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ABSTRACT
Neural networks are a state-of-the-art approach that performs well for many tasks.
The activation function (AF) is an important hyperparameter that creates an output
against the coming inputs to the neural network model. AF significantly affects the
training and performance of the neural network model. Therefore, selecting the most
optimal AF for processing input data in neural networks is important. Determining
the optimal AF is often a difficult task. To overcome this difficulty, studies on
trainable AFs have been carried out in the literature in recent years. This study
presents a different approach apart from fixed or trainable AF approaches. For this
purpose, the activation function cyclically switchable convolutional neural network
(AFCS-CNN) model structure is proposed. The AFCS-CNN model structure does
not use a fixed AF value during training. It is designed in a self-regulating model
structure by switching the AF during model training. The proposed model structure
is based on the logic of starting training with the most optimal AF selection among
many AFs and cyclically selecting the next most optimal AF depending on the
performance decrease during neural network training. Any convolutional neural
network (CNN) model can be easily used in the proposed model structure. In this
way, a simple but effective perspective has been presented. In this study, first, ablation
studies have been carried out using the Cifar-10 dataset to determine the CNN
models to be used in the AFCS-CNN model structure and the specific
hyperparameters of the proposed model structure. After the models and
hyperparameters were determined, expansion experiments were carried out using
different datasets with the proposed model structure. The results showed that the
AFCS-CNN model structure achieved state-of-the-art success in many CNN models
and different datasets.
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INTRODUCTION
Neural networks are one of the modeling methods that play an important role in the fields
of machine learning and deep learning (Goel, Goel & Kumar, 2023). The basic building
blocks of these networks are artificial neurons inspired by biological nerve cells
(Montesinos López, Montesinos López & Crossa, 2022; Liu et al., 2023). Artificial neurons
that mimic biological neuron functions (Cao et al., 2022) apply a mathematical function to
process the inputs they receive and produce output (Han et al., 2022; Gülmez, 2023; Yevick,
2024). In this process, the flow of information between neurons and the responses of
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neurons to inputs are largely regulated through activation function (AF)
(Vijayaprabakaran & Sathiyamurthy, 2022). AF used in these processes is a critical
element that determines how the neuron will respond to the signals it receives.

AFs directly affect the training and performance of the model as they provide an output
based on the inputs in the neural network (Akgül, 2023). They are divided into two main
categories: linear and nonlinear functions. While linear AFs enable the model to perform
well on simpler problems, more complex functions are needed to model nonlinear
relationships (Vargas et al., 2021). The task of AF is to learn abstract properties of data
through nonlinear modification (Kalim, Chug & Singh, 2024). That is, to help learn
nonlinear and complex mappings between inputs and their corresponding outputs
(Sharma, Sharma & Athaiya, 2020; Subramanian et al., 2024). Recent research has found
that AF plays an important role in introducing nonlinearity to improve the performance of
deep learning networks (Rajanand & Singh, 2024). This nonlinear ability of AF has
brought true artificial intelligence to deep neural networks (Wang, Ren & Wang, 2022).

Many AFs have been proposed throughout the history of machine learning. Some of the
AF types commonly used in neural networks are: Binary Step, Linear, Sigmoid, Hyperbolic
Tangent (Tanh), Rectified Linear Unit (ReLU), Leaky ReLU, Parametric RELU (PReLU),
Exponential Linear Units (ELU), SELU, Softmax, Mish, Swish/Sigmoid Linear Unit (SiLU),
Gaussian Error Linear Unit (GELU), Logish, Softplus and Softsign (Yuen et al., 2021;
Wang, Ren & Wang, 2022; Kiaei et al., 2023; Kalim, Chug & Singh, 2024; Verma, Chug &
Singh, 2024). AFs such as Sigmoid, Tanh, ReLU, and Leaky ReLU are the most widely used
nonlinear functions in neural networks. Each function responds differently to inputs and
offers specific advantages for specific problems. Sigmoid and Tanh AFs are both s-shaped
and are used to classify objects where the output is limited to {0, 1} to {−1, 1} respectively
(Verma, Chug & Singh, 2024). ReLU AF is used for quantification, classification, and
reinforcement learning problems. Leaky ReLU, ELU, and Softplus AFs are part of the
ReLU AF family. Leaky ReLU AF is a version of ReLU with a non-zero gradient to prevent
the gradient from reaching zero. Elu and Softplus AFs solve the problem by creating
smoothness and continuity in the environment. Newer AFs such as Mish, Swish/SiLU, and
GELU have built-in regularization to prevent over-fitting of models (Yuen et al., 2021).

The purpose of machine learning algorithms is to determine the most optimal model to
solve a specific problem. To determine the most optimal model, it is necessary to select the
most optimal AF, like many parameters (Yuen et al., 2021). However, selecting the most
optimal AF to train the neural network is not always an easy task (Kiaei et al., 2023). Since
linear AFs limit the learning performance of deep learning models, nonlinear AFs are
mostly preferred. Nonlinear AFs can be classified as fixed-parameter and trainable/
adaptive AFs, depending on whether the AF parameter is fixed or modified during the
training process of deep learning models (Kiliçarslan & Celik, 2024). Although the
effectiveness of trainable or adaptive AFs has been examined in areas with abundant data,
such as image classification problems, significant gaps remain in understanding their
impact on classification accuracy and prediction uncertainty in environments
characterized by limited data availability (Pourkamali-Anaraki et al., 2024).
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Although fixed parameter AFs have been widely used in image classification models in
previous studies, they have important shortcomings such as low classification accuracy. In
recent years, adding parameters to AF to improve its performance has become a popular
research topic. Excellent progress has been made with adaptive AFs obtained in this way
(Jiang, Xie & Zhang, 2022). Many recent studies have been conducted on trainable or
adaptive AF in the literature, especially in recent years (see ‘Related Works’). In these
studies, a parametric variation of an existing AF was created by adding new parameters to
commonly used AF types. Some of these created parametric AFs change the activation in
the positive domain (Vargas et al., 2021). Another part focuses on either assigning a
different slope to the negative domain of AF or converting the negative value to a positive
value instead of zero (Jiang, Xie & Zhang, 2022). Although cyclic switching strategies such
as cyclic learning rates (Smith, 2017) and cyclic precision (Fu et al., 2021) have been
discussed during training, the cyclic AF switching strategy has not been discussed. In the
studies, new AFs were generally proposed by adding an adaptive parameter to the AF, and
the AF was used without a switch throughout the training. However, no study has been
found on switching AF during training. In this study, unlike other studies, instead of an AF
proposal, the ability to switch the AF with another AF during neural network training was
adopted. The AFs to be used during training can be either fixed-parameter or adaptive.
Thus, many AF switches are allowed during training (while training continues). In
summary, it can be used in many AF neural networks thanks to the instantaneous AF
switch while neural network training continues.

In this study, the activation function cyclically switchable convolutional neural network
(AFCS-CNN) model structure was proposed, which allows cyclical switching of AF, which
has an important place in neural networks. A first was achieved by proposing a new model
from a unique perspective in the literature. Many experiments have been applied to
determine the effectiveness of the proposed model. After a series of ablation experiments
were carried out on the Cifar-10 dataset, expansion experiments were performed on the V2
Plant Seedling and APTOS 2019 Blindness Detection datasets, and the performance of the
proposed model was measured. The highlight of this study to the literature can be
summarized as follows:

1) A new model structure called AFCS-CNN has been proposed, which enables cyclical
switching of AF.

2) Unlike the studies in the literature, instead of an AF proposal, the ability to switch the
AF with another AF during neural network training has been adopted.

3) The concept of cyclic AF switching strategy during model training has been introduced.

4) A first was achieved by designing a model structure that had not been tried before,
thanks to instant AF switches during neural network training.

5) The algorithm of the proposed model structure is designed to allow easy integration of
all convolutional neural network (CNN) models into the structure.

6) Training with the proposed model structure has provided superior success in many
problems compared to training with fixed AFs.
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7) A state-of-the-art success has been achieved with the proposed model structure in plant
seedling classification.

The remaining part of the study is organized as follows. Recent studies on AF
development can be found in the ‘Related Works’, dataset preprocessing, training
parameters, performance metrics and model structure are noted in ‘Materials and
Methods’, performance and results are discussed in ‘Results and Discussions’, and the
article concludes in the ‘Conclusion’.

RELATED WORKS
In this section, recent studies on the development of trainable or adaptable AFs are
comprehensively reviewed.

