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ABSTRACT

A promoter is a DNA segment which plays a key role in regulating gene expression.
Accurate identification of promoters is significant for understanding the regulatory
mechanisms involved in gene expression and genetic disease treatment. Therefore, it
is an urgent challenge to develop computational methods for identifying promoters.
Most current methods were designed for promoter recognition on few species and
required complex feature extraction methods in order to attain high recognition
accuracy. Spiking neural networks have inherent recurrence and use spike-based
sparse coding. Therefore, they have good property of processing spatio-temporal
information and are well suited for learning sequence information. In this study,
iPro-CSAF, a convolutional spiking neural network combined with spiking attention
mechanism is designed for promoter recognition. The method extracts promoter
features by two parallel branches including spiking attention mechanism and a
convolutional spiking layer. The promoter recognition of iPro-CSAF is evaluated by
exhaustive promoter recognition experiments including both prokaryotic and
eukaryotic promoter recognition from seven species. Our results show that iPro-
CSAF outperforms promoter recognition methods which used parallel CNN layers,
methods which combined CNNs with capsule networks, attention mechanism,
LSTM or BiLSTM, and CNNs-based methods which needed priori biological or text
feature extraction, while our method has much fewer network parameters. It
indicates that iPro-CSAF is an effective computational method with low complexity
and good generalization for promoter recognition.

Subjects Bioinformatics, Computational Biology, Artificial Intelligence, Neural Networks
Keywords Promoter recognition, Deep learning, Convolutional spiking neural network, Spiking
attention mechanism, Spiking neuron

INTRODUCTION

A promoter is a non-coding short region (about 100 to 1,000 base pairs) located close to a
transcription start site (TSS) in DNA sequences which initiates the transcription of DNA.
It has an important role in regulating gene expression. Promoter mutations could lead to
disruption of gene expression which contributes to tumor development and rare diseases
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(Melnikova, 2012). Promoters are critical for controlling the expression of therapeutic
genes and minimizing potential safety risks during gene therapy treatments (Geurts et al.,
2007). Accurate identification of promoters is significant for understanding the regulatory
mechanisms involved in gene expression and genetic disease treatments. In prokaryotes,
different types of promoters are responsible for expression of different genes. The types of
prokaryotic promoters are determined by different o factors which are responsible for
binding to different promoters (Browning ¢ Busby, 2004), while in eukaryotes, there are
three types of promoters including RNA pol I promoters, RNA pol II promoters and RNA
pol III promoters (Carter ¢ Drouin, 2009) which are responsible for the transcription of
different genes. Compared to eukaryotic promoters, prokaryotic promoters are commonly
shorter and have simpler structure. Prokaryotic promoters contain —10 box around —10 bp
upstream of TSS and —35 box around —35 bp upstream of TSS. While eukaryotic
promoters span a wide range of DNA sequences and contain TATA box located about 25
bp to 35 bp upstream of the TSS, CAAT box and GC box located at —40 bp to —110 bp,
CpG island and others. The TATA boxes exist only in eukaryotic promoters. Broadly
speaking, eukaryotic promoters can be categorized into TATA and non-TATA promoters
based on the presence of TATA box in sequences. These two types of promoters have
obviously different structural properties in DNA duplex stability, bendability and
curvature (Yella ¢ Bansal, 2017).

With the development of high-throughput sequencing technology, the number of
biological sequences is exploding. In bioinformatics fields researchers have developed
many machine learning methods and especially deep learning methods to help solving
problems in many fields including gene expression (Al taweraqi ¢» King, 2022), protein
structures (AlQuraishi, 2021; Tubiana, Schneidman-Duhovny & Wolfson, 2022) genomic
(Dalla-Torre et al., 2024) and single-cell biology (Cui et al., 2024), etc. These methods
achieved state-of-the-art results in the prediction of biological sequences, structures and
functions.

Experimental methods for promoter recognition are time-consuming and costly. And
there is an increasing need of developing computational methods for promoter
recognition. A series of computational methods based on machine learning have been
proposed to identify promoters. These methods first utilized mathematical and statistical
methods to capture complex features of promoters, such as DNA duplex stability features
(de Avila e Silva et al., 2014) and pseudo-K-tuple nucleotide composition (PseKNC) (Liu
et al., 2018; Xiao et al., 2019). Then machine learning methods were used for promoter
recognition, such as support vector machine (SVM) (de Avila e Silva et al., 2014), Random
Forest (RF) (Liu et al, 2018) and so on.

Deep learning is a kind of data-driven technique that can learn features through multi-
layer feature extraction from raw data without relying much on priori knowledge. In recent
years, deep learning algorithms have been increasingly used in promoter recognition.
pcPromoter-CNN (Shujaat et al., 2020) and SAPPHIRE.CNN (Coppens, Wicke ¢~ Lavigne,
2022) adopted one-hot encoding scheme and multiple convolutional neural network
(CNN) layers to identify prokaryotic promoters. Le et al. (2019) and Tahir et al. (2020)
used natural language processing methods to obtain mathematical vectors which were
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input to multiple CNN layers for prokaryotic promoter recognition. In order to improve
the promoter recognition accuracy of computational methods, researchers proposed
various predictors by combining CNNs with other deep learning algorithms including
capsule layers (Zhu et al., 2021; Moraes et al., 2022), long short-term memory (LSTM)
network (Oubounyt et al., 2019; Ma et al., 2022), attention mechanism (Zhang et al., 2022),
etc. On the basis of CNNs, Depicter (Zhu et al., 2021) used capsule layers to further extract
features. DeeProPre (Ma et al., 2022) used bidirectional long short-term memory
(BiLSTM) and attention mechanism to extract features. iPromoter-CLA (Zhang et al.,
2022) used capsule layers, BILSTM, and attention mechanism to obtain more important
sequence features. CyaPromBERT (Mai, Nguyen ¢» Lee, 2022) utilized Bidirectional
Encoder Representations from Transformers (BERT) to perform pre-training on genomes
for promoter recognition. Among the above methods, SAPPHIRE.CNN, Depicter,
CapsProm, and DeeProPre were used for multi-species promoter recognition, while the
remaining methods performed single-species promoter recognition, and only CapsProm
performed the recognition of both prokaryotic and eukaryotic promoters. Although
existing methods had exhibited encouraging performance, many promoter recognition
methods required very complex feature extraction methods in order to attain high
recognition accuracy. Also, most deep learning methods were designed for few species.
There is an increasing need for developing promoter recognition method with low
complexity and good generalization.

Spiking neural networks (SNNs) are the third generation of artificial neural networks
with biological plausibility (Ghosh-Dastidar ¢» Adeli, 2009). They are considered to be ideal
bio-inspired neuromorphic computing paradigm that well mimic the inherent spike-based
and event-driven computation in the brain (Roy, Jaiswal & Panda, 2019). Since SNNs have
inherent recurrence (Ponghiran ¢ Roy, 2021) and use spike-based sparse coding (Roy,
Jaiswal ¢» Panda, 2019), they have good property of processing spatio-temporal
information (Kheradpisheh et al., 2018) and are well suited for learning sequence
information. They are widely used in many biological sequence classification tasks, such as
the classification of motor imagery EEG signals (Virgilio et al., 2020), emotion recognition
from EEG signals (Luo et al., 2020), and the classification of ECG signals (Feng et al., 2022)
and odor signals (Vanarse et al., 2020). Yan, Zhou ¢ Wong (2022) used a transfer learning
method to train SNNs for emotion classification of EEG signals, achieving a smaller SNN
with good accuracy. And the power consumption of SNNs was only 13.8% of the
CNNs-based EEG emotion recognition scheme, which demonstrated the advantage of
SNNs’ low power consumption. Zhou, Qi ¢ Ren (2021) applied SNNs with reward-
modulated spike-timing-dependent plasticity (R-STDP) learning mechanism to make gene
essentiality prediction, and they obtained an accuracy of 81.79% for intra-organism
predictions, which was significantly better than SVM classifier.

