

Activation function cyclically switchable convolutional neural network model

İsmail Akgül

Department of Computer Engineering, Erzincan Binali Yıldırım University, Erzincan, Turkey

ABSTRACT

Neural networks are a state-of-the-art approach that performs well for many tasks. The activation function (AF) is an important hyperparameter that creates an output against the coming inputs to the neural network model. AF significantly affects the training and performance of the neural network model. Therefore, selecting the most optimal AF for processing input data in neural networks is important. Determining the optimal AF is often a difficult task. To overcome this difficulty, studies on trainable AFs have been carried out in the literature in recent years. This study presents a different approach apart from fixed or trainable AF approaches. For this purpose, the activation function cyclically switchable convolutional neural network (AFCS-CNN) model structure is proposed. The AFCS-CNN model structure does not use a fixed AF value during training. It is designed in a self-regulating model structure by switching the AF during model training. The proposed model structure is based on the logic of starting training with the most optimal AF selection among many AFs and cyclically selecting the next most optimal AF depending on the performance decrease during neural network training. Any convolutional neural network (CNN) model can be easily used in the proposed model structure. In this way, a simple but effective perspective has been presented. In this study, first, ablation studies have been carried out using the Cifar-10 dataset to determine the CNN models to be used in the AFCS-CNN model structure and the specific hyperparameters of the proposed model structure. After the models and hyperparameters were determined, expansion experiments were carried out using different datasets with the proposed model structure. The results showed that the AFCS-CNN model structure achieved state-of-the-art success in many CNN models and different datasets.

Submitted 2 August 2024

Accepted 19 February 2025

Published 24 March 2025

Corresponding author

İsmail Akgül, iakgul@erzincan.edu.tr

Academic editor

Bilal Alatas

Additional Information and
Declarations can be found on
page 31

DOI [10.7717/peerj-cs.2756](https://doi.org/10.7717/peerj-cs.2756)

© Copyright
2025 Akgül

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Subjects Artificial Intelligence, Computer Vision, Neural Networks

Keywords Artificial intelligence, Convolutional neural network, Activation function, AFCS-CNN

INTRODUCTION

Neural networks are one of the modeling methods that play an important role in the fields of machine learning and deep learning ([Goel, Goel & Kumar, 2023](#)). The basic building blocks of these networks are artificial neurons inspired by biological nerve cells ([Montesinos López, Montesinos López & Crossa, 2022](#); [Liu et al., 2023](#)). Artificial neurons that mimic biological neuron functions ([Cao et al., 2022](#)) apply a mathematical function to process the inputs they receive and produce output ([Han et al., 2022](#); [Gülmmez, 2023](#); [Yevick, 2024](#)). In this process, the flow of information between neurons and the responses of

neurons to inputs are largely regulated through activation function (AF) ([Vijayaprabakaran & Sathiyamurthy, 2022](#)). AF used in these processes is a critical element that determines how the neuron will respond to the signals it receives.

AFs directly affect the training and performance of the model as they provide an output based on the inputs in the neural network ([Akgül, 2023](#)). They are divided into two main categories: linear and nonlinear functions. While linear AFs enable the model to perform well on simpler problems, more complex functions are needed to model nonlinear relationships ([Vargas et al., 2021](#)). The task of AF is to learn abstract properties of data through nonlinear modification ([Kalim, Chug & Singh, 2024](#)). That is, to help learn nonlinear and complex mappings between inputs and their corresponding outputs ([Sharma, Sharma & Athaiya, 2020](#); [Subramanian et al., 2024](#)). Recent research has found that AF plays an important role in introducing nonlinearity to improve the performance of deep learning networks ([Rajanand & Singh, 2024](#)). This nonlinear ability of AF has brought true artificial intelligence to deep neural networks ([Wang, Ren & Wang, 2022](#)).

Many AFs have been proposed throughout the history of machine learning. Some of the AF types commonly used in neural networks are: Binary Step, Linear, Sigmoid, Hyperbolic Tangent (Tanh), Rectified Linear Unit (ReLU), Leaky ReLU, Parametric ReLU (PReLU), Exponential Linear Units (ELU), SELU, Softmax, Mish, Swish/Sigmoid Linear Unit (SiLU), Gaussian Error Linear Unit (GELU), Logish, Softplus and Softsign ([Yuen et al., 2021](#); [Wang, Ren & Wang, 2022](#); [Kiaeи et al., 2023](#); [Kalim, Chug & Singh, 2024](#); [Verma, Chug & Singh, 2024](#)). AFs such as Sigmoid, Tanh, ReLU, and Leaky ReLU are the most widely used nonlinear functions in neural networks. Each function responds differently to inputs and offers specific advantages for specific problems. Sigmoid and Tanh AFs are both s-shaped and are used to classify objects where the output is limited to $\{0, 1\}$ to $\{-1, 1\}$ respectively ([Verma, Chug & Singh, 2024](#)). ReLU AF is used for quantification, classification, and reinforcement learning problems. Leaky ReLU, ELU, and Softplus AFs are part of the ReLU AF family. Leaky ReLU AF is a version of ReLU with a non-zero gradient to prevent the gradient from reaching zero. ELU and Softplus AFs solve the problem by creating smoothness and continuity in the environment. Newer AFs such as Mish, Swish/SiLU, and GELU have built-in regularization to prevent over-fitting of models ([Yuen et al., 2021](#)).

The purpose of machine learning algorithms is to determine the most optimal model to solve a specific problem. To determine the most optimal model, it is necessary to select the most optimal AF, like many parameters ([Yuen et al., 2021](#)). However, selecting the most optimal AF to train the neural network is not always an easy task ([Kiaeи et al., 2023](#)). Since linear AFs limit the learning performance of deep learning models, nonlinear AFs are mostly preferred. Nonlinear AFs can be classified as fixed-parameter and trainable/adaptive AFs, depending on whether the AF parameter is fixed or modified during the training process of deep learning models ([Kılıçarslan & Celik, 2024](#)). Although the effectiveness of trainable or adaptive AFs has been examined in areas with abundant data, such as image classification problems, significant gaps remain in understanding their impact on classification accuracy and prediction uncertainty in environments characterized by limited data availability ([Pourkamali-Anaraki et al., 2024](#)).

Although fixed parameter AFs have been widely used in image classification models in previous studies, they have important shortcomings such as low classification accuracy. In recent years, adding parameters to AF to improve its performance has become a popular research topic. Excellent progress has been made with adaptive AFs obtained in this way (Jiang, Xie & Zhang, 2022). Many recent studies have been conducted on trainable or adaptive AF in the literature, especially in recent years (see 'Related Works'). In these studies, a parametric variation of an existing AF was created by adding new parameters to commonly used AF types. Some of these created parametric AFs change the activation in the positive domain (Vargas *et al.*, 2021). Another part focuses on either assigning a different slope to the negative domain of AF or converting the negative value to a positive value instead of zero (Jiang, Xie & Zhang, 2022). Although cyclic switching strategies such as cyclic learning rates (Smith, 2017) and cyclic precision (Fu *et al.*, 2021) have been discussed during training, the cyclic AF switching strategy has not been discussed. In the studies, new AFs were generally proposed by adding an adaptive parameter to the AF, and the AF was used without a switch throughout the training. However, no study has been found on switching AF during training. In this study, unlike other studies, instead of an AF proposal, the ability to switch the AF with another AF during neural network training was adopted. The AFs to be used during training can be either fixed-parameter or adaptive. Thus, many AF switches are allowed during training (while training continues). In summary, it can be used in many AF neural networks thanks to the instantaneous AF switch while neural network training continues.

In this study, the activation function cyclically switchable convolutional neural network (AFCS-CNN) model structure was proposed, which allows cyclical switching of AF, which has an important place in neural networks. A first was achieved by proposing a new model from a unique perspective in the literature. Many experiments have been applied to determine the effectiveness of the proposed model. After a series of ablation experiments were carried out on the Cifar-10 dataset, expansion experiments were performed on the V2 Plant Seedling and APTOS 2019 Blindness Detection datasets, and the performance of the proposed model was measured. The highlight of this study to the literature can be summarized as follows:

- 1) A new model structure called AFCS-CNN has been proposed, which enables cyclical switching of AF.
- 2) Unlike the studies in the literature, instead of an AF proposal, the ability to switch the AF with another AF during neural network training has been adopted.
- 3) The concept of cyclic AF switching strategy during model training has been introduced.
- 4) A first was achieved by designing a model structure that had not been tried before, thanks to instant AF switches during neural network training.
- 5) The algorithm of the proposed model structure is designed to allow easy integration of all convolutional neural network (CNN) models into the structure.
- 6) Training with the proposed model structure has provided superior success in many problems compared to training with fixed AFs.

- 7) A state-of-the-art success has been achieved with the proposed model structure in plant seedling classification.

The remaining part of the study is organized as follows. Recent studies on AF development can be found in the ‘Related Works’, dataset preprocessing, training parameters, performance metrics and model structure are noted in ‘Materials and Methods’, performance and results are discussed in ‘Results and Discussions’, and the article concludes in the ‘Conclusion’.

RELATED WORKS

In this section, recent studies on the development of trainable or adaptable AFs are comprehensively reviewed.

In a study on trainable or adaptive AFs, a trainable AF named Modified Mexican ReLU (MMeLU) was proposed to solve the complexity problem and improve the model performance. A fully Bayesian model is developed to automatically estimate both model weights and AF parameters from the training data. The proposed method is designed to learn the recommended AF weights and parameters directly from the data without any user configuration. The proposed method has been tested on various datasets covering both classification and regression tasks and implemented on various CNN architectures. The results showed that the proposed approach is useful in improving the model accuracy due to the proposed AF and Bayesian estimation of the parameters ([Fakhfakh & Chaari, 2024](#)). In another study, a new AF named ErfReLU based on error function (erf) and ReLU was developed. The performance of the proposed function is compared with nine different trainable AFs. CIFAR-10, MNIST, and FMNIST benchmark datasets were used to evaluate the effectiveness of AFs with MobileNet, VGG16, and ResNet models. The proposed AF has achieved better accuracy than other state-of-the-art adaptive AFs ([Rajanand & Singh, 2024](#)).

In another study, a novel trainable AF, adaptive piecewise approximated activation linear unit (APALU), was proposed to improve the learning performance of deep learning on a wide range of tasks. It has been stated that the proposed function exhibits significant improvements over AFs commonly used in image classification, anomaly detection, sign language recognition, and regression tasks ([Subramanian et al., 2024](#)). In another study, two trainable Gaussian-based AFs were proposed for sensor-based human activity recognition (HAR). Experiments have been conducted on Opportunity and UniMiB SHAR benchmark datasets with the proposed Four-Parameter Activation Gaussian Radial Basis Function (T4GRBF) and Weighted Gaussian Radial Basis Function (WGRBF). On both datasets, the results showed that Trainable Gaussian-based AFs fit the training data better and faster than standard AFs ([Machacuay & Quinde, 2024](#)). In another study, a generalized activation function called Generalized Exponential Parametric Activation Function (GEPAF) was proposed. In applications on real-world supply chain datasets, the proposed function outperformed popular AFs while demonstrating at least a 30% improvement in regression evaluation metrics and better loss reduction properties ([Attarde & Sayyad, 2024](#)).

In another study, PolySigmoid, PolySoftplus, PolyGeLU, PolySwish, and PolyMish polynomial versions of existing shape-shifting AFs such as Sigmoid, Softplus, GeLU, Swish, and Mish were proposed. As a result of the accuracy comparisons, it was determined that the performance of the polynomial versions of AFs was similar to or better than their counterparts (*Herrera-Alcántara & Arellano-Balderas, 2024*). Another study proposed an adaptive ReLU based on the genetic algorithm (GA) profile to improve the restrictive ability of the original ReLU and determine the best threshold value to allow adaptation-based neuron activation. As a result of experiments for breast cancer classification, it was found that the proposed method showed improved accuracy and improved classification performance from 95.0% to 98.5% compared to other well-known AFs (*Razali et al., 2024*).

Another study examined the effectiveness of trainable (non-periodic) AFs for neural implicit k-space (NIK) in the context of non-Cartesian Cardiac MRI. The proposed NIKs with trainable AFs are evaluated on 42 radially sampled datasets from six subjects and qualitatively and quantitatively outperform other state-of-the-art reconstruction methods including NIK with fixed periodic AFs (*Haft et al., 2024*). In another study, a new transformative adaptive activation function (TAAF) that allows any vertical and horizontal translation and scaling was investigated. It has been emphasized that TAAFs generalize more than 50 existing AFs and use similar concepts to more than 70 other AFs (*Kunc, 2024*).

In another work, a unified adaptive AF called adaptive activation (AdAct) was presented, which aims to improve neural network performance by adaptively selecting and combining the most suitable AFs for different tasks and datasets. The effectiveness of ReLU and its variants, including ELU, LReLU, PReLU, RReLU, and newer functions such as Swish and Mish, has been investigated by integrating them into the AdAct function. In the study where ConvNet variants were used on FMNIST, CIFAR10, SVHN, and FER datasets, AdAct showed better performance than other AFs (*Maiti, 2024*). In another study, in which the adaptive activation algorithm AdAct was proposed, it was emphasized that there were improvements in the performance of feedforward and convolutional neural networks (*Rane et al., 2024*). In another study, a new model, the expressive neural network (ENN), was presented in which nonlinear AFs were modeled using discrete cosine transform (DCT) and adapted using backpropagation during training. ENN has outperformed state-of-the-art non-adaptive AFs by adapting AFs for classification and regression problems (*Martinez-Gost, Pérez-Neira & Lagunas, 2024*).