In a study on trainable or adaptive AFs, a trainable AF named Modified Mexican ReLU
(MMeLU) was proposed to solve the complexity problem and improve the model
performance. A fully Bayesian model is developed to automatically estimate both model
weights and AF parameters from the training data. The proposed method is designed to
learn the recommended AF weights and parameters directly from the data without any
user configuration. The proposed method has been tested on various datasets covering
both classification and regression tasks and implemented on various CNN architectures.
The results showed that the proposed approach is useful in improving the model accuracy
due to the proposed AF and Bayesian estimation of the parameters (Fakhfakh & Chaari,
2024). In another study, a new AF named ErfReLU based on error function (erf) and ReLU
was developed. The performance of the proposed function is compared with nine different
trainable AFs. CIFAR-10, MNIST, and FMNIST benchmark datasets were used to evaluate
the effectiveness of AFs with MobileNet, VGG16, and ResNet models. The proposed AF
has achieved better accuracy than other state-of-the-art adaptive AFs (Rajanand & Singh,
2024).

In another study, a novel trainable AF, adaptive piecewise approximated activation
linear unit (APALU), was proposed to improve the learning performance of deep learning
on a wide range of tasks. It has been stated that the proposed function exhibits significant
improvements over AFs commonly used in image classification, anomaly detection, sign
language recognition, and regression tasks (Subramanian et al., 2024). In another study,
two trainable Gaussian-based AFs were proposed for sensor-based human activity
recognition (HAR). Experiments have been conducted on Opportunity and UniMiB
SHAR benchmark datasets with the proposed Four-Parameter Activation Gaussian Radial
Basis Function (T4GRBF) and Weighted Gaussian Radial Basis Function (WGRBF). On
both datasets, the results showed that Trainable Gaussian-based AFs fit the training data
better and faster than standard AFs (Machacuay & Quinde, 2024). In another study, a
generalized activation function called Generalized Exponential Parametric Activation
Function (GEPAF) was proposed. In applications on real-world supply chain datasets, the
proposed function outperformed popular AFs while demonstrating at least a 30%
improvement in regression evaluation metrics and better loss reduction properties
(Attarde & Sayyad, 2024).
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In another study, PolySigmoid, PolySoftplus, PolyGeLU, PolySwish, and PolyMish
polynomial versions of existing shape-shifting AFs such as Sigmoid, Softplus, GeLU,
Swish, and Mish were proposed. As a result of the accuracy comparisons, it was
determined that the performance of the polynomial versions of AFs was similar to or better
than their counterparts (Herrera-Alcántara & Arellano-Balderas, 2024). Another study
proposed an adaptive ReLU based on the genetic algorithm (GA) profile to improve the
restrictive ability of the original ReLU and determine the best threshold value to allow
adaptation-based neuron activation. As a result of experiments for breast cancer
classification, it was found that the proposed method showed improved accuracy and
improved classification performance from 95.0% to 98.5% compared to other well-known
AFs (Razali et al., 2024).

Another study examined the effectiveness of trainable (non-periodic) AFs for neural
implicit k-space (NIK) in the context of non-Cartesian Cardiac MRI. The proposed NIKs
with trainable AFs are evaluated on 42 radially sampled datasets from six subjects and
qualitatively and quantitatively outperform other state-of-the-art reconstruction methods
including NIK with fixed periodic AFs (Haft et al., 2024). In another study, a new
transformative adaptive activation function (TAAF) that allows any vertical and horizontal
translation and scaling was investigated. It has been emphasized that TAAFs generalize
more than 50 existing AFs and use similar concepts to more than 70 other AFs (Kunc,
2024).

In another work, a unified adaptive AF called adaptive activation (AdAct) was
presented, which aims to improve neural network performance by adaptively selecting and
combining the most suitable AFs for different tasks and datasets. The effectiveness of ReLU
and its variants, including ELU, LReLU, PReLU, RReLU, and newer functions such as
Swish and Mish, has been investigated by integrating them into the AdAct function. In the
study where ConvNet variants were used on FMNIST, CIFAR10, SVHN, and FER datasets,
AdAct showed better performance than other AFs (Maiti, 2024). In another study, in
which the adaptive activation algorithm AdAct was proposed, it was emphasized that there
were improvements in the performance of feedforward and convolutional neural networks
(Rane et al., 2024). In another study, a new model, the expressive neural network (ENN),
was presented in which nonlinear AFs were modeled using discrete cosine transform
(DCT) and adapted using backpropagation during training. ENN has outperformed state-
of-the-art non-adaptive AFs by adapting AFs for classification and regression problems
(Martinez-Gost, Pérez-Neira & Lagunas, 2024).

In another study, a novel modulation window radial basis function neural network
(MW-RBFNN) with a tunable AF was proposed. A raised cosine radial basis function (RC-
RBF) was implemented as a shape-tunable AF of MW-RBFNN by adaptively modulating it
by an exponential function. Simulation results of many different application cases have
shown that this proposed MW-RBFNN is effective (Lin et al., 2024). In another study, a
new adaptive deep neural networks (ADN) technique is proposed for partial differential
equations (PDE) with corner singular solutions. Three different adaptive techniques were
used for this, such as an adaptive loss function, an adaptive activation function, and an
adaptive sampling strategy. The results showed that ADN achieved higher accuracy and
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faster convergence speed compared to some traditional DNN methods (Zeng, Liang &
Zhang, 2024).

In a different study, it was studied that a customized adaptive activation function (AAF)
can match the accuracy of a deep neural network (DNN). A field programmable gate
arrays (FPGA) hardware implementation for a customized segmented spline curve neural
network (SSCNN) structure is designed to replace the traditional fixed AF with an AAF.
The proposed SSCNN implementation achieved similar accuracy using 40% less hardware
resources and block RAM compared to DNN (Jiang et al., 2024). In a similar study, a local
active memristor with a conductance function value range limited between 0 and 1 was
designed to create an adaptive AF called memristive PReLU (MPReLU). A heterogeneous
memristive Hopfield neural network with neurons using different activation functions was
presented and a hardware implementation of this neural network with adaptive AF was
designed. The experimental results largely coincided with those obtained using numerical
simulations (Wang, Liang & Deng, 2024).

MATERIALS AND METHODS
Dataset and preprocessing
In this study, the Cifar-10 (Krizhevsky, 2009) dataset was used to determine the CNN
model to be used in the AFCS-CNN model structure and the special hyperparameters of
AFCS-CNN, and V2 Plant Seedling (Kaggle, 2024; Giselsson et al., 2017) and APTOS 2019
Blindness Detection (APTOS 2019, 2024) datasets were used to test the model
performance. Cifar-10 dataset consists of 10 classes and each of the 60,000 images in this
dataset has dimensions of 32 × 32 × 3 pixels. The V2 Plant Seedling dataset consists of 12
classes representing common plant species in Danish agriculture, and each of the 5,539
images in this dataset has different pixel sizes. The Asia Pacific Tele-Ophthalmology
Society 2019 Blindness Detection (APTOS 2019 Blindness Detection) dataset consists of
five classes with an imbalanced distribution to classify diabetic retinopathy (DR), and each
of the 3,662 images in this dataset has different pixel sizes. Table 1 lists the image types and
numbers in each class in the datasets.

Since the images in the Cifar-10 dataset have the same pixel dimensions and there is no
common distinctiveness in the objects in the images, they were not subjected to any
preprocessing. Various preprocesses were applied to the images in the V2 Plant Seedling
dataset to ensure smoother progress of the training process. In the V2 Plant Seedling
dataset images, plant greens can be distinguished in color space because they are denser
than other objects. Therefore, the images in this dataset were masked by applying
color-based segmentation. The best color range to distinguish plant greens in the color
space was determined between RGB: 27-45-45 and RGB: 100-255-255. After masking, the
images in the V2 Plant Seedling dataset were set to 224 × 224 × 3 pixel dimensions. Since
there is a class imbalance in the APTOS 2019 Blindness Detection dataset, no
preprocessing other than dimension adjustment was performed to determine the behavior
of the proposed model in an imbalanced dataset. Only the images in the dataset were set to
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224 × 224 × 3 pixel dimensions. Figure 1 shows some examples obtained as a result of
masking from images in the V2 Plant Seedling dataset, and Fig. 2 shows sample images of
each class in the APTOS 2019 Blindness Detection dataset.

Table 1 Image types and numbers in each class in the datasets.