Self-attention mechanism (Vaswani et al., 2017) has been successfully applied to natural
language processing, computer vision, bioinformatics and so on. The mechanism allows
deep learning networks to focus on the connections of separated positions in long-distance
sequences. Spiking self-attention (SSA) mechanism (Zhou et al., 2022) was specially
designed for SNNs, which captured long-distance dependence features and represented
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them by spiking sequences. The attention maps are calculated by sparse spike-form Query,
Key, and Value. The computation progress of spiking self-attention is efficient and the
energy consumption is low. Abdullah Alohali et al. (2024) adopted spiking transformer
based on SSA for speech enhancement, which improved the ability to learn and process
noisy speech. These studies have demonstrated the ability of spiking neural networks for
learning sequence information.

Considering the suitability of SNNs for learning sequence information and their
advantages of low power consumption, in this article we design a SNN method called iPro-
CSAF for promoter recognition by combining convolutional spiking neural networks
(CSNNs) with multi-head spiking self-attention mechanism. And we use two parallel
branches, of which one is a convolutional spiking layer to extract high-dimensional local
features and the other is multi-head SSA mechanism to extract long-distance dependence
features from DNA sequences, respectively. The two kinds of features are then fused and
input to a spiking fully connected layer to make decisions. The performance of iPro-CSAF
is validated on different promoter datasets from seven species which include Escherichia
coli (E. coli), Bacillus subtilis (B. subtilis), cyanobacteria, Homo sapiens (H. sapiens),
Drosophila melanogaster (D. melanogaster), Mus musculus (M. musculus) and Arabidopsis
thaliana (A. thaliana). We make ablation experiments and compare the performance of
iPro-CSAF with baseline methods and state-of-art deep learning promoter recognition
methods. We also calculate the power consumption of iPro-CSAF. Our main contributions
are as follows: (i) We propose a spiking-based promoter recognition model named iPro-
CSAF which combines convolutional spiking neural networks with multi-head spiking
self-attention mechanism in a parallel structure to extract the spatio-temporal features of
promoter sequences. (ii) The recognition performance of iPro-CSAF is evaluated by
exhaustive promoter recognition experiments including both prokaryotic and eukaryotic
promoter recognition from seven species, and is compared with state-of-art deep learning
promoter recognition methods. (iii) We demonstrate that iPro-CSAF is an effective
computational method with low complexity and good generalization for both prokaryotic
and eukaryotic promoter recognition.

MATERIALS AND METHODS

Experimental datasets
The first step in building a useful promoter predictor is to select reliable benchmark and
independent datasets for method training and performance validation. Our datasets are
from seven species including both prokaryotes and eukaryotes. Prokaryotes include E. coli,
B. subtili, and cyanobacteria. The length of each sample is 81 bp. Eukaryotes include H.
sapiens, D. melanogaster, M. musculus, A. thaliana. The length of each sample is 300 bp.
For E. coli promoter recognition, all the samples of our benchmark dataset are obtained
from the dataset constructed by Xiao et al. (2019) (https://ars.els-cdn.com/content/image/
1-52.0-5088875431830613X-mmcl.pdf). The independent dataset for E. coli promoter
recognition is obtained from the dataset constructed by Liu et al. (2018) (https://academic.
oup.com/bioinformatics/article/34/1/33/4158035#supplementary-data). It contains 2,860
promoter sequences and 2,860 non-promoter sequences. For B. subtilis promoter
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recognition, all the samples are from the datasets constructed by (Umarov ¢ Solovyev,
2017) (https://github.com/solovictor/ CNNPromoterData.git). For cyanobacteria promoter
recognition, all the samples are obtained from the DB1 datasets constructed by (Yang et al.,
2024) (https://github.com/Passion4ever/SiamProm).

For promoter recognition of A. thaliana, M. musculus, D. melanogaster, H. sapiens, all
their samples are obtained from the datasets constructed by Zhu et al. (2021) (https://
github.com/zhuyaner/Depicter/). The four eukaryotic promoter datasets mentioned above
are randomly divided into benchmark datasets and independent datasets at a ratio of 9:1.
For each of the eukaryotic promoter datasets, we perform three recognition tasks including
TATA promoter and non-promoter recognition, non-TATA promoter and non-promoter
recognition, and also TATA&non-TATA promoter and non-promoter recognition. For
the benchmark datasets of all these seven species, we validate our method using five-fold
cross-validation. After that, in order to prevent experimental over-fitting and further
evaluate prediction performance of our iPro-CSAF, independent datasets are used to test
the method. The samples of benchmark datasets are summarized in Table 1.

The overall architecture of iPro-CSAF

iPro-CSAF consists of one-hot coding layer, a spiking feature extraction module and a
spiking classification module, as shown in Fig. 1. Spiking feature extraction module
consists of a 1-d convolutional spiking layer, a spiking feature fusion module which
contains two parallel branches and one concatenation module.

In Fig. 1, the first convolutional spiking layer receives one-hot encoding matrices of
promoter and non-promoter samples. And after the spiking neuron layer and batch
normalization (BN) layer, samples are converted into discrete binary spikes (Xiong et al,
2021), thus realizing the transmission of spikes between different layers. Therefore, the first
convolutional spiking layer not only extracts features but also encodes one-hot vectors into
spikes. In feature fusion module, each branch further extracts features from the output of
first convolutional layer. The output of these two parallel branches is concatenated to
achieve the fusion of local and global features of promoter sequences. The spiking features
after fusion are fed to a spiking fully connected layer for making decisions. Surrogate
gradient (Neftci, Mostafa ¢ Zenke, 2019) is used to enable end-to-end training of iPro-
CSAF. Dropout operation is adopted in both the feature extractor and the spiking
classifier, which can randomly remove some neurons to avoid overfitting (Dahl, Sainath ¢
Hinton, 2013).

One-hot encoding of input promoter sequences

There are four types of nucleotides in a DNA sequence: A (adenine), C (cytosine), G
(guanine), and T (thymine). DNA sequences must be converted into numerical vectors to
perform feature extraction and classification. The one-hot encoding approach is widely
used in the recognition of promoter sequences in deep learning. By one-hot encoding, each
nucleotide is encoded as a four-dimensional binary vector whose elements represent four
types of nucleotides, respectively. One position of the one-hot vector is 1 and the elements
of the remaining positions are all 0. The detailed form of each nucleotide encoded by
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Table 1 The statistical summary of promoter and non-promoter benchmark datasets in this study.

Species Recognition tasks Benchmark datasets
Positive Negative
E. coli Promoter and non-promoter 3,382 3,382
B. subtilis Promoter and non-promoter 373 1,000
cyanobacteria Promoter and non-promoter 12,566 12,566
A. thaliana TATA promoter and non-promoter 5,691 5,691
Non-TATA promoter and non-promoter 14,272 14,272
TATA&non-TATA promoter and non-promoter 19,963 19,963
M. musculus TATA promoter and non-promoter 2,769 2,769
Non-TATA promoter and non-promoter 18,936 18,936
TATA&non-TATA promoter and non-promoter 21,705 21,705
D. melanogaster TATA promoter and non-promoter 2,326 2,326
Non-TATA promoter and non-promoter 12,631 12,631
TATA&non-TATA promoter and non-promoter 14,957 14,957
H. sapiens TATA promoter and non-promoter 2,634 2,634
Non-TATA promoter and non-promoter 22,914 22,914
TATA&non-TATA promoter and non-promoter 25,548 25,548

One-hot encoding

I Convld layerD =IF neuron layer I = BN layer

Spiking feature extraction module

Spiking feature fusion module

Spiking classification module

A

-——
-—
S

\

Flatten l

Conv_2

Input sequences

AT TGO CGTCCA
I

Spiking Self /|

—®  Attention
(SSA)

@Max pooling -

Concatenate

Flatten

O
O

Negative

layer

Fully connected T neyron layer

LIF neuron layer

(rmO7—~Q— g

=3
(G nO—~K—> B8~
TS NG

gl —» Qaeaspn) — [

LIF neuron layer LIF neuron;
layer

Figure 1 The architecture of iPro-CSAF.
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one-hot encoding is shown below: A (1, 0, 0, 0), C (0, 1, 0, 0), G (0, 0, 1, 0),
T (0, 0, 0, 1). After one-hot encoding, a promoter sequence of length L is encoded into
an L x 4 two-dimensional matrix.