In another study, a novel modulation window radial basis function neural network (MW-RBFNN) with a tunable AF was proposed. A raised cosine radial basis function (RC-RBF) was implemented as a shape-tunable AF of MW-RBFNN by adaptively modulating it by an exponential function. Simulation results of many different application cases have shown that this proposed MW-RBFNN is effective (*Lin et al., 2024*). In another study, a new adaptive deep neural networks (ADN) technique is proposed for partial differential equations (PDE) with corner singular solutions. Three different adaptive techniques were used for this, such as an adaptive loss function, an adaptive activation function, and an adaptive sampling strategy. The results showed that ADN achieved higher accuracy and

faster convergence speed compared to some traditional DNN methods ([Zeng, Liang & Zhang, 2024](#)).

In a different study, it was studied that a customized adaptive activation function (AAF) can match the accuracy of a deep neural network (DNN). A field programmable gate arrays (FPGA) hardware implementation for a customized segmented spline curve neural network (SSCNN) structure is designed to replace the traditional fixed AF with an AAF. The proposed SSCNN implementation achieved similar accuracy using 40% less hardware resources and block RAM compared to DNN ([Jiang et al., 2024](#)). In a similar study, a local active memristor with a conductance function value range limited between 0 and 1 was designed to create an adaptive AF called memristive PReLU (MPReLU). A heterogeneous memristive Hopfield neural network with neurons using different activation functions was presented and a hardware implementation of this neural network with adaptive AF was designed. The experimental results largely coincided with those obtained using numerical simulations ([Wang, Liang & Deng, 2024](#)).

MATERIALS AND METHODS

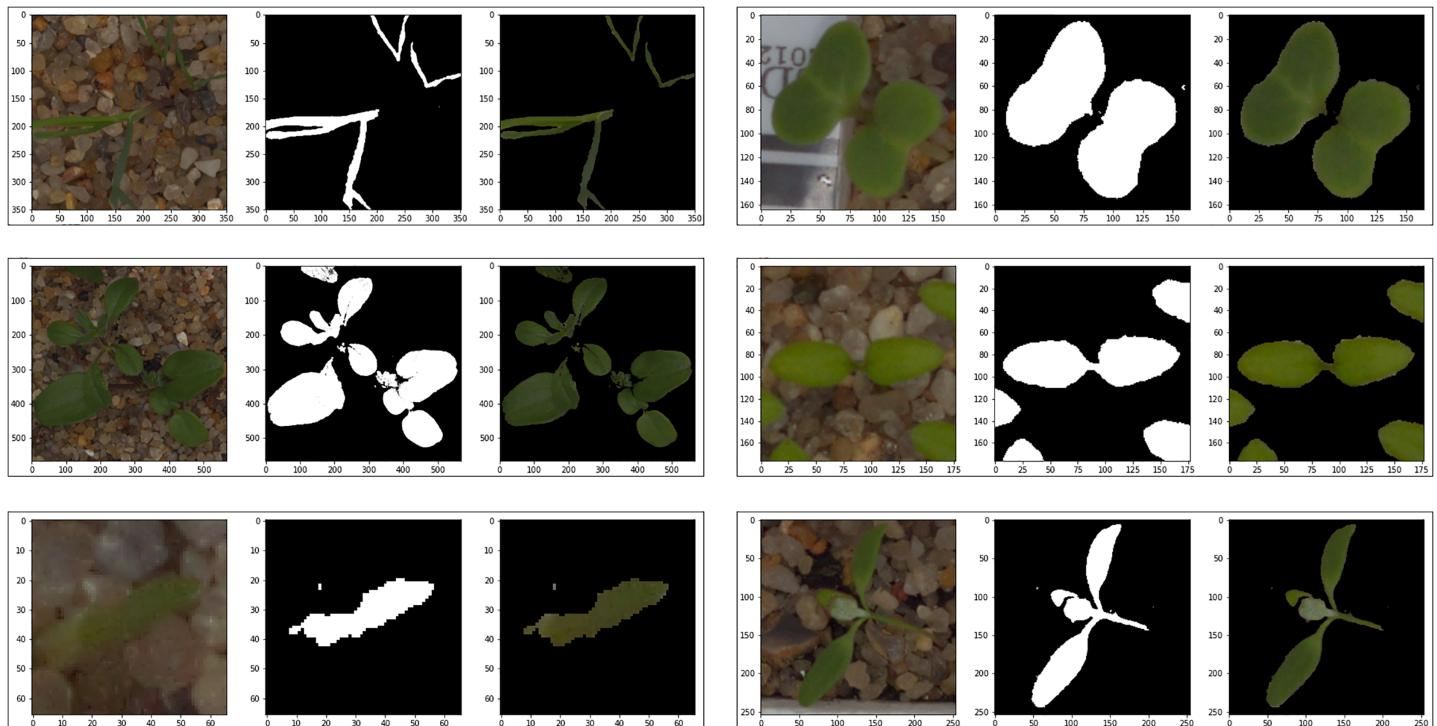
Dataset and preprocessing

In this study, the Cifar-10 ([Krizhevsky, 2009](#)) dataset was used to determine the CNN model to be used in the AFCS-CNN model structure and the special hyperparameters of AFCS-CNN, and V2 Plant Seedling ([Kaggle, 2024](#); [Giselsson et al., 2017](#)) and APTOS 2019 Blindness Detection ([APTOS 2019, 2024](#)) datasets were used to test the model performance. Cifar-10 dataset consists of 10 classes and each of the 60,000 images in this dataset has dimensions of $32 \times 32 \times 3$ pixels. The V2 Plant Seedling dataset consists of 12 classes representing common plant species in Danish agriculture, and each of the 5,539 images in this dataset has different pixel sizes. The Asia Pacific Tele-Ophthalmology Society 2019 Blindness Detection (APTOS 2019 Blindness Detection) dataset consists of five classes with an imbalanced distribution to classify diabetic retinopathy (DR), and each of the 3,662 images in this dataset has different pixel sizes. [Table 1](#) lists the image types and numbers in each class in the datasets.

Since the images in the Cifar-10 dataset have the same pixel dimensions and there is no common distinctiveness in the objects in the images, they were not subjected to any preprocessing. Various preprocesses were applied to the images in the V2 Plant Seedling dataset to ensure smoother progress of the training process. In the V2 Plant Seedling dataset images, plant greens can be distinguished in color space because they are denser than other objects. Therefore, the images in this dataset were masked by applying color-based segmentation. The best color range to distinguish plant greens in the color space was determined between RGB: 27-45-45 and RGB: 100-255-255. After masking, the images in the V2 Plant Seedling dataset were set to $224 \times 224 \times 3$ pixel dimensions. Since there is a class imbalance in the APTOS 2019 Blindness Detection dataset, no preprocessing other than dimension adjustment was performed to determine the behavior of the proposed model in an imbalanced dataset. Only the images in the dataset were set to

Table 1 Image types and numbers in each class in the datasets.

Cifar-10 dataset image type	Number of image	V2 plant seedling dataset image type	Number of image	APOTOS 2019 dataset image type	Number of image
Airplane	6,000	Black-grass	309	No DR	1,805
Automobile	6,000	Charlock	452	Mild DR	370
Bird	6,000	Cleavers	335	Moderate DR	999
Cat	6,000	Common Chickweed	713	Severe DR	193
Deer	6,000	Common wheat	253	Proliferate DR	295
Dog	6,000	Fat Hen	538		
Frog	6,000	Loose Silky-bent	762		
Horse	6,000	Maize	257		
Ship	6,000	Scentless Mayweed	607		
Truck	6,000	Shepherd's Purse	274		
		Small-flowered Cranesbill	576		
		Sugar beet	463		
Total	60,000	Total	5,539	Total	3,662

**Figure 1** Examples of masked images from the V2 plant seedling dataset.Full-size DOI: [10.7717/peerj-cs.2756/fig-1](https://doi.org/10.7717/peerj-cs.2756/fig-1)

224 × 224 × 3 pixel dimensions. [Figure 1](#) shows some examples obtained as a result of masking from images in the V2 Plant Seedling dataset, and [Fig. 2](#) shows sample images of each class in the APTOS 2019 Blindness Detection dataset.

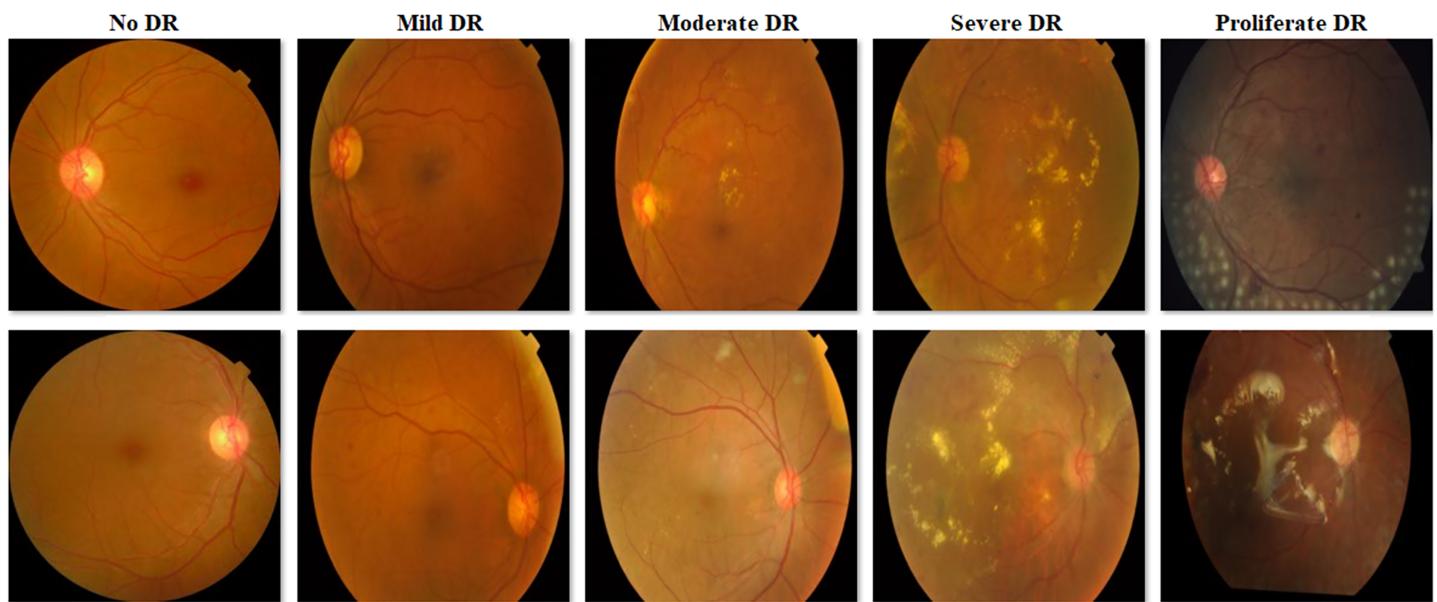


Figure 2 Examples of images from the APTOS 2019 Blindness Detection dataset.

Full-size DOI: 10.7717/peerj-cs.2756/fig-2

Model training parameters and performance metrics

In the experiments conducted in this study, the Adamax optimization algorithm was used at its default values. The loss function was implemented as Categorical Crossentropy and the classification activation function was implemented as Softmax. To prevent the overfitting tendency of the models during training, the minimum level of loss value in the validation dataset was checked with the “patience” feature used in the “early stopping” process. Therefore, a fixed epoch value was not used. The batch size value was set to 128 for training with the Cifar-10 dataset and 16 for training with the V2 Plant Seedling and APTOS 2019 Blindness Detection datasets. The Cifar-10 dataset is divided into two datasets 80% training, and 20% testing, and the V2 Plant Seedling and APTOS 2019 Blindness Detection datasets are divided into three datasets 70% training, 15% validation, and 15% testing.

After the model is created, various evaluation metrics are needed to measure how its performance works (Sohan *et al.*, 2019). Evaluation metrics mostly come from the confusion matrix (Zhang *et al.*, 2016). Therefore, accuracy, loss, precision, recall, and F1-score metrics were examined to determine the classification success of the models.

AFCS-CNN model structure

AFCS-CNN model structure works on the principle of switching AF during model training. It suggests that AF can be switched cyclically depending on the performance decrease in the neural network. The workflow of the AFCS-CNN model structure is shown in Fig. 3, and the flowchart is shown in Algorithm 1.