Cifar-10 dataset image
type

Number of
image

V2 plant seedling dataset image
type

Number of
image

APTOS 2019 dataset image
type

Number of
image

Airplane 6,000 Black-grass 309 No DR 1,805

Automobile 6,000 Charlock 452 Mild DR 370

Bird 6,000 Cleavers 335 Moderate DR 999

Cat 6,000 Common Chickweed 713 Severe DR 193

Deer 6,000 Common wheat 253 Proliferate DR 295

Dog 6,000 Fat Hen 538

Frog 6,000 Loose Silky-bent 762

Horse 6,000 Maize 257

Ship 6,000 Scentless Mayweed 607

Truck 6,000 Shepherd’s Purse 274

Small-flowered Cranesbill 576

Sugar beet 463

Total 60,000 Total 5,539 Total 3,662

Figure 1 Examples of masked images from the V2 plant seedling dataset. Full-size DOI: 10.7717/peerj-cs.2756/fig-1
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Model training parameters and performance metrics
In the experiments conducted in this study, the Adamax optimization algorithm was used
at its default values. The loss function was implemented as Categorical Crossentropy and
the classification activation function was implemented as Softmax. To prevent the
overfitting tendency of the models during training, the minimum level of loss value in the
validation dataset was checked with the “patience” feature used in the “early stopping”
process. Therefore, a fixed epoch value was not used. The batch size value was set to 128 for
training with the Cifar-10 dataset and 16 for training with the V2 Plant Seedling and
APTOS 2019 Blindness Detection datasets. The Cifar-10 dataset is divided into two
datasets 80% training, and 20% testing, and the V2 Plant Seedling and APTOS 2019
Blindness Detection datasets are divided into three datasets 70% training, 15% validation,
and 15% testing.

After the model is created, various evaluation metrics are needed to measure how its
performance works (Sohan et al., 2019). Evaluation metrics mostly come from the
confusion matrix (Zhang et al., 2016). Therefore, accuracy, loss, precision, recall, and
F1-score metrics were examined to determine the classification success of the models.

AFCS-CNN model structure
AFCS-CNN model structure works on the principle of switching AF during model
training. It suggests that AF can be switched cyclically depending on the performance
decrease in the neural network. The workflow of the AFCS-CNNmodel structure is shown
in Fig. 3, and the flowchart is shown in Algorithm 1.

The AFCS-CNN model structure, whose flow is shown in Fig. 3 and Algorithm 1,
initially takes list_AF, p0, p1, AFCS_loop and min_AF_count parameter values as input. In
the neural network (ModelA), the best and worst performing AFs are determined by trying

Figure 2 Examples of images from the APTOS 2019 Blindness Detection dataset. Full-size DOI: 10.7717/peerj-cs.2756/fig-2
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them among a series of AFs (list_AF) determined as parameters at the input. Training
starts with the best-performing AF, while the worst-performing AF is taken out from
list_AF. During training, whether the performance of the model on the validation dataset

Figure 3 Workflow of AFCS-CNN model structure. Full-size DOI: 10.7717/peerj-cs.2756/fig-3

Algorithm 1 AFCS-CNN algorithm.

begin

list_AF = [AF1, AF2, …, AFn]

p0, p1, AFCS_loop ∈ [2, +∞), min_AF_count ∈ [2, +∞)

try list_AF on ModelA and choose best AF and take out worst AF from list_AF

start ModelA training

if patience = p0 then

stop ModelA training

for i = 2 to AFCS_loop step 1 do

try list_AF on ModelA and choose next best AF

if min_AF_count < len (list_AF) then

take out worst AF from list_AF

end if

continue ModelA training with new AF

if patience = p1 then

stop ModelA training

end if

end for

end if

end
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improves is checked with the patience (p0, p1) hyperparameter used in the early stopping
process. In case the model performance does not improve during training, the best and the
worst performing AFs are determined again among the remaining AFs. Training continues
with the best-performing new AF. Take out process of the worst-performing AF from the
system is continued cyclically until the minimum number of AFs (min_AF_count) defined
by the user at the beginning is reached. Training is finished when the number of AFCS
cycles (AFCS_loop) defined at the beginning is reached.

The runtime of the AFCS-CNN model structure, whose flow is shown in Fig. 3 and
Algorithm 1, is given in Eq. (1).

RuntimeAFCS�CNN ¼ RtCNN þ Rtep p0 þ
XAFCS loop

i¼2

p1

 !
(1)

where RtCNN is the total runtime of any CNN model, Rtep is an epoch runtime and p0 and
p1 are patience values.

According to Eq. (1), the runtime of the AFCS-CNN model is calculated by adding the
cost that the p0 and p1 values will bring to the total runtime of the CNNmodel to be used in
the AFCS-CNNmodel. The additional cost is found by multiplying the sum of the p0 value
and the p1 value (as many as the number of cycles) by an epoch runtime of the CNN
model. Considering the cases where the patience hyperparameter is used during model
training, the additional runtime cost of the AFCS-CNNmodel can be ignored if the p0 and
p1 parameters are given small values. For example, let’s assume that patience=10 is given in
a CNN model that does not use the AFCS-CNN model structure and p0=6, p1=5
(AFCS_loop=5) in the AFCS-CNN model. In this case, while the CNN model will run 10
epochs more, the AFCS-CNN model will run 6+5*4=26 epochs more. But in the AFCS-

CNN model, when p0=3, p1=2 (AFCS_loop=5) is given, the AFCS-CNN model will have
run 3+2×4=11 epochs more. Or, when p0=2, p1=1 (AFCS_loop=5) is given in the AFCS-
CNN model, the AFCS-CNN model will have run 2+1*4=6 epochs more. Therefore, it is

recommended to give small values to the p0 and p1 parameters to obtain a competitive
training cost with the AFCS-CNN model.

RESULTS AND DISCUSSION
In this study, ablation studies were performed using the Cifar-10 dataset to determine the
CNN models to be used in the proposed AFCS-CNN model structure and the special
hyperparameters of the proposed model structure, and expansion experiments were
performed using the V2 Plant Seedling and APTOS 2019 Blindness Detection datasets to
determine the performance of the proposed model structure.

Ablation studies
Ablation studies to determine the best CNN models and hyperparameters consist of three
stages. The first stage includes determining the CNN models to be used in the AFCS-CNN
model structure, the second stage includes determining the list_AF array and the p0
parameter value, and the third stage includes determining the p1 parameter value.
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Stage 1: Determination of CNN models to be used in the AFCS-CNN model
structure

To determine the CNN models to be used in the proposed AFCS-CNN model structure,
VGG16 (Simonyan & Zisserman, 2014), ResNet50 (He et al., 2016), MobileNet
(Howard, 2017), DenseNet121 (Huang et al., 2017), NASNetMobile (Zoph et al., 2018),
EfficientNetV2B0 (Tan & Le, 2021), and ConvNeXtTiny (Liu et al., 2022) Keras models
were tried on the Cifar-10 dataset. CNN models were trained for 20 epochs with pre-
trained weights without partial layer freezing, and at default AF values. The numerical
results obtained as a result of the training are given in Table 2.

According to the numerical results given in Table 2, the two best-performing models are
VGG16 (84.52%) and DenseNet121 (82.93%), while the two worst-performing models are
EfficientNetV2B0 (52.94%) and ConvNeXtTiny (10.00%). Since it would be appropriate to
conduct ablation studies with the best-performing VGG16 and DenseNet121 models, these
two models were preferred. It should be noted that in addition to these two best-
performing models, the two worst-performing models (EfficientNetV2B0 and
ConvNeXtTiny) were also used in the expansion experiments presented in the later
sections of the study.

Stage 2: Determination of list_AF array and p0 parameter value
After determining the CNNmodels to be used in ablation studies, special hyperparameters
of AFCS-CNN need to be defined. These hyperparameters can be given randomly or
determined as a result of certain ablation studies. Here, a series of ablation studies were
performed using the VGG16 and DenseNet121 models and the Cifar-10 dataset to
determine the specific hyperparameters of AFCS-CNN.

Firstly, training was performed with VGG16 and DenseNet121 models to determine the
list_AF array and the p0 parameter value (epoch=20, patience=10). In addition to the
ReLU, SiLU, and GELU AFs from the model default AF values presented in Table 2, the
Tanh, ELU, SELU, and Mish AFs accepted in the literature were also preferred and the first
version of the list_AF array was created. The VGG16 and DenseNet121 models use ReLU
AF by default. The default AF of VGG16 and DenseNet121 models were trained separately
by replacing them with the AFs in the list_AF array (fixed AF throughout training). The
experiments were repeated three times to determine the best AFs. The test loss values

Table 2 Numerical results obtained from model training in the Cifar-10 dataset.

