
Epileptic seizures diagnosis and prognosis
from EEG signals using heterogeneous
graph neural network
Areej Alasiry1, Gabriel Avelino Sampedro2, Ahmad Almadhor3, Roben
A. Juanatas4, Shtwai Alsubai5 and Vincent Karovic6

1 College of Computer Science, King Khalid University, Abha, Saudi Arabia
2 Department of Computer Science, University of the Philippines Diliman, Quezon City,
Philippines

3 Department of Computer Engineering and Networks, College of Computer and Information
Sciences, Al Jouf University, Sakaka, Saudi Arabia

4 College of Computing and Information Technologies, National University, Manila, Philippines
5College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Alkharj,
Saudi Arabia

6 Faculty of Management, Comenius University in Bratislava, Bratislava, Slovakia

ABSTRACT
Epilepsy, often associated with neurodegenerative disorders following brain strokes,
manifests as abnormal electrical activity bursts in the cerebral cortex, disrupting
regular brain function. Electroencephalogram (EEG) recordings capture these
distinctive brain signals, offering crucial insights into seizure detection and
management. This study presents a novel approach leveraging a graph neural
network (GNN) model with a heterogeneous graph representation to detect epileptic
seizures from EEG data. Utilizing the well-established CHB-MIT EEG dataset for
training and evaluation, the proposed method includes preprocessing steps such as
signal segmentation, resampling, label encoding, normalization, and exploratory data
analysis. We employed a standard train-test split with stratified sampling to ensure
class distribution and reduce bias. Experimental comparisons with long short-term
memory (LSTM) and recurrent neural network (RNN) models highlight the GNN’s
superior performance, achieving a classification accuracy of 98.0% and
demonstrating incremental improvements in precision and F1-score. These findings
emphasize the efficacy of GNN in capturing spatial and temporal dependencies
within EEG data, surpassing conventional deep learning techniques. Furthermore,
the study highlights the model’s interpretability, which is essential for clinical
decision-making. By advancing EEG-based seizure prediction methods, this research
offers a robust framework for enhancing patient outcomes in epilepsy management
while addressing the limitations of existing approaches.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, DataMining andMachine
Learning, Optimization Theory and Computation, Neural Networks
Keywords Epilepsy disorder, Neurodegenerative disorders, Deep learning, Graph neural network
(GNN)

INTRODUCTION
Epilepsy is a chronic brain disease that causes epileptic seizures, abnormal behaviour, and
loss of feeling or consciousness due to frequent and unpredictable interruptions in normal
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brain function (Duncan et al., 2024). A chronic condition that has significant social and
health implications is epilepsy. Over 50 million people worldwide suffer from the
neurological disorder known as epilepsy. Anti-epilepsy drugs used to control this disease
only work for 70% of people. However, about 30% of patients do not respond well to these
therapies and need surgery (WebMD Editorial Contributors, 2023; Shoeb, 2009). According
to reports, there is a severe lack of neurologists and the neurological assistance required of
this staff, which can have a major impact on patients’ timely access to treatment (Majersik
et al., 2021). Thus, automatic seizure recognition is essential to help neurologists and other
medical professionals diagnose patients more quickly and prescribe necessary therapies if
needed.

The prevalence of epilepsy has increased among Alzheimer’s disease (AD) patients. AD
can increase the risk of seizures since it is a progressive disease starting with mild memory
loss and possibly leading to loss of the ability to respond to the environment (Zuo et al.,
2024; Lei et al., 2023; Zuo et al., 2021). Inappropriate electrical eruptions cause brain
seizures in a cluster of brain cells and can happen in different brain parts. These attacks can
happen anytime, like a few times a year or several times a day. It can vary from brief
attention span gaps to severe and persistent convulsions. Short bursts of uncontrollable
movement, known as recurrent seizures, can impact the whole body or just one part of the
body. It results in diminished awareness and disruption of the function of the bladder and
bowels (Pandey et al., 2023). The three main categories of status epilepticus are ictal,
preictal, and interictal (Fisher, Scharfman & DeCurtis, 2014). Many patients still
experience epileptic seizures and are not under complete control of their condition, even
with the various therapies and interventions available to help manage the diseases.

People with epileptic seizures may endure serious psychological stress due to shame and
loss of adequate social position (Gupta, Bhattacharyya & Pachori, 2020; Bhattacharya,
Baweja & Karri, 2022). Customized innovations and artificial intelligence (AI) systems
that use signals from the body, particularly customized for identifying seizure activity, have
been established in response to the significant adverse effects epileptic seizures have on the
standard lives of those who suffer them. Considering everything above, diagnosing these
neurological disorders as soon as possible is vital. The procedures utilized for epileptic
seizure identification and prediction include neurological evaluations (Loring et al., 2011),
blood tests (Tomkins et al., 2008), and neuroimaging modalities (Khodatars et al., 2021). A
neurological examination is a diagnostic method for assessing a person’s physical abilities,
mental capacity, and behaviour. Blood tests are used to look for indications of disease,
genetic disorders, and further seizure signs. Neuropsychological examinations assess a
person’s thinking, speaking, and remembering. The test results help the doctor determine
where seizures impact parts of the body.