The AFCS-CNN model structure, whose flow is shown in Fig. 3 and Algorithm 1, initially takes *list_AF*, *p₀*, *p₁*, *AFCS_loop* and *min_AF_count* parameter values as input. In the neural network (*ModelA*), the best and worst performing AFs are determined by trying

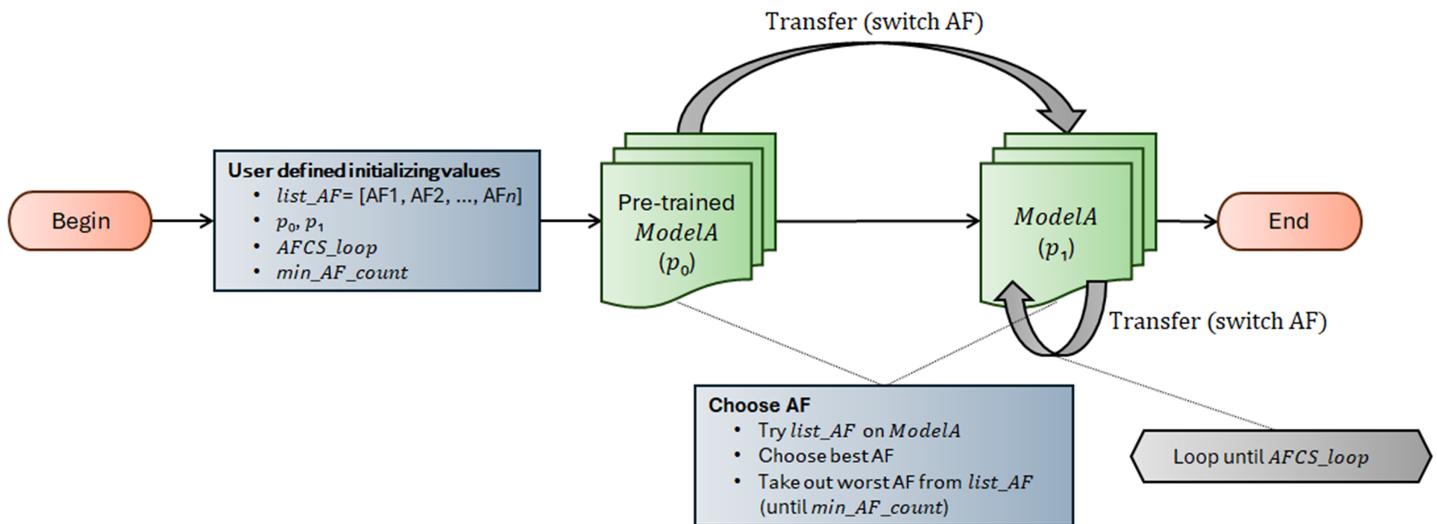


Figure 3 Workflow of AFCS-CNN model structure.

Full-size DOI: 10.7717/peerj-cs.2756/fig-3

Algorithm 1 AFCS-CNN algorithm.

```

begin
    list_AF = [AF1, AF2, ..., AFn]
    p0, p1, AFCS_loop ∈ [2, +∞), min_AF_count ∈ [2, +∞)
    try list_AF on ModelA and choose best AF and take out worst AF from list_AF
    start ModelA training
    if patience = p0 then
        stop ModelA training
    for i = 2 to AFCS_loop step 1 do
        try list_AF on ModelA and choose next best AF
        if min_AF_count < len (list_AF) then
            take out worst AF from list_AF
        end if
        continue ModelA training with new AF
        if patience = p1 then
            stop ModelA training
        end if
    end for
    end if
end

```

them among a series of AFs (*list_AF*) determined as parameters at the input. Training starts with the best-performing AF, while the worst-performing AF is taken out from *list_AF*. During training, whether the performance of the model on the validation dataset

improves is checked with the patience (p_0, p_1) hyperparameter used in the early stopping process. In case the model performance does not improve during training, the best and the worst performing AFs are determined again among the remaining AFs. Training continues with the best-performing new AF. Take out process of the worst-performing AF from the system is continued cyclically until the minimum number of AFs (*min_AF_count*) defined by the user at the beginning is reached. Training is finished when the number of AFCS cycles (*AFCS_loop*) defined at the beginning is reached.

The runtime of the AFCS-CNN model structure, whose flow is shown in [Fig. 3](#) and [Algorithm 1](#), is given in [Eq. \(1\)](#).

$$Runtime_{AFCS-CNN} = Rt_{CNN} + Rt_{ep} \left(p_0 + \sum_{i=2}^{AFCS_loop} p_1 \right) \quad (1)$$

where Rt_{CNN} is the total runtime of any CNN model, Rt_{ep} is an epoch runtime and p_0 and p_1 are patience values.

According to [Eq. \(1\)](#), the runtime of the AFCS-CNN model is calculated by adding the cost that the p_0 and p_1 values will bring to the total runtime of the CNN model to be used in the AFCS-CNN model. The additional cost is found by multiplying the sum of the p_0 value and the p_1 value (as many as the number of cycles) by an epoch runtime of the CNN model. Considering the cases where the patience hyperparameter is used during model training, the additional runtime cost of the AFCS-CNN model can be ignored if the p_0 and p_1 parameters are given small values. For example, let's assume that patience=10 is given in a CNN model that does not use the AFCS-CNN model structure and $p_0=6, p_1=5$ (*AFCS_loop*=5) in the AFCS-CNN model. In this case, while the CNN model will run 10 epochs more, the AFCS-CNN model will run $6+5*4=26$ epochs more. But in the AFCS-CNN model, when $p_0=3, p_1=2$ (*AFCS_loop*=5) is given, the AFCS-CNN model will have run $3+2*4=11$ epochs more. Or, when $p_0=2, p_1=1$ (*AFCS_loop*=5) is given in the AFCS-CNN model, the AFCS-CNN model will have run $2+1*4=6$ epochs more. Therefore, it is recommended to give small values to the p_0 and p_1 parameters to obtain a competitive training cost with the AFCS-CNN model.

RESULTS AND DISCUSSION

In this study, ablation studies were performed using the Cifar-10 dataset to determine the CNN models to be used in the proposed AFCS-CNN model structure and the special hyperparameters of the proposed model structure, and expansion experiments were performed using the V2 Plant Seedling and APTOS 2019 Blindness Detection datasets to determine the performance of the proposed model structure.

Ablation studies

Ablation studies to determine the best CNN models and hyperparameters consist of three stages. The first stage includes determining the CNN models to be used in the AFCS-CNN model structure, the second stage includes determining the *list_AF* array and the p_0 parameter value, and the third stage includes determining the p_1 parameter value.

Table 2 Numerical results obtained from model training in the Cifar-10 dataset.

Model	Default AF	Accuracy	Loss	Precision	Recall	F1-score
VGG16	ReLU	0.8452	0.8203	0.8460	0.8470	0.8450
ResNet50	ReLU	0.8017	1.0741	0.8050	0.8030	0.8020
MobileNet	Linear	0.7928	1.0904	0.7918	0.7813	0.7855
DenseNet121	ReLU	0.8293	0.9186	0.8350	0.8300	0.8290
NASNetMobile	ReLU	0.7499	1.4968	0.7520	0.7500	0.7480
EfficientNetV2B0	SiLU	0.5294	2.6258	0.6320	0.5300	0.5190
ConvNeXtTiny	GELU	0.1000	2.3050	0.0100	0.1000	0.0180

Stage 1: Determination of CNN models to be used in the AFCS-CNN model structure

To determine the CNN models to be used in the proposed AFCS-CNN model structure, VGG16 ([Simonyan & Zisserman, 2014](#)), ResNet50 ([He et al., 2016](#)), MobileNet ([Howard, 2017](#)), DenseNet121 ([Huang et al., 2017](#)), NASNetMobile ([Zoph et al., 2018](#)), EfficientNetV2B0 ([Tan & Le, 2021](#)), and ConvNeXtTiny ([Liu et al., 2022](#)) Keras models were tried on the Cifar-10 dataset. CNN models were trained for 20 epochs with pre-trained weights without partial layer freezing, and at default AF values. The numerical results obtained as a result of the training are given in [Table 2](#).

According to the numerical results given in [Table 2](#), the two best-performing models are VGG16 (84.52%) and DenseNet121 (82.93%), while the two worst-performing models are EfficientNetV2B0 (52.94%) and ConvNeXtTiny (10.00%). Since it would be appropriate to conduct ablation studies with the best-performing VGG16 and DenseNet121 models, these two models were preferred. It should be noted that in addition to these two best-performing models, the two worst-performing models (EfficientNetV2B0 and ConvNeXtTiny) were also used in the expansion experiments presented in the later sections of the study.

Stage 2: Determination of list_AF array and p_0 parameter value

After determining the CNN models to be used in ablation studies, special hyperparameters of AFCS-CNN need to be defined. These hyperparameters can be given randomly or determined as a result of certain ablation studies. Here, a series of ablation studies were performed using the VGG16 and DenseNet121 models and the Cifar-10 dataset to determine the specific hyperparameters of AFCS-CNN.

Firstly, training was performed with VGG16 and DenseNet121 models to determine the *list_AF* array and the p_0 parameter value (epoch=20, patience=10). In addition to the ReLU, SiLU, and GELU AFs from the model default AF values presented in [Table 2](#), the Tanh, ELU, SELU, and Mish AFs accepted in the literature were also preferred and the first version of the *list_AF* array was created. The VGG16 and DenseNet121 models use ReLU AF by default. The default AF of VGG16 and DenseNet121 models were trained separately by replacing them with the AFs in the *list_AF* array (fixed AF throughout training). The experiments were repeated three times to determine the best AFs. The test loss values

Table 3 Test loss values obtained as a result of experiments to determine the best AFs.

Model	Exp	Epoch	AF						
			Tanh	ReLU	ELU	SELU	Mish	SiLU	GELU
VGG16	Exp1	1	2.3076	0.9476	1.0678	1.2563	1.2892	1.1551	1.1570
		2		0.6696	0.6680	0.7820	0.8432	0.8062	0.7725
		3		0.5962	0.5724	0.6139	0.6929	0.6398	0.7045
		4		0.5256	0.5992	0.6085	0.6095	0.6129	0.6445
		5			0.5696	0.6102	0.6128	0.5439	0.5598
		6			0.5554	0.5163	0.5340		0.5436
	Exp2	1	2.3142	1.0733	0.9366	1.4203	1.2050	1.2574	1.3257
		2	2.3071	0.6606	0.7246	0.8865	0.8317	0.7698	0.9488
		3		0.6901	0.5796	0.6664	0.5938	0.6802	0.6997
		4		0.5445	0.5255	0.5771	0.5877	0.5580	0.6504
		5		0.5327	0.6197	0.5706	0.5932	0.5556	0.5919
		6			0.5106	0.5274	0.5679		0.5578
	Exp3	1	2.3181	1.3439	2.3096	1.2635	1.2560	1.2025	1.6888
		2	2.3079	0.8153	2.3157	0.8118	0.7729	0.7723	0.8539
		3		0.7513	2.3073	0.6305	0.6168	0.6512	0.9304
		4		0.6177	1.3916	0.6437	0.5809	0.5713	0.6721
		5		0.5600	0.7189	0.5747	0.5858		0.5833
		6		0.5151	0.6646		0.5580		0.6320
		7			0.5391				0.5170
		8			0.5236				
DenseNet121	Exp1	1	2.5334	0.6554	1.5114	1.1965	1.1738	1.1499	0.9080
		2	1.3031	0.5978	1.1989	1.1150	1.0227	0.9996	0.6984
		3	1.5998		1.2462	1.0469	0.8134	0.9571	0.6139
		4	1.1421		0.8565	1.0753	1.1066	0.7643	0.6911
		5	1.1080		0.9678	0.9509	0.9248	1.0973	0.7137
		6	1.0704		0.8023	0.8480	0.6475	0.7673	0.5965
		7	0.9837		0.7692	0.8905		0.7938	
		8	0.8963		0.8283	0.8551		0.7441	
		9	0.8924		0.7902	0.8649		0.8058	
		10	1.2865		0.7778	0.9231		0.7149	
		11	0.8584		0.6953	0.8685		0.6174	
		12	20.381			0.9441			
		13	0.9130			0.7886			
		14	0.9475			0.8488			
		15	1.5578			0.7172			
		16	0.7754						

Table 3 (continued)

Model	Exp	Epoch	AF					
			Tanh	ReLU	ELU	SELU	Mish	SiLU
Exp2	1	2.6434	0.6864	1.2152	1.2862	1.3581	1.1517	0.8766
		1.4907	0.6845	1.0475	1.0604	1.4940	1.1341	0.8051
		1.8102	0.6161	0.8702	1.1703	0.7974	0.8132	0.6477
		0.9409		1.0633	1.1219	0.8704	0.8092	0.6355
		1.4932		0.9105	1.0914	0.7391	0.7236	0.8993
		1.3614		0.7997	0.9500	0.7348	0.7522	0.5716
		0.9439		0.8416	1.0224	0.6762	0.7218	
		1.0116		0.8869	1.2598	0.7274	0.7383	
		0.9864		0.9702	1.0666	0.7168	0.7116	
		1.2859		0.7945	1.2473	0.7997	0.6661	
		0.7728		0.7792	0.8475	0.6685	0.7161	
				1.0680	0.7670		0.6738	
				0.7520			0.6274	
		14		0.7260				
Exp3	1	2.8821	0.6683	1.4735	1.2436	1.0554	1.0850	0.8528
		1.2687	1.0291	0.9248	1.1282	1.1075	0.9101	0.9093
		1.1558	0.5604	0.8414	1.0731	0.7743	0.8047	0.8000
		1.1121		0.8957	1.1002	0.8894	0.7906	0.7144
		0.9807		1.0537	0.9099	0.6880	0.7124	0.6606
		0.9404		0.7695	0.8878	0.6593	0.7021	0.6444
		1.1520		1.1104	0.8715	0.8545	0.7681	0.6788
		0.9789		0.8887	0.8372	0.5865	0.7868	0.6399
		0.9592		0.8042	0.9499		0.6442	
		0.8842		0.7549	0.8418			
		1.2925		0.7156	1.1430			
		0.7164		0.8619	0.9685			
				1.0142	0.9562			
		14		0.7758	1.1994			
		15		0.6857	0.8176			
		16			0.9022			
		17			0.9555			
		18			0.8060			

obtained as a result of experiments performed to measure the training performance of the models with each fixed AF are given in [Table 3](#).

As a result of the experiments presented in [Table 3](#), the Tanh function was removed from the AF list because learning did not occur with Tanh AF in the VGG16 model and the worst loss values were obtained with Tanh AF in the DenseNet121 model. Thus, the *list_AF* array was created as ReLU, ELU, SELU, Mish, SiLU, and GELU.

Table 4 Consecutive loss increase numbers (determination of p_0 value).