Spiking neuron model

Spiking neuron models simulate the firing of biological neurons and are the basic
processing units of SNNs. Frequently used spiking neuron models are the IF model, leaky
integration and firing (LIF) model, Hodgkin-Huxley (H-H) model and Izhikevich model.
A spiking neuron receives input which changes its neuronal membrane potential, and
emits a spike when its membrane potential increases to a prespecified threshold potential.
The process of charging, discharging, and resetting of a spiking neuron can be represented
by the following three equations:

H(t) = f(V(t = 1), X(1)) ey

w0 =0t = ()

V(t) = H(t) * (1 - S(t)) + Vieser * S(t) (3)

where Eq. (1) describes the charging process of a neuron. ¢ represents simulation time step.
V(t — 1) is the membrane potential at time step t — 1. X(¢) is the external input.
f(V(t—1), X(t)) is a function describing the updating of neuron membrane potential.
For different spiking neuron models, this function is different. H(¢) is the hidden state of a
neuron, which is instantaneous voltage before the neuron fires a spike at time step ¢. Eq. (2)
describes the discharging process of a neuron. Vi, refers to the threshold membrane
potential of a neuron. If H(t) exceeds the threshold membrane potential, the neuron is
activated and emits a spike. Eq. (3) describes the resetting of a neuron’s membrane
potential. Vi, is the reset potential after the neuron sends out a spike. If the neuron does
not send out a spike, then V(¢) = H(t). If the neuron sends out a spike, then V(t) = Ve

In our convolutional spiking layers and fully connected spiking layer, we use IF neuron
model because it has a simple structure and is suitable for large-scale simulation. The
membrane potential V(¢) remains constant when there is no external input, and the
update process of V(t) of IF neuron is shown as follows:

dv(t)/dt = R-1(t) (4)
where R is the leakage resistance of an IF neuron model. I(t) is the external input current.

In our spiking self-attention module, LIF neuron model is adopted to generate spikes.
The update process of V(t) is shown as follows:

t-dV(t)/dt = —(V(t) — Vieset) + R - I(£) (5)
where 7 is time constant of membrane potential.
The convolutional spiking layers

In our method we use one-dimensional convolutional layers which are suitable for
processing sequence data. The first convolutional spiking layer receives one-hot encoding
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Figure 2 An example illustration of the spiking convolutional operation based on IF neurons.
Full-size K&l DOT: 10.7717/peerj-cs.2761/fig-2

binary matrices, and the remaining convolutional spiking layer receives spikes which are
output from the IF neuron layer. An example illustration of the spiking convolutional
operation based on IF neurons is shown in Fig. 2. Here, the input is [0, 0, 1, 0, 0, 1, 0]. The
size of the one-dimensional convolution kernel is 3 and the stride size is 1. The convolution
kernel covers the corresponding positions of the input spiking sequence in turn and
performs the convolution operation. After that the feature response map [0.5, 0.2, 1.3, 0.2]
is obtained and it represents the membrane potentials of IF spiking neurons in spiking
neuron layer. The membrane potential threshold is set to be 1. If the feature value exceeds
the membrane potential threshold, the neuron will discharge and release a spike and the
membrane potential will be reset. If the feature value is less than the membrane potential
threshold, the membrane potential will remain constant. Finally, the output spike train is
[0, 0, 1, O].

Multi-head spiking self-attention

The input of multi-head spiking self-attention is spike feature maps X from the first
convolutional spiking layer, which have the data format T x N x D. Here T is the time
step, N is the number of spiking sequences, and D is the dimension of spiking sequences.

The SSA module consists of linear layer, batch normalization layer and spiking neuron
layer.

The input is mapped to Query (Q), Key (K), Value (V) by linear layer: Q = X - W,
K= X-Wy, V= X-W,. The weights of linear layer are Wy, Wx, Wy. Then, Q, K and
V are encoded into spike matrices Q, K, V by being input to batch normalization layer
and spiking neuron layer. The calculation equation is as follows:

Q = LIF(BN(X - Wq)), K = LIF(BN(X - Wx)), V = LIF(BN(X - Wy). (6)

Then the attention maps SSA(Q, K, A) are calculated and encoded into spikes by linear
layer and spiking neuron layer. The specific process is shown as follows:
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SSA(Q, K, A) = LIF(BN(Linear(LIF(QK"V - 5)))) (7)

where Q, K, V€ RI*N*D and s is a scaling factor to control the large value of an
attention map. Multi-head spiking self-attention mechanism (MSSA) is multiple parallel
SSA operations. Q, K, V are split into H parts. We run SSA operations for H times. The
calculation process of multi-head attention maps are as follows:

MSSA(Q, K, V) = [SSA;(Q;, Ki, V1), SSA,(Qy, Ky, V2),eeenennnns ,SSAH(Qu, Ku, V)] (8)

The attention maps of SSA are obtained by logical AND operation and addition of
spike-form Q, K, V. It avoids float-form multiplications.

Spiking feature fusion module

We propose a spiking feature fusion module which contains two parallel branches and one
concatenation module. The two parallel branches are a convolutional spiking layer and a
multi-head spiking self-attention module, respectively. Each branch further extracts
features from the output of the first convolutional layer. And the concatenation module
fuses local features output from the convolutional spiking layer and global features output
from the spiking attention mechanism. All features are fused and further transmitted in the
form of spikes. They are input to the fully connected spiking layer to make decisions. The
feature maps from the convolutional spiking layer and spiking attention mechanism are
Econy € RT*N*D and Eygsa € RT*N <D respectively, where T is the time step, N is the
number of channels of the feature maps, and D is the dimension of spiking sequences.
They are concatenated after being flattened. The feature fusion maps are

Econcatenation € RT X (NxD+NxD) .

The surrogate gradient algorithm

Because in the spiking neuron model, the step function 6(x) in Eq. (2) is non-differentiable
(Guo & Wang, 2023), it is not possible to train a spiking neural network directly using
backpropagation algorithm. We use surrogate gradient learning to train iPro-CSAF.
0(x) is approximated by a differentiable gating function, known as surrogate gradient. In
the forward propagation process, the network still uses the step function 6(x). In the
backpropagation process, the surrogate gradient is calculated by surrogate function g(x).
In convolutional layers, we use arctan function g(x) = (1/=x) - arctan((7/2) - o - x) 4+ 1/2.
In spiking self-attention, we use sigmoid function g(x) = sigmoid(ox) = 1/(1 4 e~*).
Here the parameter « is proportional to the degree of similarity between g(x) and 0(x). It
can control the degree of smoothing of the surrogate function. The larger o is, the more
prone to vanishing gradient and exploding gradient, which makes the network more
difficult to be trained. In arctan function, we set & = 2. In sigmoid function, we set o = 4.

Experimental setup and parameter selection

Our network is implemented by utilizing the spiking neural network framework
Spiking]elly based on Pytorch and python3.9. The mean-square error (MSE) is used as loss
function and the Adam optimization algorithm is adopted.
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Table 2 Hyperparameter selection range.

Parameters Range

Time steps 9

Number of convolution kernels 64

Size of the convolution kernel 5

Membrane potential threshold 1 mV

Learning rate 0.0007, 0.0009
Dropout ratio 0.3, 0.4, 0.5, 0.6, 0.7
Max pooling layer size and stride size 2,2

The number of attention heads 8

The choice of parameters has great influence on promoter recognition performance of
computational methods. We perform hyperparameter tuning for the convolutional layers,
time steps, learning rate, the number of heads in MSSA and dropout ratio. The range of
tuning parameters of our method is shown in Table 2. The values of hyperparameters in
Table 2 are slightly different for specific promoter recognition tasks in this study.

