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ABSTRACT

Cybersecurity plays a critical role in today’s modern human society, and leveraging
knowledge graphs can enhance cybersecurity and privacy in the cyberspace. By
harnessing the heterogeneous and vast amount of information on potential attacks,
organizations can improve their ability to proactively detect and mitigate any threat
or damage to their online valuable resources. Integrating critical cyberattack
information into a knowledge graph offers a significant boost to cybersecurity,
safeguarding cyberspace from malicious activities. This information can be obtained
from structured and unstructured data, with a particular focus on extracting valuable
insights from unstructured text through natural language processing (NLP). By
storing a wide range of cyber threat information in a semantic triples form which
machines can interpret autonomously, cybersecurity experts gain improved visibility
and are better equipped to identify and address cyber threats. However, constructing
an efficient knowledge graph poses challenges. In our research, we construct a
cybersecurity knowledge graph (CKG) autonomously using heterogeneous data
sources. We further enhance the CKG by applying logical rules and employing graph
analytic algorithms. To evaluate the effectiveness of our proposed CKG, we formulate
a set of queries as questions to validate the logical rules. Ultimately, the CKG
empowers experts to efficiently analyze data and gain comprehensive understanding
of cyberattacks, thereby help minimize potential attack vectors.

Subjects Natural Language and Speech, Security and Privacy, Sentiment Analysis
Keywords Cybersecurity knowledge graph, Deduction rule, Graph analytics algorithm, Natural
language processing.

INTRODUCTION

Cybersecurity is a rapidly developing domain due to the increasing number of cyberattacks
(Saravanan & Bama, 2019). Since the Internet is integrated into every aspect of the lives of
people, it is a vast network where it has become a place for cybercriminals by using its
technologies to attack individuals and corporations. These attacks can damage vital
resources that lead to serious harm to the assets of any organization or even an individual’s
personal information (Uma ¢ Padmavathi, 2013). Both small and large organizations,
regardless of their size, and sector, face various cybersecurity issues on daily basis.
Confidential information must be protected from the concern at different layers of the
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cyberspace. Recently, there are different attacks that are developed swiftly, which exploit
different types of vulnerabilities (Abomhara ¢ Kpien, 2015). These attacks pose a serious
threat to Internet security. Knowledge of threats and vulnerabilities helps security analysts
maintain improved security and successfully stop attackers from using flaws to launch
attacks (Sun et al., 2020). When security analysts deeply analyze vulnerability information,
discovering the implied relationship between relevant information has high importance to
resist external attacks and discover and repair vulnerabilities at the right time (Wang et al,
2020). Therefore, acquiring and managing a significant number of high-quality
vulnerability data is very important in cybersecurity domain (Qin ¢ Chow, 2019).

Different sources of vulnerability datasets exist such as open-source vulnerability
database (OSVDB) (osv.dev, 2021), Symantec/Security Focus BID database (Symantec,
2017), and National Vulnerability Database (NVD). NVD is a well-known vulnerability
database that is maintained by the National Institute of Standards and Technology in the
USA (National Vulerability Database (NVD), 1997). NVD connects chain of datasets
related to vulnerabilities, which include common vulnerabilities and exposures (CVE),
common platform enumeration (CPE), common vulnerability scoring system (CVSS), and
common weakness enumeration (CWE). Cybersecurity analysts need up-to-date
information related to cybersecurity. As mentioned above, cybersecurity information is
obtained from different sources and formats, which makes it very complex to sort out
relevant and irrelevant information. As the number of relevant information has been
growing fast, it is difficult to manage and use this information, therefore, this information
is needed to be unified and organized. Different sources of information are required to be
collected, integrated, and linked together to analyze vulnerabilities comprehensively.
Consequently, it is important to develop a unified knowledge representation that integrates
all information from different sources and formats to enable cybersecurity analysts to have
improved visibility, awareness, and in-depth analysis (Du et al., 2018). However, this task
requires a lot of effort and increases the security analysts’ workload (Sun et al., 2020). A
knowledge graph (KG) can be used to represent this information related to cybersecurity.
KG represents information in the form of concepts, entities, and relationships between
entities, which makes the data more understandable and readable in a way that it becomes
machine-processable and interpretable. Given a knowledge graph KG = <E1, R, E2>, where
E1, E2 represent the set of entities, R represents the relation. For instance, a triple contains
(attack, exploits, vulnerability) where an attack is represented as a subject, an exploit as a
predicate, and a vulnerability as an object. As illustrated in Fig. 1, an attack is any illegal or
malicious activity that exploits a vulnerability to harm the assets of any organization or
individual. KGs first appeared in the 1990s as a result of progress in the information
extraction domain (IE) (Kejriwal, 2022). A KG is used to merge the structural information
of concepts from multiple information sources and links them together (Kim et al., 2020).
KG is beneficial for many different fields especially cybersecurity field (Agrawal et al,
2022). For example, KGs are used to enhance search result ranking in Google search engine
(Ilievski, Szekely & Zhang, 2021).

Although KGs are highly useful in the cybersecurity field to organize, manage, and
employ a large amount of information effectively, the task of constructing KGs is highly
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Figure 1 Basic building block of the knowledge graph. Full-size K] DOI: 10.7717/peerj-cs.2768/fig-1

challenging. Whether the process of construction is automated or done manually, it is
expensive, error-prone, and requires a lot of human effort. Moreover, it is important to
construct graphs using both structured and unstructured data sources. However, the use of
structured and unstructured data is more challenging since the integration of data is more
difficult to achieve (Masoud et al., 2021). For example, the ambiguity and imprecision of
natural language make the automatic construction of a KG is very challenging. In addition,
KGs may have difficulty to interpret natural language queries or contexts because of their
KGs may have difficulty interpreting natural language queries or contexts because
traditional KGs are unable to understand context, word ambiguity, or implicit meanings in
the context.

Additionally, the complexity of unstructured data makes data processing a challenging
task as it requires sophisticated techniques and algorithms (Paulheim, 2016). Also, the size
and diversity of KGs that are constructed automatically make accuracy a challenging
problem (Ojha & Talukdar, 2016). KGs usually have some shortages in the current
knowledge as it contains data insufficiency, redundant information, inconsistencies, and
incomplete data (Liu et al., 2022), which lack coverage of the CKG. Thus, there is a need to
use KG reasoning methods to improve the KG, in a way to draw conclusions from known
facts to infer new knowledge such as logical rules (Fang, Qi ¢» Yue, 2020). In addition, use
of information from different sources and formats to improve the coverage of KGs implies
the need to handle structured data as well as unstructured data. The integration of
information extracted from structured and unstructured data improves coverage of
knowledge graphs (Kejriwal, 2022).

In this article, we construct a knowledge graph autonomously labelled property graphs
(LPGs) (Robinson, Webber ¢ Eifrem, 2015). Our proposed using framework consists of
three main parts natural language processing (NLP) part, a knowledge graph construction,
and logical rules to refine and improve KG. We use information extraction (Zhao, Pan ¢
Yang, 2020) and a set of NLP techniques (Kumar ¢ Manocha, 2015) to construct a
knowledge graph from unstructured textual sources. Our KG consists of information
obtained from structured and unstructured data (i.e., heterogeneous data). We also use
logical rules to improve the coverage of this knowledge graph. Additionally, we apply
graph analytics algorithms to gain more information about KG. In this research, we answer
the following question: How can we improve KG construction using logical rules?
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The main contributions of this article are:

e Autonomous knowledge graph construction from structured and unstructured sources
based on the LPGs.

 Design and implementation of the model for logical rules to improve KG.

o Utilize diverse graph analytics algorithms to evaluate performance of our KG.

BACKGROUND OF CYBERSECURITY KNOWLEDGE
GRAPHS

The cybersecurity knowledge graph (CKG) is a type of KG that is related to the
cybersecurity domain. CKG contains nodes (i.e., entities) and edges (i.e., relationships)
that comprise a comprehensive security semantic network which have different attacks
and defense scenarios (Qin ¢» Liao, 2022). In a CKG, nodes represent entities such as the
name of vulnerability and the pattern of attack, and edges represent the relationships
between entities. Researchers have conducted a detailed comparison of works related to
CKG and provided a detailed systematic literature review on information extraction from
unstructured data (i.e., CTI reports) (Zhao et al., 2022). Various studies constructed
different types of CKG from different perspectives of cybersecurity such as security
assessment and attack investigation (Han et al., 2018; Kiesling et al., 2019). A knowledge
graph is highly useful in the cybersecurity field to organize, manage, and use different
cybersecurity-related information. The knowledge graph can extract and combine existing
knowledge from heterogeneous data from different sources in an effective manner, by
using KG construction and refining methods such as ontology (Rastogi et al., 2020), and
information extraction (Husari et al., 2017; Zhao et al., 2020). In addition, KGs are very
efficient since they can express the knowledge in the cybersecurity field in a relational and
structural manner, and visualize the knowledge graphically. Moreover, CKGs can simulate
the security specialists’ thinking process aims to derive new relations or verify data
consistency based on the existing facts (triples) and logic rules (Ji ef al., 2022), this can be
done by using semantic modelling, query, and reasoning methods.

Generally, the process of constructing a cybersecurity knowledge graph (CKG) includes
data sources, information extraction techniques, and cybersecurity ontology.
Cybersecurity ontologies are divided into two main categories: unified security ontologies
such as UCO, which provide a broad framework for categories: unified security ontologies
such as UCO, which provide a broad framework for cybersecurity concepts, and specific
scenario ontologies such as vulnerability analysis ontologies, which focus on specific
cybersecurity domains. The choice of ontology depends on the particular problem being
addressed. Cybersecurity ontologies are used to formally represent cybersecurity concepts
and their relationships, aiding in knowledge organization and reasoning (Liu et al., 2022).
On the other hand, unstructured data, such as text documents or social media posts, often
contains valuable information that requires advanced techniques like open information
extraction (OIE) (Gashteovski et al., 2021; Owen & Widyantoro, 2017), named entity
recognition (NER), or relation extraction (RE) (Li ef al., 2022) to be extracted and
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Figure 2 Knowledge graph construction process. Full-size K&l DOT: 10.7717/peerj-cs.2768/fig-2

analyzed. By combining the structured knowledge from ontologies with the extracted
information from unstructured data, we can gain deeper insights into complex
cybersecurity challenges and develop more effective solutions. So, we followed the
knowledge graph construction process to propose our framework, is demonstrated in
Fig. 2.