Epileptic seizure identification using neuroimaging modalities necessitates extensive
recording data for specialized clinicians to make informed decisions. However, doctors
who analyze large amounts of neuroimaging data often end up with inaccurate diagnoses
and prognoses of epileptic seizures. Eye strain from evaluating various functional or
structural imaging modalities can contribute to this. Misdiagnosis can also result from
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various sounds in neuroimaging modalities. To overcome these challenges, neuroimaging
modalities have been used to develop computer-aided diagnosis systems (CADS) for
epileptic seizure identification, which will help physicians make accurate diagnoses.

AI is gaining popularity in various medical fields due to its ability to analyze large
volumes of medical data, provide insights for diagnosis and treatment, assist in medical
imaging interpretation, predict patient outcomes, personalize treatment plans, and
improve overall healthcare efficiency and quality (Noor et al., 2020; Murphy et al., 2021).
AI is a collection of algorithms that can simulate certain human abilities, like learning and
making predictions based on that learning (Viner et al., 2020). Deep learning (DL) and
machine learning (ML) are subcategories of AI. ML is the collection of algorithms and
methods that let computers process data without following explicit instructions from a
computer program. Many-layered artificial neural networks (ANNs) are the basis of DL, a
subset of ML methods used in recent research. Numerous studies on AI approaches for
epileptic seizure identification have been carried out thus far.

Despite the advances in conventional ML and DL techniques, their ability to effectively
model the spatial and temporal dependencies inherent in EEG signals remains a significant
limitation. Graph neural networks (GNNs) offer a promising alternative, leveraging
heterogeneous graph structures to capture intricate relationships between EEG channels.
This makes GNNs particularly suited for the task of epileptic seizure detection, where
accurate identification of seizure events is crucial for patient safety and clinical
management. This research proposed an approach that used the CHB-MIT dataset
gathered using an EEG signal and employed the GNN algorithm to classify seizure
occurrence. By addressing the limitations of existing approaches and leveraging the unique
capabilities of GNNs, this study aims to provide a robust, interpretable framework for
EEG-based seizure detection, ultimately contributing to improved clinical
decision-making and patient outcomes.

Research contribution
This study’s main contributions are explained in more detail in the list format below.

. This study proposes a heterogeneous GNN model for epilepsy prediction using the
CHB-MIT dataset that extends the capabilities of Conventional GNNs by
accommodating various types of nodes and edges in the graph.

. This study performs exploratory data analysis and utilizes data preprocessing
approaches, including signal segmentation, resampling, label encoder (one hot-
encoding) and normalization (Z-score Normalization). Further, it employs a standard
train-test split with stratified sampling to ensure class distribution and reduce bias.

. The research article uses several evaluation measurements such as accuracy, precision,
recall and F1-score to analyze the model’s efficacy for identifying seizures and no-
seizures. The results demonstrate that the proposed GNN approach correctly predicts
epilepsy and surpasses the performance of other DL models.
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Research organization
The study technique for classifying epilepsy is described as follows: A survey of the
literature on DL and ML methodologies for classifying epilepsy detection is presented in
“Related Work”. “Proposed Approach” provides the research approach for the proposed
work, which utilizes the CHB_MIT dataset, a deep learning model, and data preprocessing.
The conclusions and findings are discussed and explained in “Experimental Result and
Analysis”. The work’s conclusion and recommendations for future direction are contained
in “Conclusion”.

RELATED WORK
Lemoine et al. (2023) created an approach based on automatic EEG processing to predict
seizure recurrences in individuals receiving recurring EEG for one year. A retrospective
selection was made between a temporally shifted cohort of 261 patients, the testing set, and
a sequential cohort of 517 individuals receiving conventional EEG at their institution, the
training set. After that, they created an automated processing pipeline to take the EEG data
and extract both linear and non-linear features. Using multichannel EEG segments, they
developed machine-learning algorithms to predict the recurrence of seizures after a year.
They verified the results of the testing set and assessed how IEDs and clinical variables
affected the performance. After applying the experiment, the ROC-AUC for seizure
occurrence after EEG was 0.63. This research employs ML approaches to differentiate
between individuals with idiopathic generalized Epilepsy and healthy controls based on
interictal electroencephalogram recordings (Escobar-Ipuz et al., 2023). The presented work
uses a scalp EEG scan to predict whether patients have idiopathic widespread Epilepsy.
Moreover, the primary focus of this work is the extreme gradient boosting (XGB)
technique utilized for scalp EEG. This XGB attempts to find signals from brain recordings
of electroencephalograms that would permit the detection of IGE with elevated precision
and separate IGE patients from normal commands, giving physicians an extra instrument
to help in their decision-making. The proposed XGB approach, out of all the ML
techniques used, produces a superior prediction of the unique attributes in EEG signals
from IGE patients. XGB outperformed the k-nearest neighbors approach by 6.26% and
outperformed the decision tree (9.71%), support vector machine (10.61%), and Gaussian
naïve Bayes (11.83%) in terms of accuracy. Furthermore, out of all the methods examined,
the proposed XGB technique had the highest performance in terms of AUC with a value of
98% and accuracy with a value of 98.13%.