The spatial complexity of the model can be represented by the number of model
parameters which is often used to measure the performance of deep learning models in
terms of complexity. Table 3 gives the specific network structure and parameter numbers
of each layer in our method. In the Results & discussion section, we will compare the
number of parameters of iPro-CSAF with those of compared methods.

Method evaluation metrics

Four commonly used metrics are used to assess the performance of the method, including
sensitivity (Sn), specificity (Sp), accuracy (Acc), Matthews correlation coefficient (MCC),
and F1-score. The metrics are described as follows:

recall, Sn = TP/(TP + EN) 9)
Sp = TN/(IN + FP) (10)
Pre = TP/(TP + FP) (11)
Acc = (TP + TN) /(TP + TN + EP + EN) (12)

MCC = (TP x TN — FP x EN)/+/(TP + FP)(TP + FN)(IN + FP)(IN + FN)  (13)
F1 score =2 x (Pre x Sn)/(Pre + Sn) (14)

where TP, TN, FP and FN are the number of samples that the method predicts as true
positive, true negative, false positive and false negative, respectively. Sp and Sn denote the
ability of the method to correctly identify negative and positive samples, respectively. Pre
denotes the ratio of true promoters that are recognized as promoters. Acc denotes the
percentage of samples correctly categorized by the method. MCC shows the recognition
results of methods on unbalanced datasets. F1-score (F1) is a comprehensively evaluation
metric which considers precision and recall. The values of sensitivity, specificity, F1 score
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Table 3 Parameter numbers of each layer of iPro-CSAF.

Name of layers

Input shape

Hyperparameter

Output shape

Parameter numbers

Convld

BatchNorm1d
MultiStepIFNode
Convld

MultiStepIFNode
Dropout

Flatten

SSA

Dropout
MaxPoolld

Flatten

Linear

Dropout
MultiStepIFNode

Total parameters

[None, 4, 300] kernel size = 5 [None, 64, 300] 1,280
Stride = 1
[None, 64, 300] - [None, 64, 300] 128
[None, 64, 300] V_threshold = 1 [None, None, 64, 300] 0
[None, None, 64, 300] kernel size = 5 [None, 64, 300] 20,480
Stride = 1
[None, 64, 300] V_threshold = 1 [None, None, 64, 300] 0
[None, None, 64, 300] - [None, None, 64, 300] 0
[None, None, 64, 300] - [None, None, 19,200] 0
[None, None, 64, 300] Number of heads = 8 [None, None, 19,200] 16,960
[None, None, 19,200] - [None, None, 19,200] 0
[None, None, 38,400] kernel size = 2 [None, 19,200] 0
Stride = 2
[None, 19,200] - [None, 19,200] 0
[None, 19,200] - [None, 2] 38,400
[None, 2] - [None, 2] 0
[None, 2] V_threshold = 1 [None, None, 2] 0
- - - 77,248

and accuracy are all between 0 and 1, and the value of the MCC is between —1 and 1. Larger
values of these metrics represent better performance of the method. In addition, receiver
operating characteristic (ROC) curves and the area under ROC curve (AUC) are also
applied to evaluate the overall performance of recognition methods. The AUC value closer
to 1 indicates better performance. Area under the precision recall curve (AUPRC) is used
to evaluate the recognition performance of methods on imbalanced datasets. AUPRC
calculates the area under Precision-Recall curve. The value of AUPRC indicates Pre
performance at different Recall levels.

K-fold cross-validation is widely used to estimate generalization of computational
methods. We validate the promoter recognition performance of our method by
performing five-fold cross-validation on benchmark datasets from the seven species. Each
dataset is divided into five subsets of equal size, where four subsets are used as the training
datasets and the remaining subset is used as a validation dataset, alternately. The final
recognition results are the average evaluation metric values of five-fold cross-validation.

RESULTS AND DISCUSSION

Experiments desigh and compared methods
In this section, we introduce our experiments design and some state-of-art deep learning
methods which are used to make performance comparison with our method.

In our experiments, we first make ablation study to verify the effectiveness of our
proposed feature fusion module. Then we take three-layer CSNNs and two-layer CSNNs
cascaded with a multi-head SSA module as baseline methods, and compare the promoter
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recognition performance of our iPro-CSAF with baseline methods on A. thaliana
benchmark datasets.

After that, we compare our method with some advanced deep learning methods on both
benchmark datasets and independent datasets. Most of these compared methods are
designed only for a certain species or a certain class of species, while in our work our
datasets are from seven species including both prokaryotes and eukaryotes, therefore in
our comparison experiments, for different species we compare our method with different
deep learning methods. For E. coli datasets, we compare our method with FastText N-
grams (Le et al., 2019), iPSW(PseDNC-DL) (Tayara, Tahir ¢& Chong, 2020), iPromoter-
BnCNN (Amin et al., 2020), iPro2L-CLA (Zhang et al., 2022) and iProL (Peng, Sun ¢ Fan,
2024). For B. subtilis dataset, we compare our method with CapsProm (Moraes et al.,
2022). For the cyanobacteria dataset, the compared methods are DeePromoter (Oubounyt
et al., 2019), CyaPromBERT (Mai, Nguyen ¢ Lee, 2022) and SiamProm (Yang et al., 2024).
For A. thaliana datasets, we compare our method with Depicter. For H. sapiens datasets,
we compare our method with Depicter and DeePromClass (Kari et al., 2023). For D.
melanogaster and M. Musculus datasets, we compare our method with Depicter,
DeeProPre (Ma et al.,, 2022) and DeePromClass (Kari et al., 2023).

Finally, we calculate the power consumption of iPro-CSAF and compare it with that of
traditional neural network with the same structure.

Ablation study

We conduct ablation experiments to evaluate the effectiveness of feature fusion module
which has a parallel structure including a convolutional spiking layer and a multi-head
spiking self-attention module.

In this experiment we use H. sapiens non-TATA promoter datasets which are
eukaryotic promoters and E. coli promoter datasets which are prokaryotic promoters.
These two datasets are relatively more difficult to classify among the seven species. iPro-
CSAF consists of two convolutional spiking layers and a spiking attention mechanism. We
name the first convolution layer Conv_1 and the second convolution layer Conv_2 as
shown in Fig. 1. In our feature fusion module, it contains two parallel branches and one
concatenation module. The two parallel branches are Conv_2 and MSSA, respectively.

Table 4 shows the results of ablation experiments. For H. sapiens non-TATA promoter
recognition, iPro-CSAF outperforms two-layer CSNNs (Conv_1 + Conv_2), one-layer
CSNN cascaded with a MSSA (Conv_1 + MSSA) and one-layer CSNN (Conv_1) by 1.69%,
2.40% and 4.51%, respectively. For E. coli promoter recognition, iPro-CSAF outperforms
two-layer CSNNs (Conv_1 + Conv_2), one-layer CSNN cascaded with a MSSA (Conv_1 +
MSSA) and one-layer CSNN (Conv_1) by 1.95%, 2.12% and 3.11%, respectively. The
results of ablation experiments show that after extracting feature with Conv_1, our feature
fusion module with parallel structure can significantly improve the performance of the
method and obtain higher recognition accuracy than using convolutional spiking layer or
spiking attention mechanism alone to further extract features.
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Table 4 The results of ablation studies without proposed module.

Promoter types Methods Sn (%) Sp (%) Acc (%) MCC F1

H. sapiens non-TATA iPro-CSAF 89.19 90.48 89.83 0.7968 0.8977
Conv_1 + Conv_2 87.59 88.68 88.14 0.7630 0.8808
Conv_1 + MSSA 86.46 88.39 87.43 0.7488 0.8730
Conv_1 82.72 87.83 85.32 0.7100 0.8485

E.coli promoter iPro-CSAF 84.81 89.93 87.37 0.7484 0.8704
Conv_1 + Conv_2 82.24 88.58 85.42 0.7098 0.8494
Conv_1 + SSA 84.15 86.38 85.25 0.7054 0.8506
Conv_1 81.65 86.86 84.26 0.6862 0.8384

Note:

Bold values indicate the highest score in each column.