RELATED WORK

The current data sources in the cybersecurity field are semi-structured and unstructured
data that are difficult to machine-understand and reuse. The majority of the previous work
concentrated on providing knowledge graphs, that used different information extraction
techniques on unstructured data (Jia et al., 2018; Kim et al., 2020; Qin ¢ Chow, 2019;
Sarhan & Spruit, 2021; Sun et al., 2020, 2023). In contrast, some of the earlier works
concentrated on providing a knowledge base (Jia et al., 2018).

Information extraction techniques

In NLP, information extraction techniques are used to automatically extract structured
information from unstructured text data. Several studies either have implemented or
proposed NER to extract entities from unstructured text (Jia et al., 2018; Kim et al., 2020;
Qin & Chow, 2019; Sarhan & Spruit, 2021; Sun et al., 2020, 2023).

Sarhan & Spruit (2021) proposed an Open Cyber Threat Intelligence (CTI) Knowledge
Graph (Open-CyKG) framework to extract useful cyber threat information from
unstructured advanced persistent threat (APT) reports by using an attention-based neural
OIE model. They developed neural cybersecurity NER that aids in labeling the relation
triples created by the OIE model. By developing this NER they were able to identify the
relevant entities. Then, using the fusion techniques and word embeddings, the extracted
structured data is canonicalized to construct the KG. The findings demonstrated that their
NER model achieved over 95% F-measure.
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Sun et al. (2020) proposed a vulnerability knowledge graph by integrating
heterogeneous data. They constructed a vulnerability ontology via analyzing the CNNVD
(China National Vulnerability Database of Information Security), NVD, CWE, CVSS,
Common Attack Pattern Enumeration and Classification (CAPEC) with the other
heterogeneous data. Then, they used a rule-based entity recognition method for extracting
vendor names from the unstructured vulnerability description text. The results illustrated
that the accuracy of the entity recognition method achieved 89.76%, and the results can
achieve increase in the accuracy with the decrease in the error rate if more rules being used
in entity recognition.

Jia et al. (2018) suggested a quintuple cybersecurity knowledge base model composed of
concepts, instances, relations, properties, and rules. They adopted a method that combined
rule-based and machine learning. To construct a cybersecurity knowledge base, they
extracted entities and built ontology using machine learning. Then, by calculating formulas
and using the path-ranking algorithm, new rules were derived. To extract useful
information, an extractor can be trained by using Stanford-NER. Findings illustrated that
the NER is capable of providing several features, and the use Gazettes parameter could be
used to train a recorganizer in the cybersecurity field. In the absence of a gazette,
recognition results of NER approximately achieved 73% precision, recall, and F1.

Kim et al. (2020) suggested an approach that extracts key information from cyber threat
intelligence (CTI) reports automatically utilizing a NER system. The authors specified the
meaningful keywords in the security field as entities such as URL and IP address, efc. Then
they connected the words extracted from the text data of the report with these keywords.
Additionally, they used a conditional random field network to use the character-level
feature vector as an input to bidirectional long-short-term memory to achieve higher
performance. The findings showed their model achieved an average F1 score of 75.05%
with a standard deviation of 1.74.

Qin & Chow (2019) proposed KG called VulKG from vulnerability databases including
CVE, CWE, and CVSS, however, but it did not include details on information regarding
CWE and CAPEC. The researchers suggested an automatic analysis and reasoning model
based on the vulnerability knowledge graph. Then, this model used to analyze the
vulnerability descriptions and extract named entities and include these entities into KG.
They also used knowledge graph completion technique to discover the hidden
relationships between weaknesses in the graph, which is based on chain confidence. The
results demonstrated that the AARV model accuracy of the technique achieved 82.69%.
However, the example could simply somewhat take over the place of the security
specialists’ analysis and labeling work under certain scenarios, as the operator is required
to know the query target in advance. Also, querying and re-using data are complicated if
the data are considered in association with privacy policies.

Sun et al. (2023) proposed SecTKG, which is an automated architecture for constructing
knowledge graphs for open-source security tools. An ontology model was created to
characterize the properties of security tools, their users, and their associations within the
open-source community. A knowledge graph based on the security tools’ ontology can be
applied in practice using some graph algorithms. As a result, they developed a method for
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measuring the influence of security tools using multiattribute decision-making and linear
threshold propagation. In order to find some security tools that are high-quality, well
maintained, but less famous, this method examines node attribute information, different
types of relationships, and social network analysis.

While some studies have proposed relation extraction techniques to extract
relationships (Jones et al., 2015; Pingle et al., 2019; Piplai et al., 2020; Tovarndk, Sadlek &
Celeda, 2021). Pingle et al. (2019) proposed the RelExt system to create semantic triples on
cybersecurity text. By extracting possible relationships they used deep learning techniques.
The cybersecurity knowledge graph can be confirmed using the semantic triples set
generated by their system. This system can extract the relationships between two named
entities. RelExt takes a pair of named entities extracted from a cybersecurity text as inputs.
A set of entity relationships is output by RelExt. Based on the schema of the cybersecurity
knowledge graph, the input of RelExt can be further processed. Therefore, the inconsistent
entity pairs with UCO 2.0 and STIX 2.0 were removed. The findings illustrated that the
RelExt system predicted successfully more than 700 relationships from malware
descriptions (Dark Caracal and CrossRat). Based on various data splits, the accuracy
achieved above 95%.

Piplai et al. (2020) proposed a pipeline to extract information from after action reports
(AARs), aggregate the extracted information by fusing similar entities, and represent that
extracted information in a CKG. They built a customized named entity recognizer called
‘Malware Entity Extractor’ (MEE) to extract entities. Then, they created a neural network
for predicting how ‘malware entities” pairs were related to each other. When the authors
predicted entity pairs and the relationship between them, they asserted the ‘entity-
relationship set’ in a CKG. For enhancing the CKG, they fuse similar entities, this fusion
assists represent intelligence extracted from multiple documents and reports.

Jones et al. (2015) suggested that the bootstrapping algorithm can provide automated
information extraction targeting security documentation, to assist security professionals to
find and understand information on vulnerabilities, attacks, or patches on their network.
This algorithm is used to extract security entities and their relationships from the text. The
bootstrapping algorithm requires a few relations or patterns as inputs, that contained an
active learning component to prevent drifting from the desired relations by queries the
user on the most vital decisions. The results illustrated that the precision of the tested small
corpus achieved around 82%.

In addition to the above mentioned studies, Rahman et al. (2024) proposed ChronoCTI
which is an automated NLP and ML-based pipeline to extract temporal attack patterns
from cyberthreat intelligence (CTI) reports of previous cyberattacks. The ChronoCTI
construction process begins with building the temporal attack patterns ground truth
dataset, and performing advanced large language models, natural language processing, and
machine learning techniques. The results showed that ChronoCTI performance was good
in precision however it lacks recall. By applying ChronoCTI on more than 700 CTI reports,
they have determined 124 temporal patterns that are categorized into nine pattern
categories.
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Host (2022) constructed a vulnerability knowledge graph using common weakness
enumeration (CVE) records from the National Vulnerability Database (NVD). His
proposed architecture consists of data processing and labeling, named entity recognition
and relation extraction, and entity prediction. The NER model was used for extracting
cyber-security entities to train on labeled NVD data. Then, for extracting relations between
entities, a rule-based relation extraction (RE) model was used. The RE model determined
the standard structure of CVE records since it’s based on NVD labels. Triples were used to
form their initial knowledge graph, these triples were the result of combining the extracted
entities and their relations. A knowledge graph embedding method (TuckER) was used to
predict missing entities to enhance the initial graph. The results showed that the TuckER
method achieved 0.76 in the Hits@10 score. However, the data consists of all unique CVE
IDs, which can be difficult for the model to predict due to the granularity level related to
the limited discriminatory information. In addition, many overlapping vulnerable versions
of different products can make the prediction process challenging in their model. The
following Table 1 provides literature review summary.

Types of data source

KGs are constructed using various types of data sources, including structured, semi-
structured, and unstructured data. The majority of studies in the literature leverage
information extraction techniques to process and derive insights from unstructured data
sources, such as Advanced Persistent Threat (APT) reports, After-Action Reports (AAR),
and CTI documents. However, a subset of research has incorporated heterogeneous data
sources into their KGs, as demonstrated in the works of Jia et al. (2018), Qin ¢ Chow
(2019), and Sun et al. (2020). Consistent with the approach of Sun et al. (2020), this study
focuses on specific fields within CWE and CVE documents, including descriptions and
CPE, among others.

Graph-based analytics
Graph analytics algorithms are used to determine patterns and relationships among
objects. There are different types of graph analytics algorithms such as centrality and
community detection algorithms. These algorithms are used for graph analytics in Neo4;.
Graph analytics provides comprehensive and detailed statistics on graph databases to
reveal hidden meaning to drive discovery of new information (Needham ¢» Hodler, 2018).
Centrality algorithms are one of the most important algorithms. These algorithms
determine the important nodes in a given graph. The importance of the node indicates that
this node has many direct connections, this node is transitively connected to other
important nodes and reaches other nodes with some hops. There are different types of
centrality algorithms such as Degree and PageRank algorithms. The Degree algorithm is
employed to determine the popular nodes inside the graph. It calculates the incoming
relationships, outgoing, or both from a node, based on the relationship projection
direction. While the PageRank algorithm is applied to calculate the node’s importance
depending on the incoming relationships and the corresponding source nodes’
importance. Whereas community detection algorithms are employed to assess how groups

Alharbi et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2768 8/46


http://dx.doi.org/10.7717/peerj-cs.2768
https://peerj.com/computer-science/

PeerJ Computer Science

Table 1 Literature review summary.