Model Default AF Accuracy Loss Precision Recall F1-score

VGG16 ReLU 0.8452 0.8203 0.8460 0.8470 0.8450

ResNet50 ReLU 0.8017 1.0741 0.8050 0.8030 0.8020

MobileNet Linear 0.7928 1.0904 0.7918 0.7813 0.7855

DenseNet121 ReLU 0.8293 0.9186 0.8350 0.8300 0.8290

NASNetMobile ReLU 0.7499 1.4968 0.7520 0.7500 0.7480

EfficientNetV2B0 SiLU 0.5294 2.6258 0.6320 0.5300 0.5190

ConvNeXtTiny GELU 0.1000 2.3050 0.0100 0.1000 0.0180
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Table 3 Test loss values obtained as a result of experiments to determine the best AFs.

Model Exp Epoch AF

Tanh ReLU ELU SELU Mish SiLU GELU

VGG16 Exp1 1 2.3076 0.9476 1.0678 1.2563 1.2892 1.1551 1.1570

2 0.6696 0.6680 0.7820 0.8432 0.8062 0.7725

3 0.5962 0.5724 0.6139 0.6929 0.6398 0.7045

4 0.5256 0.5992 0.6085 0.6095 0.6129 0.6445

5 0.5696 0.6102 0.6128 0.5439 0.5598

6 0.5554 0.5163 0.5340 0.5436

Exp2 1 2.3142 1.0733 0.9366 1.4203 1.2050 1.2574 1.3257

2 2.3071 0.6606 0.7246 0.8865 0.8317 0.7698 0.9488

3 0.6901 0.5796 0.6664 0.5938 0.6802 0.6997

4 0.5445 0.5255 0.5771 0.5877 0.5580 0.6504

5 0.5327 0.6197 0.5706 0.5932 0.5556 0.5919

6 0.5106 0.5274 0.5679 0.5578

Exp3 1 2.3181 1.3439 2.3096 1.2635 1.2560 1.2025 1.6888

2 2.3079 0.8153 2.3157 0.8118 0.7729 0.7723 0.8539

3 0.7513 2.3073 0.6305 0.6168 0.6512 0.9304

4 0.6177 1.3916 0.6437 0.5809 0.5713 0.6721

5 0.5600 0.7189 0.5747 0.5858 0.5833

6 0.5151 0.6646 0.5580 0.6320

7 0.5391 0.5170

8 0.5236

DenseNet121 Exp1 1 2.5334 0.6554 1.5114 1.1965 1.1738 1.1499 0.9080

2 1.3031 0.5978 1.1989 1.1150 1.0227 0.9996 0.6984

3 1.5998 1.2462 1.0469 0.8134 0.9571 0.6139

4 1.1421 0.8565 1.0753 1.1066 0.7643 0.6911

5 1.1080 0.9678 0.9509 0.9248 1.0973 0.7137

6 1.0704 0.8023 0.8480 0.6475 0.7673 0.5965

7 0.9837 0.7692 0.8905 0.7938

8 0.8963 0.8283 0.8551 0.7441

9 0.8924 0.7902 0.8649 0.8058

10 1.2865 0.7778 0.9231 0.7149

11 0.8584 0.6953 0.8685 0.6174

12 20.381 0.9441

13 0.9130 0.7886

14 0.9475 0.8488

15 1.5578 0.7172

16 0.7754
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obtained as a result of experiments performed to measure the training performance of the
models with each fixed AF are given in Table 3.

As a result of the experiments presented in Table 3, the Tanh function was removed
from the AF list because learning did not occur with Tanh AF in the VGG16 model and the
worst loss values were obtained with Tanh AF in the DenseNet121 model. Thus, the
list_AF array was created as ReLU, ELU, SELU, Mish, SiLU, and GELU.

Table 3 (continued)

Model Exp Epoch AF

Tanh ReLU ELU SELU Mish SiLU GELU

Exp2 1 2.6434 0.6864 1.2152 1.2862 1.3581 1.1517 0.8766

2 1.4907 0.6845 1.0475 1.0604 1.4940 1.1341 0.8051

3 1.8102 0.6161 0.8702 1.1703 0.7974 0.8132 0.6477

4 0.9409 1.0633 1.1219 0.8704 0.8092 0.6355

5 1.4932 0.9105 1.0914 0.7391 0.7236 0.8993

6 1.3614 0.7997 0.9500 0.7348 0.7522 0.5716

7 0.9439 0.8416 1.0224 0.6762 0.7218

8 1.0116 0.8869 1.2598 0.7274 0.7383

9 0.9864 0.9702 1.0666 0.7168 0.7116

10 1.2859 0.7945 1.2473 0.7997 0.6661

11 0.7728 0.7792 0.8475 0.6685 0.7161

12 1.0680 0.7670 0.6738

13 0.7520 0.6274

14 0.7260

Exp3 1 2.8821 0.6683 1.4735 1.2436 1.0554 1.0850 0.8528

2 1.2687 1.0291 0.9248 1.1282 1.1075 0.9101 0.9093

3 1.1558 0.5604 0.8414 1.0731 0.7743 0.8047 0.8000

4 1.1121 0.8957 1.1002 0.8894 0.7906 0.7144

5 0.9807 1.0537 0.9099 0.6880 0.7124 0.6606

6 0.9404 0.7695 0.8878 0.6593 0.7021 0.6444

7 1.1520 1.1104 0.8715 0.8545 0.7681 0.6788

8 0.9789 0.8887 0.8372 0.5865 0.7868 0.6399

9 0.9592 0.8042 0.9499 0.6442

10 0.8842 0.7549 0.8418

11 1.2925 0.7156 1.1430

12 0.7164 0.8619 0.9685

13 1.0142 0.9562

14 0.7758 1.1994

15 0.6857 0.8176

16 0.9022

17 0.9555

18 0.8060
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According to the experimental results given in Table 3, the consecutive loss increment
numbers of the AFs were taken into account to determine the value of the p0 parameter. By
examining the loss increase situations in Table 3, the consecutive loss increase numbers
were determined and summarized numerically in Table 4.

When Table 4 is examined, the overall average of consecutive loss increase numbers is
calculated as 0.56 with the VGG16 model and 2.39 with the DenseNet121 model. Since
training will be carried out with many models and datasets other than VGG16 and
DenseNet121 models in the expansion experiments presented in the later sections of the
study, the p0 value was determined by taking into account the DenseNet121 model, which
has the highest average of consecutive loss increase numbers. Since the consecutive loss
increase number = 2.39≈2, the p0 value is set to three. Thus, the loss will be allowed to
increase two times in a row, and the training will be stopped at this stage when the loss
value worsens for the 3rd time.

Stage 3: Determination of the p1 parameter value
After determining the list_AF array and p0 parameter values, to determine the p1
parameter value, the training was continued by selecting the three most successful AFs that
reached the lowest loss value from the experiments performed with each model in Table 3
(epoch=20, patience=5). In this way, the behavior of the p1 parameter values according to
different AF antecedents was investigated. Among the experiments performed with
VGG16, the three most successful AFs that brought the model to the lowest loss value were
SELU, ReLU, Mish in experiment 1, ELU, SELU, ReLU in experiment 2, and ReLU, GELU,
ELU in experiment 3. Among the experiments performed with DenseNet121, the three
most successful AFs that brought the model to the lowest loss value were GELU, ReLU,
SiLU in experiment 1 and experiment 2, and ReLU, Mish, GELU in experiment 3. Training
was continued on the models obtained with these AFs, and experiments were carried out to
determine the best AF in the next step. The test loss values obtained as a result of the
experiments are given in Table 5.

According to the experimental results given in Table 5, the consecutive loss increment
numbers of the AFs were taken into account to determine the value of the p1 parameter. By

Table 4 Consecutive loss increase numbers (determination of p0 value).

Model Experiment AF Average

ReLU ELU SELU Mish SiLU GELU

VGG16 Exp1 0 1 1 1 0 0 0.50

Exp2 1 1 0 1 0 0 0.50

Exp3 0 1 1 1 0 1 0.67

Overall average 0.56

DenseNet121 Exp1 0 3 6 2 3 2 2.67

Exp2 0 3 4 3 2 1 2.17

Exp3 1 3 6 1 2 1 2.33

Overall average 2.39
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Table 5 Test loss values obtained as a result of experiments to determine the next best AFs.