Singh & Lobiyal (2023) developed a hybrid model for epileptic seizure prediction that
consists of an LSTM and a deep convolution network (ResNet50) using EEG data. The
proposed hybrid model is trained on spectrogram images to extract features and classify
data. They examined the CHB-MIT scalp EEG dataset. Validation is performed to assess
the efficacy of the proposed model for each preictal phase of 5, 15, and 30 min. According
to the experimental findings, a 5-min preictal length was the ideal performance for the
proposed model. The performed experiment results showed the proposed model achieved
good performance in terms of F1-score with a value of 93%, a false positive rate (FPR) with
a value of 0.055, an accuracy with a value of 94.5%, and a sensitivity with the value of
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93.7%. In article Miron et al. (2023), a supervised ML technique was employed to analyze
EEG data obtained from a minimally intrusive procedure using foramen ovale (FO) and
epidural peg electrodes to predict post-surgical seizure independence. Power-spectral EEG
parameters were combined into a logistic regression (LR) model to predict seizure relief
one year after surgery. The prediction model was compared to the outcome produced by
clinical and scalp EEG factors after being validated via repeated 5-fold cross-validation.
The study comprised 47 patients, of whom 26 had 1-year post-surgical seizure
independence; the remaining 27 patients had peg-onset seizures, and 31 had FO. The
AUC-ROC for post-surgical seizure relief prediction using electrophysiological
characteristics was 0.74 ± 0.23 in patients with FO onset seizures. On the other hand, the
AUC for the predictions derived from the clinical and scalp EEG components was 0.66 ±
0.22.

Lu et al. (2023) proposed a CBAM-3D CNN-LSTM model to predict epilepsy seizures.
First, they perform a short-term Fourier transform (STFT) to preprocess EEG signals.
Then, the preictal and interictal stage attributes were dragged from the preprocessed
signals using the 3D CNN model. At last, for classification, BiLSTM is linked to 3D CNN.
Lastly, the model incorporates CBAM. For the model to correctly extract interictal and
preictal features, different considerations are provided to the data channel and space to
drag essential facts. The proposed method was produced in the CHBMIT publicly available
scalp EEG dataset. It attained a performance in terms of accuracy with a value of 97.95%, a
sensitivity with a value of 98.40%, and a false alarm rate of 0.017 h1. Five DL algorithms
based on intracranial EEG datasets are proposed in Ouichka, Echtioui & Hamam (2022) to
automatically predict epileptic seizures. The convolutional neural network (CNN) model,
the Fusion of Two CNNs, the Fusion of Three CNNs, the Fusion of Four CNNs, and
transfer learning using ResNet50 are the foundations of the proposed approach. The
experimental findings demonstrate that the 3-CNN and 4-CNN-based proposed
procedures produced the greatest outcomes. Both of them attain 95% accuracy. Nanthini
et al. (2022) offered an LSTM model with an EEG dataset to detect and predict seizure
states. The dataset used, publicly available in Kaggle’s comma-separated value release and
housed in the UCI Database, is fed into the proposed model for validation. Using LSTM
Networks, the proposed work has attained performance with a value of 99%.

Bhattacharya, Baweja & Karri (2022) proposed a seizure prediction model with a
transformer model based on deep learning and Fourier transform feature extraction that
consumes the potential components to automatically recognize the observant areas in EEG
signals for efficient screening. This is done through an assortment of signal processing and
DL algorithms. Utilizing the benchmark dataset, the proposed pipeline has improved
sensitivity and FPR/h performance with a value of 98.46%, 94.83%, and 0.12439, 0.
Epileptic seizures are presented in Usman, Khalid & Bashir (2021). According to the
proposed procedure, bandpass filtering removes noise from EEG data after undergoing
empirical mode decomposition. Using artificial preictal segments produced by generative
adversarial networks, the issue of class imbalance has been lessened. A three-layer
modified CNN approach was created to retrieve automatic attributes from preprocessed
EEG signals and combine them with manual characteristics to produce an extensive
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attribute set. Following that, model-agnostic meta-learning is utilized to train a classifier
using the feature set, which integrates the outcome of SVM, CNN, and LSTM. The
proposed method has attained a good performance in terms of sensitivity and specificity
with a value of 96.28% and 95.65%.

Wu et al. (2022) presented a technique using sequential variational mode
decomposition (SVMD) and transformers for epileptic seizure prediction. A
multidimensional version of SVMD is added for the time-frequency examination of
multichannel signals. The proposed seizure prediction method involves using multivariate
SVMD to break down the data into many modes on various time scales and then remove
any unnecessary modes for preprocessing. Lastly, pre-trained bidirectional encoder
representations (BERTs) receive the power spectrum of the denoised data as input for the
prediction. The BERT may determine how data is connected to epileptic seizures in the
timefrequency environment. On an intracranial EEG dataset, its prediction performance is
fair, with an average sensitivity of 0.86 and an FPR of 0.18/h. Jemal et al. (2022) analyzed an
interpretable DL algorithm for epileptic EEG-driven seizure prediction. This neural
network is understandable because of its distinct architecture, which allows for the
visualization and interpretation of its layers—the learned weights are obtained from signal
analysis calculations such as frequency sub-band and spatial filters. As a result, since the
derived features match those frequently employed for decoding EEG data, they are no
longer abstract. The proposed approach performed better than previous techniques
provided to predict seizures, utilizing the CHB-MIT dataset. The signals coming from
streams in the brain area where the seizure starts contribute most substantially to the
network predictions, and the first network layer filters align with clinically important
frequency ranges. Zambrana-Vinaroz et al. (2022) proposed a seizure-predicting approach
established on ear EEG, ECG, and PPG signals received utilizing an instrument operated in
a fixed and outpatient context. People with epilepsy have been tested for this device in a
clinical setting. Several predicting models that can classify the condition of the epileptic
patient into regular, pre-seizure, and seizure have been constructed by analyzing this data
and utilizing supervised ML algorithms. Following this, a Boosted Trees-based reduction
model has been verified, yielding a 91.5% prediction accuracy and 85.4% sensitivity.