Model	Experiment	AF						Average
		ReLU	ELU	SELU	Mish	SiLU	GELU	
VGG16	Exp1	0	1	1	1	0	0	0.50
	Exp2	1	1	0	1	0	0	0.50
	Exp3	0	1	1	1	0	1	0.67
	Overall average							0.56
DenseNet121	Exp1	0	3	6	2	3	2	2.67
	Exp2	0	3	4	3	2	1	2.17
	Exp3	1	3	6	1	2	1	2.33
	Overall average							2.39

According to the experimental results given in [Table 3](#), the consecutive loss increment numbers of the AFs were taken into account to determine the value of the p_0 parameter. By examining the loss increase situations in [Table 3](#), the consecutive loss increase numbers were determined and summarized numerically in [Table 4](#).

When [Table 4](#) is examined, the overall average of consecutive loss increase numbers is calculated as 0.56 with the VGG16 model and 2.39 with the DenseNet121 model. Since training will be carried out with many models and datasets other than VGG16 and DenseNet121 models in the expansion experiments presented in the later sections of the study, the p_0 value was determined by taking into account the DenseNet121 model, which has the highest average of consecutive loss increase numbers. Since the consecutive loss increase number = $2.39 \approx 2$, the p_0 value is set to three. Thus, the loss will be allowed to increase two times in a row, and the training will be stopped at this stage when the loss value worsens for the 3rd time.

Stage 3: Determination of the p_1 parameter value

After determining the *list_AF* array and p_0 parameter values, to determine the p_1 parameter value, the training was continued by selecting the three most successful AFs that reached the lowest loss value from the experiments performed with each model in [Table 3](#) (epoch=20, patience=5). In this way, the behavior of the p_1 parameter values according to different AF antecedents was investigated. Among the experiments performed with VGG16, the three most successful AFs that brought the model to the lowest loss value were SELU, ReLU, Mish in experiment 1, ELU, SELU, ReLU in experiment 2, and ReLU, GELU, ELU in experiment 3. Among the experiments performed with DenseNet121, the three most successful AFs that brought the model to the lowest loss value were GELU, ReLU, SiLU in experiment 1 and experiment 2, and ReLU, Mish, GELU in experiment 3. Training was continued on the models obtained with these AFs, and experiments were carried out to determine the best AF in the next step. The test loss values obtained as a result of the experiments are given in [Table 5](#).

According to the experimental results given in [Table 5](#), the consecutive loss increment numbers of the AFs were taken into account to determine the value of the p_1 parameter. By

Table 5 Test loss values obtained as a result of experiments to determine the next best AFs.

Model	Experiment	Previous best AFs	Epoch	Next AF					
				ReLU	ELU	SELU	Mish	SiLU	GELU
VGG16	Exp1	SELU	1	0.5176	0.5686		0.5154	0.5488	0.5974
			2		0.5863				
			3		0.5659				
		ReLU	1		0.5669	0.8879	0.5360	0.5024	0.5180
			2		0.5193	0.6527			
			3			0.6220			
			4			0.5375			
		Mish	1	0.5685	0.6889	0.7069		0.5997	0.5727
			2		0.6410	0.5970			
			3		0.5883				
	Exp2	ELU	1	0.5168		0.5886	0.5549	0.5565	0.5648
			2				0.5424		
		SELU	1	0.5955	0.5296		0.6120	0.5394	0.5688
		ReLU	2	0.5555			0.5665	0.5379	0.5490
			1		0.7453	0.9466	0.5607	0.5521	0.5671
			2		0.5835	0.6856			
			3		0.5711	0.5991			
			4			0.5508			
	Exp3	ReLU	1		0.6359	0.6902	0.5166	0.5393	0.5562
			2		0.5564	0.5660		0.5208	
		GELU	1	0.5698	0.8151	1.0327	0.5688	0.5495	
			2		0.5771	0.6736	0.5681		
			3		0.5500	0.6185			
			4			0.5921			
		ELU	1	0.5722		0.5233	0.5318	0.5265	0.5046
			2	0.5171					
DenseNet121	Exp1	GELU	1	0.5478	0.9620	1.2328	0.9561	0.6372	
			2		0.7391	1.1520	0.7870		
			3		0.8254	1.3142	0.6893		
			4		1.0896	1.0417	0.7205		
			5		0.7031	1.2832	0.6803		
			6			1.2325			
			7			1.5440			
			8			0.8618			

(Continued)

Table 5 (continued)

Model	Experiment	Previous best AFs	Epoch	Next AF					
				ReLU	ELU	SELU	Mish	SiLU	GELU
ReLU			1		1.5544	1.2104	0.9347	0.8831	0.8520
			2		0.9110	1.0741	0.7624	0.7925	0.7353
			3		0.9521	1.0381	0.7525	0.6902	0.6069
			4		1.1389	1.2686	1.0301	0.6127	0.7015
			5		0.9409	1.2387	0.8243	0.7614	0.6703
			6		0.9092	0.9237	0.6854	0.7430	0.5824
			7		0.8348	1.0289	0.7646	0.6335	
			8		0.8329	0.8830	0.6800	0.6071	
			9		0.7013	1.0159	0.6325	0.5949	
			10		0.8792	0.7960			
			11		0.8068				
			12		0.8731				
			13		0.7015				
			14		0.6589				
SiLU			1	0.6180	1.1109	1.7046	0.7340		0.6514
			2		0.7586	1.2093	0.7088		
			3		0.6890	0.9131			
Exp2	GELU		1	0.5539	0.8230	1.3235	0.7502	0.6129	
			2		1.0572	1.1054	0.6783		
			3		0.8220	1.0143	0.6193		
			4		0.8454	0.9445			
			5		0.7590	0.8853			
			6		0.7906	0.9024			
			7		0.7254	0.9238			
			8			1.1919			
			9			1.1035			
			10			0.8324			
ReLU			1		1.0134	1.2213	0.9434	0.8702	0.9008
			2		0.9379	1.1288	0.7861	0.8505	0.7791
			3		1.0422	0.9406	0.6726	0.9180	0.6313
			4		0.9784	1.0536	0.9586	0.6715	0.6604
			5		0.8998	1.1468	0.7218	0.5984	0.7107
			6		0.8033	0.9460	0.7172		0.6131
			7		0.8312	0.8926	0.8329		0.6058
			8		0.7211	0.9610	0.6197		0.5496
			9			0.8678			

Table 5 (continued)

Model	Experiment	Previous best AFs	Epoch	Next AF					
				ReLU	ELU	SELU	Mish	SiLU	GELU
SiLU	Exp3	ReLU	1	0.6232	0.9390	1.5974	0.7148	0.6366	
			2		0.8063	1.1322			
			3		1.0008	0.9104			
			4		0.7552	0.9664			
			5		0.8774	1.0150			
			6		0.8153	1.1679			
			7		0.7441	0.8454			
Exp3	ReLU	Mish	1		1.1103	1.1455	0.9927	1.1415	0.9124
			2		1.3042	1.1690	0.8607	0.8905	0.6170
			3		0.8980	1.1342	0.7389	0.6987	0.7598
			4		0.8322	0.9823	0.6869	0.6999	0.6880
			5		0.8283	0.9458	0.6260	0.7668	0.5713
			6		1.0211	1.3660	0.6776	0.5890	
			7		0.8523	0.9618	0.6410		
			8		0.8341	1.2932	0.7156		
			9		0.8244	0.9192	0.8070		
			10		0.8018	0.7769	0.6258		
			11		0.6888				
			12		0.7590				
			13		0.6685				
GELU	GELU	GELU	1	0.5551	0.8781	0.9893		0.6514	0.6946
			2		0.9072	0.9175			0.6533
			3		0.8157				
			4		0.7380				
			5		0.5971	0.8531	1.3561	0.6342	0.9523
			6		0.8778	1.0365			0.7361

examining the loss increase situations in [Table 5](#), the consecutive loss increase numbers were determined and summarized numerically in [Table 6](#).

When [Table 6](#) is examined, the overall average of consecutive loss increase numbers is calculated as 0.02 with the VGG16 model and 1.38 with the DenseNet121 model. The p_1 value was determined by taking into account the DenseNet121 model, which has the highest average of consecutive loss increase numbers. Since the consecutive loss increase number = $1.38 \approx 1$, the p_1 value was set to two. Thus, the loss will be allowed to increase one

Table 6 Consecutive loss increase numbers (determination of p_1 value).

Model	Experiment	Previous best AFs	Next AF						Average
			ReLU	ELU	SELU	Mish	SiLU	GELU	
VGG16	Exp1	SELU	0	1	0	0	0	0	0.20
		ReLU		0	0	0	0	0	0.00
		Mish	0	0	0		0	0	0.00
	Exp2	ELU	0		0	0	0	0	0.00
		SELU	0	0		0	0	0	0.00
		ReLU		0	0	0	0	0	0.00
	Exp3	ReLU		0	0	0	0	0	0.00
		GELU	0	0	0	0	0		0.00
		ELU	0		0	0	0	0	0.00
Overall average									0.02
DenseNet121	Exp1	GELU	0	2	3	1	0		1.20
		ReLU		4	2	2	3	2	2.60
		SiLU	0	0	0	0		0	0.00
	Exp2	GELU	0	1	4	0	0		1.00
		ReLU		2	3	4	1	2	2.40
		SiLU	0	2	3	0		0	1.00
	Exp3	ReLU		3	3	4	2	2	2.80
		Mish	0	1	0		0	0	0.20
		GELU	0	4	0	0	2		1.20
Overall average									1.38

time in a row, and the training will be stopped at this stage when the loss value worsens for the 2nd time.

In summary, as a result of ablation studies, the *list_AF* array was created by taking the ReLU, ELU, SELU, Mish, SiLU, and GELU AFs where learning occurred. Thus, the initial values of the hyperparameter *list_AF*, which holds the AF list to be applied to the CNN model to be used in the AFCS-CNN model structure were defined. The values of the patience hyperparameters used in the early stopping process were determined as three at the beginning and two in the next cycles. Patience values were kept small to prevent early overfitting of the model. Thus, the best patience values are defined as $p_0=3$, $p_1=2$. When the DenseNet121 model is used in the AFCS-CNN model structure, it is defined as *AFCS_loop*=5 because the learning effect decreases after a certain cycle. The value of *min_AF_count* was determined as 3, allowing the opportunity to select from at least three AFs during switches.

Expansion experiments

After ablation studies, VGG16, VGG19, DenseNet121, DenseNet169, EfficientNetV2B0, EfficientNetV2B1, ConvNeXtTiny, and ConvNeXtSmall CNN models were used in the proposed AFCS-CNN model structure to determine the performance success of the AFCS-

Table 7 Success accuracy and loss values on the V2 plant seedling validation dataset.

Model	Metric	AF						AFCS-CNN
		ReLU	ELU	SELU	Mish	SiLU	GELU	
VGG16	Accuracy (%)	92.30	12.88	12.88	92.90	91.46	92.42	93.98
	Loss	0.2619	2.4264	2.4710	0.2255	0.2894	0.3810	0.1839
VGG19	Accuracy (%)	87.48	13.72	88.33	89.89	90.85	92.06	93.50
	Loss	0.3778	2.4549	0.5133	0.3912	0.3053	0.2999	0.2084
DenseNet121	Accuracy (%)	96.39	89.65	77.26	93.02	91.34	96.27	96.63
	Loss	0.1526	0.3514	0.7537	0.2808	0.3059	0.1605	0.1149
DenseNet169	Accuracy (%)	96.03	80.02	68.83	92.78	90.25	93.62	96.39
	Loss	0.1559	0.5913	1.5005	0.2246	0.3579	0.2236	0.1296
EfficientNetV2B0	Accuracy (%)	94.58	91.58	70.04	87.24	73.16	64.74	95.07
	Loss	0.2692	0.3450	1.1031	0.4215	1.0297	1.4183	0.2192
EfficientNetV2B1	Accuracy (%)	93.86	71.72	74.01	91.34	91.70	82.79	95.07
	Loss	0.3060	0.9812	0.9816	0.3751	0.3325	0.5350	0.2225
ConvNeXtTiny	Accuracy (%)	No learning occurred in any of the trainings						
ConvNeXtSmall	Loss							
ConvNeXtSmall	Accuracy (%)	No learning occurred in any of the trainings						
ConvNeXtSmall	Loss							

CNN model structure. The hyperparameter values of the AFCS-CNN model structure are defined as determined in the previous section. So $list_AF = [\text{ReLU}, \text{ELU}, \text{SELU}, \text{Mish}, \text{SiLU}, \text{GELU}]$, $p_0=3$, $p_1=2$, $AFCS_loop=5$, $min_AF_count=3$ was set, and expansion experiments were performed on the V2 Plant Seedling and APTOS 2019 Blindness Detection datasets using VGG16, VGG19, DenseNet121, DenseNet169, EfficientNetV2B0, EfficientNetV2B1, ConvNeXtTiny, and ConvNeXtSmall CNN models in the AFCS-CNN model structure.

Expansion experiments with plant seedling dataset

To determine the performance success of the AFCS-CNN model structure on the V2 Plant Seedling dataset, experiments were performed using VGG16, VGG19, DenseNet121, DenseNet169, EfficientNetV2B0, EfficientNetV2B1, ConvNeXtTiny, and ConvNeXtSmall CNN models, respectively, in the AFCS-CNN model structure. In this way, the effect of AF switching during model training was examined. To compare the results, the default AF of each model was replaced by each AF in the $list_AF$ array, and training was performed separately for each case (using the same AF throughout training). Experiments were performed using the train-validation dataset for the AFCS-CNN model structure and each fixed AF and the classification accuracy and loss values of the models in the V2 Plant Seedling validation dataset are given in [Table 7](#).