Model Experiment Previous best AFs Epoch Next AF

ReLU ELU SELU Mish SiLU GELU

VGG16 Exp1 SELU 1 0.5176 0.5686 0.5154 0.5488 0.5974

2 0.5863

3 0.5659

ReLU 1 0.5669 0.8879 0.5360 0.5024 0.5180

2 0.5193 0.6527

3 0.6220

4 0.5375

Mish 1 0.5685 0.6889 0.7069 0.5997 0.5727

2 0.6410 0.5970

3 0.5883

Exp2 ELU 1 0.5168 0.5886 0.5549 0.5565 0.5648

2 0.5424

SELU 1 0.5955 0.5296 0.6120 0.5394 0.5688

2 0.5555 0.5665 0.5379 0.5490

ReLU 1 0.7453 0.9466 0.5607 0.5521 0.5671

2 0.5835 0.6856

3 0.5711 0.5991

4 0.5508

Exp3 ReLU 1 0.6359 0.6902 0.5166 0.5393 0.5562

2 0.5564 0.5660 0.5208

GELU 1 0.5698 0.8151 1.0327 0.5688 0.5495

2 0.5771 0.6736 0.5681

3 0.5500 0.6185

4 0.5921

ELU 1 0.5722 0.5233 0.5318 0.5265 0.5046

2 0.5171

DenseNet121 Exp1 GELU 1 0.5478 0.9620 1.2328 0.9561 0.6372

2 0.7391 1.1520 0.7870

3 0.8254 1.3142 0.6893

4 1.0896 1.0417 0.7205

5 0.7031 1.2832 0.6803

6 1.2325

7 1.5440

8 0.8618

(Continued)
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Table 5 (continued)

Model Experiment Previous best AFs Epoch Next AF

ReLU ELU SELU Mish SiLU GELU

ReLU 1 1.5544 1.2104 0.9347 0.8831 0.8520

2 0.9110 1.0741 0.7624 0.7925 0.7353

3 0.9521 1.0381 0.7525 0.6902 0.6069

4 1.1389 1.2686 1.0301 0.6127 0.7015

5 0.9409 1.2387 0.8243 0.7614 0.6703

6 0.9092 0.9237 0.6854 0.7430 0.5824

7 0.8348 1.0289 0.7646 0.6335

8 0.8329 0.8830 0.6800 0.6071

9 0.7013 1.0159 0.6325 0.5949

10 0.8792 0.7960

11 0.8068

12 0.8731

13 0.7015

14 0.6589

SiLU 1 0.6180 1.1109 1.7046 0.7340 0.6514

2 0.7586 1.2093 0.7088

3 0.6890 0.9131

Exp2 GELU 1 0.5539 0.8230 1.3235 0.7502 0.6129

2 1.0572 1.1054 0.6783

3 0.8220 1.0143 0.6193

4 0.8454 0.9445

5 0.7590 0.8853

6 0.7906 0.9024

7 0.7254 0.9238

8 1.1919

9 1.1035

10 0.8324

ReLU 1 1.0134 1.2213 0.9434 0.8702 0.9008

2 0.9379 1.1288 0.7861 0.8505 0.7791

3 1.0422 0.9406 0.6726 0.9180 0.6313

4 0.9784 1.0536 0.9586 0.6715 0.6604

5 0.8998 1.1468 0.7218 0.5984 0.7107

6 0.8033 0.9460 0.7172 0.6131

7 0.8312 0.8926 0.8329 0.6058

8 0.7211 0.9610 0.6197 0.5496

9 0.8678
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examining the loss increase situations in Table 5, the consecutive loss increase numbers
were determined and summarized numerically in Table 6.

When Table 6 is examined, the overall average of consecutive loss increase numbers is
calculated as 0.02 with the VGG16 model and 1.38 with the DenseNet121 model. The p1
value was determined by taking into account the DenseNet121 model, which has the
highest average of consecutive loss increase numbers. Since the consecutive loss increase
number = 1.38≈1, the p1 value was set to two. Thus, the loss will be allowed to increase one

Table 5 (continued)

Model Experiment Previous best AFs Epoch Next AF

ReLU ELU SELU Mish SiLU GELU

SiLU 1 0.6232 0.9390 1.5974 0.7148 0.6366

2 0.8063 1.1322

3 1.0008 0.9104

4 0.7552 0.9664

5 0.8774 1.0150

6 0.8153 1.1679

7 0.7441 0.8454

Exp3 ReLU 1 1.1103 1.1455 0.9927 1.1415 0.9124

2 1.3042 1.1690 0.8607 0.8905 0.6170

3 0.8980 1.1342 0.7389 0.6987 0.7598

4 0.8322 0.9823 0.6869 0.6999 0.6880

5 0.8283 0.9458 0.6260 0.7668 0.5713

6 1.0211 1.3660 0.6776 0.5890

7 0.8523 0.9618 0.6410

8 0.8341 1.2932 0.7156

9 0.8244 0.9192 0.8070

10 0.8018 0.7769 0.6258

11 0.6888

12 0.7590

13 0.6685

Mish 1 0.5551 0.8781 0.9893 0.6514 0.6946

2 0.9072 0.9175 0.6533

3 0.8157

4 0.7380

GELU 1 0.5971 0.8531 1.3561 0.6342 0.9523

2 0.8778 1.0365 0.7361

3 0.9276 0.7168

4 0.8790 0.7327

5 0.9445 0.7413

6 0.7341 0.6974
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time in a row, and the training will be stopped at this stage when the loss value worsens for
the 2nd time.

In summary, as a result of ablation studies, the list_AF array was created by taking the
ReLU, ELU, SELU, Mish, SiLU, and GELU AFs where learning occurred. Thus, the initial
values of the hyperparameter list_AF, which holds the AF list to be applied to the CNN
model to be used in the AFCS-CNN model structure were defined. The values of the
patience hyperparameters used in the early stopping process were determined as three at
the beginning and two in the next cycles. Patience values were kept small to prevent early
overfitting of the model. Thus, the best patience values are defined as p0=3, p1=2. When the
DenseNet121 model is used in the AFCS-CNN model structure, it is defined as
AFCS_loop=5 because the learning effect decreases after a certain cycle. The value of
min_AF_count was determined as 3, allowing the opportunity to select from at least three
AFs during switches.

Expansion experiments
After ablation studies, VGG16, VGG19, DenseNet121, DenseNet169, EfficientNetV2B0,
EfficientNetV2B1, ConvNeXtTiny, and ConvNeXtSmall CNN models were used in the
proposed AFCS-CNNmodel structure to determine the performance success of the AFCS-

Table 6 Consecutive loss increase numbers (determination of p1 value).

Model Experiment Previous best AFs Next AF Average

ReLU ELU SELU Mish SiLU GELU

VGG16 Exp1 SELU 0 1 0 0 0 0.20

ReLU 0 0 0 0 0 0.00

Mish 0 0 0 0 0 0.00

Exp2 ELU 0 0 0 0 0 0.00

SELU 0 0 0 0 0 0.00

ReLU 0 0 0 0 0 0.00

Exp3 ReLU 0 0 0 0 0 0.00

GELU 0 0 0 0 0 0.00

ELU 0 0 0 0 0 0.00

Overall average 0.02

DenseNet121 Exp1 GELU 0 2 3 1 0 1.20

ReLU 4 2 2 3 2 2.60

SiLU 0 0 0 0 0 0.00

Exp2 GELU 0 1 4 0 0 1.00

ReLU 2 3 4 1 2 2.40

SiLU 0 2 3 0 0 1.00

Exp3 ReLU 3 3 4 2 2 2.80

Mish 0 1 0 0 0 0.20

GELU 0 4 0 0 2 1.20

Overall average 1.38
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CNN model structure. The hyperparameter values of the AFCS-CNN model structure are
defined as determined in the previous section. So list_AF = [ReLU, ELU, SELU, Mish,
SiLU, GELU], p0=3, p1=2, AFCS_loop=5, min_AF_count=3 was set, and expansion
experiments were performed on the V2 Plant Seedling and APTOS 2019 Blindness
Detection datasets using VGG16, VGG19, DenseNet121, DenseNet169, EfficientNetV2B0,
EfficientNetV2B1, ConvNeXtTiny, and ConvNeXtSmall CNN models in the AFCS-CNN
model structure.

Expansion experiments with plant seedling dataset
To determine the performance success of the AFCS-CNNmodel structure on the V2 Plant
Seedling dataset, experiments were performed using VGG16, VGG19, DenseNet121,
DenseNet169, EfficientNetV2B0, EfficientNetV2B1, ConvNeXtTiny, and ConvNeXtSmall
CNNmodels, respectively, in the AFCS-CNNmodel structure. In this way, the effect of AF
switching during model training was examined. To compare the results, the default AF of
each model was replaced by each AF in the list_AF array, and training was performed
separately for each case (using the same AF throughout training). Experiments were
performed using the train-validation dataset for the AFCS-CNN model structure and each
fixed AF and the classification accuracy and loss values of the models in the V2 Plant
Seedling validation dataset are given in Table 7.