Author Source Nature Volume of data points Fields

Sarhan & Spruit  Microsoft Security Bulletins ~ Unstructured 5,072 sentences (Microsoft Security

(2021) dataset, Malware-specific Bulletins dataset) 3,450 sentences
dataset (collected from (Malware-specific dataset).
various CTI reports).
Sun et al. (2020) NVD, CNNVD, CWE, CVSS, Both Not specified Vendor, product, vulnerability, weakness,
CAPEC. attack pattern, Result.
Jia et al. (2018)  Cybersecurity datasets (e.g,  Both Not specified Vulnerability, Assets (Software, OS),
SNORT, chinabaike, Adobe, Attack.
Microsoft).
Kim et al. (2020)  CT1I reports Unstructured 160 unstructured PDF documents -
Qin & Chow NVD Both Not specified CVE, CWE, CPE, CVSS information.
(2019)
Sun et al. (2023)  The open-source tools’ dataset Unstructured Above 40 thousand tool -
obtained from GitHub. repositories’ information, above

3 million users’ information.

Pingle et al. (2019) Technical reports, blogs, CVE, Unstructured 474 detailed technical reports and -

Microsoft and Adobe blogs, nearly 90,000 JSON entities
security bulletins, STIX (CVE).
corpus.

Piplai et al. (2020) CVE, NVD, STIX, Microsoft Both About 3,600 sentences (MEE Software, Exploit-Target, Malware,
security, Adobe security, evaluation). 90,000 annotated Indicator, Vulnerability, Course-of-
annotated AARs, AARs. relationships, triples, annotated action, Tool, Attack-pattern, Campaign,

triple (RelExt evaluation). Filename, Hash, IP Addresses.

Rahman et al. Dataset of CTI reports. Unstructured 7,052 sentences (94 CTI reports). -

(2024)
Host (2022) NVD Both 150,000 CVE records. CVE ID, CWE ID, description etc.

of nodes are clustered or separated, as well as their tendency to disassemble or strengthen.
One of the community algorithms is the Label Propagation algorithm (LPA), it is a fast
algorithm and is used to find communities in the graph. The benefits of using this
algorithm are that discovers the communities using only network structure as guidance,
and neither needs a pre-defined objective function nor previous information about the
communities. LPA propagates the labels over the graph to form communities of nodes
depending on their influence.

Husdk et al. (2023) posited the provision of network-wide cyber situational awareness
particularly its comprehension level by graph-based analytics. They depend on different
monitoring and reconnaissance tools to collect information at the right time on a
computer network and devices such as network information, vulnerabilities, and CVEs.
Then, they used graph-based analytics such as Neo4j Graph Data Platform to store and
visualize the collected data. They used graph-based analytics to attain operational CSA in
practice and eventually ease the network defenses preparation, preventive actions
planning, and accelerate incident responses and network forensics.

Sun et al. (2023) proposed SecTKG, which is an automated architecture for constructing
knowledge graphs for open-source security tools. An ontology model was created to
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characterize the properties of security tools, their users, and their associations within the
open-source community. A knowledge graph based on the security tools’ ontology can be
applied in practice using some graph algorithms. As a result, they developed a method for
measuring the influence of security tools using multiattribute decision-making and linear
threshold propagation. In order to find some security tools that are high-quality, well
maintained, but less famous, this method examines node attribute information, different
types of relationships, and social network analysis.

Tovariidk, Sadlek ¢ Celeda (2021) suggested an elegant graph-based method for
matching vulnerable configurations. This method describes the affected hardware and
software logically, taking into account the versions and conditions of the vulnerability.
Standards for CPE naming, CPE dictionaries, CPE applicability languages, and CPE name
matching are specified in CPE specifications. However, research articles usually only use
specifications for CPE naming.

The CPE strings of vulnerabilities and device fingerprints are usually matched using a
brute-force approach. However, large-scale implementation requires more efficient
algorithms. In a single graph traversal, the authors provide a query to find all matches
between vulnerable CVEs and asset configurations from a decomposed CPE string model.

The refinement of KG

Refinement techniques for KGs encompass rule-based approaches (Dong et al., 2014; Chen,
Jia & Xiang, 2020), machine learning-based methods (Lin, Subasic & Yin, 2020; Tiwari,
Zhu & Pandey, 2021; Wan et al., 2021), and graph analytics-driven strategies (Aggarwal,
2011; Petermann et al., 2016). Several studies in the literature have employed these
techniques to enhance the quality and utility of KGs, ensuring improved accuracy,
consistency, and relevance. These techniques have been discussed as below:

Machine learning approaches

Pingle et al. (2019) proposed the RelExt system to improve different cyber threat
representation schemes, including cybersecurity knowledge graphs via predicting relations
between cybersecurity entities determined by cybersecurity NER. While Host (2022) has
used a knowledge graph embedding method (TuckER) to predict missing entities to
enhance the initial graph. Where Jia et al. (2018) used a path-sorting algorithm for
relationship deduction, where a new relationship can be obtained by using the path
connecting two entities as a feature to predict the relationship between the two entities.

Rule-based techniques

Qin & Chow (2019) introduced a reasoning function inspired by association rule mining
(ARM), aimed at uncovering hidden rules and inferring relationships between various
types of weaknesses. This approach leverages ARM to identify and reason about latent
connections within the data.

Beyond machine learning approaches and rule-based techniques, other methods for KG
improvement have been explored, such as fusion processes and canonicalization. KG
Fusion involves integrating multiple KGs into a unified structure, thereby creating a more
comprehensive and accurate representation of the underlying information. In contrast,
canonicalization refers to standardizing different mentions of identical entities or
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relationships into a single form. This process is essential to reduce redundancy and
enhance the overall quality of the KG.

Sarhan & Spruit (2021) applied refinement and fusion techniques for KG
canonicalization, streamlining the data into a cohesive format. Similarly, Piplai et al. (2020)
employed fusion methods to integrate knowledge from various AARs that describe the
same entity, thereby improving the quality of their CKG.

Graph representation formats in knowledge graphs

The majority of studies have adopted the LPG as the graph representation format for
knowledge graphs (e.g., Husdk et al., 2023; Sarhan ¢ Spruit, 2021; Sun et al., 2020; Sun
et al., 2023; Wang et al., 2020). In contrast, some studies have utilized the resource
description framework (RDF) format (e.g., Qin ¢» Chow, 2019). Although RDF offers
advantages such as semantic interoperability and adherence to W3C standards, it suffers
from several significant shortcomings. These include challenges with vocabulary
standardization, which can lead to inconsistencies when integrating data from multiple
sources Additionally, selecting an appropriate syntax format (e.g., Turtle, RDF/XML) and
choosing an optimal query language (e.g., SPARQL) can complicate implementation.
RDF’s inability to natively represent properties on edges further limits its expressiveness in
scenarios requiring rich relationship annotations, such as weights or temporal data.
Moreover, RDF-based systems often incur higher computational overhead due to the
verbosity of RDF triples and the complexity of SPARQL queries.

In contrast, LPG overcomes many of these challenges by enabling properties to be
directly associated with edges, providing a more intuitive structure for representing
complex relationships and facilitating efficient graph traversal. Given these advantages and
the limitations of RDF, this study adopts the LPG format to ensure improved functionality,
scalability, and usability of the Knowledge Graph.

Use cases for cybersecurity knowledge graphs

The concept of knowledge graph gained interest in different fields, particularly cyber
security. KGs can deal with large amounts of data created from cyberspace. KGs capture
the complexity and heterogeneous nature of information using knowledge representations
based on ontologies (Sikos, 2023). There are various use cases for cybersecurity knowledge
graphs such as vulnerability analysis and intrusion detection.

Kiesling et al. (2019) provided a query-based scenario to show how the alerts of network
intrusion detection system (NIDS) can be linked to the SEPSES CSKG to obtain a better
knowledge of current attacks and possible threats. Also, they provided another use case for
the SEPSES KG, which is based on query, to show how their KG can assist security analysts
by creating the information organization-specific asset to a chain of well-known
vulnerabilities that is frequently updated.

Chen (2020) proposed a DDoS attack detection technique based on a domain KG. This
technique primarily targeted at DDoS attacks on TCP traffic. The TCP traffic
communication process between two hosts is expressed using the KG. In addition to
compute the one-way transmission propensity’s value and a threshold was determined to
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identify if the source host launches a DDoS attack. Li ef al. (2022) proposed a method
called AttacKG for constructing the knowledge graph. This method can efficiently detect
network attacks by automatically extracting content from CT1I reports. They also provided
a new concept called Technique Knowledge Graph, which sum up the causal techniques
from attack graphs to describe the complete chain of attack in CTI reports. They provided
two use cases in which TKG can be used, TKGs use the collected knowledge to enhance
reports, which assist in understanding and reconstructing certain attacks. Furthermore,
TKGs with aggregated technique-level intelligence can improve the attack variants’
detection.

MOTIVATION FOR AUTONOMOUS CONSTRUCTION AND
ANALYSIS

Currently, there is a variety of knowledge graphs available for cybersecurity. Most of the
previous studies used unstructured data such as security news, blogs, and CTI. While a few
research had used structured data. However, only Sun et al. (2023) and Qin & Chow (2019)
use heterogeneous data, therefore, there is a lack of research that uses heterogeneous data.
Also, most of the existing solutions did not include graph-based analytics, which made
them unable to gain deeper insights into the data. In addition, most of the existing KGs
may consist of low-quality items such as incorrect relations, and erroneous entities. As they
simply fed the data into KGs directly by mapping and did not refine the KGs, thus, their
KGs did not have consistency and accuracy.