Table 1 provides the overview of the summary of the related work on epilepsy detection.
According to the literature, this research needs to address some gaps. Firstly, the authors
utilized machine learning approaches that are limited in performance (Cui et al., 2018;
Wang et al., 2019). Further research extends by implementing deep learning classifiers in
Yao, Cheng & Zhang (2019), Varnosfaderani et al. (2021), Dissanayake et al. (2020), but are
also limited in performance and apply to single deep learning classifiers. No research
implements advanced versions of deep learning models such as a hybrid approach,
heterogenous methods and proper preprocessing that can increase a model’s
performance. By addressing this limitation, we proposed a heterogeneous-based deep
learning approach by utilizing numerous datasets from CHB-MIT to test the
generalizability of our approach.
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PROPOSED APPROACH
The presented model approach used the CHB-MIT scalp EEG dataset from recorded
EEG signals to detect epileptic seizures that precisely predict the seizures and no-seizure
events. The proposed approach contains many phases: experimental dataset, exploratory
data analysis and preprocessing, labelling, and normalization. Moreover, it presented
model predictions employing DL classifiers. The presented model detail working is shown
in Fig. 1.

In the first stage, the CHB-MIT dataset is collected from EEG signals, and seizure and
no-seizure events are used to predict epilepsy disorder. Next, data preprocessing and
analysis are needed for the collected data because they include missing values. At this step,
duplicate data are eradicated, issues are resolved, and data is converted into a consistent
structure. During this step, the data are encoded using a label encoder, and the data is
normalized using normalization (standard scalar technique). Lastly, to detect epilepsy
disorder, DL models (recurrent neural network (RNN) and LSTM) and proposed GNN are
trained on this preprocessed dataset.

Experimental dataset and preprocessing
The first step in any detection system is selecting inputs for classification. Brain activity,
measurable by electroencephalogram (EEG), begins in childhood and continues
throughout life, reflecting overall health. For epilepsy detection, we used EEG signals from
the CHB-MIT dataset, which includes scalp EEG recordings from ten pediatric patients
(ages 1.5 to 15) with uncontrollable seizures (John, 2010; Deepa & Ramesh, 2021). This
dataset, widely used for real-time automated seizure detection, supports our goal of
developing a generalized EEG seizure sensor independent of specific patients or channels.
Data preprocessing is crucial for improving model precision and efficiency. This section
implements data preprocessing steps, including exploratory data analysis (EDA) and data
cleaning, data splitting, normalizing the data using normalization (Z-score normalization)
approaches, and turning the categorical data into numerical values.

Signal segmentation and resampling
The EEG recordings were segmented into fixed-length epochs of 10 s to ensure uniform
data segments. All signals were resampled at 256 Hz to maintain a consistent sampling rate

Table 1 Summary of the related work.

Reference Approach Performance Advantage Limitation

Cui et al. (2018) ELM 75% Computation time less Low performance

Ibrahim et al. (2019) Thresholds 85.2% Approach applicable in mobile apps for epilepsy patients Low performance

Yao, Cheng & Zhang (2019) RNN 87.1% Parameter Setting increase performance Low performance

Wang et al. (2019) RF 84.00% RF outperforms for the preictal state prediction Low performance

Varnosfaderani et al. (2021) LSTM 85.1% Highest AUC score of 0.92 and the lowest FPR of 0.147 Low accuracy

Rasheed et al. (2021) DCGAN 88.21% Low false prediction rate of 0.14/h Low performance

Dissanayake et al. (2020) CNN 88.81% Model outperforms for patient-independent seizure prediction Low performance
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across the dataset. The noise was removed by applying a bandpass filter (0.5–50 Hz), and
the signals were normalized to zero mean and unit variance. These preprocessing steps
ensured that all data segments were consistent in length and quality and reduced noise for
improved analysis.

Label encoder
A label encoder is a preprocessing approach utilized in ML classifiers to convert categorical
data, which consists of non-numeric labels, into a numerical format. Many ML classifiers
utilized for different methodologies need numerical input, and label encoding is an
approach that is mostly utilized to accomplish this transformation (Takahashi et al., 2020).

Normalization
Normalization is a preprocessing technique in machine learning that scales and transforms
the features of a dataset to bring them within a similar range. Normalization ensures that
no single feature dominates the others, especially when features have different units or
scales. This step is essential for some, depending on the size of the input characteristics.
Two techniques are mostly used for normalization: Min-Max Scaling (MinMaxScaler) and
Z-score normalization (Standard Scaler). In this research, we used Z-score normalization
(Standard Scaler), standardizing the data to have a mean of 0 and a standard deviation of 1.

Xnormalized ¼ X � Xmean

Xstd
: (1)

Figure 1 Proposed architecture for epilepsy prediction.Full-size DOI: 10.7717/peerj-cs.2765/fig-1
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Equation (1) represents the normalization process applied to a variableX to obtain its
normalized counterpart X normalized. X represents the original variable we want to
normalize. It could be any numerical feature or dataset. X mean denotes the mean
(average) 5 value of the variable X. Subtracting the mean from each data point centres the
distribution around 0, a common normalization step. X std represents the standard
deviation of the variable X. Dividing each data point by the standard deviation scales the
data, ensuring a standard deviation of 1. Each data point X is transformed into its
normalized counterpart X normalized, with a mean of 0 and a standard deviation of 1.
This normalization process ensures that variables with different scales and units can be
compared consistently, making it easier to interpret and analyze the data.