When the validation accuracy and loss values given in Table 7 are examined, it is seen
that using all CNN models discussed in the study in the AFCS-CNNmodel structure gives
more successful results than not using them. The accuracy rates and loss values in the

Table 7 Success accuracy and loss values on the V2 plant seedling validation dataset.

Model Metric AF AFCS-CNN

ReLU ELU SELU Mish SiLU GELU

VGG16 Accuracy (%) 92.30 12.88 12.88 92.90 91.46 92.42 93.98

Loss 0.2619 2.4264 2.4710 0.2255 0.2894 0.3810 0.1839

VGG19 Accuracy (%) 87.48 13.72 88.33 89.89 90.85 92.06 93.50

Loss 0.3778 2.4549 0.5133 0.3912 0.3053 0.2999 0.2084

DenseNet121 Accuracy (%) 96.39 89.65 77.26 93.02 91.34 96.27 96.63

Loss 0.1526 0.3514 0.7537 0.2808 0.3059 0.1605 0.1149

DenseNet169 Accuracy (%) 96.03 80.02 68.83 92.78 90.25 93.62 96.39

Loss 0.1559 0.5913 1.5005 0.2246 0.3579 0.2236 0.1296

EfficientNetV2B0 Accuracy (%) 94.58 91.58 70.04 87.24 73.16 64.74 95.07

Loss 0.2692 0.3450 1.1031 0.4215 1.0297 1.4183 0.2192

EfficientNetV2B1 Accuracy (%) 93.86 71.72 74.01 91.34 91.70 82.79 95.07

Loss 0.3060 0.9812 0.9816 0.3751 0.3325 0.5350 0.2225

ConvNeXtTiny Accuracy (%) No learning occurred in any of the trainings

Loss

ConvNeXtSmall Accuracy (%) No learning occurred in any of the trainings

Loss
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training performed using fixed AFs with CNN models without using the AFCS-CNN
model structure were lower. Thanks to the AFCS-CNN model structure, it has been
observed that switching AF provides a performance increase compared to fixing. While the
most successful classification accuracy was achieved using the DenseNet121 model in the
AFCS-CNN model (96.63%), no learning occurred in any of the training performed with
ConvNeXt models. According to the validation success accuracies presented in Table 7, the
accuracy and loss graphs of the three CNN models with the best performing AF and each
CNN model used in the AFCS-CNN model structure are shown comparatively in Fig. 4.

In Fig. 4, graphs of the training performed with the most successful AFs that were left
fixed throughout the training of each CNN model and the training performed using each
CNN model in the AFCS-CNN model structure are shown together. As can be seen in the
figure, the proposed AFCS-CNN model structure performs the training process in an up-
and-down structure. The ups and downs in training the AFCS-CNN model structure are
due to the switching of AF. For example, in the case where the VGG16 model was used in
the AFCS-CNN model structure, the AFCS-CNN model structure started training with
GELU AF, which performs best among the values in the list_AF array. Since the validation
loss value increased three times (p0 control) in a row after the 13th epoch, AF=Mish was
made in this epoch and the training was continued from the 13th epoch. Since the worst
performing AF was SELU, this AF was taken out from the list_AF array to not be used in
the next switch. Again, after the 15th epoch, when the validation loss value increased two
times (p1 control), AF=SiLU was made, and the training was continued from the 15th
epoch. At this stage, ELU AF was taken out from the list_AF array. Then, in the 17th
epoch, AF=Mish was made, and ReLU AF was taken out from the list_AF array. In the
20th epoch, AF=GELU was made, and the cycle was finished in the 24th epoch. As seen in
Fig. 4, in the training performed using only the VGG16 model and fixed AFs without using
the AFCS-CNN model structure, it was observed that the difference between the train-
validation graph widened after a certain epoch and overfitting occurred. It was determined
that when the VGG16 model is used in the AFCS-CNN model structure, overfitting is
prevented, and learning occurs in fewer epochs. Thus, in the training performed with the
VGG16 model, it was observed that the AF switch during the training process with the
AFCS-CNN model structure had a positive effect on the model training process.

In addition, it was observed that when other CNN models discussed in the study were
used in the AFCS-CNN model structure, different AF switches occurred at different
epochs and the AF switch had a positive effect on the model training process. When the
train-validation accuracy and loss graphs shown in Fig. 4 are examined, the models made
five AF switches depending on the number of cycles defined at the beginning. In the
training of the CNN models used in the AFCS-CNN model structure on the V2 Plant
Seedling dataset, different AF switches were made at different epochs, and the details are
summarized in Table 8.

After the train-validation process, the final performance of the models was tested using
the V2 Plant Seedling test dataset, which the network had never seen, and the numerical
results are given in Table 9. Additionally, Fig. 5 shows the confusion matrix results
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Figure 4 Train-validation accuracy and loss graphs of each CNN model on the V2 plant seedling
validation dataset. Full-size DOI: 10.7717/peerj-cs.2756/fig-4
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Table 8 AF switches in the training of the CNN models used in the AFCS-CNN model structure on the V2 plant seedling dataset.

AFCS-CNN (Model) Step1 Step2 Step3 Step4 Step5

Epoch AF Epoch AF Epoch AF Epoch AF Epoch AF

AFCS-CNN (VGG16) 1 GELU 13 Mish 15 SiLU 17 Mish 20 GELU

AFCS-CNN (VGG19) 1 Mish 15 SiLU 21 Mish 27 GELU 29 SiLU

AFCS-CNN (DenseNet121) 1 ReLU 5 GELU 11 ReLU 15 GELU 19 ReLU

AFCS-CNN (DenseNet169) 1 ReLU 4 GELU 8 ReLU 11 GELU 13 ReLU

AFCS-CNN (EfficientNetV2B0) 1 SiLU 5 Mish 9 ELU 15 Mish 17 ReLU

AFCS-CNN (EfficientNetV2B1) 1 SiLU 4 ELU 8 Mish 11 ELU 14 Mish

Table 9 Numerical results obtained from models using the V2 plant seedling test dataset.

Model Metric AF AFCS-CNN

ReLU ELU SELU Mish SiLU GELU

VGG16 Accuracy 0.9193 0.1287 0.1287 0.9193 0.9133 0.9157 0.9362

Loss 0.2923 2.4259 2.4699 0.2602 0.2903 0.3782 0.2074

Precision 0.9215 0.0167 0.0167 0.9213 0.9155 0.9201 0.9354

Recall 0.9195 0.1288 0.1288 0.9194 0.9141 0.9154 0.9367

F1-score 0.9205 0.0296 0.0296 0.9202 0.9090 0.9104 0.9368

VGG19 Accuracy 0.8916 0.1371 0.8676 0.9025 0.8977 0.9109 0.9253

Loss 0.5742 2.4543 0.5411 0.3799 0.3579 0.2915 0.2368

Precision 0.8934 0.0192 0.8652 0.9061 0.8987 0.9112 0.9259

Recall 0.8917 0.1372 0.8668 0.9010 0.8989 0.9112 0.9256

F1-score 0.8824 0.0329 0.8596 0.9030 0.8961 0.9096 0.9224

DenseNet121 Accuracy 0.9542 0.8868 0.7496 0.9386 0.9157 0.9590 0.9711

Loss 0.1581 0.3422 0.7506 0.2014 0.2752 0.1367 0.0904

Precision 0.9555 0.8919 0.8280 0.9431 0.9503 0.9598 0.9719

Recall 0.9552 0.8881 0.7492 0.9385 0.9160 0.9590 0.9714

F1-score 0.9539 0.8817 0.7423 0.9397 0.9186 0.9574 0.9721

DenseNet169 Accuracy 0.9446 0.7785 0.6594 0.9049 0.8880 0.9410 0.9675

Loss 0.1971 0.6784 1.5014 0.2827 0.3053 0.1905 0.0955

Precision 0.9437 0.8260 0.7670 0.9117 0.8981 0.9465 0.9682

Recall 0.9454 0.7784 0.6599 0.9063 0.8883 0.9421 0.9688

F1-score 0.9439 0.7701 0.6190 0.9044 0.8815 0.9416 0.9670

EfficientNetV2B0 Accuracy 0.9265 0.9217 0.6943 0.8543 0.7075 0.6401 0.9518

Loss 0.3443 0.3035 1.1257 0.5348 1.0339 1.3997 0.1822

Precision 0.9334 0.9254 0.7661 0.8815 0.7790 0.7297 0.9508

Recall 0.9271 0.9223 0.6951 0.8550 0.7067 0.6410 0.9527

F1-score 0.9264 0.9236 0.6833 0.8515 0.7007 0.6199 0.9517
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obtained from the test dataset with each CNN model used in the AFCS-CNN model
structure.