Consistency in a knowledge graph means maintaining logical coherence in which data
should align without contradictions, and relationships must be meaningful according to
established rules or ontologies. Ensuring consistency may involve steps like error
correction, resolving conflicts, and unifying terms across datasets (Hur, Janjua ¢» Ahmed,
2021). Accuracy, on the other hand, reflects how well the KG mirrors real-world entities
and relationships, capturing relevant data accurately and filtering out irrelevant or
incorrect information. Most existing approaches focus heavily on the construction of KGs
but lack sufficient refinement, which can lead to lower overall quality. Specifically, existing
solutions often do not adequately address consistency and accuracy, creating a significant
gap in KG reliability.

Minimal efforts in refinement may lead to inaccuracies or inconsistencies that
undermine the KG’s utility. Consistency can be measured through logic-based validation
(e.g., identifying conflicting triples or detecting structural anomalies), while accuracy can
be evaluated by assessing alignment with ground truth data or expert-curated annotations.
While automated refinement processes can help KGs achieve a degree of consistency and
accuracy, achieving high accuracy in dynamic fields like cybersecurity often requires
domain-specific rules and continuous updates to address the evolving nature of threats
(Hur, Janjua & Ahmed, 2024).

In this work, we extract the unstructured data from an information extraction system to
feed the extracted information into a knowledge graph, where the entities as nodes and the
relations as edges associated between the nodes. Information extraction systems can
extract such data, and these extractions were used to construct a knowledge graph.
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Generally, entity extraction is considered as a difficult task, many textual references that
initially look different may indicate the same entity. However, some textual references also
incorrectly correspond to different nodes. As knowledge graphs’ current knowledge
usually consists of data insufficiency, redundant information, inconsistencies, and
incomplete data that result in the lack of CKG coverage. Only a few prior studies employed
diverse reasoning methods, such as knowledge graph embedding and techniques inspired
by association rule mining (Qin ¢ Chow, 2019; Sarhan ¢ Spruit, 2021). In contrast, our
approach refines the KG by incorporating logical rules as a reasoning mechanism. This
innovative method effectively identifies hidden links within the KG, significantly
enhancing its coverage.

Information obtained from different sources can increase the knowledge in the KG as
there is a significant need to create a comprehensive CKG by employing structured and
unstructured data sources (i.e., heterogeneous data) in the KG construction. As
unstructured data usually consists of valuable information that can be analyzed by using
NLP techniques. Most of the previous studies tackled either structured or unstructured
data to construct the KG. While we proposed autonomous knowledge graph construction
from heterogeneous sources based on the LPGs. Also, we used different graph-based
analytics algorithms, which is a powerful feature to analyze and obtain a comprehensive
understanding of data in the KGs.

CYBER GUARD GRAPH APPROACH

The primary goal of this section is to provide a description of our Cyber Guard Graph
approach.

Overview of the cyber guard graph approach

Figure 3 illustrates the workflow of the Cyber Guard Graph approach, encompassing stages
from data collection to KG construction and refinement. The process begins with the
collection of semi-structured data in the form of NVD documents, which include CVE and
CWE entries. For unstructured data, we developed and implemented a robust NLP
pipeline. This pipeline includes essential tasks such as text preprocessing (e.g., tokenization
and syntactic parsing), named entity recognition and classification, named entity linking
and disambiguation, and semantic role labeling. These steps enrich the KG with valuable
insights and semantic relationships extracted from the unstructured data.

In handling structured data, we mapped source database items to KG elements by
converting data items into nodes, edges, and their attributes. Key-value pairs from CVE
JSON files were directly integrated into the KG, preserving the structure and semantics of
the original data. During the refinement stage, we applied logical rules to enhance the
quality and consistency of the KG. This stage ensures the removal of redundancies and
establishes stronger semantic coherence within the graph. The final output of this process
is the CKG, a comprehensive and enriched representation of the data. To evaluate the
performance and utility of the CKG, we employed various graph analytics algorithms.
These algorithms enable the assessment of structural properties, relationships, and the
overall effectiveness of the graph in representing cybersecurity knowledge.
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Data model of cyber guard graph approach
Figure 4 presents a high-level conceptual data model for the Cyber Guard Graph approach,
illustrating the relationships and structure of key entities within the knowledge graph.
Each CVE entity includes a unique identifier (ID) that specifies the vulnerability and its
assigner. A connection is established between CWE nodes and CVE nodes, representing
the weaknesses that contribute to specific vulnerabilities, such as cross-site scripting. The
ProblemTypes node contains attributes such as lang and value, which correspond to CWE
IDs. Each CWE entity includes a CWE ID that is MAPPED_WITH its
Extended_Description. To represent related weaknesses within the graph, a
HAS_RELATED_WEAKNESS relationship is created, linking CWE nodes and capturing
detailed information about their interconnections. The Extended_Description node holds
textual descriptions of weaknesses and is connected to Entities via a HAS_ENTITY
relationship. Additionally, Common Platform Enumerations (CPEs) include attributes
such as cveld and version, providing information about the impact of a specific CVE on a
product.

The impact entity contains CVSS data, which is critical for assessing the severity of
vulnerabilities. A relationship between CVSS nodes and CVE nodes reflects the severity of
vulnerabilities based on CVSS scores. This relationship is essential for understanding and
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prioritizing vulnerabilities. To ensure the integrity of the graph, each CVE node is assigned
a unique ID property, guaranteeing accurate identification and traceability within the KG.

Methodology for CKG generation

The methodology presented is a proof-of-concept (PoC) implementation of the Cyber
Guard Graph approach, specifically designed to operate within a graph database. This PoC
demonstrates how the methodology can be applied to cybersecurity data, illustrating its
practical implementation in building a KG. By showcasing this PoC, we highlight the
feasibility and effectiveness of the Cyber Guard Graph approach in structuring and
analyzing cybersecurity data within a graph-based system. This approach is technology-
independent, allowing for its adaptation to any graph database or system capable of storing
graph data. Therefore, the proposed solution can be easily transformed and applied to
different tool- specific technologies, offering flexibility and broad applicability. The
framework we followed is illustrated in Fig. 5. Our methodology accommodates a wide
range of cybersecurity data sources, whether structured, unstructured, or semi-structured,
enabling the construction of a comprehensive vulnerability KG from these diverse data
types. The data collected from NVD documents is semi-structured, containing both
structured and unstructured components.

The structured data sources, including CVE and CWE, are directly mapped into the KG.
We also parsed CPE values from CVE data to integrate additional information. However,
the data also contains significant unstructured components, such as the vulnerability
descriptions in CVE records and extended descriptions in CWE records. For example, the
CVE-ID feature represents a unique identifier assigned by CVE, along with the current
description of the vulnerability and post-analysis information. The records also include
references to external advisories, solution methods, and related tools, providing crucial
context for vulnerability management. In addition, severity features are associated with
CVSS scores and vulnerability vectors, helping to assess the impact of vulnerabilities.
Other important features include weakness enumeration categories (such as CWE-ID,
CWE name, and source), as well as configuration details of affected software and versions.
The CPE values parsed from CVE data include details such as vendor, product name, and
version number. The CWE entities themselves contain several attributes, including the
CWE ID, name, abstraction level, status, description, extended description, related
weaknesses, and other key features.

To extract meaningful information from the unstructured text, we applied NLP
techniques such as tokenization, syntactic parsing, named entity recognition, and SRL.
These processes involve identifying entities, relationships, actions, and arguments within
the text. Entity linking and disambiguation are also critical steps, where entities are linked
based on their contextual relationships, as identified through SRL. SRL further aids in tasks
such as extracting relations and events, thereby contributing to the structured
representation of data within the KG.

Once the unstructured text has been processed and structured, the extracted
information is mapped to the KG schema, enriching the graph with relevant entities,
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relationships, and attributes. The KG is then populated, integrating data from both
structured and unstructured sources.

In the refinement stage, we enhanced the coverage and quality of the KG through logical
reasoning methods. Specifically, we applied deductive rules to infer new knowledge and
validate the graph’s consistency. Finally, the KG was analyzed using graph analytics
algorithms, including centrality and community detection, to evaluate the structure and
effectiveness of the knowledge graph in representing cybersecurity data. These analytics
provided insights into the importance of nodes and the identification of clusters within the
data, further enhancing the understanding of vulnerability relationships.

For analyzing the unstructured content in the datasets, we employed a three-phase
process of natural language understanding: morphological analysis, syntactic analysis, and
semantic analysis. Morphological analysis involves tokenizing the text, removing
punctuation, and analyzing individual words. Tokenization is a crucial step in NLP, as it
splits paragraphs and sentences into smaller units that are easier to interpret. The output of
the morphological analysis feeds into the syntactic analysis, which structures the sentence
by categorizing words and forming syntactic relationships. The semantic analysis phase
assigns meaning to the syntactic structures, ensuring that the processed text is mapped to
the relevant tasks and entities.

Through this methodology, we effectively transformed raw cybersecurity data into a
structured, semantically rich KG, ready for further analysis and decision-making.

Data collection from NVD documents, CVE, CWE, AND other sources

In this article to provide a comprehensive KG, we used different data sources containing
structured and unstructured data. Usually, structured data contains numbers and text that
are stored in a relational database. While unstructured data contains text or video and is
stored in its native format. Besides structured and unstructured data, there is a third
category that combines both. A semi-structured data has some defining characteristics but
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does not conform to a structure as rigid as is expected with a relational database. For data,
it is easy to organize structured data and follow a rigid format; unstructured is complex and
often qualitative information that cannot be reduced to or organized in a relational
database, and semi-structured data contains elements of both. We used vulnerabilities-
related datasets including CWE and CVE provided by NVD documents, these datasets are
available in different file formats such as JSON. CVE dataset is a dataset that contains
vulnerabilities entries. CVE contains exposed vulnerabilities, and the list of vulnerabilities
is preserved by MITRE. CVE is considered a standard to identify and name certain
vulnerabilities. While the CWE dataset is a dataset that contains a list of weaknesses and
vulnerabilities. CWE basically provides information on the causes of vulnerabilities where
every CWE represents one type of vulnerability, and it is considered a standard to classify
and describe the weaknesses’ types which lead to vulnerabilities. The construction of the
KG was done by using Neo4j, which is a high-performance graph database management
system used to store nodes and relationships and to visualize and query the KG.