Table 5 The recognition performance of iPro-CSAF and the baseline methods.

Promoter types Models Sn (%) Sp (%) Acc (%) MCC AUC
A. thaliana TATA iPro-CSAF 99.52 99.18 99.35 0.9871 0.9970
two-layer CSNNs + MSSA  98.94  99.16  99.05 0.9810 0.9945
three-layer CSNNs 99.29 9891 99.10 0.9821 0.9952
A. thaliana non-TATA iPro-CSAF 94.39 9693 95.66 0.9135 0.9707
two-layer CSNNs + MSSA 9394  97.09  95.51 0.9107 0.9721
three-layer CSNNs 93.31 97.13 9522 0.9051 0.9673
A. thaliana TATA&non-TATA iPro-CSAF 95.02 97.85 96.44 0.9291 0.9762
two-layer CSNNs + MSSA  95.37  97.17  96.27 0.9256 0.9768
three-layer CSNNs 95.01 97.17 96.09 0.9220 0.9740
Note:

Bold values indicate the highest score in each column.

Comparison of iPro-CSAF with baseline methods

As shown in Fig. 1, our method consists of two convolutional spiking layers and a multi-
head SSA module. The extracted features from the two parallel branches are fused to make
decisions. In order to further evaluate the effectiveness of our method, we take three-layer
CSNNs and two-layer CSNNs cascaded with a multi-head SSA module as baseline
methods. We compare promoter recognition performance of iPro-CSAF with baseline
methods on A. thaliana benchmark datasets. Table 5 shows the recognition performances
of iPro-CSAF and baseline methods. We use a Mann-Whitney’s U test to evaluate
statistically significant difference between Acc results for A. thaliana TATA&non-TATA
promoter recognition of different methods. Statistical difference is significant at p-value <
0.05. The p-values between Acc results of iPro-CSAF and three-layer CSNNs and two-layer
CSNNs +MSSA both are 0.027. It is shown that the Acc results of iPro-CSAF and baseline
methods are significantly different.

As shown in Table 5, iPro-CSAF can obtain better promoter recognition accuracy than
baseline methods. For A. thaliana non-TATA promoter recognition, iPro-CSAF
outperforms three-layer CSNNs by 0.44% Two-layer CSNNs cascaded with a multi-head
SSA module outperforms two-layer CSNNs cascaded with a convolutional layer. This is
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due to that SSA can extract long-distance dependence features and focus on the more
important features in sequences. By using parallel branches of a convolutional layer and a
multi-head spiking self-attention module, our iPro-CSAF outperforms two-layer CSNNs
cascaded with a multi-head SSA module by 0.15%

Comparison of iPro-CSAF with state-of-the-art methods on benchmark
datasets

In this section, we compare the recognition performance of our iPro-CSAF with some
state-of-the-art deep learning methods. The recognition performance of iPro-CSAF and
compared methods on benchmark datasets is shown in Table 6.

First we compare our iPro-CSAF with other methods on prokaryotic promoter
recognition. For the E. coli benchmark dataset, we compare the recognition performance of
our iPro-CSAF with FastText N-grams (Le et al., 2019), iPSW(PseDNC-DL) (Tayara,
Tahir & Chong, 2020), iPro2L-CLA (Zhang et al., 2022) and iProL (Peng, Sun ¢ Fan,
2024). iPSW(PseDNC-DL) and FastText N-grams both used multiple CNN layers to make
turther feature extraction. Differently, iPSW(PseDNC-DL) extracted priori biological
features by PseDNC, while FastText N-grams extracted priori text features by FastText
natural language processing method. iPro2L-CLA used one-hot coding scheme, then
adopted multiple deep learning algorithms including CNNs, LSTM, capsule networks and
attention mechanism to extract promoter sequence features. iProL used longformer
(Beltagy, Peters ¢ Cohan, 2020), CNNs and bidirectional LSTM (BiLSTM) to extract
features directly from input promoter sequences to identify E. coli promoters. As shown in
Table 6, iPro-CSAF obviously outperforms all these compared methods in terms of Sp, Acc
and MCC. The results show that our method which uses parallel combination of
convolution and MSSA outperforms promoter recognition methods which used
combination of CNNs, LSTM, capsule networks and attention mechanism (iPro2L-CLA,
iProL), and it also outperforms CNNs which needed priori biological feature extraction
(iPSW(PseDNC-DL)) or priori text feature extraction (FastText N-grams).

For B. subtilis promoter recognition, we compare the recognition performance of our
iPro-CSAF with CapsProm. CapsProm used one-hot coding scheme and combined CNNs
with capsule networks to extract features. Our iPro-CSAF outperforms CapsProm in terms
of Sn, Sp, Acc, F1 and MCC. The Acc value of iPro-CSAF is higher by 2.46% than
CapsProm. Moreover, the number of parameters of CapsProm is 1271127, much more
than 77248 of iPro-CSAF. Therefore, our iPro-CSAF can achieve much better recognition
performance than CapsProm with much lower network complexity.

For cyanobacteria promoter recognition, we compare our iPro-CSAF with
DeePromoter (Oubounyt et al., 2019), CyaPromBERT (Mai, Nguyen ¢ Lee, 2022) and
SiamProm (Yang et al., 2024). DeePromoter was a CNNs-based promoter recognition
method combined with BiLSTM. CyaPromBERT utilized Bidirectional Encoder
Representations from Transformers (BERT) to perform pre-training on genomes for
promoter recognition. SiamProm was a cyanobacterial promoter recognition method
based on the Siamese network which contained two same subnetworks. Each subnetwork
comprised four parallel modules including an embedding initializer, a k-mer attention
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Table 6 The recognition performance of iPro-CSAF and compared methods on benchmark datasets.

Promoter types Predictors Sn (%) Sp (%) Acc (%) F1 MCC AUC AUPR

E.coli promoter iPro-CSAF 84.81 89.93 87.37 0.8704 0.7484 0.9046 0.9167
iProL (Peng, Sun & Fan, 2024) 84.62 86.61 85.62 - 0.7130 0.9211 -
iPro2L-CLA (Zhang et al., 2022) 86.87 85.13 86.00 - 0.7211 0.9291 -
iPSW(PseDNC-DL) (Tayara, Tahir ¢ Chong, 83.34 86.83 85.10 - 0.7024 0.9250 -

2020)

FastText N-grams (Le et al., 2019) 82.76 88.05 8541 - 0.7090 - -

B. subtilis promoter iPro-CSAF 94.01 96.89 96.08 0.9299 0.9030 0.9728 0.9501
CapsProm (Moraes et al., 2022) 89.73 95.05 93.62 0.8823 0.8393 - -

Cyanobacteria promoter iPro-CSAF 96.06 97.20 96.63 0.9661 0.9327 0.9777 0.9815
SiamProm (Yang et al., 2024b) 95.08 98.56 96.80 - 0.9367 - -
CyaPromBERT (Mai, Nguyen ¢ Lee, 2022) 94.69 95.58 95.13 - 0.9027 - -
DeePromoter (Oubounyt et al., 2019) 93.10 94.01 93.55 - 0.8711 - -

A. thaliana TATA iPro-CSAF 99.52 99.18 99.35 0.9936 0.9871 0.9970 0.9975
Depicter (Zhu et al., 2021) 97.09 98.38 97.72 0.9776 0.9544 0.9990 -

A. thaliana non-TATA iPro-CSAF 94.39 96.93 95.66 0.9561 0.9135 0.9707 0.9767
Depicter (Zhu et al., 2021) 95.00 94.56 94.78 0.9477 0.8956 0.9830 -