According to the results given in Table 9 and Fig. 5, the most successful classification
accuracy in the V2 Plant Seedling test dataset was achieved by using the DenseNet121
model in the AFCS-CNN model. With the AFCS-CNN (DenseNet121) model, 97.11%
accuracy and 0.0904 loss values were obtained in the test dataset. It has been observed that
using all CNN models discussed in the study in the AFCS-CNN model structure gives
more successful results than using fixed AF in CNN models. Thus, it has been
demonstrated that the AFCS-CNN model structure provides an important performance
increase in all CNN models discussed in the study.

Expansion experiments with APTOS 2019 Blindness Detection dataset
To determine the performance success of the AFCS-CNN model structure on the APTOS
2019 Blindness Detection dataset, experiments were performed using VGG16, VGG19,
DenseNet121, DenseNet169, EfficientNetV2B0, EfficientNetV2B1, ConvNeXtTiny, and
ConvNeXtSmall CNN models, respectively, in the AFCS-CNN model structure. In this
way, the effect of AF switching during model training was examined using a different
dataset. To compare the results, the default AF of each model was replaced by each AF in
the list_AF array, and training was performed separately for each case (using the same AF
throughout training). Experiments were performed using the train-validation dataset for
the AFCS-CNNmodel structure and each fixed AF and the classification accuracy and loss
values of the models in the APTOS 2019 Blindness Detection validation dataset are given
in Table 10.

When the validation accuracy and loss values given in Table 10 are examined, it is seen
that using all CNN models, except VGG models, in the AFCS-CNN model structure gives
more successful results than not using them. The accuracy rates and loss values in the
training performed using fixed AFs with CNN models without using the AFCS-CNN
model structure were lower. Thanks to the AFCS-CNN model structure, it has been
observed that switching AF provides a performance increase compared to fixing. While the
most successful classification accuracy was achieved using the DenseNet169 model in the
AFCS-CNN model (83.45%), no learning occurred in any of the training performed with
ConvNeXt models. According to the validation success accuracies presented in Table 10,

Table 9 (continued)

Model Metric AF AFCS-CNN

ReLU ELU SELU Mish SiLU GELU

EfficientNetV2B1 Accuracy 0.9265 0.7148 0.7352 0.9169 0.9121 0.8122 0.9530

Loss 0.3025 0.9967 0.9698 0.3140 0.3973 0.6153 0.1796

Precision 0.9273 0.7581 0.8119 0.9224 0.9258 0.8288 0.9531

Recall 0.9278 0.7150 0.7360 0.9167 0.9124 0.8124 0.9526

F1-score 0.9241 0.7041 0.7274 0.9192 0.9145 0.7987 0.9518
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Figure 5 Confusion matrix plots of each CNN model used in the AFCS-CNN model structure on the
V2 plant seedling test dataset: (A) AFCS-CNN (VGG16), (B) AFCS-CNN (VGG19), (C) AFCS-CNN
(DenseNet121), (D) AFCS-CNN (DenseNet169), (E) AFCS-CNN (EfficientNetV2B0), (F) AFCS-
CNN (EfficientNetV2B1). Full-size DOI: 10.7717/peerj-cs.2756/fig-5
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the accuracy and loss graphs of the three CNN models with the best performing AF and
each CNN model used in the AFCS-CNN model structure are shown comparatively in
Fig. 6.

In Fig. 6, graphs of the training performed with the most successful AFs that were left
fixed throughout the training of each CNN model and the training performed using each
CNN model in the AFCS-CNN model structure are shown together. As can be seen in the
figure, similar to the previous analyses, the proposed AFCS-CNN model structure
performs the training process in an up-and-down structure. The ups and downs in training
the AFCS-CNN model structure are due to the switching of AF. For example, in the case
where the VGG16 model was used in the AFCS-CNN model structure, the AFCS-CNN
model structure started training with ReLU AF, which performs best among the values in
the list_AF array. Since the validation loss value increased three times (p0 control) in a row
after the 11th epoch, AF=SiLU was made in this epoch and the training was continued
from the 11th epoch. Since the worst performing AF was ELU, this AF was taken out from
the list_AF array to not be used in the next switch. Again, after the 16th epoch, when the
validation loss value increased two times (p1 control), AF=ReLU was made, and the
training was continued from the 16th epoch. At this stage, SELU AF was taken out from
the list_AF array. Then, in the 28th epoch, AF=Mish was made, and GELU AF was taken
out from the list_AF array. In the 32nd epoch, AF=SiLU was made, and the cycle was
finished in the 35th epoch. As seen in Fig. 6, in the training performed using only the
VGG16 model and fixed AFs without using the AFCS-CNN model structure, it was
observed that the difference between the train-validation graph widened after a certain

Table 10 Success accuracy and loss values on the APTOS 2019 Blindness Detection Validation dataset.

Model Metric AF AFCS-CNN

ReLU ELU SELU Mish SiLU GELU

VGG16 Accuracy (%) 76.91 69.09 75.27 80.73 77.82 77.09 80.18

Loss 1.1004 0.8905 0.6830 0.6732 0.6521 1.0028 0.5188

VGG19 Accuracy (%) 78.73 74.91 75.45 76.18 73.82 78.18 78.73

Loss 0.6350 0.7446 0.6775 0.6536 0.7559 0.5691 0.5652

DenseNet121 Accuracy (%) 81.82 74.00 76.36 77.45 72.91 78.55 83.27

Loss 0.8153 0.7373 0.6211 0.6366 0.9755 0.7211 0.5611

DenseNet169 Accuracy (%) 79.09 64.36 57.64 69.45 77.09 80.73 83.45

Loss 0.9562 1.0919 1.3097 0.9848 0.6766 0.7533 0.6115

EfficientNetV2B0 Accuracy (%) 62.55 74.18 59.27 74.91 70.91 70.91 79.45

Loss 1.1221 0.9009 1.2356 0.9989 1.5562 1.0489 0.8403

EfficientNetV2B1 Accuracy (%) 69.27 62.55 66.91 79.64 73.27 73.45 81.82

Loss 1.0717 1.2512 1.0693 1.1388 1.0198 1.0289 0.8520

ConvNeXtTiny Accuracy (%) No learning occurred in any of the trainings

Loss

ConvNeXtSmall Accuracy (%) No learning occurred in any of the trainings

Loss
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Figure 6 Train-validation accuracy and loss graphs of each CNN model on the APTOS 2019
Blindness Detection dataset. Full-size DOI: 10.7717/peerj-cs.2756/fig-6
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epoch and overfitting occurred. It was determined that when the VGG16 model is used in
the AFCS-CNN model structure, overfitting is prevented, and learning occurs in fewer
epochs. Thus, in the training performed with the VGG16 model, it was observed that the
AF switch during the training process with the AFCS-CNN model structure had a positive
effect on the model training process.

In addition, it was observed that when other CNN models discussed in the study were
used in the AFCS-CNN model structure, different AF switches occurred at different
epochs and the AF switch had a positive effect on the model training process. When the
train-validation accuracy and loss graphs shown in Fig. 6 are examined, the models made
five AF switches depending on the number of cycles defined at the beginning. In the
training of the CNN models used in the AFCS-CNN model structure on the APTOS 2019
Blindness Detection dataset, different AF switches were made at different epochs, and the
details are summarized in Table 11.

After the train-validation process, the final performance of the models was tested using
the APTOS 2019 Blindness Detection test dataset, which the network had never seen, and
the numerical results are given in Table 12. Additionally, Fig. 7 shows the confusion matrix
results obtained from the test dataset with each CNNmodel used in the AFCS-CNNmodel
structure.

According to the results given in Table 12 and Fig. 7, the most successful classification
accuracy in the APTOS 2019 Blindness Detection test dataset was achieved by using the
DenseNet121 model in the AFCS-CNN model. With the AFCS-CNN (DenseNet121)
model, 83.27% accuracy and 0.5704 loss values were obtained in the test dataset. It has
been observed that using all CNN models discussed in the study in the AFCS-CNN model
structure gives more successful results than using fixed AF in CNN models. Thus, it has
been demonstrated that the AFCS-CNN model structure provides an important
performance increase in all CNN models discussed in the study.

Discussion
To determine the performance of the AFCS-CNN model structure, the experimental
results performed with many CNN models and many datasets discussed in this study have
shown that the proposed AFCS-CNNmodel structure provides an important performance

Table 11 AF switches in the training of CNNmodels used in the AFCS-CNNmodel structure on the APTOS 2019 Blindness Detection dataset.