Recurrent neural networks
RNNs are DL classifiers that process data sequentially. RNNs differ from standard
feedforward neural networks in that they feature connectivity that forms internal cycles,
enabling the network to remember prior data. Because of this, RNNs are especially
effective for sequence-related tasks like speech recognition, natural language processing,
and time series assessment. The basic idea behind RNNs is to use information from
previous time steps to influence the current prediction or output. This enables the network
to capture temporal dependencies in the data. However, conventional RNNs have
drawbacks. For example, they have trouble learning long-term relationships because of
problems like vanishing gradients. This study used a simple RNN layer with a single
recurrently connected hidden layer. The number of units in the RNN layer is 32, which
determines the size of the hidden state and the activation function used in the RNN layer,
rectified linear unit (ReLU). The dense layer is used as the output layer, and the following
parameters include num_classes, and the activation function is softmax.

Long short-term memory
LSTM was produced to successfully capture long-range relationships in data and solve the
vanishing gradient issue that RNNs have. Applications combining time series data and
natural language processing benefit greatly from the use of LSTMs (Alsubai et al., 2022).
This study applied an LSTM model with two LSTM layers and two dropout layers. It then
compiles the model with the sparse categorical cross-entropy loss function and the Adam
optimizer. The model is trained using a custom training loop, where the gradients are
computed and applied manually. The key parameters of an LSTM layer are units,
return_sequences, dropout and recurrent_dropout. An LSTM model trains for 200 epochs
with a batch size of 32.

Graph neural network
GNN is a framework developed to proceed and illustrate data in graphs or networks.
Graphs here comprise nodes, also called vertices, connected by edges and links. GNNs are
applied to obtain information and derive understandings from data (Scarselli et al., 2008;
Zhou et al., 2020). Figure 2 depicts the architecture of the GNNmodel. The GNNmodel in
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this study consists of two dense layers. The first layer is a fully connected dense layer with
16 units. ReLU activation is chosen to introduce non-linearity and enable the model to
learn complex patterns in the data. The second layer consists of num_classes units and
softmax activation that are used to output the probability distribution over the classes for
multi-class classification.

The loss function used is sparse categorical cross-entropy, and the optimizer is
Adam. We used the sparse categorical cross-entropy loss function because it is
well-suited for multi-class classification tasks where integers encode class labels. This
choice helps the model optimize for the correct class predictions by minimizing the
cross-entropy between the true and predicted distributions. The Adam optimizer was
selected due to its adaptive learning rate properties, which provide efficient and robust
training performance across a wide range of deep learning tasks. Adam combines the
benefits of both AdaGrad and RMSProp, making it suitable for dealing with sparse
gradients and noisy data. The number of epochs was set to 50, and the batch size was set to
32. These values were chosen based on preliminary experiments to balance training time
and model performance. The epoch count ensures sufficient iterations for the model to
converge, while the batch size balances computational efficiency and gradient estimate
stability.

The proposed approach for epilepsy disease prediction on the CHB-MIT dataset is
presented in Algorithm 1. Using CHB-MIT data as input, the system outputs predicted
epilepsy disorders with seizure or no-seizure episodes. The three primary tasks of the
algorithm are to assemble a dataset, train the model, and predict ratings. The main

Figure 2 Architecture of GNN model. Full-size DOI: 10.7717/peerj-cs.2765/fig-2
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function combines the three functions to assemble the entire prediction system. Using
EEG signals, the Assemble() function takes pertinent data from patient records. Following
data retrieval, analysis and preprocessing are performed to detect missing values, eliminate
duplicate data, encode labels, and apply the normalization procedure to transform the data
into a standard format. After completing these procedures, the dataset is thoroughly
cleaned and ready to be input into the DL model to build a prediction model. The
preprocessed dataset is finally returned by the functions X and Y. The TrainingModel()
function creates a DL model from the preprocessed dataset. The used dataset is divided
into 20% and 80% weightage for testing and training data. The function finally provided
the trained model in return. The trained function utilizes the model to categorize seizures
and non-seizures. After receiving the preprocessed dataset, the function outputs the
predicted classes and the trained model as inputs.

EXPERIMENTAL RESULT AND ANALYSIS
The research results and analysis of the classification are explained in this section. This
section explains the deep learning model evaluation on the CHB-MIT dataset. The results
show that the proposed model can effectively predict seizures while handling the subject
variability in EEG signals.

Algorithm 1 Pseudo code of epilepsy disease detection.