Processing semi-structured data from databases

We obtained the CVE dataset from NVD documents. We first selected NVD because it
is a well-known database that provides datasets related to the vulnerability field. This
database links with other data sources such as CWE and CPE. As shown in Fig. 6, every
entry in the dataset contains CVE, problem type, references, description, configurations,
and impact. CVE contains an ID that represents a certain vulnerability and ASSIGNER,
problem type contains a value that represents the CWE id. The configuration contains CPE
that presents information about the products impacted by a particular CVE. Whereas
impact consists of CVSS information, CVSS is used to evaluate vulnerabilities’ severity.

Processing structured data

The object CVE nodes contain a unique identifier property which is cve id. So, we need
to create a constraint CVE called cve. Because it consists of a lot of information that is
required for our graph.

We noticed that the problemtype nodes in KG only provide CWE ids. Thus, to enrich
the KG, we needed further information about CWE since CWE serves as a dictionary of
software vulnerabilities. CWE contains an ID that represents a specific weakness a name
that represents the weakness’ name. While description provides a brief description of
weakness. Whereas extended description includes a detailed description of weakness.
Moreover, a CVE entry contains CPE information. As shown in Fig. 7, the CPE offers a
standardized string that is in the form of uniform resource identifiers to identify which
products and versions are vulnerable.

The first part of URI identifies that it is a CPE and its version. Then, a part refers to h, a,
or o for hardware, application, or operating system respectively. The consequent fields are
employed to identify the component by determining the vendor, the product name, the
version number, and so on. Since the CPE consists of valuable information, it is an
important task to parse the CPE values from CVE data to enrich the KG.

Processing unstructured data

As we mentioned above, the semi-structured data sources including CVE and CWE
were imported directly into the KG. Nevertheless, they consist of unstructured data (i.e.,
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long sentences). The unstructured data includes the vulnerability description in CVE data
and the extended description in CWE data. It is important to analyze the vulnerability
description as it contains important information on the vulnerability including how
attackers may exploit this vulnerability, how this vulnerability affects users, operating
systems, or applications, and possible recommendations. Additionally, the extended
description also contains important detailed information on the weaknesses and how they
occurred. For unstructured data, we used different NLP techniques to analyze these
unstructured contents to extract data from the text.

Open information extraction techniques

Open information extraction (Open IE) are popular techniques, which are used to
convert unstructured text to structured text. These techniques extract a big set of relational
triples from unstructured text without human interference nor require domain expertise.
Then, the extracted information is used to construct a knowledge graph. OIE techniques
are categorized into learning-based, rule-based and inter-proposition-based systems.
Taking “John managed to open door” as an example, an Open IE extractor should produce
the tuple (John; managed to open; the door) but it is not necessary to produce the
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extraction (John; opened; the door). In response to this initial task presentation, Open IE
has received substantial and consistent attention. There were many automatic extractors
created (Muhammad et al., 2020). We basically provided the unstructured text to the Open
IE model. The outputs of this model are a set of extractions. Each of these extractions is
tagged such that contains one predicate (i.e., verb) and a number of arguments. By using
this model, the objective is to extract entities based on open information extraction to get
the head, which is the most important word of the sentence, so that we can normalize or
create a node for the head to determine whether it is an entity or verb. We have created a
set of patterns which operates on the dependency parse information of the text.

Graph patterns are considered constraints on subgraphs, and they are the most
important component of Cypher queries. Graph patterns depict the data to be retrieved as
nodes and edges. Inside a MATCH clause, graph patterns are used to define the data we are
searching for. For instance, the MATCH clause uses a built-in index to retrieve all nodes
labeled as vulnerability. We will discuss patterns in more detail in the section Refinement
of CKG. So, we are following of existing approach of identifying the headword based on the
dependency parse information. Since there are existing systems, dependency parsing is
used to extract the headwords.

Tokenization

By tokenizing, we mean separating information into tokens. Taking the input text and
breaking it up into its fundamental units called tokens, they usually consist of words,
numbers, and symbols, divided by white space. Many sophisticated algorithms use tokens
as inputs in applications involving linguistic analysis, so tokenization is an essential step
input rather than raw text. Tokenizers have to be of high quality in order to avoid problems
in other components of the pipeline. A token can be classified according to its
capitalization degree, such as a number, a mark, a punctuation mark, a word, etc. (Maulud
et al., 2021). Figure 8 illustrates an example of tokenization. Another example from our
data is that “An attacker who gains local membership to words are SAP_LocalAdmin” was
identified as the headword and classified as a noun by the spaCy model. All other
dependent on the head word “an attacker”. There is an “who” tagged with PRON, a “gains”
tagged with VERB, a “local membership” tagged with NOUN, an “to” tagged with ADP,
and a “SAP_LocalAdmin” tagged with PROPN.

Syntactic parsing

Dependency grammar is a part of syntactic text analysis. Dependency grammar
identifies the root word, which means the word has no dependency on other words in a
given sentence, and the method also identifies important relationships (e.g., the nominal
subject), these grammar relationships can be used for entity identification. The other
words are given a label to represent the relationship they have with either the root word or
another word that is adjusting the root. Consider, for instance, the sentence “John is
playing a game”. As a result of parsing it, the components will be listed as “John”, “is”,
“playing”, and “game”. Natural language processing parses a natural language sentence
using the same concept. Normally, parsing a sentence in natural language involves
analyzing its grammatical elements, identifying its parts of speech, etc. Therefore, “John”,
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Input: Friends, Romans, Countrymen, lend me your ears:
Output:

Friends || Romans || Countrymen || lend

me || your || ears

Figure 8 Example of tokenization. Full-size k] DOT: 10.7717/peerj-cs.2768/fig-8

s M«

is”, “playing”, “game” are tokens that refer to the above sentence. In every natural

language, the sentences are formed according to their own grammar rules. This is known
as “syntactic relations” (McIntyre, 2021). Our data emphasizes the syntactic structure of
the sentence. For instance, “An attacker who gains local membership to words are
SAP_LocalAdmin”. As a result of parsing it, the components will be listed as “An attacker”,
“who”, “gains”, “local membership”, “to”, “SAP_LocalAdmin”. The tokens that refer to the
above sentence are “An attacker”, “who”, “gains”,
“local_membership”,“SAP_LocalAdmin”.

Named entity recognition and classification

Named entity recognition and classification (NERC) involves identifying proper nouns
in text and classifying them as different kinds of named entities (NE), such as individuals,
organizations, locations, etc. For example, Sundar Pichai, CEO of Google Inc., walks
through the streets of California. Based on the preceding sentence, we can categorize things

», o« », o«

into three different kinds (“person”: “Sundar Pichai”), (“organization”: “Google Inc.”), and
(“state” “California”). Another example from our data also shows that “The software
constructs all or part of a code segment using externally-influenced input from an
upstream component, but it does not neutralize or incorrectly neutralizes special elements
that could modify the syntax or behavior of the intended code segment.” As a result of the
preceding sentence, we can categorize things in three categories: There are different types
Base”), (“name”: “Code Injection”), and (“status”™ “Draft”). It is

an important subtask in several language engineering applications, especially in the field of

» «

(“weakness_abstraction™:

information retrieval and extraction. NERC systems have to be validated on enormous
corpora, so they are capable of recognizing and categorizing NEs correctly (Petasis et al.,
2001).

Named entity linking and disambiguation

Named entity recognition and disambiguation (NERD) is also known as entity linking
(EL), which used to identify named entities in plain text and determine their meanings.
The NER task starts by indicating the named entities’ text span. Then, named entity
disambiguation (NED) task comes to link the text span of each named entity to the correct
entry in a knowledge base. NERD technique is an fundamental in various NLP
applications, because this technique assists in extracting and understanding the
information from plain text. The goal of NER is first to identify the text spans of entities.
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NED then links the text spans of each named entity to the correct entry in a knowledge
base (Lin, 2021). For example, the statement “a malicious file” that will be started under a
privileged account. Entities were extracted from a vulnerability description by the model.
“a malicious file” labeled with ARG, which stands for Argument 1. “that” tagged with R-
ARGI, that refers to Reference Argument 1, “will” tagged with ARGM-MOD, that refers to
Modifier Modal, “started” tagged with V which stand for to Verb (predicate), and “under a
privileged account” tagged with ARGM-LOC, that refers to Modifier-Location.

Semantic role labeling

A shallow semantic parsing task called semantic role labeling (SRL) identifies all
constituents that fill a semantic role for each predicate in a sentence and determines their
roles (Agent, Patient, Instrument, efc.) and adjuncts (Locative, Temporal, Manner, etc.).
SRL is also capable of extracting structured information from unstructured text. In
addition to providing deeper understanding of sentence semantics, SRL facilitates
downstream tasks such as answering questions, extracting information, and translating
texts. An example of a sentence would be “John ate the apple,” where “John” is the subject,
“ate” is the verb, and “the apple” is the object (Punyakanok, Roth ¢ Yih, 2008). Another
example is “a malicious file that will be started under a privileged account”, where “file” is
the subject, “started” is the verb, and “the account” is the object.

Refinement of CKG

In the field of KG, there are many reasoning methods proposed to enhance the coverage of
KG. Generally, knowledge reasoning means a way to draw conclusions from known facts
to infer new knowledge, one of the reasoning methods is logical rules (i.e., deduction rules).