When the validation accuracy and loss values given in [Table 7](#) are examined, it is seen that using all CNN models discussed in the study in the AFCS-CNN model structure gives more successful results than not using them. The accuracy rates and loss values in the

training performed using fixed AFs with CNN models without using the AFCS-CNN model structure were lower. Thanks to the AFCS-CNN model structure, it has been observed that switching AF provides a performance increase compared to fixing. While the most successful classification accuracy was achieved using the DenseNet121 model in the AFCS-CNN model (96.63%), no learning occurred in any of the training performed with ConvNeXt models. According to the validation success accuracies presented in [Table 7](#), the accuracy and loss graphs of the three CNN models with the best performing AF and each CNN model used in the AFCS-CNN model structure are shown comparatively in [Fig. 4](#).

In [Fig. 4](#), graphs of the training performed with the most successful AFs that were left fixed throughout the training of each CNN model and the training performed using each CNN model in the AFCS-CNN model structure are shown together. As can be seen in the figure, the proposed AFCS-CNN model structure performs the training process in an up-and-down structure. The ups and downs in training the AFCS-CNN model structure are due to the switching of AF. For example, in the case where the VGG16 model was used in the AFCS-CNN model structure, the AFCS-CNN model structure started training with GELU AF, which performs best among the values in the *list_AF* array. Since the validation loss value increased three times (p_0 control) in a row after the 13th epoch, AF=Mish was made in this epoch and the training was continued from the 13th epoch. Since the worst performing AF was SELU, this AF was taken out from the *list_AF* array to not be used in the next switch. Again, after the 15th epoch, when the validation loss value increased two times (p_1 control), AF=SiLU was made, and the training was continued from the 15th epoch. At this stage, ELU AF was taken out from the *list_AF* array. Then, in the 17th epoch, AF=Mish was made, and ReLU AF was taken out from the *list_AF* array. In the 20th epoch, AF=GELU was made, and the cycle was finished in the 24th epoch. As seen in [Fig. 4](#), in the training performed using only the VGG16 model and fixed AFs without using the AFCS-CNN model structure, it was observed that the difference between the train-validation graph widened after a certain epoch and overfitting occurred. It was determined that when the VGG16 model is used in the AFCS-CNN model structure, overfitting is prevented, and learning occurs in fewer epochs. Thus, in the training performed with the VGG16 model, it was observed that the AF switch during the training process with the AFCS-CNN model structure had a positive effect on the model training process.

In addition, it was observed that when other CNN models discussed in the study were used in the AFCS-CNN model structure, different AF switches occurred at different epochs and the AF switch had a positive effect on the model training process. When the train-validation accuracy and loss graphs shown in [Fig. 4](#) are examined, the models made five AF switches depending on the number of cycles defined at the beginning. In the training of the CNN models used in the AFCS-CNN model structure on the V2 Plant Seedling dataset, different AF switches were made at different epochs, and the details are summarized in [Table 8](#).

After the train-validation process, the final performance of the models was tested using the V2 Plant Seedling test dataset, which the network had never seen, and the numerical results are given in [Table 9](#). Additionally, [Fig. 5](#) shows the confusion matrix results

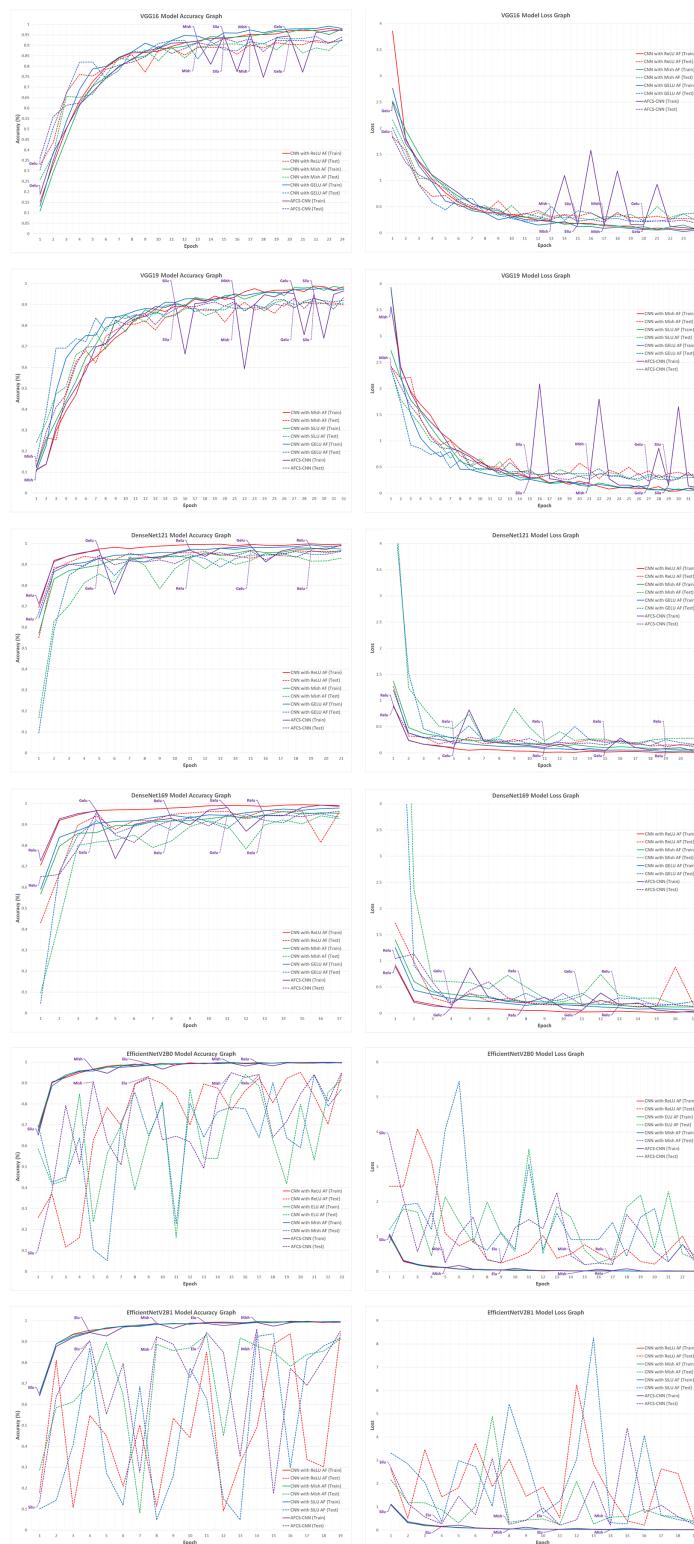


Figure 4 Train-validation accuracy and loss graphs of each CNN model on the V2 plant seedling validation dataset.
 Full-size DOI: 10.7717/peerj-cs.2756/fig-4

Table 8 AF switches in the training of the CNN models used in the AFCS-CNN model structure on the V2 plant seedling dataset.

AFCS-CNN (Model)	Step1		Step2		Step3		Step4		Step5	
	Epoch	AF								
AFCS-CNN (VGG16)	1	GELU	13	Mish	15	SiLU	17	Mish	20	GELU
AFCS-CNN (VGG19)	1	Mish	15	SiLU	21	Mish	27	GELU	29	SiLU
AFCS-CNN (DenseNet121)	1	ReLU	5	GELU	11	ReLU	15	GELU	19	ReLU
AFCS-CNN (DenseNet169)	1	ReLU	4	GELU	8	ReLU	11	GELU	13	ReLU
AFCS-CNN (EfficientNetV2B0)	1	SiLU	5	Mish	9	ELU	15	Mish	17	ReLU
AFCS-CNN (EfficientNetV2B1)	1	SiLU	4	ELU	8	Mish	11	ELU	14	Mish

Table 9 Numerical results obtained from models using the V2 plant seedling test dataset.

Model	Metric	AF						AFCS-CNN
		ReLU	ELU	SELU	Mish	SiLU	GELU	
VGG16	Accuracy	0.9193	0.1287	0.1287	0.9193	0.9133	0.9157	0.9362
	Loss	0.2923	2.4259	2.4699	0.2602	0.2903	0.3782	0.2074
	Precision	0.9215	0.0167	0.0167	0.9213	0.9155	0.9201	0.9354
	Recall	0.9195	0.1288	0.1288	0.9194	0.9141	0.9154	0.9367
	F1-score	0.9205	0.0296	0.0296	0.9202	0.9090	0.9104	0.9368
VGG19	Accuracy	0.8916	0.1371	0.8676	0.9025	0.8977	0.9109	0.9253
	Loss	0.5742	2.4543	0.5411	0.3799	0.3579	0.2915	0.2368
	Precision	0.8934	0.0192	0.8652	0.9061	0.8987	0.9112	0.9259
	Recall	0.8917	0.1372	0.8668	0.9010	0.8989	0.9112	0.9256
	F1-score	0.8824	0.0329	0.8596	0.9030	0.8961	0.9096	0.9224
DenseNet121	Accuracy	0.9542	0.8868	0.7496	0.9386	0.9157	0.9590	0.9711
	Loss	0.1581	0.3422	0.7506	0.2014	0.2752	0.1367	0.0904
	Precision	0.9555	0.8919	0.8280	0.9431	0.9503	0.9598	0.9719
	Recall	0.9552	0.8881	0.7492	0.9385	0.9160	0.9590	0.9714
	F1-score	0.9539	0.8817	0.7423	0.9397	0.9186	0.9574	0.9721
DenseNet169	Accuracy	0.9446	0.7785	0.6594	0.9049	0.8880	0.9410	0.9675
	Loss	0.1971	0.6784	1.5014	0.2827	0.3053	0.1905	0.0955
	Precision	0.9437	0.8260	0.7670	0.9117	0.8981	0.9465	0.9682
	Recall	0.9454	0.7784	0.6599	0.9063	0.8883	0.9421	0.9688
	F1-score	0.9439	0.7701	0.6190	0.9044	0.8815	0.9416	0.9670
EfficientNetV2B0	Accuracy	0.9265	0.9217	0.6943	0.8543	0.7075	0.6401	0.9518
	Loss	0.3443	0.3035	1.1257	0.5348	1.0339	1.3997	0.1822
	Precision	0.9334	0.9254	0.7661	0.8815	0.7790	0.7297	0.9508
	Recall	0.9271	0.9223	0.6951	0.8550	0.7067	0.6410	0.9527
	F1-score	0.9264	0.9236	0.6833	0.8515	0.7007	0.6199	0.9517

Table 9 (continued)

Model	Metric	AF						AFCS-CNN
		ReLU	ELU	SELU	Mish	SiLU	GELU	
EfficientNetV2B1	Accuracy	0.9265	0.7148	0.7352	0.9169	0.9121	0.8122	0.9530
	Loss	0.3025	0.9967	0.9698	0.3140	0.3973	0.6153	0.1796
	Precision	0.9273	0.7581	0.8119	0.9224	0.9258	0.8288	0.9531
	Recall	0.9278	0.7150	0.7360	0.9167	0.9124	0.8124	0.9526
	F1-score	0.9241	0.7041	0.7274	0.9192	0.9145	0.7987	0.9518

obtained from the test dataset with each CNN model used in the AFCS-CNN model structure.

According to the results given in [Table 9](#) and [Fig. 5](#), the most successful classification accuracy in the V2 Plant Seedling test dataset was achieved by using the DenseNet121 model in the AFCS-CNN model. With the AFCS-CNN (DenseNet121) model, 97.11% accuracy and 0.0904 loss values were obtained in the test dataset. It has been observed that using all CNN models discussed in the study in the AFCS-CNN model structure gives more successful results than using fixed AF in CNN models. Thus, it has been demonstrated that the AFCS-CNN model structure provides an important performance increase in all CNN models discussed in the study.

Expansion experiments with APTOS 2019 Blindness Detection dataset

To determine the performance success of the AFCS-CNN model structure on the APTOS 2019 Blindness Detection dataset, experiments were performed using VGG16, VGG19, DenseNet121, DenseNet169, EfficientNetV2B0, EfficientNetV2B1, ConvNeXtTiny, and ConvNeXtSmall CNN models, respectively, in the AFCS-CNN model structure. In this way, the effect of AF switching during model training was examined using a different dataset. To compare the results, the default AF of each model was replaced by each AF in the *list_AF* array, and training was performed separately for each case (using the same AF throughout training). Experiments were performed using the train-validation dataset for the AFCS-CNN model structure and each fixed AF and the classification accuracy and loss values of the models in the APTOS 2019 Blindness Detection validation dataset are given in [Table 10](#).