1: Input: CHB-MIT Dataset

2: Output: Epilepsy Disease Detection

3: Data Assemble (CHB-MITDataset)

4: DA  Exploratory Data Analysis (Data)

5: function DP  Data Preprocessing (Data):

6: Handling missing data and duplicate Data

7: Dnorm  Normalization (DP)

8: X, Y Split(Dnorm )

9: Return X (features), Y (labels)

10: function TrainingModels (X, Y)

11: Ds  Split Dataset = training and test

12: DL  Utilized following Deep Learning Classifiers

13: RNN() ← Recurrent Neural Network (Ds)

14: LSTM() ← Long Short Term Memory (Ds)

15: GNN() ← Graphical Neural Network (Ds)

16: return Trained Models {Trained models are returned for prediction in this function}

17: function Prediction (Trained Models)

18: Em  Evaluation Measurements

19: return ← Results {This function returned result by evaluating different evaluation metrics}
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Evaluation measurements
The evaluation measures provided below are used to determine how effective the proposed
model is. Among the measurements utilized to assess the classification problems are the
accuracy provided in Eq. (2), the precision in Eq. (3), the recall in Eq. (4), and the F1-score
in Eq. (5). A confusion matrix (CM) table can assess a classification model’s performance
by contrasting its expected and actual outputs. Machine learning is frequently used to
assess a categorization model’s efficacy. Each of the four quadrants of a CM—true positive
(TP), false positive (FP), true negative (TN), and false negative (FN)—represents a
potential result. The matrix columns illustrate the anticipated class labels, and the rows
illustrate the actual ones. The matrix’s main diagonal represents the successfully
categorized examples, and the off-diagonal entries illustrate the incorrectly classified
samples. These measurements aid in determining the model’s advantages and
disadvantages and can be applied to enhance the model’s performance.

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

(2)

Precision ¼ TP
TP þ FP

(3)

Recall ¼ TP
TN þ FN

(4)

F1� score ¼ 2� Precision� Recall
Precisionþ Recall

: (5)

The receiver operating characteristic (ROC) curve is a graphical representation used to
evaluate the performance of binary classification systems. It plots the true positive rate
(TPR) against the false positive rate (FPR) at various threshold settings, providing a
comprehensive visualization of a model’s ability to distinguish between positive and
negative classes. A model with a ROC curve closer to the top-left corner indicates a higher
discriminative ability. In contrast, the area under the curve (AUC) summarizes the overall
performance: a value of 1 represents perfect accuracy, while 0.5 suggests no better
performance than random guessing. This section provides a detailed discussion of the
experiment outcomes.

The classification performance results for RNN, LSTM, and GNN models are shown in
Table 2. GNN has the highest accuracy, 98.00%, for both the “No-Seizure” and “Seizures”
classes, indicating that it makes correct predictions more often than RNN and LSTM.
LSTM achieves an accuracy of 97.00%, while RNN achieves 98%. LSTM achieves testing
F1-scores of 98.00% for the “Seizures” class and “No-Seizure” class. RNN achieves F1-
scores of 98.00% for the “No-Seizure” and “Seizures” classes, respectively.

Table 3 presents the time required for training and testing predictions for the LSTM,
RNN, and GNN models. Among the three models, the GNN model is the fastest, with a
training time of 0.0081 s and a testing time of 0.0054 s, demonstrating its computational
efficiency. The LSTMmodel takes the longest time for training, requiring 0.1731 s, while its
testing time is slightly shorter at 0.126 s. The RNN model has a moderate training time of
0.029 s and a testing time of 0.0144 s. These results highlight that the GNN model

Alasiry et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2765 12/24

http://dx.doi.org/10.7717/peerj-cs.2765
https://peerj.com/computer-science/


significantly outperforms RNN and LSTM in terms of computational speed, making it
more suitable for applications requiring real-time predictions.

Figure 3 depicts the graphical representation of the RNN model by evaluation training,
testing loss, accuracy, CM, and ROC. The left Fig. 3A shows the training and validation
loss. Validation loss starts from 0th epoch with value 0:18%, and after some fluctuation
increase and decrease, it decreases to 0:1% at 50th epochs. The right graph in 3A displays
the model’s training and validation accuracy. Validation accuracy starts from 0th epoch
with a value around 0:95%. After some fluctuation increase and decrease, it stops at 0:98%
at 50th epoch. The left graph in Fig. 3B is a training confusion matrix that shows it
performs better because the proposed strategy produces more continuous, better true
positive (13,421) and negative (71) values and fewer false positive (365) and negative
(13,175) results. The right graph in Fig. 3B is a testing confusion matrix. It also produces
more continuous, better true positive (3,374) and negative (30) values and fewer false
positive (89) and negative (3,266) results. Figure 3C displays the ROC curves for both

Table 2 Classification reports for seizure prediction models.

Labels Precision Recall F1-score Support

RNN model (Train report) Noseizures 0.97 0.99 0.98 13,492

Seizures 0.99 0.97 0.98 13,541

Accuracy 0.98 27,033

RNN model (Train report) Noseizures 0.97 0.99 0.98 3,404

Seizures 0.99 0.97 0.98 3,355

Accuracy 0.98 6,759

LSTM model (Train report) Noseizures 0.95 0.99 0.97 13,492

Seizures 0.99 0.95 0.97 13,541

Accuracy 0.97 27,033

LSTM model (Test report) Noseizures 0.96 0.99 0.98 3,404

Seizures 0.99 0.96 0.98 3,355

Accuracy 0.98 6,759

GNN model (Train report) Noseizures 0.97 1.00 0.98 13,492

Seizures 1.00 0.97 0.98 13,541

Accuracy 0.98 27,033

GNN model (Test report) Noseizures 0.98 0.99 0.98 3,404

Seizures 0.99 0.98 0.98 3,355

Accuracy 0.98 6,759

Table 3 Time prediction for training and testing of models.