Integration of deduction rules for KG refinement

The reasoning methods are used to enrich the KG, particularly, logical rules used to
improve KG by deducing new relations between two unrelated entities with each other. We
employed logical rules to enhance the KG coverage. The graph pattern describes data using
a syntax that is like how the nodes and relationships of a property graph are drawn on a
whiteboard, where the nodes are represented as circles and the relationships as arrows. So
basically, we have the conditions, and those conditions imply a new fact or new a state,
maybe there are connections between two nodes. So, it is having (precedent— consequent)
rule head—rule bod This is how we create the rules. For example, a new relationship
between two nodes that were not initially present but based on the current state of data, we
observe that these two nodes should be connected. So, the reason why they should be
connected is that the patterns indicate or give us a clue that these two nodes should be
present in our graph. Therefore, patterns are necessary for us to discover new knowledge. It
will help us gain a deeper understanding of data if we discover hidden patterns. Using the
knowledge graph, we can uncover fraudulent activities or find alternative actions that can
prevent risks by discovering patterns between nodes. The components of these patterns are
nodes and relationships. By combining these nodes and relationships, simple or complex
patterns can be expressed. In a simple pattern, we create two nodes connected by a single
relationship. For example, the weaknesses [:LEAD_TO] vulnerabilities. Whereas in
complex patterns, using we create several relationships with many nodes. For instance, the
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vulnerabilities that are [:VULNERABLE_TO] attacks and [:SIMILAR_TO] the
vulnerabilities that are exploited by attackers to perform the same attack. Those patterns
convey complex concepts and support different use cases. We obtained the deduction rules
from simple and complex patterns. The following Table 2 illustrates the deduction rules
and their descriptions.

Graph analytic algorithms

A graph algorithm is a subset of a graph analytics tool. The concept of graph analytics is
using graph-based methods to analyze data connected to a graph. A graph algorithm is one
of the most powerful approaches to analyzing connected data since it uses mathematical
calculations that are specifically designed to handle relationships. For instance, social
networks like Facebook and LinkedIn are all about connections. Social network features
depend heavily on graph analytics, such as recommendations of people who are interested.
The purpose of using graph analytics is to look at the structure of our data instead of just
the data points. This allows us to uncover patterns and predictive information, and it
allows us to infer meaning from connections. So, it is about finding patterns that are
important to us. Through graph analytics, we can make sense of our connected data by
understanding its structure.

IMPLEMENTATION

We have successfully implemented the rule-based reasoning framework, which provides a
robust foundation for deriving insights from the knowledge graph. The implementation
section includes a comprehensive specification of the required programming languages,

libraries, and tools essential for its development and integration.

Technology stack for building a proposed cybersecurity knowledge
graph

This research utilizes a comprehensive technology stack to construct a cybersecurity KG.
In the data collection phase, we first obtained CVE data from the NVD website in JSON
format. Detailed information about CWEs was retrieved using the cwe2 library, which was
also downloaded as a JSON file (Hany et al., 2020). Additionally, CPE values were parsed
from the CVE data using the cpe-parser library (version 0.0.2), the latest available CPE
parser in Python (Shukurov, 2022). The parsed CPE values were stored in JSON format
and subsequently imported into the KG. To store the data, we employed Neo4j and the
cypher query language, representing the information as entities and relationships within
the graph. CVE data, CPE values, and CWE data were then integrated to create a
comprehensive KG.

For unstructured data, we applied NLP techniques, including OIE and entity-fishing.
OIE was used to convert unstructured content into structured information, while entity-
fishing involved named entity recognition, classification, disambiguation, and linking,
enabling the extraction of concepts, individuals, and their relationships. We utilized Neo4;j
Desktop (Community Edition, version 1.5.7) to retrieve data from the graph through
Cypher queries. These queries used pattern- based rules to enhance the KG by matching
co-referent entities and determining their similarities. The implementation required
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Table 2 Deduced rules and their descriptions.

Deduced rule

Description

IF PROBLEM_TYPE (cve, problemType) && MAPPED_WITH
(problemType, cwe)

THEN LEAD_TO (cwe, cve)

IF PROBLEM_TYPE (cve, problemType) && MAPPED_WITH
(problemType, cwe) && MAPPED_WITH (cwe, cwedata) &&
HAS_ENTITY (cwedata, Entities) && VULNERABLE_TO (Entities,
cve) && SIMILAR_TO (cvel, cve2)

THEN SIMILAR_TO (cve2, cve3)

IF PROBLEM_TYPE (cve, problemType) && MAPPED_WITH
(problemType, cwe) && MAPPED_WITH (cwe, cwedata) &&
HAS_ENTITY (Entities, cve) && INADVERTENTLY_EXPOSES
(Entities, cve) && SIMILAR_TO (cvel, cve2)

THEN SIMILAR_TO (cve2, cve3)
IF HAS_IMPACT (cve, impact) && HAS_CVSSV3 (impact, cvssv3)
THEN ASSIGNED_TO (cvssv3, cve)

This inferred relation is obtained by using multiple relationships to
connect the CWE nodes with CVE nodes, this relation reflects the
weaknesses (i.e., errors) that lead to vulnerabilities.

This deduced relation is obtained by using multiple relationships to
connect the attack nodes with CVE nodes, this relation refers to the
vulnerabilities that are vulnerable to attacks. We have another relation
links between CVE nodes, this relation refers to similar CVE nodes that
are exploited by attackers to perform the same attack.

This inferred relation is acquired by using multiple relationships to
connect nodes (i.e., sensitive data/information) with CVE nodes, this
relation refers to the vulnerabilities that accidentally expose sensitive
data/information.

This deduced relation is obtained by using two relationships to connect
the CVSS nodes with CVE nodes. This relation indicates the severity of
vulnerabilities, which these vulnerabilities are assigned by CVSS scores.

hardware with 32 GB memory, an Intel Core i7 processor, and Windows 10 OS to ensure

optimal performance and minimal runtime. In the implementation process, we first wrote
a Python script to transform the NVD document into a Python object that contained both
structured and unstructured data, particularly useful unstructured descriptions. Next,

structured data, including entities, relationships, verbs, and actions, were mapped for input

into the graph. Tokenization was carried out using the spaCy library to break down text

into smaller components, such as words, numbers, and symbols, making the data easier to

analyze and interpret. Specific nodes were created for each token, storing relevant

metadata like category, start index, and end index. Syntactic parsing was also performed

with the spaCy library, which analyzed the grammar and word sequence in sentences to

determine their relationships. Named entity recognition and classification were used to

identify proper nouns in the text, which were then classified. Entity-fishing further assisted

in linking and disambiguating these named entities. To deepen the analysis, semantic role

labeling was performed using the AllenNLP library, which extracted structured

information from unstructured text. AllenNLP’s flexible API enabled intelligent batching,

high-level abstractions for text operations, and provided a framework for rigorous

experimentation.

Finally, custom modules for rule-based refinement and graph-based analytics were

developed to improve the quality and functionality of the cybersecurity knowledge graph.

Figure 9 illustrates a key component of the technology stack, showing how unstructured

data was processed using NLP techniques to extract valuable information.
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Figure 9 Construct a cybersecurity knowledge graph technology stack.
Full-size 4] DOT: 10.7717/peerj-cs.2768/fig-9

Data collection and integration process for cybersecurity knowledge
graph

The CVE serves as a unique identifier for specific vulnerabilities, enabling security
professionals and researchers to pinpoint and discuss these vulnerabilities with precision.
In contrast, the CWE identifies the underlying causes, or “weaknesses,” that contribute to
vulnerabilities. A “weakness” refers to a condition in software, firmware, hardware, or
service components that can lead to the introduction of vulnerabilities. CWE is essentially
a catalog of common programming and design errors, and a thorough understanding of
these weaknesses allows security analysts and developers to address issues at their root,
preventing the occurrence of vulnerabilities. Hackers can exploit CVEs to execute code
remotely through a particular vulnerability in an operating system. CVE entries focus on
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Figure 10 Example of a CVE node in the KG. Full-size K&] DOT: 10.7717/peerj-cs.2768/fig-10

detailing a specific product’s vulnerability, whereas CWE provides a broader description of
vulnerabilities independent of the product involved. As part of our manual data collection
efforts, we analyzed and collected CVE and CWE data, which were sourced from
vulnerability-related datasets provided by the NVD. These datasets were available in
various file formats, including JSON, and were imported into the Neo4j graph database
following the procedure outlined in the Cyber Guard Graph approach section.

In the Neo4j database, as shown in Fig. 10, the CVE node was labeled with its unique
identifier (e.g., CVE-2023-0013). This CVE node was then connected to other nodes using
various relationships. These include the PROBLEM_TYPE relationship, which connects
the CVE to its associated problem type; the HAS_REFERENCE relationship, linking the
CVE to relevant references; the HAS_DESCRIPTION relationship, which represents the
link between the CVE and its description; the HAS_IMPACT relationship, connecting
the CVE to its impact; and the HAS_CONFIG relationship, linking the CVE to its
configuration details. In Section C, we discussed the implementation of constraints for
CVEs, where we assigned unique IDs to ensure that the ID property values for CVE nodes
remained unique. This was accomplished by creating a unique CVE property constraint, as
shown in Fig. 11. We applied the same type of constraint to all nodes in the graph.
Afterward, we created relationships between the nodes using Cypher queries. This process
was replicated when importing CWE data into the knowledge graph, ensuring that each
relationship between the CVE and CWE nodes was properly mapped.