When the validation accuracy and loss values given in [Table 10](#) are examined, it is seen that using all CNN models, except VGG models, in the AFCS-CNN model structure gives more successful results than not using them. The accuracy rates and loss values in the training performed using fixed AFs with CNN models without using the AFCS-CNN model structure were lower. Thanks to the AFCS-CNN model structure, it has been observed that switching AF provides a performance increase compared to fixing. While the most successful classification accuracy was achieved using the DenseNet169 model in the AFCS-CNN model (83.45%), no learning occurred in any of the training performed with ConvNeXt models. According to the validation success accuracies presented in [Table 10](#),

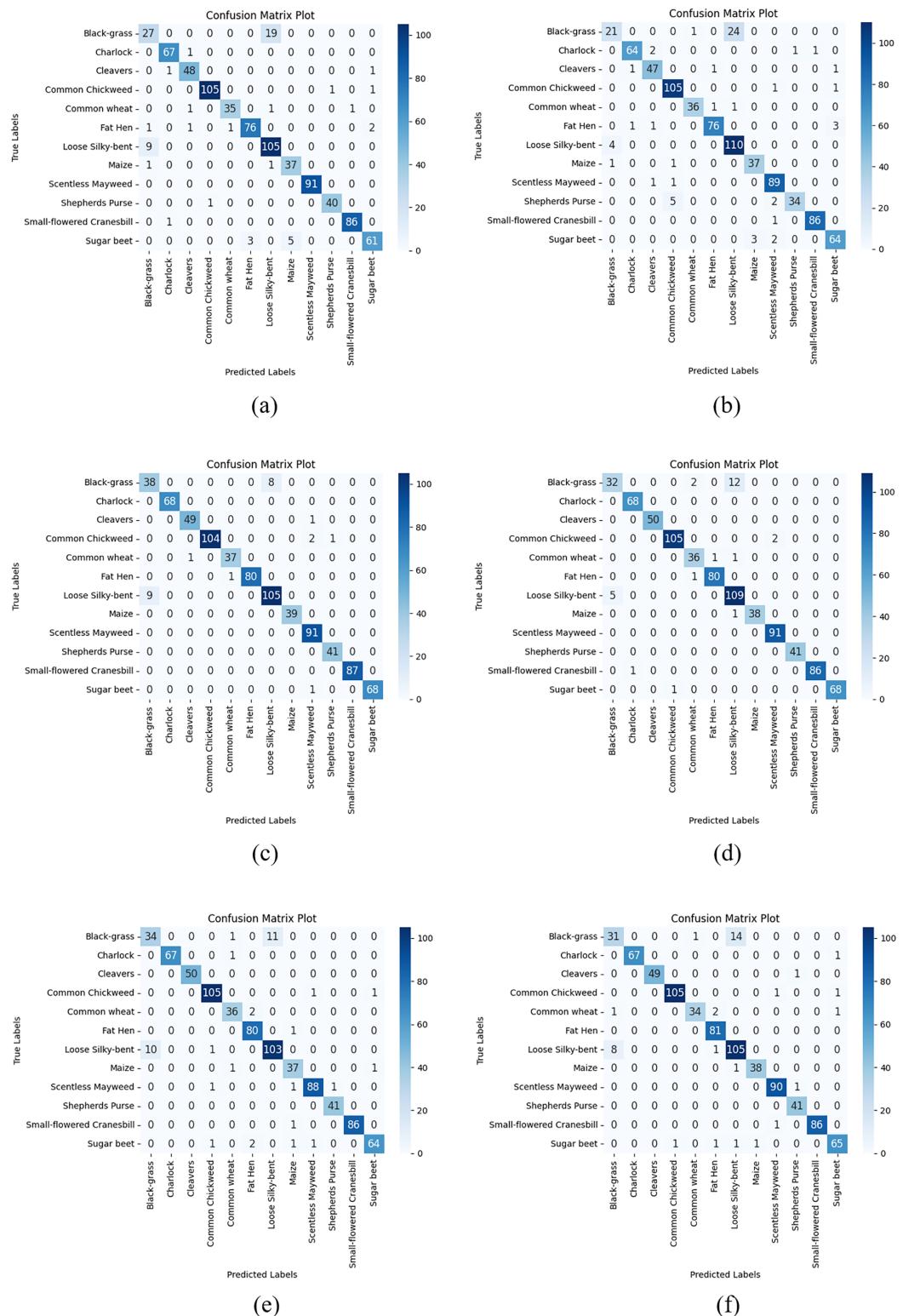


Figure 5 Confusion matrix plots of each CNN model used in the AFCS-CNN model structure on the V2 plant seedling test dataset: (A) AFCS-CNN (VGG16), (B) AFCS-CNN (VGG19), (C) AFCS-CNN (DenseNet121), (D) AFCS-CNN (DenseNet169), (E) AFCS-CNN (EfficientNetV2B0), (F) AFCS-CNN (EfficientNetV2B1). Full-size DOI: 10.7717/peerj-cs.2756/fig-5

Table 10 Success accuracy and loss values on the APTOS 2019 Blindness Detection Validation dataset.

Model	Metric	AF						AFCS-CNN
		ReLU	ELU	SELU	Mish	SiLU	GELU	
VGG16	Accuracy (%)	76.91	69.09	75.27	80.73	77.82	77.09	80.18
	Loss	1.1004	0.8905	0.6830	0.6732	0.6521	1.0028	0.5188
VGG19	Accuracy (%)	78.73	74.91	75.45	76.18	73.82	78.18	78.73
	Loss	0.6350	0.7446	0.6775	0.6536	0.7559	0.5691	0.5652
DenseNet121	Accuracy (%)	81.82	74.00	76.36	77.45	72.91	78.55	83.27
	Loss	0.8153	0.7373	0.6211	0.6366	0.9755	0.7211	0.5611
DenseNet169	Accuracy (%)	79.09	64.36	57.64	69.45	77.09	80.73	83.45
	Loss	0.9562	1.0919	1.3097	0.9848	0.6766	0.7533	0.6115
EfficientNetV2B0	Accuracy (%)	62.55	74.18	59.27	74.91	70.91	70.91	79.45
	Loss	1.1221	0.9009	1.2356	0.9989	1.5562	1.0489	0.8403
EfficientNetV2B1	Accuracy (%)	69.27	62.55	66.91	79.64	73.27	73.45	81.82
	Loss	1.0717	1.2512	1.0693	1.1388	1.0198	1.0289	0.8520
ConvNeXtTiny	Accuracy (%)	No learning occurred in any of the trainings						
ConvNeXtSmall	Loss							
ConvNeXtSmall	Accuracy (%)	No learning occurred in any of the trainings						
ConvNeXtSmall	Loss							

the accuracy and loss graphs of the three CNN models with the best performing AF and each CNN model used in the AFCS-CNN model structure are shown comparatively in [Fig. 6](#).

In [Fig. 6](#), graphs of the training performed with the most successful AFs that were left fixed throughout the training of each CNN model and the training performed using each CNN model in the AFCS-CNN model structure are shown together. As can be seen in the figure, similar to the previous analyses, the proposed AFCS-CNN model structure performs the training process in an up-and-down structure. The ups and downs in training the AFCS-CNN model structure are due to the switching of AF. For example, in the case where the VGG16 model was used in the AFCS-CNN model structure, the AFCS-CNN model structure started training with ReLU AF, which performs best among the values in the *list_AF* array. Since the validation loss value increased three times (p_0 control) in a row after the 11th epoch, AF=SiLU was made in this epoch and the training was continued from the 11th epoch. Since the worst performing AF was ELU, this AF was taken out from the *list_AF* array to not be used in the next switch. Again, after the 16th epoch, when the validation loss value increased two times (p_1 control), AF=ReLU was made, and the training was continued from the 16th epoch. At this stage, SELU AF was taken out from the *list_AF* array. Then, in the 28th epoch, AF=Mish was made, and GELU AF was taken out from the *list_AF* array. In the 32nd epoch, AF=SiLU was made, and the cycle was finished in the 35th epoch. As seen in [Fig. 6](#), in the training performed using only the VGG16 model and fixed AFs without using the AFCS-CNN model structure, it was observed that the difference between the train-validation graph widened after a certain

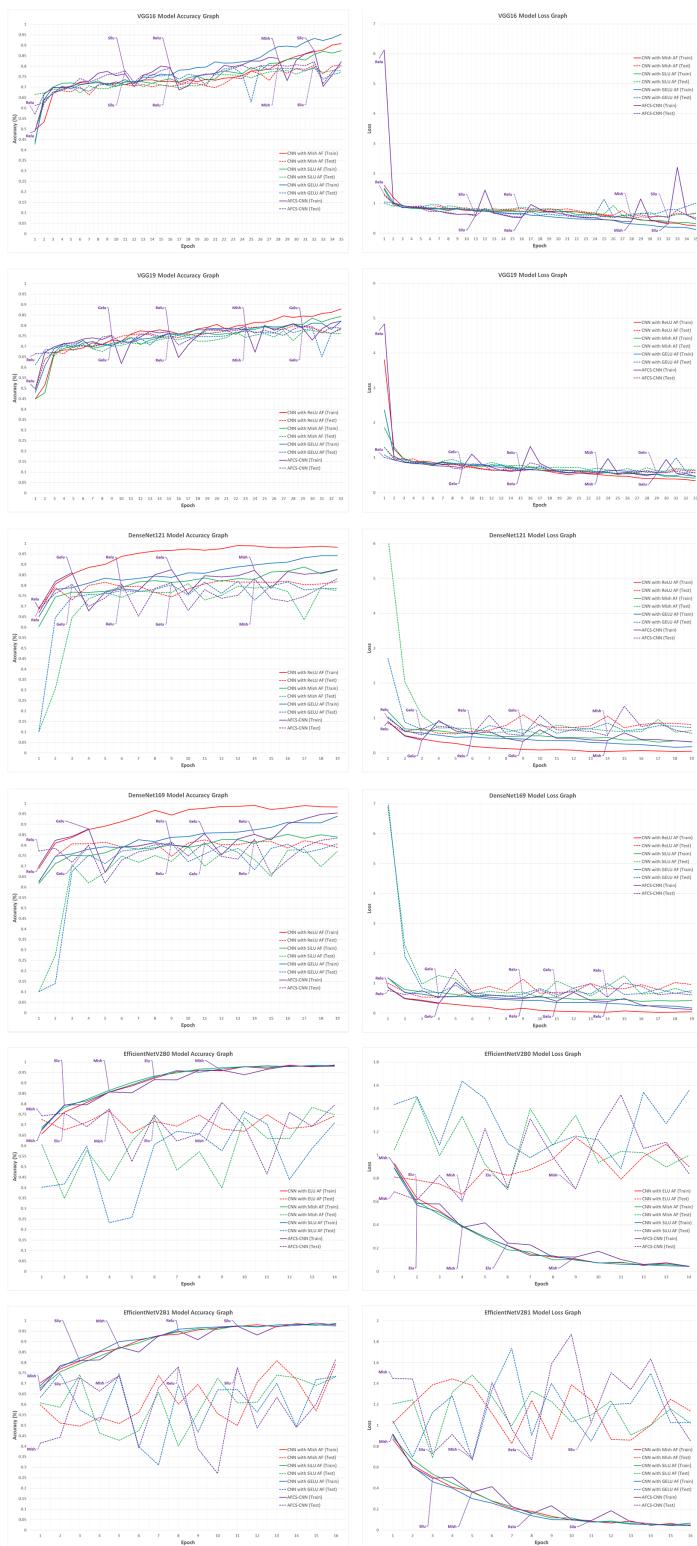


Figure 6 Train-validation accuracy and loss graphs of each CNN model on the APTOS 2019 Blindness Detection dataset.

Full-size DOI: 10.7717/peerj-cs.2756/fig-6

Table 11 AF switches in the training of CNN models used in the AFCS-CNN model structure on the APTOS 2019 Blindness Detection dataset.

AFCS-CNN (Model)	Step1		Step2		Step3		Step4		Step5	
	Epoch	AF								
AFCS-CNN (VGG16)	1	ReLU	11	SiLU	16	ReLU	28	Mish	32	SiLU
AFCS-CNN (VGG19)	1	ReLU	9	GELU	15	ReLU	23	Mish	29	GELU
AFCS-CNN (DenseNet121)	1	ReLU	3	GELU	6	ReLU	9	GELU	14	Mish
AFCS-CNN (DenseNet169)	1	ReLU	4	GELU	9	ReLU	11	GELU	14	ReLU
AFCS-CNN (EfficientNetV2B0)	1	Mish	2	ELU	4	Mish	6	ELU	9	Mish
AFCS-CNN (EfficientNetV2B1)	1	Mish	3	SiLU	5	Mish	8	ReLU	11	SiLU

epoch and overfitting occurred. It was determined that when the VGG16 model is used in the AFCS-CNN model structure, overfitting is prevented, and learning occurs in fewer epochs. Thus, in the training performed with the VGG16 model, it was observed that the AF switch during the training process with the AFCS-CNN model structure had a positive effect on the model training process.

In addition, it was observed that when other CNN models discussed in the study were used in the AFCS-CNN model structure, different AF switches occurred at different epochs and the AF switch had a positive effect on the model training process. When the train-validation accuracy and loss graphs shown in Fig. 6 are examined, the models made five AF switches depending on the number of cycles defined at the beginning. In the training of the CNN models used in the AFCS-CNN model structure on the APTOS 2019 Blindness Detection dataset, different AF switches were made at different epochs, and the details are summarized in Table 11.

After the train-validation process, the final performance of the models was tested using the APTOS 2019 Blindness Detection test dataset, which the network had never seen, and the numerical results are given in Table 12. Additionally, Fig. 7 shows the confusion matrix results obtained from the test dataset with each CNN model used in the AFCS-CNN model structure.

According to the results given in Table 12 and Fig. 7, the most successful classification accuracy in the APTOS 2019 Blindness Detection test dataset was achieved by using the DenseNet121 model in the AFCS-CNN model. With the AFCS-CNN (DenseNet121) model, 83.27% accuracy and 0.5704 loss values were obtained in the test dataset. It has been observed that using all CNN models discussed in the study in the AFCS-CNN model structure gives more successful results than using fixed AF in CNN models. Thus, it has been demonstrated that the AFCS-CNN model structure provides an important performance increase in all CNN models discussed in the study.

Discussion

To determine the performance of the AFCS-CNN model structure, the experimental results performed with many CNN models and many datasets discussed in this study have shown that the proposed AFCS-CNN model structure provides an important performance

Table 12 Numerical results obtained from models using the APTOS 2019 Blindness Detection test dataset.