A. thaliana TATA&non-TATA iPro-CSAF 95.02 97.85 96.44 0.9638 0.9291 0.9762 0.9819
Depicter (Zhu et al., 2021) 96.06 95.38 95.72 0.9570 0.9144 0.9660 -

M. musculus TATA iPro-CSAF 99.53 99.71 99.62 0.9962 0.9924 0.9981 0.9986
DeePromClass (Kari et al., 2023) 97.87 96.43 97.14 0.9716 0.9431 0.9716 0.9769
DeeProPre (Ma et al., 2022) 99.42 98.26 98.84 0.9884 0.9768 0.9924 -
Depicter (Zhu et al., 2021) 99.29 99.63 99.46 0.9947 0.9892 1 -

M. musculus non-TATA iPro-CSAF 98.88 99.39 99.13  0.9913 0.9827 0.9937 0.9955
DeePromClass (Kari et al., 2023) 98.25 98.89 98.57 0.9856 0.9714 0.9857 0.9901
DeeProPre (Ma et al., 2022) 97.76 98.34 98.05 0.9805 0.9608 0.9846 -
Depicter (Zhu et al., 2021) 99.20 97.13 98.15 0.9815 0.9633 0.9970 -

M. musculus TATA&non-TATA  iPro-CSAF 98.78 99.40 99.09  0.9909 0.9819 0.9931 0.9951
DeePromClass (Kari et al., 2023). 98.29 98.95 98.62 0.9861 0.9723 0.9861 0.9904
DeeProPre (Ma et al., 2022) 97.51 98.50 98.00 0.9799 0.9601 0.9851 -
Depicter (Zhu et al., 2021) 98.38 98.17 98.27 0.9826 0.9654 0.9930 -

H. sapiens TATA iPro-CSAF 98.58 98.53 98.55  0.9855 0.9710 0.9929 0.9940
DeePromClass (Kari et al., 2023) 96.86 97.95 97.40 0.9737 0.9481 0.9740 0.9818
Depicter (Zhu et al., 2021) 96.60 98.47 97.53 0.9752 0.9508 0.9940 -

H. sapiens non-TATA iPro-CSAF 89.19 90.48 89.83 0.8977 0.7968 0.9300 0.9377
DeePromClass (Kari et al., 2023) 85.20 88.95 86.96 0.8660 0.7404 0.8696 0.9058
Depicter (Zhu et al., 2021) 88.61 89.14 88.87 0.8903 0.7774 0.9440 -

H. sapiens TATA&non-TATA iPro-CSAF 90.00 90.62 90.31 0.9028 0.8063 0.9332 0.9405
DeePromClass (Kari et al., 2023) 86.66 89.82 88.17 0.8791 0.7640 0.8816 0.9143
Depicter (Zhu et al., 2021) 88.22 89.95 89.06 0.8922 0.7814 0.8830 -

(Continued)
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Table 6 (continued)

Promoter types Predictors Sn (%) Sp (%) Acc (%) F1 MCC AUC AUPR

D. melanogaster TATA iPro-CSAF 98.95 98.33 98.64  0.9865 0.9729 0.9913 0.9920
DeePromClass (Kari ef al., 2023) 98.73 9638 97.52 09754 09509 0.9753 0.9787
DeeProPre (Ma et al., 2022) 98.01 9459 9641 09648 09292 0.9925 -
Depicter (Zhu et al., 2021) 9317 100 9635  0.9647 0.9295 0.9890 -

D. melanogaster non-TATA iPro-CSAF 9408  95.80 94.94  0.9490 0.8990 0.9662 0.9717
DeePromClass (Kari et al., 2023) 9433 9231 9329  0.9337 0.8661 09329 0.9477
DeeProPre (Ma et al., 2022) 9350 9291 9275 09322 0.8644 0.9847 -
Depicter (Zhu et al., 2021) 9410  91.12 9252 09220 0.8509 0.9750 -

D. melanogaster iPro-CSAF 94.14  96.07 95.11  0.9506 0.9025 0.9681 0.9729

TATA&non-TATA DeePromClass (Kari et al., 2023) 94.48 9400 9424 09425 0.8848 0.9424 0.9563
DeeProPre (Ma et al., 2022) 93.08 9359 9335  0.9333 0.8675 0.9852 -
Depicter (Zhu et al., 2021) 9209 9142 91.74 09149 0.8348 0.9750 -

Note:

Bold values indicate the highest score in each column.

module, a bi-directional context catcher and a nearest-neighbor aggregator. It was a
complex deep learning method. Our iPro-CSAF outperforms DeePromoter and
CyaPromBERT in terms of Sn, Sp, Acc and MCC. The Acc value of iPro-CSAF is 96.63%,
slightly lower than 96.80% of SiamProm. But parameter numbers of SiamProm is
7,253,376, much more than 77,248 of iPro-CSAF. This shows that our method can achieve
comparable accuracy with SiamProm, while has much lower network complexity than
SiamProm.

We then compare our iPro-CSAF with other methods on eukaryotic promoter
recognition. For the A. thaliana promoter recognition, we compare the recognition
performance of iPro-CSAF with Depicter (Zhu et al., 2021). Depicter first used one-hot
coding, then adopted CNNs and capsule networks to extract promoter features. For all the
three recognition tasks of A. thaliana, our iPro-CSAF outperforms Depicter in terms of Sp,
Acc, F1 and MCC. The Acc value of iPro-CSAF is higher by 1.63% on A. thaliana TATA
promoter recognition. It shows our parallel combination of convolution and MSSA is
superior to serial combination of convolution and capsule networks (Depicter).

For M. musculus promoter recognition, we compare iPro-CSAF with DeePromClass
(Kari et al., 2023), DeeProPre (Ma et al., 2022) and Depicter. DeePromClass first used one-
hot coding, then adopted CNNs and LSTM networks to extract promoter features.
DeeProPre first encoded promoter sequences by a word embedding layer, then extracted
further features by combing BiLSTM with CNNs. For all the three recognition tasks of this
species, iPro-CSAF outperforms all the three compared methods in terms of Sp, Acc, F1,
MCC and AUPR, and the Acc values of iPro-CSAF are all above 99% on M. musculus
promoter recognition. It shows our parallel combination of convolution and MSSA is also
superior to serial combination of convolution and LSTM networks.

For H. sapiens promoter recognition, we compare iPro-CSAF with DeePromClass (Kari
et al., 2023) and Depicter. For all the three recognition tasks of H. sapiens, our iPro-CSAF

Zhou et al. (2025), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2761

16/26


http://dx.doi.org/10.7717/peerj-cs.2761
https://peerj.com/computer-science/

PeerJ Computer Science

outperforms Depicter in terms of Sn, Sp, Acc, F1, MCC and AUPR. For the TATA&non-
TATA promoter recognition, the Acc of iPro-CSAF is 1.25% and 2.14% higher than
Depicter and DeePromClass, respectively.

For D. melanogaster promoter recognition, the compared methods are DeePromClass
(Kari et al., 2023), DeeProPre (Ma et al., 2022) and Depicter, the same as M. musculus
promoter recognition. iPro-CSAF outperforms all the three methods in terms of Acc, FI,
MCC and AUPR. The Acc values of iPro-CSAF are higher by 2.29%, 2.42% and 3.37% than
Depicter on the three types of D. melanogaster promoter recognition, respectively. We also
compare the network complexity of our method with Depicter, DeeProPre and
DeePromClass. And the parameter numbers of Depicter, DeeProPre and DeePromClass
are 4,177,744, 606,337 and 38,329,410 respectively, which are much more than 77,248 of
iPro-CSAF. It shows that our iPro-CSAF can achieve better recognition performance than
these methods with much lower network complexity.