Through the analysis of the problem type, we identified that some CWE entries
contained CWE IDs, which are used to represent the weaknesses associated with
vulnerabilities. To enrich the KG, we Gathered more information about the relevant
CWEs. Each CWE entry contains a unique ID that identifies a specific weakness, as well as
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Figure 11 The unique node property constraint. Full-size Kal DOI: 10.7717/peerj-cs.2768/fig-11

mmn

explore_reviews_csv_query =
MERGE (problemType:ProblemType {value:"CWE-79"})
MERGE (cwe:CWE {cwe_id:"79"})

MERGE (problemType)-[:MAPPED_WITH]->(cwe)

Figure 12 Mapping between CVE and CWE. Full-size Kal DOI: 10.7717/peerj-cs.2768/fig-12

a name that describes the weakness. We then created Cypher queries to establish the
MAPPED_WITH relationship, linking CWE nodes to their corresponding CVE nodes, as
illustrated in Fig. 12. This relationship helped associate CVE data with the relevant CWE
data. Additionally, we created a HAS_RELATED_WEAKNESS relationship to connect
CWE nodes, storing information about related weaknesses in the relationship properties.
As shown in Fig. 13, this information includes properties such as CWEFID, NATURE,
ORDINAL, and VIEWFID. The NATURE property is particularly useful for identifying
the child CWEs of a given CWE, helping to establish the hierarchy of weaknesses. This
allowed us to analyz and link similarities between all CWE entries.

After parsing the Common Platform Enumeration (CPE) data using Cypher queries, we
created a MAPPED_WITH relationship to connect the parsed CPE data with the CPE
match nodes from the CVE data, as demonstrated in Figs. 14 and 15. For processing
unstructured text in CVE descriptions, we used OIE, specifically employing the deep
bilateral long short-term memory (BiLSTM) sequence prediction model proposed by
Stanovsky et al. (2018). This model was implemented using the AllenNLP API (Gardner
et al., 2018). AllenNLP is an open-source library designed to solve various NLP tasks and
offers a variety of pre-trained models that can be utilized for tasks such as semantic role
labeling (SRL). In Fig. 16, we show the output of the OIE process. For example, the
sentence “a malicious file that will be started under a privileged account” was processed by
the model, extracting the entities and labeling them with specific tags such as ARG1
(Argument 1), R-ARG1 (Reference Argument 1), ARGM-MOD (Modifier-Modal), V
(Verb), and ARGM-LOC (Modifier- Location). These labeled entities were then used to
form relationships between nodes in the graph.

After extracting entities using OIE, we noticed that some arguments consisted of long
sentences or text spans. To address this, we used the spaCy dependency visualizer to
further analyze the unstructured content, particularly focusing on visualizing the
dependencies and named entities within the text. This tool allowed us to determine the
head word and its dependent words in each sentence, providing further context for entity
extraction and classification. The spaCy parser also enabled us to examine the relationships
between verbs in the sentence, which helped refine the analysis of the extracted entities. For
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explore_reviews_csv_query = """

MERGE (cpe:CPE {version:"702"})
MERGE (cpeMatch)-[:MAPPED_WITH]->(cpe)

Figure 14 Mapping between cpeMatch and cpe. Full-size k&l DOT: 10.7717/peerj-cs.2768/fig-14
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Figure 15 Mapping between parsed CPE and cpeMatch.
Full-size K&l DOT: 10.7717/peerj-cs.2768/fig-15

instance, in Fig. 17, we show the output of the spaCy visualizer, which identified “an
attacker” as the head word (labeled as NOUN) in the sentence “an attacker who gains local
membership to SAP_LocalAdmin.” All other words in the sentence were marked as
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Figure 16 Entities extraction using open IE. Full-size &l DOT: 10.7717/peerj-cs.2768/fig-16
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Figure 17 Dependency parsed sentence using spaCy dependency visualizer. Full-size K&] DOT: 10.7717/peerj-cs.2768/fig-17

dependent on the head word, including “who” (PRON), “gains” (VERB), “local
membership” (NOUN), “to” (ADP), and “SAP_LocalAdmin” (PROPN). After parsing the
sentence, we created Cypher queries to link the head node to all the dependent arguments
using the HAS_ARGUMENT relationship, followed by creating MAPPED_WITH
relationships between the vulnerability descriptions and their associated frames (verbs).
For unstructured texts in extended descriptions, we utilized entity-fishing, a technique
involving named entity recognition, classification, disambiguation, and linking. This tool
supports multiple languages and automates the recognition and disambiguation tasks
using the Wikidata knowledge base (Lopez, 2016). As shown in Fig. 18, we input extended
descriptions into the entity-fishing tool, which returned a list of identified and
disambiguated entities in JSON format. These entities were then imported into the KG and
linked to the corresponding CWE entries using the MAPPED_WITH relationship, as
illustrated in Figs. 19 and 20.

Deduction rule implementation

As illustrated in Figs. 21 and 22, we have provided two examples of the logical rules
implemented in our approach. In alignment with the structure shown in Fig. 19, we
establish an edge (i.e., relationship) that links weaknesses (CWE) to vulnerabilities (CVE).
The edges depicted in Fig. 21 represent vulnerabilities that could inadvertently expose
sensitive information. Additionally, another edge is created between CVE nodes to
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Figure 18 An illustration of using the entity-fishing tool. Full-size K&] DOT: 10.7717/peerj-cs.2768/fig-18

explore_reviews_csv_query =
MERGE (cwe:CWE {cwe_id:"294"})

MERGE (cwedata:Extended_Descriptions {runtime:253})
MERGE (cwe)-[:MAPPED_WITH]->(cwedata)

Figure 19 Mapping between entities and CWE. Full-size K] DOT: 10.7717/peerj-cs.2768/fig-19

represent relationships between similar CVE entries, highlighting vulnerabilities that are
being actively exploited by attackers.

Final knowledge graph with deduction rule application

After storing the data in Neo4j, the KG was constructed with 155 nodes, 442 properties,
and 175 relationships for CVE nodes. Additionally, we incorporated 6 CWE nodes, 36
properties, and 10 relationships into the KG. To further enrich the CWE descriptions and
extend the graph, we linked specific CWE IDs to the extracted entities from extended
descriptions, resulting in 174 nodes, 52 properties, and 25 relationships. By parsing the
CPE values from CVE data, we created 33 CPE nodes, 573 properties, and 53 relationships.
Furthermore, we added 88 nodes and 32 relationships based on the analysis of
unstructured vulnerability description data.
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Figure 20 The relationship between entities and CWE.
Full-size k] DOL: 10.7717/peerj-cs.2768/fig-20

MATCH p=(cve:CVE)-|:PROBLEM_TYPE]->(problemType:ProblemType)-:MAPPED_WITH]->(cwe:CWE)
MERGE(cwe)-[:LEAD _TO]->(cye)

RETURN)

Figure 21 Example of the first query. Full-size K&l DOT: 10.7717/peerj-cs.2768/fig-21

MATCH p=(cve:CVE)-[:PROBLEM_TYPE]->(problemType:ProblemType)-[:MAPPED WITH]->(cwe:CWE)-
[:MAPPED WITH]->(cwedata:Extended Descriptions)-[:HAS ENTITY]->(Entities:Entities{wikidataId:"Q2587068"})

MERGE (Entities)<-[:INADVERTENTLY_EXPOSES]-(cve)
MERGE (cvel:CVE({id:"CVE-2023-0012"})

MERGE (cve2:CVE{id:"CVE-2023-0017"})

MERGE (cve3:CVE{id:"CVE-2023-0023"})

MERGE (cvel)-[:SIMILAR_TO]->(cve2)

MERGE (cve2)-[:SIMILAR_TO]->(cve3)

RETURN p

Figure 22 Example of the second query. Full-size K&] DOT: 10.7717/peerj-cs.2768/fig-22

Figures 23 and 24 display samples of the logical rules applied to KG. Figure 23 illustrates
simple patterns where CWE leads to CVE vulnerabilities, while Fig. 24 shows complex
patterns with similar relationships.
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Figure 23 The output of a sample of the logical rules from simple patterns.
Full-size &&] DOI: 10.7717/peerj-cs.2768/fig-23

Figure 25 presents the final KG after importing and analyzing the heterogeneous data,
followed by the application of logical rules to enhance the graph. Ultimately, our KG
contains 612 entities and 758 relationships.

Implementation of graph analytics algorithms

Graph-based analytics were implemented using the Neo4j Graph Data Science (GDS)
library on the constructed KG. The datasets included in the analysis were accessible across
all nodes and edges, providing a comprehensive view of the graph structure. Graph-based
analytics involve a set of algorithms designed to model pairwise relationships among
objects, which are represented as mathematical structures. These algorithms are
particularly valuable in applications like semi-supervised learning, where they label
unlabeled examples using limited labeled data combined with a large amount of unlabeled
data. Additionally, in networks, they facilitate dimensionality reduction, clustering, and
community detection. Graph-based analytics play a pivotal role in understanding the
strength and direction of relationships between entities in a graph. This approach is
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particularly useful for unsupervised learning scenarios, allowing us to uncover patterns
and relationships in the data. For example, the “importance” of a node can be evaluated
similarly to assessing the relevance of a web page, where a page with many high-quality
incoming links is considered more significant. This analogy highlights how relationships
between nodes contribute to their importance.

We applied several graph analytics algorithms, focusing primarily on Centrality and
Community Detection algorithms available in Neo4j Bloom, a visualization tool designed
to explore and interact with graph data. The results of three algorithms measurement
applied to the CWE subgraph are summarized in Table 3.

Centrality analysis

Centrality measures the importance of nodes within a network. Two centrality
algorithms, Degree Centrality and PageRank, were applied:

1. Degree centrality: This algorithm measures the number of direct connections a node
has. The results showed that the CWE node with ID 79 achieved the highest degree
centrality score of 4, followed by CWE ID 284 with a score of 2. All other CWE nodes
recorded a degree centrality score of 1.

PageRank: This algorithm identifies nodes with the most influence based on their
connections and the quality of those connections. The analysis revealed that CWE 79 had
the highest PageRank score of 1.26, establishing it as the most significant node in the
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Figure 25 The KG after the logical rules. Full-size K&l DOL: 10.7717/peerj-cs.2768/fig-25

network. This node is linked to four CVE vulnerabilities, contributing valuable insights to
the Knowledge Graph. Notably, both centrality algorithms indicated CWE 79 as the most
important node in the graph, as depicted in Fig. 26.
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Table 3 The results of three algorithms over KG.