Model	Metric	AF						AFCS-CNN
		ReLU	ELU	SELU	Mish	SiLU	GELU	
VGG16	Accuracy	0.7709	0.7381	0.7599	0.7945	0.7945	0.7927	0.8254
	Loss	1.0019	0.7306	0.6178	0.6689	0.5773	0.9456	0.4848
	Precision	0.7589	0.7468	0.6838	0.7846	0.8030	0.7921	0.8196
	Recall	0.7693	0.7390	0.7597	0.7970	0.7923	0.7935	0.8234
	F1-score	0.7601	0.7308	0.7170	0.7838	0.7975	0.7901	0.8130
VGG19	Accuracy	0.7981	0.7727	0.7418	0.8090	0.7545	0.8000	0.8181
	Loss	0.5737	0.6036	0.6501	0.6260	0.6962	0.5305	0.5149
	Precision	0.7925	0.7231	0.7238	0.7961	0.7154	0.7902	0.8132
	Recall	0.7971	0.7744	0.7413	0.8078	0.7532	0.8008	0.8173
	F1-score	0.7943	0.7368	0.7209	0.8013	0.7081	0.7939	0.8092
DenseNet121	Accuracy	0.8072	0.7654	0.7690	0.7818	0.7327	0.7854	0.8327
	Loss	0.7971	0.6421	0.5645	0.5828	1.0582	0.6388	0.5704
	Precision	0.8080	0.8246	0.7714	0.8173	0.7720	0.7886	0.8335
	Recall	0.8066	0.7634	0.7687	0.7816	0.7325	0.7872	0.8329
	F1-score	0.8049	0.7611	0.7607	0.7877	0.7251	0.7817	0.8135
DenseNet169	Accuracy	0.7836	0.6218	0.5836	0.7290	0.7618	0.8163	0.8254
	Loss	1.0642	1.0636	1.2094	0.9553	0.6982	0.7083	0.6344
	Precision	0.7825	0.6644	0.6388	0.7760	0.7766	0.8182	0.8258
	Recall	0.7813	0.6203	0.5853	0.7286	0.7649	0.8196	0.8233
	F1-score	0.7777	0.6185	0.5693	0.7173	0.7580	0.8027	0.8071
EfficientNetV2B0	Accuracy	0.6363	0.7490	0.5690	0.7454	0.7163	0.7127	0.8054
	Loss	1.0799	0.8925	1.1607	1.0322	1.5423	1.0767	0.8327
	Precision	0.6663	0.7050	0.6519	0.7261	0.7260	0.6596	0.7985
	Recall	0.6383	0.7486	0.5675	0.7461	0.7159	0.7113	0.8076
	F1-score	0.6448	0.7124	0.5953	0.7277	0.6797	0.6634	0.8013
EfficientNetV2B1	Accuracy	0.6836	0.6399	0.6454	0.7927	0.7309	0.7363	0.8254
	Loss	1.0460	1.2034	1.1211	1.1672	1.0322	1.0834	0.8308
	Precision	0.6712	0.5901	0.6211	0.7718	0.7080	0.7365	0.8269
	Recall	0.6864	0.6378	0.6473	0.7909	0.7284	0.7374	0.8251
	F1-score	0.6392	0.6097	0.6188	0.7657	0.7061	0.7077	0.8194

increase. Experiments with different datasets have demonstrated that using CNN models in the AFCS-CNN model structure is more successful than using fixed AF in CNN models. However, using a CNN model in the AFCS-CNN model structure has an additional runtime cost compared to not using it. Since the hyperparameter values of the AFCS-CNN model are $p_0=3$, $p_1=2$ and $AFCS_loop=5$, the additional running time of the model will be 11 epochs according to the formula given in Eq. (1). Considering that the patience value in a CNN model is usually given as 5 or 10, the additional runtime cost between 1 and 6 epochs brought by the AFCS-CNN model can be ignored when the performance achieved is taken into account.

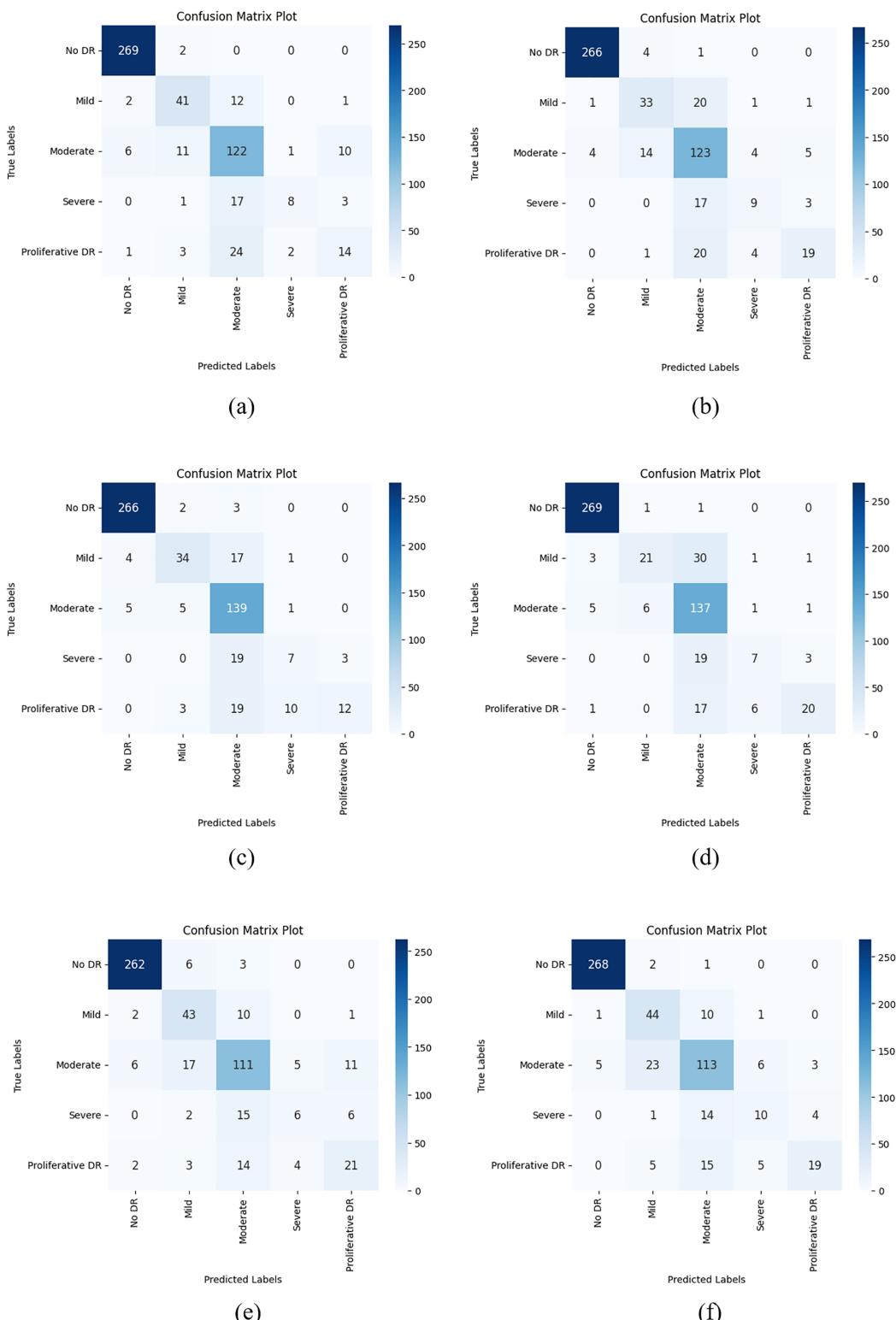


Figure 7 Confusion matrix plots of each CNN model used in the AFCS-CNN model structure on the APTOS 2019 Blindness Detection test dataset: (A) AFCS-CNN (VGG16), (B) AFCS-CNN (VGG19), (C) AFCS-CNN (DenseNet121), (D) AFCS-CNN (DenseNet169), (E) AFCS-CNN (EfficientNetV2B0), (F) AFCS-CNN (EfficientNetV2B1).

Full-size DOI: 10.7717/peerj-cs.2756/fig-7

Table 13 Comparison of the proposed work with recent works performed on the V2 plant seedling dataset.

Reference	Method	Epoch	Accuracy (%)	F1-score (%)
Binguitcha-Fare & Sharma (2019)	ResNet101	500+	96.04	95.72
Gupta, Rani & Bahia (2020)	ResNet50	11	95.23	95.00
Rahman, Hasan & Shin (2020)	ResNet-50	150	96.21	95.42
Fountsop, Ebongue Kedieng Fendji & Atemkeng (2020)	VGG16	100	94.24	–
Makanapura et al. (2022)	EfficientNetB0	50	96.52	96.26
Mu et al. (2022)	Faster R-CNN-FPN	1,500+	95.61	91.24
Tiwari et al. (2023)	Weed-ConvNet	50	94.20	64.00
Zhang et al. (2023)	Improved MobileNetV1	30	96.63	–
Aliouat, Badis & Bouchiba (2023)	GA based Automated CNN	50	97.74	97.83
Proposed work	AFCS-CNN (DenseNet121)	21	97.11	97.21

Among the datasets discussed in the study, only the V2 Plant Seedling dataset was compared with current works because various preprocessing was applied to this dataset. For this purpose, to compare the plant seedling classification success of the AFCS-CNN model structure, recent works using the V2 Plant Seedling dataset were examined in the literature and the results are given in [Table 13](#).

When [Table 13](#) is examined, the proposed AFCS-CNN (DenseNet121) model is more successful in plant seedling classification than all other works except the work done by [Aliouat, Badis & Bouchiba \(2023\)](#). Data augmentation was done in the work by [Aliouat, Badis & Bouchiba \(2023\)](#). However, data augmentation was not used in our work. In addition, high success was achieved with the proposed AFCS-CNN models with fewer iterations. Therefore, it was observed that the proposed AFCS-CNN model structure is more successful and competitive with other methods in plant seedling classification. Thus, the AFCS-CNN model structure has achieved state-of-the-art success.

CONCLUSION

In this study, a new model structure called AFCS-CNN was proposed, which allows cyclical switching of the AF during training, depending on the performance decrease in the neural network, and can be applied to any CNN model. Many experiments were applied to determine the hyperparameters of the proposed model and measure its performance. After a series of ablation studies using the Cifar-10 dataset, hyperparameter values of the AFCS-CNN model structure were determined. In addition, CNN models were chosen to be used in ablation studies. After ablation studies, expansion experiments were performed with V2 Plant Seedling and APTOS 2019 Blindness Detection datasets using VGG, DenseNet, EfficientNetV2, and ConvNeXt versions in the AFCS-CNN model structure.

As a result of expansion experiments, more successful results were obtained with the AFCS-CNN model structure than all the CNN models discussed in the study in both V2 Plant Seedling and APTOS 2019 Blindness Detection datasets. In all experiments, the most successful results were achieved with the AFCS-CNN (DenseNet121) model. Especially in plant seedling classification, a high-test success accuracy of 97.11% was achieved with the

AFCS-CNN (DenseNet121) model with few iterations. In addition, thanks to the use of all other CNN models discussed in the study in the AFCS-CNN model structure, higher test success accuracies were achieved in both datasets. Moreover, the proposed AFCS-CNN model structure was compared with similar works in the literature on plant seedling classification and was more successful than the state-of-the-art works in terms of accuracy and number of iterations. It is planned to use different CNN models in the AFCS-CNN model structure in future studies. Moreover, the applicability of the proposed method in different areas will be tested.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

The authors received no funding for this work.

Competing Interests

The authors declare that they have no competing interests.

Author Contributions

- İsmail Akgül conceived and designed the experiments, performed the experiments, analyzed the data, performed the computation work, prepared figures and/or tables, authored or reviewed drafts of the article, and approved the final draft.

Data Availability

The following information was supplied regarding data availability:

The V2 Plant Seedlings Dataset is available at Kaggle: <https://www.kaggle.com/datasets/vbookshelf/v2-plant-seedlings-dataset>.

The APTOS 2019 Blindness Detection Dataset is available at Kaggle: <https://www.kaggle.com/c/aptos2019-blindness-detection/data>.

Supplemental Information

Supplemental information for this article can be found online at <http://dx.doi.org/10.7717/peerj-cs.2756#supplemental-information>.

REFERENCES

Akgül İ. 2023. Activation functions used in artificial neural networks. In: *Academic Studies in Engineering*. Ankara: Gece Kitaplığı, 41–58.

Aliouat W, Badis L, Bouchiba K. 2023. Metaheuristic-based automated design of convolutional neural network architecture for plant seedlings classification. In: *2023 5th International Conference on Pattern Analysis and Intelligent Systems (PAIS)*. Piscataway, NJ: IEEE, 1–8 DOI [10.1109/PAIS60821.2023.10321990](https://doi.org/10.1109/PAIS60821.2023.10321990).

APTOS 2019. 2024. APTOS, 2019 Blindness Detection. Available at <https://www.kaggle.com/c/aptos2019-blindness-detection/data> (accessed 18 November 2024).

Attarde K, Sayyad J. 2024. GEPAF: a non-monotonic generalized activation function in neural network for improving prediction with diverse data distributions characteristics. *Neural Networks* **106738**(3):106738 DOI [10.1016/j.neunet.2024.106738](https://doi.org/10.1016/j.neunet.2024.106738).

Binguitcha-Fare AA, Sharma P. 2019. Crops and weeds classification using convolutional neural networks via optimization of transfer learning parameters. *International Journal of Engineering and Advanced Technology* **8**(5):2284–2294.