Model Training time (s) Testing time (s)

RNN model 0.0429 0.0144

LSTM model 0.1731 0.1266

GNN model 0.0081 0.0054
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Figure 3 RNN model results. Full-size DOI: 10.7717/peerj-cs.2765/fig-3
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classes. For Class 1, the train curve area is expressed by the blue line with a 0.98 value, and
the orange line displays the test ROC curve with the same value. The train ROC curve for
Class 2 is shown by the green line with a value of 0.98, and the red line shows the test ROC
curve with the same value for Class 2.

Figure 4 displays the graphical representation of the LSTM model by evaluation
training, testing loss, accuracy, CM, and ROC. Figure 4A displays the training and testing
accuracy of the model. Training accuracy starts from 0th epoch with value 0:940%, and
after some fluctuation, it increases to 0:972% at 50th epoch. Testing accuracy starts from

0th epoch with value 0:943%, and after some fluctuation of increase and decrease, it
increases to 0:975% at 50th epoch. Figure 4B shows the training and testing loss, which
decreases as the number of epochs increases. Training loss starts from 0th epoch with value

0:18%, and after some fluctuation increase and decrease, it decreases to 0:09% at 50th

epoch. Testing loss starts from 0th epoch with value 0:17%, and after some fluctuation
increase and decrease, it decreases to 0:08% at 50th epoch. Figure 4C is a training confusion
matrix that performs better because of true positive (13,415) and negative (12,902) values
and fewer false positive (77) and negative (639) results. The graph in Fig. 4D is a testing
confusion matrix that performs better because of true positive (3,378) and negative (3,221)
values and fewer false positive (26) and negative (134) results. Figure 4E displays the ROC
curves for both classes in which the train ROC curve for classes 1 and 2 is 0.99, and the test
ROC curve for Classes 1 and 2 is 0.99.

Figure 5 displays the graphical representation of the GNNmodel by evaluation training,
testing loss, accuracy, CM, and ROC. The graph in Fig. 5A displays the training and testing
accuracy of the model. Training accuracy starts from 0th epoch with value 0:955%,
increasing to 0:978% at 10th epoch. After some minor fluctuation of increase and decrease,
training accuracy stops at 0:985% at 50th epoch. Testing accuracy starts from 0th epoch
with value 0:956% increasing to 0:981% at 10th epoch. After some minor fluctuation of
increase and decrease, training accuracy stops at 0:983% at 50th epoch. The graph in
Fig. 5B shows the training and testing loss. Training loss starts from 0th epoch with value

0:16%, decreasing to 0:05% at 50th epoch. Testing loss starts from 0th epoch with value

0:16%, decreasing to 0:06% at 50th epoch. The graph in Fig. 5C is a training confusion
matrix graph that performs better because the proposed strategy produces more
continuous, better true positive (10,912) and negative (9,600) values and fewer false
positive (4) and negative (1,381) results. The graph in Fig. 5D is a testing confusion matrix
graph that performs better because the proposed strategy produces more continuous,
better true positive (3,401) and negative (2,965) values and fewer false positive (3) and
negative (390) results. The graph in Fig. 5E displays the ROC curves for both classes. For
Class 1 and 2, the train and test ROC curve value is 0.98.

Comparison with conventional ML approaches
Table 4 compares different models for epileptic seizure prediction, focusing on the authors,
classifiers used, dataset employed, and the corresponding performance.Wang et al. (2019)
used the random forest (RF) classifier and achieved a performance of 84.00%.

Alasiry et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2765 15/24

http://dx.doi.org/10.7717/peerj-cs.2765
https://peerj.com/computer-science/


Figure 4 LSTM model results. Full-size DOI: 10.7717/peerj-cs.2765/fig-4
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Figure 5 GNN model results. Full-size DOI: 10.7717/peerj-cs.2765/fig-5
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Varnosfaderani et al. (2021) utilized a two-layer LSTM using the Swish activation function
classifier and achieved a performance of 85.1%. Rasheed et al. (2021) implemented a deep
convolutional generative adversarial network (DCGAN) model for classification and
achieved a performance of 88.21%. Dissanayake et al. (2020) employed one of the CNN
architectures and achieved a performance of 88.81%. Yu et al. (2022) utilized a machine
learning long short-term memory (MLSTM) model for epileptic seizure prediction and
achieved a performance of 89.47%. Zhang, Liu & Chen (2022) used a Transformer-based
model and achieved a performance of 89.50%. All models, including the proposed model,
used the CHB-MIT dataset for epileptic seizure prediction. This research utilizes a GNN as
a proposed model and achieves the highest performance with 98.90%. The proposed GNN
model outperforms the other models in terms of predictive accuracy, achieving the highest
performance. The performance differences between the models are relatively small, but
even marginal improvements can be significant in medical applications.

Discussion and findings
Conventional deep learning methods, such as CNNs, require graph data to be transformed
into fixed-size feature vectors, often leading to information loss and disregarding the
relational structure. GNNs operate directly on graph structures, enabling them to capture
relational dependencies and extract node embeddings that preserve local and global graph
properties. Conventional methods need mechanisms for effectively aggregating
information from neighbouring nodes in a graph, limiting their ability to exploit graph
topology. GNNs leverage message-passing algorithms to propagate and aggregate
information across graph nodes, enabling them to capture complex relationships and
dependencies. Conventional methods struggle to handle variable graphs and often require
fixed-size input representations, making them less adaptable to diverse graph structures.