Cwe Id Degree centrality score Page rank centrality score Label propagation score
79 4 1.264758277536877 155
200 1 0.4785000864294078 158
284 2 0.7405861501318974 159
89 1 0.4785000864294078 156
294 1 0.4785000864294078 160
94 1 0.4785000864294078 157

Community detection

To identify communities within the graph, we used the Label Propagation Algorithm
(LPA). This algorithm groups nodes into communities by iteratively updating labels based
on neighboring nodes. As shown in Fig. 27, nodes are color-coded according to their
communities, with nodes in the same community sharing identical label propagation
scores. However, it is important to note that the results may vary depending on the
algorithm’s configuration and the types of relationships and nodes analyzed.

The application of these graph analytics algorithms provided valuable insights into the
structure and relationships within the knowledge graph, enabling a deeper understanding
of the data and its inherent patterns.

Use cases for graph analytics

A graph analytics platform is essential for every organization that relies on connected
data analysis to make critical decisions. These are some examples of graph analytics use
cases. Fraud detection and analysis involves studying the interactions among different
actors in a transaction. The purpose of this is to identify entities inside a system that are
potentially troublesome and vulnerable to fraud. To prevent fraudulent behavior, it helps
detect bad actors and implement countermeasures. It is also possible to use graph analytics
to detect criminal activity and illegal behavior. Graph analysis is used by law enforcement
for tracking phone calls, emails, people visiting suspects at specific locations, and monetary
distribution networks in order to identify malignant and benign activity.

EVALUATION

The objective of this section is to evaluate the construction and efficacy of the CKG by
developing targeted queries and questions that showcase its capabilities. While the CKG is
designed to address the broader challenges of cybersecurity, the current implementation
focuses on vulnerability-related sources such as CVE and CWE. This focus serves as a
proof of concept (PoC) to demonstrate the effectiveness of the proposed methodology for
constructing and leveraging the CKG.

The purpose of this PoC is to validate the practical feasibility of integrating
heterogeneous and complex cybersecurity data into a unified semantic framework. By
harnessing structured and unstructured data, the CKG provides enriched semantic
relationships and logical reasoning capabilities. Through this process, we bridge gaps in
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existing datasets, such as unstructured text and missing links between vulnerabilities and
weaknesses, creating a coherent and machine-interpretable graph.

To evaluate the CKG, we devised a series of queries aimed at testing its ability to address
challenges that traditional approaches cannot resolve. These queries validate the logical
rules applied during the graph’s construction and test its reasoning capabilities. For
instance, the graph is designed to answer complex questions that involve implicit
connections between entities, such as mapping specific weaknesses (CWEs) to their
associated vulnerabilities (CVEs) or identifying potential attack vectors based on linked
entities.
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Question answering-based evaluation

To evaluate the efficacy of our CKG, we demonstrated its ability to answer queries that
could not be resolved using the original datasets in their raw JSON-based format, such as
CVE and CWE datasets. This evaluation highlights the value of constructing the
knowledge graph to establish meaningful connections between data entities and enable
reasoning that is not possible with the original datasets alone.

Querying the raw datasets
Initially, we queried the raw source files containing CVE and CWE data to illustrate their
limitations. As shown in Figs. 28 and 29, data in the JSON-based format lacks explicit
connectivity between entities, making certain types of questions unanswerable. For
instance, when querying relationships between weaknesses (CWEs) and vulnerabilities
(CVEs) using the query:

MATCH (cwe:CWE) - [:LEAD_TO] -> (cve:CVE) RETURN cwe.cwe_id, cve.id

No results were returned. This is because the necessary internal edges and relationships
are not explicitly defined in the raw datasets. While internal edges within specific data
items could be identified by analyzing the information provided in NVD documents, they
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Figure 28 Data not connected in the JSON-based model. Full-size k&l DOT: 10.7717/peerj-cs.2768/fig-28
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1 MATCH (cwe:CWE)-[:LEAD TO]—(cve:CVE)

2 RETURN cwe.cwe_id,cve.id

g (no changes, no records)

Table

_

Code

Figure 29 No results obtained from queries even after we created the internal edges inside a specific

data item.

Full-size K&] DOT: 10.7717/peerj-cs.2768/fig-29

Table 4 Questions used to query the KG.

Question

Query

What are the weaknesses that lead to vulnerabilities?

What are the types of XSS attacks?

What are the attacks an attacker can perform?

What is the CVE ID that has no problemtype_data value?

Which CVSS Score has the highest maximum and lowest minimum?

How Can CVSS Severity and Score information, and the CVE ID and
its value be sorted as a table or text?

How many vulnerabilities are there in cna@sap.com?

What are the vulnerabilities that can be exploited by attackers to
perform attacks?

What are the CVSS scores that are assigned to vulnerabilities?

What are the vulnerabilities that attackers can exploit by applying the
same attack?

What are the weaknesses that lead to vulnerabilities?

MATCH (cwe)-[:LEAD_TO]->(cve)
RETURN cwe, cve

MATCH p=(cwedata:Extended_Descriptions)-[:HAS_ENTITY]->(Entities:
Entities{wikidatald:“Q3711997})

RETURN p
MATCH(E:Entities{wikidatald:“Q371199”})
MATCH(N:Entities{wikidatald:“Q228502”})
MATCH(T:Entities{wikidatald:“Q1756025”})
MATCH(I:Entities{wikidataId:“Q506059”})
RETURNE, N, T, I

MATCH (cve:CVE{id:“CVE-2023-0029"})-[:PROBLEM_TYPE]->
(problemType:ProblemType{value:“NVD-CWE-noinfo™})

RETURN cve, problemType

MATCH (cvssv3:CVSSV3)

RETURN MAX(cvssv3.baseScore),MIN(cvssv3.baseScore)

MATCH (cvssv3:CVSSV3) WITH cvssv3 MATCH (description:Description)

RETURN distinct (cvssv3.baseScore),(cvssv3.baseSeverity),(description. cveld),
(description.value)

ORDER BY cvssv3.baseScore, description.cveld
MATCH (cve:CVE {assigner:“cna@sap.com”}) RETURN count(cve)
MATCH (Entities)<-[:VULNERABLE_TO]-(cve)
RETURN cve, Entities

MATCH (cvssv3)-[:ASSIGNED_TO]->(cve)
RETURN cvssv3, cve

MATCH (cvel)-[:SIMILAR_TO]->(cve2)
MATCH (Entities)<-[:VULNERABLE_TO]-(cve)
RETURN cvel, cve2, Entities

MATCH (cwe)-[:LEAD_TO]->(cve)

RETURN cwe, cve
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remained disconnected across datasets. This limitation demonstrates the need for a

methodology to construct a cohesive KG.

Knowledge graph-based querying
Using the proposed methodology, we constructed a CKG that enriches the raw datasets by
establishing connections and applying logical rules are shown in Table 4. This allowed us
to evaluate the CKG by enabling it to answer specific, complex questions. For example, by
incorporating semantic relationships and logical reasoning, our CKG successfully
addressed queries such as:

1. What are the weaknesses that lead to vulnerabilities?

« The query identifies weaknesses (CWEs) and connects them to vulnerabilities (CVEs)
based on their relationships.

2. Which CVEs are associated with a specific CWE identifier?

e Each CVE entry in the CKG is linked to a corresponding CWE ID, enabling detailed
analysis.

The ability to answer such questions demonstrates the CKG’s capability to generalize
patterns and validate connections established through logical rules.

Validation of connections
The evaluation process involved validating the relationships (edges) in the CKG, which
connect different data entities such as CVE and CWE nodes. These edges, derived from
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logical rules, did not exist in the original JSON-based datasets. By querying both the JSON-
based datasets and the CKG, we observed the following:

* JSON-based datasets: Queries failed to yield results due to the lack of explicit edges and
connectivity, as shown in Fig. 28.

o CKG with logical rules: After applying the logical rules, the same queries returned
meaningful results, demonstrating the effectiveness of the CKG refinement process.

Results and impact

When the same queries were executed on the CKG, we obtained relevant data, as
illustrated in Fig. 30. These results validate the improved semantic enrichment and
reasoning capabilities enabled by the CKG. For instance, logical rules facilitated the
discovery of implicit connections between CVEs and CWEs, allowing the CKG to answer
questions that were previously unresolvable. By bridging the gaps in the raw datasets and
enabling advanced querying, the CKG proves to be an invaluable tool for cybersecurity
analysis, enhancing visibility and enabling experts to identify potential threats and
vulnerabilities more effectively.

CONCLUSIONS

Cybersecurity knowledge graphs offer significant potential to enhance online security and
privacy by effectively organizing and linking crucial information about cyber threats and
vulnerabilities. This research demonstrates the construction of an autonomous CKG from
structured and unstructured sources, leveraging LPGs for efficient data representation. A
key contribution lies in the development and implementation of a model for incorporating
logical rules, which significantly improves the quality and completeness of the knowledge
graph. Furthermore, the evaluation of the CKG using diverse graph analytics algorithms
provides valuable insights into its performance and identifies areas for future
improvement. While this research presents a valuable step forward in CKG development,
challenges were encountered during implementation. Notably, the training of named
entity recognition models proved to be particularly demanding, requiring substantial
amounts of data for optimal performance. Given the limitations of existing pre-trained
NER models in the cybersecurity domain, this research explored alternative approaches,
including an entity-fishing tool and OIE from AllenNLP.

Future research directions include

» Enriching the CKG: Integrating data from Microsoft Security Bulletins (MSB) and Cyber
Threat Intelligence (CTI) reports will enable the inclusion of diverse attack patterns and
scenarios, further enhancing the knowledge graph’s value.

e Improving NER and OIE: Developing custom NER and OIE models specifically
trained on cybersecurity data will significantly enhance the accuracy and completeness of
entity and relation extraction.

¢ Advanced reasoning: Exploring and implementing more sophisticated reasoning
methods, such as probabilistic reasoning and deep learning-based reasoning, will further
improve the CKG’s ability to infer new knowledge and detect complex relationships.
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