Cao R, Zhang X, Liu S, Lu J, Wang Y, Jiang H, Yang Y, Sun Y, Wei W, Wang J, Xu H, Li Q, Liu Q. 2022. Compact artificial neuron based on anti-ferroelectric transistor. *Nature Communications* **13**(1):7018 DOI [10.1038/s41467-022-34774-9](https://doi.org/10.1038/s41467-022-34774-9).

Fakhfakh M, Chaari L. 2024. Bayesian optimization for sparse neural networks with trainable activation functions. *IEEE Transactions on Pattern Analysis and Machine Intelligence* **46**(10):6699–6712 DOI [10.1109/TPAMI.2024.3387073](https://doi.org/10.1109/TPAMI.2024.3387073).

Fountsop AN, Ebongue Kedieng Fendji JL, Atemkeng M. 2020. Deep learning models compression for agricultural plants. *Applied Sciences* **10**(19):6866 DOI [10.3390/app10196866](https://doi.org/10.3390/app10196866).

Fu Y, Guo H, Li M, Yang X, Ding Y, Chandra V, Lin Y. 2021. CPT: efficient deep neural network training via cyclic precision. ArXiv DOI [10.48550/arXiv.2101.09868](https://doi.org/10.48550/arXiv.2101.09868).

Giselsson TM, Jørgensen RN, Jensen PK, Dyrmann M, Midtiby HS. 2017. A public image database for benchmark of plant seedling classification algorithms. ArXiv DOI [10.48550/arXiv.1711.05458](https://doi.org/10.48550/arXiv.1711.05458).

Goel A, Goel AK, Kumar A. 2023. The role of artificial neural network and machine learning in utilizing spatial information. *Spatial Information Research* **31**(3):275–285 DOI [10.1007/s41324-022-00494-x](https://doi.org/10.1007/s41324-022-00494-x).

Gülmez B. 2023. Stock price prediction with optimized deep LSTM network with artificial rabbits optimization algorithm. *Expert Systems with Applications* **227**(1):120346 DOI [10.1016/j.eswa.2023.120346](https://doi.org/10.1016/j.eswa.2023.120346).

Gupta K, Rani R, Bahia NK. 2020. Plant-seedling classification using transfer learning-based deep convolutional neural networks. *International Journal of Agricultural and Environmental Information Systems* **11**(4):25–40 DOI [10.4018/IJAEIS.2020100102](https://doi.org/10.4018/IJAEIS.2020100102).

Haft PT, Huang W, Cruz G, Rueckert D, Zimmer VA, Hammernik K. 2024. Neural implicit k-space with trainable periodic activation functions for cardiac MR imaging. In: *BVM Workshop*. Wiesbaden: Springer Fachmedien Wiesbaden, 82–87 DOI [10.1007/978-3-658-44037-4_26](https://doi.org/10.1007/978-3-658-44037-4_26).

Han JK, Yun SY, Lee SW, Yu JM, Choi YK. 2022. A review of artificial spiking neuron devices for neural processing and sensing. *Advanced Functional Materials* **32**(33):2204102 DOI [10.1002/adfm.202204102](https://doi.org/10.1002/adfm.202204102).

He K, Zhang X, Ren S, Sun J. 2016. Deep residual learning for image recognition. In: *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. Piscataway: IEEE, 770–778 DOI [10.1109/CVPR.2016.90](https://doi.org/10.1109/CVPR.2016.90).

Herrera-Alcántara O, Arellano-Balderas S. 2024. Adaptive morphing activation function for neural networks. *Fractal and Fractional* **8**(8):444 DOI [10.3390/fractfrac8080444](https://doi.org/10.3390/fractfrac8080444).

Howard AG. 2017. Mobilenets: efficient convolutional neural networks for mobile vision applications. ArXiv DOI [10.48550/arXiv.1704.04861](https://doi.org/10.48550/arXiv.1704.04861).

Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. 2017. Densely connected convolutional networks. In: *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. Piscataway: IEEE, 4700–4708 DOI [10.1109/CVPR.2017.243](https://doi.org/10.1109/CVPR.2017.243).

Jiang Y, Vaicaitis A, Dooley J, Leeser M. 2024. Efficient neural networks on the edge with FPGAs by optimizing an adaptive activation function. *Sensors* **24**(6):1829 DOI [10.3390/s24061829](https://doi.org/10.3390/s24061829).

Jiang Y, Xie J, Zhang D. 2022. An adaptive offset activation function for CNN image classification tasks. *Electronics* **11**(22):3799 DOI [10.3390/electronics11223799](https://doi.org/10.3390/electronics11223799).

Kaggle. 2024. V2 plant seedlings dataset. Available at <https://www.kaggle.com/datasets/vbookshelf/v2-plant-seedlings-dataset> (accessed 1 April 2024).

Kalim H, Chug A, Singh AP. 2024. Modswish: a new activation function for neural network. *Evolutionary Intelligence* 17(4):1–11 DOI 10.1007/s12065-024-00908-9.

Kiaei AA, Boush M, Safaei D, Abadijou S, Baselizadeh N, Salari N, Mohammadi M. 2023. Active identity function as activation function. *Preprints* DOI 10.20944/preprints202305.1018.v1.

Kılıçarslan S, Celik M. 2024. Parametric RSigELU: a new trainable activation function for deep learning. *Neural Computing and Applications* 36(13):7595–7607 DOI 10.1007/s00521-024-09538-9.

Krizhevsky A. 2009. Learning multiple layers of features from tiny images. Master's Thesis, Toronto University, Toronto, Canada.

Kunc V. 2024. Exploring the relationship: transformative adaptive activation functions in comparison to other activation functions. ArXiv DOI 10.48550/arXiv.2402.09249.

Lin H, Dai H, Mao Y, Wang L. 2024. An optimized radial basis function neural network with modulation-window activation function. *Soft Computing* 28(5):4631–4648 DOI 10.1007/s00500-023-09207-4.

Liu Z, Mao H, Wu CY, Feichtenhofer C, Darrell T, Xie S. 2022. A convnet for the 2020s. In: *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. Piscataway: IEEE, 11976–11986 DOI 10.48550/arXiv.2201.03545.

Liu H, Qin Y, Chen H-Y, Wu J, Ma J, Du Z, Wang N, Zou J, Lin S, Zhang X, Zhang Y, Wang H. 2023. Artificial neuronal devices based on emerging materials: neuronal dynamics and applications. *Advanced Materials* 35(37):2205047 DOI 10.1002/adma.202205047.

Machacuay J, Quinde M. 2024. Trainable Gaussian-based activation functions for sensor-based human activity recognition. *Journal of Reliable Intelligent Environments* 10(4):1–20 DOI 10.1007/s40860-024-00221-3.

Maiti R. 2024. AdAct: learning to optimize activation function choice through adaptive activation modules. In: *The Second Tiny Papers Track at ICLR 2024, May 11, 2024*. Vienna, Austria.

Makanapura N, Sujatha C, Patil PR, Desai P. 2022. Classification of plant seedlings using deep convolutional neural network architectures. *Journal of Physics: Conference Series* 2161(1):012006 DOI 10.1088/1742-6596/2161/1/012006.

Martinez-Gost M, Pérez-Neira A, Lagunas MÁ. 2024. ENN: a neural network with DCT adaptive activation functions. *IEEE Journal of Selected Topics in Signal Processing* 18(2):232–241 DOI 10.1109/JSTSP.2024.3361154.

Montesinos López OA, Montesinos López A, Crossa J. 2022. Fundamentals of artificial neural networks and deep learning. In: *Multivariate Statistical Machine Learning Methods for Genomic Prediction*. Cham: Springer International Publishing, 379–425.

Mu Y, Feng R, Ni R, Li J, Luo T, Liu T, Li X, Gong H, Guo Y, Sun Y, Bao Y, Li S, Wang Y, Hu T. 2022. A faster R-CNN-based model for the identification of weed seedling. *Agronomy* 12(11):2867 DOI 10.3390/agronomy12112867.

Pourkamali-Anaraki F, Nasrin T, Jensen RE, Peterson AM, Hansen CJ. 2024. Adaptive activation functions for predictive modeling with sparse experimental data. ArXiv DOI 10.48550/arXiv.2402.05401.

Rahman NR, Hasan MAM, Shin J. 2020. Performance comparison of different convolutional neural network architectures for plant seedling classification. In: *2020 2nd International Conference on Advanced Information and Communication Technology (ICAICT)*. Piscataway, NJ: IEEE, 146–150 DOI 10.1109/ICAICT51780.2020.9333468.

Rajanand A, Singh P. 2024. ErfReLU: adaptive activation function for deep neural network. *Pattern Analysis and Applications* 27(2):68 DOI 10.1007/s10044-024-01277-w.

Rane C, Tyagi K, Kline A, Chugh T, Manry M. 2024. Optimizing performance of feedforward and convolutional neural networks through dynamic activation functions. *Evolutionary Intelligence* 17(5–6):1–11 DOI 10.1007/s12065-024-00973-0.

Razali NF, Isa IS, Sulaiman SN, Osman MK, Karim NKA, Nordin SA. 2024. Optimization of ReLU activation function for deep-learning-based breast cancer classification on mammogram images. In: *2024 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS)*. Piscataway, NJ: IEEE, 267–272 DOI 10.1109/I2CACIS61270.2024.10649623.

Sharma S, Sharma S, Athaiya A. 2020. Activation functions in neural networks. *International Journal of Engineering Applied Sciences and Technology* 4(12):310–316 DOI 10.33564/IJEAST.2020.v04i12.054.

Simonyan K, Zisserman A. 2014. Very deep convolutional networks for large-scale image recognition. ArXiv DOI 10.48550/arXiv.1409.1556.

Smith LN. 2017. Cyclical learning rates for training neural networks. In: *2017 IEEE Winter Conference on Applications of Computer Vision (WACV)*. Piscataway, NJ: IEEE, 464–472 DOI 10.1109/WACV.2017.58.

Sohan MF, Jabiullah MI, Rahman SSMM, Mahmud SH. 2019. Assessing the effect of imbalanced learning on cross-project software defect prediction. In: *2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT)*. Piscataway, NJ: IEEE, 1–6 DOI 10.1109/ICCCNT45670.2019.8944622.

Subramanian B, Jeyaraj R, Ugli RAA, Kim J. 2024. APALU: a trainable, adaptive activation function for deep learning networks. ArXiv DOI 10.48550/arXiv.2402.08244.

Tan M, Le Q. 2021. Efficientnetv2: smaller models and faster training. *International Conference on Machine Learning*. Westminster: PMLR, 10096–10106 DOI 10.48550/arXiv.2104.00298.

Tiwari S, Sharma AK, Jain A, Gupta D, Gono M, Gono R, Leonowicz Z, Jasiński Mł. 2023. IOT-enabled model for weed seedling classification: an application for smart agriculture. *AgriEngineering* 5(1):257–272 DOI 10.3390/agriengineering5010017.

Vargas VM, Gutiérrez PA, Barbero-Gómez J, Hervás-Martínez C. 2021. Activation functions for convolutional neural networks: proposals and experimental study. *IEEE Transactions on Neural Networks and Learning Systems* 34(3):1478–1488 DOI 10.1109/TNNLS.2021.3105444.

Verma S, Chug A, Singh AP. 2024. Revisiting activation functions: empirical evaluation for image understanding and classification. *Multimedia Tools and Applications* 83(6):18497–18536 DOI 10.1007/s11042-023-16159-2.

Vijayaprakarana K, Sathiyanurthy K. 2022. Towards activation function search for long short-term model network: a differential evolution based approach. *Journal of King Saud University-Computer and Information Sciences* 34(6):2637–2650 DOI 10.1016/j.jksuci.2020.04.015.

Wang C, Liang J, Deng Q. 2024. Dynamics of heterogeneous Hopfield neural network with adaptive activation function based on memristor. *Neural Networks* 178(24):106408 DOI 10.1016/j.neunet.2024.106408.

Wang X, Ren H, Wang A. 2022. Smish: a novel activation function for deep learning methods. *Electronics* 11(4):540 DOI 10.3390/electronics11040540.

Yevick D. 2024. Nonlinearity enhanced adaptive activation function. ArXiv DOI 10.48550/arXiv.2403.19896.

Yuen B, Hoang MT, Dong X, Lu T. 2021. Universal activation function for machine learning. *Scientific Reports* 11:18757 DOI 10.1038/s41598-021-96723-8.

Zeng S, Liang Y, Zhang Q. 2024. Adaptive deep neural networks for solving corner singular problems. *Engineering Analysis with Boundary Elements* **159**(2):68–80
DOI [10.1016/j.enganabound.2023.11.022](https://doi.org/10.1016/j.enganabound.2023.11.022).

Zhang F, Zheng Q, Zou Y, Hassan AE. 2016. Cross-project defect prediction using a connectivity-based unsupervised classifier. In: *Proceedings of the 38th International Conference on Software Engineering*. New York: Association for Computing Machinery, 309–320
DOI [10.1145/2884781.2884839](https://doi.org/10.1145/2884781.2884839).

Zhang Y, Zhu Y, Liu X, Lu Y, Liu C, Zhou X, Fan W. 2023. In-field tobacco leaf maturity detection with an enhanced MobileNetV1: incorporating a feature pyramid network and attention mechanism. *Sensors* **23**(13):5964 DOI [10.3390/s23135964](https://doi.org/10.3390/s23135964).

Zoph B, Vasudevan V, Shlens J, Le QV. 2018. Learning transferable architectures for scalable image recognition. In: *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 8697–8710 DOI [10.48550/arXiv.1707.07012](https://doi.org/10.48550/arXiv.1707.07012).