From our results on prokaryotic promoter recognition, it can be seen that our method
which uses parallel combination of convolution and MSSA outperforms promoter
recognition methods which used combination of CNNs, LSTM, capsule networks and
attention mechanism (iPro2L-CLA, iProL, CapsProm, DeePromoter), and it also
outperforms CNNs which needed priori biological feature extraction (iPSW(PseDNC-DL)
or priori text feature extraction (FastText N-grams). Our iPro-CSAF can achieve
comparable accuracy with promoter recognition method which used combination of text
features and biological sequence features (SiamProm), while has much lower network
complexity. For B. subtilis promoter recognition, the Acc value of iPro-CSAF is higher
than CapsProm. It indicates good performance of our method on unbalanced datasets.
From our results on eukaryotic promoter recognition, it can be seen that our method
outperforms promoter recognition methods which used combination of CNNs and LSTM
(DeePromClass and DeeProPre), and it also outperforms method which used combination
of CNNs and capsule networks (Depicter).

As awhole, the Acc values of iPro-CSAF on eukaryotic promoter recognition are higher
than that on prokaryotic promoter recognition. The results show that our iPro-CSAF with
simple structure has good ability and generalization to extract promoter features.

Comparison of iPro-CSAF with state-of-the-art methods on
independent datasets

The independent datasets constructed in ‘Materials and Methods’ are used to validate the
promoter recognition performance of our proposed method. The recognition performance
of iPro-CSAF and compared methods on independent datasets is shown in Table 7. First
we compare our iPro-CSAF with other methods on prokaryotic promoter recognition. For
E. coli promoter recognition, our iPro-CSAF is compared with iProL (Peng, Sun ¢ Fan,
2024), iPro2L-CLA (Zhang et al., 2022), iPSW(PseDNC-DL) (Tayara, Tahir & Chong,
2020) and iPromoter-BnCNN (Amin et al., 2020). The first three methods are also used as
compared methods for E. coli promoter recognition on benchmark dataset. iPromoter-
BnCNN used four parallel three-layer CNNs to extract sequence features and each of the
four CNNs used different encoding methods. As shown in Table 7, iPro-CSAF
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Table 7 The recognition performance of iPro-CSAF and compared methods on independent datasets.

Promoter types Predictors Sn (%) Sp (%) Acc (%) F1 MCC AUC AUPR

E. coli promoter iPro-CSFA 97.24 90.59  93.92  0.9411 0.8803 0.9532 0.9565
iProL (Peng, Sun & Fan, 2024) 95.80 89.80 92.80 0.9300 0.8580 0.9780 -
iPro2L-CLA (Zhang et al., 2022) 86.27 84.80 85.53 - 0.7114 - -
iPromoter-BnCNN (Amin et al., 2020) 88.30  88.00 88.20 - 0.7630 - -
iPSW(PseDNC-DL) (Tayara, Tahir ¢» Chong, 89.72  81.61 85.56 - 0.7156 - -

2020)

A. thaliana TATA iPro-CSFA 99.37 99.21 99.29 0.9929 0.9858 0.9967 0.9970
Depicter (Zhu et al., 2021) 98.43 99.36  99.37  0.9889 0.9889 0.9990 -

A. thaliana non-TATA iPro-CSFA 9451 97.16 95.84 0.9578 0.9171 0.9693 0.9786
Depicter (Zhu et al., 2021) 96.45 94.27 95.33 0.9528 0.9069 0.9830 -

A. thaliana TATA&non-TATA  iPro-CSFA 95.00 97.93 96.46  0.9641 0.9296 0.9761 0.9816
Depicter (Zhu et al., 2021) 96.27 9544 95.85 0.9583 0.9171 0.9860 -

M. musculus TATA iPro-CSFA 100 99.67 99.84 0.9984 0.9968 0.9999 0.9999
DeePromClass (Kari et al., 2023). 97.41 97.72 97.56 0.9756 0.9513 0.9756 0.9821
DeeProPre (Ma et al., 2022) 99.61 99.68 99.65 0.9964 0.9929 0.9999 -
Depicter (Zhu et al., 2021) 99.35  99.35 99.35 0.9935 0.9870 1 -

M. musculus non-TATA iPro-CSFA 98.62 99.48 99.05 0.9905 0.9810 0.9937 0.9955
DeePromClass (Kari et al., 2023). 98.86 98.86 98.86 0.9886 0.9772 0.9886 0.9914
DeeProPre (Ma et al., 2022) 97.99 98.17 98.08 0.9808 0.9617 0.9970 -
Depicter (Zhu et al., 2021) 98.75 97.83 98.29 0.9828 0.9658 0.9970 -

M. musculus TATA&non-TATA iPro-CSFA 98.76  99.59 99.17 0.9917 0.9835 0.9954 0.9970
DeePromClass (Kari et al., 2023). 98.88 98.92 98.90 0.9890 0.9780 0.9890 0.9918
DeeProPre (Ma et al., 2022) 98.19  98.09 98.14 0.9814 0.9629 0.9960 -
Depicter (Zhu et al., 2021) 98.13 97.73 97.93 0.9792 0.9585 0.9930 -

H. sapiens TATA iPro-CSFA 97.61 98.98 98.29 0.9828 0.9660 0.9922 0.9937
DeePromClass (Kari et al., 2023). 95.07  98.58 96.75 0.9670 0.9358 0.9676 0.9801
Depicter (Zhu et al., 2021) 96.96  97.93 97.44 0.9745 0.9489 0.9940 -

H. sapiens non-TATA iPro-CSFA 8771 91.59  89.65 0.8945 0.7936 0.9353 0.9424
DeePromClass (Kari et al., 2023). 87.03  90.28 88.59 0.8835 0.7725 0.8859 0.9176
Depicter (Zhu et al., 2021) 88.26  89.08 88.67 0.8873 0.7734 0.9440 -

H. sapiens TATA&non-TATA iPro-CSFA 87.81 9193 89.87 0.8966 0.7981 0.9354 0.9418
DeePromClass (Kari et al., 2023). 87.28 91.18 89.13 0.8886 0.7836 0.8913 0.9225
Depicter (Zhu et al., 2021) 87.57 9091 89.17 0.8939 0.7841 0.8830 -

D. melanogaster TATA iPro-CSFA 99.23 97.30 98.26 0.9828 0.9654 0.9898 0.9906
DeePromClass (Kari et al., 2023). 98.80 95.88 97.30 0.9734 0.9464 0.9730 0.9765
DeeProPre (Ma et al., 2022) 98.46 94.98 96.73 0.9677 0.9350 0.9930 -
Depicter (Zhu et al., 2021) 92.11 91.21 95.37 0.9554 0.9101 0.9890 -

D. melanogaster non-TATA iPro-CSFA 96.01  95.58 95.80  0.9581 0.9160 0.9667 0.9705
DeePromClass (Kari et al., 2023). 9547  93.32 94.37 0.9444 0.8877 0.9437 0.9556
DeeProPre (Ma et al., 2022) 96.07 91.41 93.74 0.9388 0.8759 0.9850 -
Depicter (Zhu et al., 2021) 94.01 97.83 91.50 0.9212 0.8511 0.9750 -
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Table 7 (continued)

Promoter types Predictors Sn (%) Sp (%) Acc(%) F1 MCC AUC AUPR
D. melanogaster TAT A&non- iPro-CSFA 94.59  96.03 95.31 0.9528 0.9063 0.9685 0.9740
TATA DeePromClass (Kari et al., 2023). 96.30 92.56 94.35 0.9446 0.8877 0.9435 0.9539
DeeProPre (Ma et al., 2022) 93.97 9392 93.97 0.9397 0.8799 0.9850 -
Depicter (Zhu et al., 2021) 92.13 9223 92.18 0.9219 0.8437 0.9750 -

Note:

Bold values indicate the highest score in each column.

outperforms all the compared methods in terms of Sn, Sp, Acc and MCC. The Acc value of
iPro-CSAF is significantly higher than iProL, iPro2L-CLA, iPromoter-BnCNN and iPSW
(PseDNC-DL) by 1.12%, 8.39%, 5.72% and 8.36%, respectively. The results again show that
our method outperforms promoter recognition methods which used combination of
CNNs, LSTM, capsule networks and attention mechanism (iPro2L-CLA), CNNs which
needed priori biological feature extraction (iPSW(PseDNC-DL)). And it also outperforms
method which used parallel three-layer CNNs (iPromoter-BnCNN).

