6 for this study. The batch training results for the specific models are shown in
Figs. 7 and 8. From these Figures, we can see that our choice of a learning rate at 1e-5
yielded good results.

Effect of domain knowledge embedding
This article proposes a domain knowledge embedding method for threat entity recognition
and relationship extraction. To validate the effectiveness of domain knowledge embedding,
we conducted a set of comparative experiments, testing models with and without domain
knowledge on threat intelligence entity recognition and relationship extraction tasks. From
Table 2, it can be observed that the domain knowledge embeddings we extracted have a

Figure 7 The learning rate parameter experiment for the entity recognition task.
Full-size DOI: 10.7717/peerj-cs.2769/fig-7
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significant impact on threat intelligence entity recognition and relationship extraction
tasks. The inclusion of domain knowledge embeddings improved the model’s recognition
and extraction tasks by 2%.

Overall effect of the model
In this section, the impact of each metric of our proposed model on two tasks will be
detailed. It can be seen from Table 3 that in the threat entity recognition task, the values of

Figure 8 The learning rate parameter experiment for the relation extraction task.
Full-size DOI: 10.7717/peerj-cs.2769/fig-8

Table 2 Effect of domain knowledge embedding.

Add domain
knowledge embedding

No domain
knowledge embedding

Entity recognition task (ER) (F1) 93.11 91.02

Relation extraction task (RE) (F1) 92.45 90.23

Entity recognition task (ER) (Precision) 92.78 90.72

Relation extraction task (RE) (Precision) 92.34 90.16

Entity recognition task (ER) (Recall) 93.44 91.32

Relation extraction task (RE) (Recall) 92.56 90.30

Table 3 Results of our proposed methods.

Our model

Entity recognition task (ER) (acc) 92.13

Relation extraction task (RE) (acc) 91.45

Entity recognition task (ER) (F1) 93.11

Relation extraction task (RE) (F1) 92.45

Entity recognition task (ER) (Precision) 92.78

Relation extraction task (RE) (Precision) 92.34

Entity recognition task (ER) (Recall) 93.44

Relation extraction task (RE) (Recall) 92.56
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acc, precision, recall and F1 of our proposed model can reach 92.13%, 92.78%, 93.44% and
93.11% respectively. In relation extraction task, the values of acc, precision, recall and F1 of
the model proposed by us can reach 91.45%, 92.34%, 92.56% and 92.45%. At the same
time, we found that the index of the entity recognition task is higher than that of the
relationship extraction task, mainly because the index of predicting the occurrence of both
entity and relationship in the relationship extraction task is lower. Figure 9 shows the
predictive effects of seven threat entities and two relationships. It can be seen from the

Figure 9 Entity recognition and relationship extraction. Each type of entity and relationship pre-
diction effect. Full-size DOI: 10.7717/peerj-cs.2769/fig-9

Figure 10 Comparison of threat entity recognition models.
Full-size DOI: 10.7717/peerj-cs.2769/fig-10
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figure that precision, recall and F1 can reach more than 90% in the test of each entity type
and relationship type.

Comparison with other models
The models compared with the threat entity recognition model are BI_LSTM+CRF (BC)
(Gasmi, Bouras & Laval, 2018), BERT+BI_LSTM+CRF (BBC) (Li et al., 2022), ABERT
+BI_LSTM+CRF (ABC) (Ren et al., 2022). The models compared with the threat entity
relationship extraction model are CasRel model (Wei et al., 2019), AGGCN model (Guo,
Zhang & Lu, 2019). Figure 10 compares our threat entity recognition model with other
models in terms of F1, precision, and recall metrics. It can be observed that our model
outperforms the others by 9% to 2% in these three metrics. Figure 11 compares our threat
entity relation extraction model with existing relation extraction models. We can observe
that our proposed threat entity relation extraction model outperforms existing models by
approximately 4% in terms of F1, precision, and recall. Table 4 displays the recognition
performance of various entities in the threat entity recognition model. Table 5 showcases
the extraction performance of various relationships in the threat entity relation extraction
model.

DISCUSSION
Overall model analysis
This article proposes a threat intelligence entity recognition and relationship extraction
model based on domain knowledge embedding (CtiErRe). The model has a total
parameter count of 125,416,704 and the trained model size is 280 MB. The proposed
model is a combination of the BERT model, GCN model and GlobalPointer algorithm.
Among them, the complexity of the BERT model is O(N2) (Eltayeb, 2024), the time
complexity of the GCN model is OðjEj � KÞ, where |E| represents the number of non-zero
elements in the sparse matrix indicating the number of edges in the graph, and K

Figure 11 Comparison of threat entity relationship extraction models.
Full-size DOI: 10.7717/peerj-cs.2769/fig-11
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represents the number of layers in the GCN model. The time complexity of the
GlobalPointer algorithm is O(N2). Therefore, the overall time complexity of the CtiErRe
model proposed by us is O(N2) + O(jEj � KÞ + OðN2).

Case analysis
The CtiErRe model can identify both threat entities and the relationships between them in
threat intelligence. To illustrate its accuracy, consider the following two sentences as
examples: “More hacker groups are expected to use malicious software to actively break
into cryptocurrency wallets or steal user voucher information.” The threat intelligence
entities present in the sentence are as follows: Threat actor: threat actor entity: “hacker

Table 4 The identification effect of each threat entity in each model.