GNNs are inherently flexible and can operate on graphs of varying sizes and structures,
making them suitable for a wide range of graph-based tasks without requiring extensive
preprocessing. Conventional methods like image classification may outperform GNNs in
certain tasks with well-defined input-output mappings and sample-labelled data. GNNs
excel in tasks involving graph data, including node classification, link prediction, and
graph classification, where capturing relational dependencies is crucial for accurate
predictions. GNNs offer several advantages over conventional DL methods for graph data
analysis. By operating directly on graph structures and leveraging message-passing

Table 4 Comparison of the proposed GNN model with existing work.

Authors Classifiers Dataset Accuracy

Wang et al. (2019) RF CHB-MIT 84.00%

Varnosfaderani et al. (2021) LSTM CHB-MIT 85.1%

Rasheed et al. (2021) DCGAN CHB-MIT 88.21%

Dissanayake et al. (2020) CNN CHB-MIT 88.81%

Zhang, Liu & Chen (2022) Transformer CHB-MIT 89.50%

Proposed model GNN CHB-MIT 98.90%
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mechanisms, GNNs can effectively capture relational dependencies and extract valuable
insights from complex graph data.

While this approach has demonstrated promising results, we recognize that using
heterogeneous GNNs for epileptic seizure detection does not introduce novel
improvements or new variant algorithms specifically tailored for this domain. This is an
important consideration, as similar methodologies have been extensively researched and
applied in other fields. Therefore, future research endeavours should focus on enhancing
graph Neural Network models for epileptic seizure prediction by proposing innovative
improvements or introducing new variant algorithms. This could include designing
custom GNN layers tailored for EEG data or developing novel graph encoding techniques
that better capture the unique characteristics of EEG signals.

Moreover, comprehensive comparative studies with existing heterogeneous GNN
approaches across different domains should be conducted to highlight the unique benefits
and potential adaptations for epileptic seizure detection. Empirical evidence, including
ablation studies and evaluations using diverse performance metrics, is crucial to
substantiate claims of improved performance or novelty. Future research should also
explore novel applications of EEG data in seizure therapy and treatment detection. By
addressing technical challenges, fostering interdisciplinary collaboration, and prioritizing
patient-centred outcomes, researchers can contribute to developing more effective and
personalized approaches to epilepsy management. By acknowledging the current
limitations and focusing on these areas for future research, we aim to make substantial
contributions to the field, advancing the application of GNNs in medical data analysis and
improving the detection and understanding of epileptic seizures from EEG data.

We acknowledge the inherent subject dependency in EEG signals, characterized by
non-linearity and variability. Although we did not implement Leave-One-Subject-Out
Cross-Validation (LOSO CV), we employed a standard train-test split with stratified
sampling to ensure class distribution and reduce bias. Feature standardization was applied
to normalize the data, and a GNN was utilized to capture complex relationships within the
EEG signals. We assessed model performance using various metrics, including accuracy,
F1 score, and ROC AUC. Future work will incorporate the LOSO CV for a more robust
evaluation of model generalization across subjects.

Limitation of the proposed approach
Our research demonstrates the efficacy of the proposed GNNmodel for EEG-based seizure
detection, and it is important to acknowledge certain limitations that may affect the
generalizability and applicability of our findings. Our model was trained and evaluated
exclusively on the CHB-MIT scalp EEG dataset, which, despite being well-established,
limits the generalizability of our findings to other datasets with different characteristics.
Future studies should validate the model on diverse datasets to ensure broader
applicability.

Our evaluation focused on accuracy, precision, recall, and F1-score but did not fully
address clinical implications, such as the impact of false positives and false negatives.
Incorporating additional metrics like AUC-ROC and analyzing clinical relevance will
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provide a more comprehensive evaluation. The complexity of GNNs also poses a challenge
to model interpretability, which is crucial for clinical decision-making. Future work should
incorporate explainability techniques to enhance transparency and improve trust in
clinical applications. While Z-score normalization was effective, exploring a broader range
of preprocessing techniques could further optimize performance. Furthermore, the
substantial computational resources required for the GNN model may limit its
applicability in resource-constrained settings, highlighting the need for optimizing
computational efficiency through techniques like model compression, pruning,
quantization, or leveraging lightweight GNN frameworks.

CONCLUSION
Accurate seizure event prediction via EEG signal analysis is crucial for the timely
administration of appropriate medical interventions. This research presented an
EEG-based epilepsy seizure prediction model utilizing RNN, LSTM, and GNN classifiers
with the CHB-MIT dataset for classification. The dataset underwent preprocessing steps,
including duplicate removal, handling of missing values, signal segment, resampling, label
encoding, and normalization. The proposed GNNmodel achieved a classification accuracy
of 98%, outperforming conventional models such as RNN and LSTM. Additionally, the
GNN demonstrated significantly lower computational time, enhancing its feasibility for
real-world applications.

The results of this study underscore the capability of the proposed GNN model to
effectively predict epileptic seizures with a high level of accuracy and efficiency. Despite its
high performance, future research should validate the findings on external datasets and
incorporate feature selection techniques to optimize the model further. Moreover,
exploring additional deep-learning architectures for seizure detection can provide further
insights. The proposed GNN model offers a promising and efficient approach for epileptic
seizure prediction, paving the way for enhanced epilepsy management and improved
patient care. Continued research and clinical validation are essential to confirm its
effectiveness in diverse real-world settings.
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