Then we compare our iPro-CSAF with other methods on eukaryotic promoter
recognition. For the A. thaliana promoter recognition, we compare iPro-CSAF with
Depicter (Zhu et al., 2021) which is also the compared method on benchmark datasets of
A. thaliana. For all the three types of promoter recognition, iPro-CSAF outperforms
Depicter in terms of F1. And for the non-TATA promoter recognition and TATA&non-
TATA promoter recognition, the Acc values of iPro-CSAF are slightly higher than that of
Depicter. For the TATA promoter recognition, the Acc value of iPro-CSAF is 99.29%, very
close to that of 99.37% of Depicter. But the parameter numbers of Depicter is 4,177,744,
much more than 77,248 of iPro-CSAF.

For the M. musculus promoter recognition, we compare iPro-CSAF with DeePromClass
(Kari et al., 2023), DeeProPre (Ma et al., 2022) and Depicter, which are also the compared
methods on benchmark datasets. For all the three types of promoter recognition, iPro-
CSAF outperforms all the compared methods in terms of F1, Acc, MCC and AUPR.

For H. sapiens promoter recognition, we compare iPro-CSAF with DeePromClass (Kari
et al., 2023) and Depicter, which are also the compared methods on benchmark datasets.
For all the three types of promoter recognition, iPro-CSAF outperforms all the compared
methods in terms of Sp, F1, Acc, MCC and AUPR. The AUC value of iPro-CSAF is higher
than Depicter by 5.24% on TATA&non-TATA promoter recognition.

For D. melanogaster promoter recognition, we compare iPro-CSAF with DeePromClass
(Kari et al., 2023), DeeProPre (Ma et al., 2022) and Depicter, the same as benchmark
datasets. iPro-CSAF outperforms all the three compared methods in terms of Acc, F1,
MCC and AUPR. The Acc values of iPro-CSAF is higher than Depicter by 2.89%, 4.3% and
3.13%, respectively, on the three types of D. melanogaster promoter recognition.

The results on prokaryotic promoter recognition in Table 7 again show that our method
outperforms promoter recognition methods which used combination of CNNs, LSTM,
capsule networks and attention mechanism (iPro2L-CLA), CNNs which needed priori
biological feature extraction (iPSW(PseDNC-DL)). And it also outperforms methods
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Figure 3 ROC curves for promoter recognition on independent datasets. (A) E. coli promoters.
(B) TATA promoters. (C) non-TATA promoters. (D) TATA & non-TATA promoters.
Full-size k] DOT: 10.7717/peerj-cs.2761/fig-3

which used parallel three-layer CNNs (iPromoter-BnCNN). The results on eukaryotic
promoter recognition in Table 7 again show our method is superior to serial combination
of convolution and LSTM networks (DeePromClass and DeeProPre), and also superior to
combination of convolution and capsule networks (Depicter). Our method shows good
ability to identify promoters from multiple species and good generalization for promoter
recognition.

Moreover, we plot ROC curves of our model for promoter recognition on independent
datasets as shown in Fig. 3. All the curves cover almost entire area, and the values of AUC
are close to 1, which indicates the good ability of predicting promoters.

The power consumption of iPro-CSAF

To evaluate the power consumption of our method, we calculate the power consumption
using Zhou’s method (Zhou et al., 2022). We calculate the power consumption of iPro-
CSAF for A. thaliana TATA&non-TATA promoter recognition and compare it with that
of traditional neural network with the same structure.
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Table 8 Power consumption of iPro-CSAF on A. thaliana TATA & non-TATA benchmark dataset.

Models Power consumption (mJ)
Without spiking neurons With spiking neurons
iPro-CSAF 11.38 2.69

To calculate the power consumption of spiking neural networks, we first need to
calculate the number of spike-based accumulate (AC) operations SOPs (Merolla et al.,
2014) which is represented as follows:

SOPs(l) = f, x T x FLOPs(1) (15)

where 1 is a block or layer in SNN. f, refers to firing rate of spiking neurons of this block
or layer in SNN. T is the simulation time steps. FLOPs(1) refers to the number of
multiply-and-accumulate (MAC) operations of | in traditional neural networks. It is
assumed that the MAC and AC operations are implemented on the 45 nm hardware,
where the power consumption of a MAC operation is Eyac = 4.6 pJ and the power
consumption of an AC operation is Eyc = 0.9 pJ. The power consumption calculation
equation of iPro-CSAF is as follows:

Pipro—csar = Emac - FLOPs(Conv_1) + Exc - (SOPs(Conv_2 + MSSA) + SOPs(FC)) (16)

where Eyac - FLOPs(Conv_1) is the power consumption calculation of Conv_1. It
performs traditional convolutional operation and there is no spike in this layer.

Eac - (SOPs(Conv_2 4+ MSSA) + SOPs(FC)) is power consumption calculation of
Conv_2, MSSA and the fully connected layer FC. The feature maps generated by Conv_1
are encoded into spikes train. Therefore, they perform spike-based operations. And we
calculate the power consumption of traditional neural network with the same structure as
iPro-CSAF for comparison. Its power consumption equation is as follows:

Pann = Enac - (FLOPs(Conv_1) + FLOPs(Conv_2 4+ MSSA) + FLOPs(EC)) (17)

Table 8 shows the power consumption of iPro-CSAF and that of traditional neural
network with the same structure of iPro-CSAF on A. thaliana TATA&non-TATA
benchmark dataset. As shown in Table 8, the power consumption of spiking neural
network with spiking neurons is significantly lower than traditional neural network with
the same structure. It indicates that our SNN method can achieve good promoter
recognition results with low power consumption.

CONCLUSIONS

In this article, we propose a spiking-based promoter recognition model named iPro-CSAF
which combines convolutional spiking neural networks with multi-head spiking self-
attention mechanism in a parallel structure to extract the spatio-temporal features of
promoter sequences. The results of ablation study and comparison study on multiple
species show that our method which uses parallel combination of convolution and MSSA
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can effectively extract promoter features of both prokaryotes and eukaryotes. Comparison
results show that our method outperforms methods which used parallel CNN layers,
methods which combined CNNs with capsule networks, attention mechanism, LSTM or
BiLSTM, and CNNs-based methods which needed priori biological or text feature
extraction. And it can achieve better performance than some transformer-based methods.
Moreover, our method has much fewer network parameters than some compared
promoter recognition methods. We also prove that the power consumption of our iPro-
CSAF with spiking neurons is significantly lower than traditional neural network with the
same structure. Our method shows good ability to identify promoters from multiple
species and good generalization for promoter recognition. Our work proves that spiking
neural networks have advantages in extracting promoter sequence features to identify
promoters.

There are also some areas in which our method can be improved. According to our
results, generally our recognition accuracy on prokaryotic promoters is lower than that on
eukaryotic promoters. In our experiments, prokaryotic promoters are shorter (length
81 bp) than eukaryotic promoters (length 300 bp). Features are more difficult to be learned
by our networks from short input sequences than from long input sequences. Therefore,
prokaryotic promoters are more difficult to be recognized than eukaryotic promoters. In
our future work, we will improve the ability of our model to extract features of short
promoter sequences. Multi-channel deep spiking neural network ensemble method might
be adopted by learning and fusing multi-view features of short promoter sequences. In
addition, it has been observed that biological neurons have adaptive membrane potential
threshold rather than fixed threshold, and adaptive spike threshold enables robust and
temporally precise neuronal encoding which contributes to the fine tune of networks.
Therefore, adaptive adjustment of membrane potential threshold of spiking neurons will
be added to improve the feature extraction ability of our SNNs in our future work.
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