AFCS-CNN (Model) Step1 Step2 Step3 Step4 Step5

Epoch AF Epoch AF Epoch AF Epoch AF Epoch AF

AFCS-CNN (VGG16) 1 ReLU 11 SiLU 16 ReLU 28 Mish 32 SiLU

AFCS-CNN (VGG19) 1 ReLU 9 GELU 15 ReLU 23 Mish 29 GELU

AFCS-CNN (DenseNet121) 1 ReLU 3 GELU 6 ReLU 9 GELU 14 Mish

AFCS-CNN (DenseNet169) 1 ReLU 4 GELU 9 ReLU 11 GELU 14 ReLU

AFCS-CNN (EfficientNetV2B0) 1 Mish 2 ELU 4 Mish 6 ELU 9 Mish

AFCS-CNN (EfficientNetV2B1) 1 Mish 3 SiLU 5 Mish 8 ReLU 11 SiLU
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increase. Experiments with different datasets have demonstrated that using CNN models
in the AFCS-CNNmodel structure is more successful than using fixed AF in CNNmodels.
However, using a CNN model in the AFCS-CNN model structure has an additional
runtime cost compared to not using it. Since the hyperparameter values of the AFCS-CNN
model are p0=3, p1=2 and AFCS_loop=5, the additional running time of the model will be
11 epochs according to the formula given in Eq. (1). Considering that the patience value in
a CNN model is usually given as 5 or 10, the additional runtime cost between 1 and 6
epochs brought by the AFCS-CNN model can be ignored when the performance achieved
is taken into account.

Table 12 Numerical results obtained from models using the APTOS 2019 Blindness Detection test dataset.

Model Metric AF AFCS-CNN

ReLU ELU SELU Mish SiLU GELU

VGG16 Accuracy 0.7709 0.7381 0.7599 0.7945 0.7945 0.7927 0.8254

Loss 1.0019 0.7306 0.6178 0.6689 0.5773 0.9456 0.4848

Precision 0.7589 0.7468 0.6838 0.7846 0.8030 0.7921 0.8196

Recall 0.7693 0.7390 0.7597 0.7970 0.7923 0.7935 0.8234

F1-score 0.7601 0.7308 0.7170 0.7838 0.7975 0.7901 0.8130

VGG19 Accuracy 0.7981 0.7727 0.7418 0.8090 0.7545 0.8000 0.8181

Loss 0.5737 0.6036 0.6501 0.6260 0.6962 0.5305 0.5149

Precision 0.7925 0.7231 0.7238 0.7961 0.7154 0.7902 0.8132

Recall 0.7971 0.7744 0.7413 0.8078 0.7532 0.8008 0.8173

F1-score 0.7943 0.7368 0.7209 0.8013 0.7081 0.7939 0.8092

DenseNet121 Accuracy 0.8072 0.7654 0.7690 0.7818 0.7327 0.7854 0.8327

Loss 0.7971 0.6421 0.5645 0.5828 1.0582 0.6388 0.5704

Precision 0.8080 0.8246 0.7714 0.8173 0.7720 0.7886 0.8335

Recall 0.8066 0.7634 0.7687 0.7816 0.7325 0.7872 0.8329

F1-score 0.8049 0.7611 0.7607 0.7877 0.7251 0.7817 0.8135

DenseNet169 Accuracy 0.7836 0.6218 0.5836 0.7290 0.7618 0.8163 0.8254

Loss 1.0642 1.0636 1.2094 0.9553 0.6982 0.7083 0.6344

Precision 0.7825 0.6644 0.6388 0.7760 0.7766 0.8182 0.8258

Recall 0.7813 0.6203 0.5853 0.7286 0.7649 0.8196 0.8233

F1-score 0.7777 0.6185 0.5693 0.7173 0.7580 0.8027 0.8071

EfficientNetV2B0 Accuracy 0.6363 0.7490 0.5690 0.7454 0.7163 0.7127 0.8054

Loss 1.0799 0.8925 1.1607 1.0322 1.5423 1.0767 0.8327

Precision 0.6663 0.7050 0.6519 0.7261 0.7260 0.6596 0.7985

Recall 0.6383 0.7486 0.5675 0.7461 0.7159 0.7113 0.8076

F1-score 0.6448 0.7124 0.5953 0.7277 0.6797 0.6634 0.8013

EfficientNetV2B1 Accuracy 0.6836 0.6399 0.6454 0.7927 0.7309 0.7363 0.8254

Loss 1.0460 1.2034 1.1211 1.1672 1.0322 1.0834 0.8308

Precision 0.6712 0.5901 0.6211 0.7718 0.7080 0.7365 0.8269

Recall 0.6864 0.6378 0.6473 0.7909 0.7284 0.7374 0.8251

F1-score 0.6392 0.6097 0.6188 0.7657 0.7061 0.7077 0.8194
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Figure 7 Confusion matrix plots of each CNN model used in the AFCS-CNN model structure on the APTOS 2019 Blindness Detection test
dataset: (A) AFCS-CNN (VGG16), (B) AFCS-CNN (VGG19), (C) AFCS-CNN (DenseNet121), (D) AFCS-CNN (DenseNet169), (E) AFCS-CNN
(EfficientNetV2B0), (F) AFCS-CNN (EfficientNetV2B1). Full-size DOI: 10.7717/peerj-cs.2756/fig-7
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Among the datasets discussed in the study, only the V2 Plant Seedling dataset was
compared with current works because various preprocessing was applied to this dataset.
For this purpose, to compare the plant seedling classification success of the AFCS-CNN
model structure, recent works using the V2 Plant Seedling dataset were examined in the
literature and the results are given in Table 13.

When Table 13 is examined, the proposed AFCS-CNN (DenseNet121) model is more
successful in plant seedling classification than all other works except the work done by
Aliouat, Badis & Bouchiba (2023). Data augmentation was done in the work by Aliouat,
Badis & Bouchiba (2023). However, data augmentation was not used in our work. In
addition, high success was achieved with the proposed AFCS-CNN models with fewer
iterations. Therefore, it was observed that the proposed AFCS-CNN model structure is
more successful and competitive with other methods in plant seedling classification. Thus,
the AFCS-CNN model structure has achieved state-of-the-art success.

CONCLUSION
In this study, a new model structure called AFCS-CNN was proposed, which allows
cyclical switching of the AF during training, depending on the performance decrease in the
neural network, and can be applied to any CNNmodel. Many experiments were applied to
determine the hyperparameters of the proposed model and measure its performance. After
a series of ablation studies using the Cifar-10 dataset, hyperparameter values of the AFCS-
CNN model structure were determined. In addition, CNN models were chosen to be used
in ablation studies. After ablation studies, expansion experiments were performed with V2
Plant Seedling and APTOS 2019 Blindness Detection datasets using VGG, DenseNet,
EfficientNetV2, and ConvNeXt versions in the AFCS-CNN model structure.

As a result of expansion experiments, more successful results were obtained with the
AFCS-CNN model structure than all the CNN models discussed in the study in both V2
Plant Seedling and APTOS 2019 Blindness Detection datasets. In all experiments, the most
successful results were achieved with the AFCS-CNN (DenseNet121) model. Especially in
plant seedling classification, a high-test success accuracy of 97.11% was achieved with the

Table 13 Comparison of the proposed work with recent works performed on the V2 plant seedling dataset.

Reference Method Epoch Accuracy (%) F1-score (%)

Binguitcha-Fare & Sharma (2019) ResNet101 500+ 96.04 95.72

Gupta, Rani & Bahia (2020) ResNet50 11 95.23 95.00

Rahman, Hasan & Shin (2020) ResNet-50 150 96.21 95.42

Fountsop, Ebongue Kedieng Fendji & Atemkeng (2020) VGG16 100 94.24 –

Makanapura et al. (2022) EfficientNetB0 50 96.52 96.26

Mu et al. (2022) Faster R-CNN-FPN 1,500+ 95.61 91.24

Tiwari et al. (2023) Weed-ConvNet 50 94.20 64.00

Zhang et al. (2023) Improved MobileNetV1 30 96.63 –

Aliouat, Badis & Bouchiba (2023) GA based Automated CNN 50 97.74 97.83

Proposed work AFCS-CNN (DenseNet121) 21 97.11 97.21
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AFCS-CNN (DenseNet121) model with few iterations. In addition, thanks to the use of all
other CNN models discussed in the study in the AFCS-CNN model structure, higher test
success accuracies were achieved in both datasets. Moreover, the proposed AFCS-CNN
model structure was compared with similar works in the literature on plant seedling
classification and was more successful than the state-of-the-art works in terms of accuracy
and number of iterations. It is planned to use different CNN models in the AFCS-CNN
model structure in future studies. Moreover, the applicability of the proposed method in
different areas will be tested.
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