BC model BBC model ABC model CtiERRE model

AC F1 82.42 89.34 91.65 94.54

Precision 82.77 88.83 90.19 93.8

Recall 82.07 89.86 93.16 95.29

TO F1 81.57 89.01 90.87 93.13

Precision 80.85 89.37 89.28 93.01

Recall 82.3 88.65 92.52 93.25

VUL F1 84.78 90.43 90.42 95.19

Precision 82.72 90.48 90.49 95.25

Recall 86.95 90.38 90.35 95.13

IS F1 81.42 88.99 90.98 90.52

Precision 81.04 88.62 90.33 89.99

Recall 81.8 89.36 91.64 91.06

MW F1 81.22 88.34 90.18 94.65

Precision 81.55 88.33 89.38 93.65

Recall 80.89 88.35 90.99 95.67

TA F1 81.79 88.97 89.95 91.88

Precision 81.77 88.95 89.82 91.74

Recall 81.81 88.99 90.08 92.02

TOB F1 81.66 89.45 90.64 91.88

Precision 81.73 89.60 89.92 91.99

Recall 81.59 89.30 91.37 91.77

Table 5 Effect of entity relationship extraction for each threat model.

CasRel model AGGCN model CtiErRe(RE) model

F1 Precision Recall F1 Precision Recall F1 Precision Recall

Uses 90.28 91.81 88.8 88.52 88.94 88.1 92.15 92.04 92.26

Target 90.42 90.86 89.98 87.72 86.98 88.47 92.74 92.63 92.85
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groups”, malware entity: “malicious ware”, intrusion set entity: “break into cryptocurrency
wallets”, intrusion set entity: “steal user voucher information”. The relationships between
threat entities include “uses” and “targets”. “Valery Marchive of LegMagIT found samples
of the REvil ransomware used in the Acer attack; At the same time, BleepingComputer also
found samples, and from the ransom note, the contents of the conversation between the
victim and the attacker, further confirmed the fact that Acer was hit by the REvil
ransomware attack and was demanded $50 million ransom”. The threat intelligence
entities present in the sentence are as follows: Attack campaign: “Acer attack”, Malwate:
“REvil ransomware”, Intrusion-set: “ransom note”, Intrusion-set: “demanded $50 million
ransom”, Threat-object: “Acer”, Malwate: “REvil ransomware”, Threat-actor: “REvil”. The
relationship between threat entities also includes “use” and “target”. Table 6 provides
specific output details. Table 6 provides specific output details. Figures 12 and 13
visualizes the results of threat entity recognition and entity relationship extraction for two
sentences. In the figure, blue represents malware, red represents attacking entities, green

Table 6 The CtiErRe model predicted result for sentence.

input1 More hacker groups are expected to use malicious software to actively break into cryptocurrency wallets or steal
user voucher information.

Threat intelligence entity
(output)

Threat Actor: hacker groups; Malware: malicious software; Intrusion Set: break into cryptocurrency wallets;
Intrusion Set: steal user voucher information

Threatening entity
relationship (output)

Hacker groups uses malicious ware; malicious ware target break into cryptocurrency; malicious ware target steal
user voucher information

input2 Valery Marchive of LegMagIT found samples of the REvil ransomware used in the Acer attack; At the same time,
BleepingComputer also found samples, and from the ransom note, the contents of the conversation between
the victim and the attacker, further confirmed the fact that Acer was hit by the REvil ransomware attack and
was demanded $50 million ransom.

Threat intelligence entity
(output)

Attack campaign: Acer attack; Malwate: REvil ransomware; Intrusion-set: ransom note; Intrusion-set: demanded
$50 million ransom; Threat-object: Acer; Malwate: REvil ransomware; Threat-actor: REvil

Threatening entity
relationship (output)

Acer attack uses REvil ransomware; Acer attack uses ransom note; Acer attack target demanded $50 million ransom;
REvil uses REvil ransomware; REvil target Acer

Figure 12 Sentence 1 result visualization. Full-size DOI: 10.7717/peerj-cs.2769/fig-12
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represents intrusion sets, purple represents attack activities, and yellow represents attack
objects.

CONCLUSION
This article proposes a network threat intelligence entity and relationship extraction
method that combines domain knowledge embedding with learning neural networks. This
method utilizes domain knowledge and graph neural networks for feature extraction and
employs the GlobalPointer algorithm for relationship extraction. Specifically, the CtiErRe
model utilizes GCN networks to incorporate context relevance and threat entity text
relevance features into text features. It employs the BERT model to extract text features
and utilizes the GlobalPointer algorithm for the final entity recognition and relationship
identification, thereby avoiding error propagation and enhancing the accuracy of
overlapping relationship recognition. Additionally, to make threat entities more
comprehensive, we have defined seven types of threat entities, namely, threat actor,
intrusion set, campaign, tool, malware, vulnerability, and threat object. We have also
defined seven relationships between entities, which include “uses” and “targets.”
Furthermore, we have validated the proposed model, achieving the following metrics in the
threat entity recognition task: an accuracy (acc) of 92.13%, precision of 92.78%, recall of
93.44%, and an F1 score of 93.11%. For the relationship extraction task, our model
achieved an accuracy (acc) of 91.45%, precision of 92.34%, recall of 92.56%, and an F1
score of 92.45%. While our proposed CtiErRe model has shown promising results in

Figure 13 Sentence 2 result visualization. Full-size DOI: 10.7717/peerj-cs.2769/fig-13
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predicting threat intelligence entities and entity relationships, it is important to note
that our training dataset is not extensive enough. To enhance the model’s robustness, we
plan to augment our dataset with additional data in future work. Additionally, our
algorithm for domain knowledge embedding based on graph neural networks is
relatively simplistic. In the future, we will explore various graph network models to better
encode node representations and extend the representation fusion strategy to a wider
range of tasks.
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