Submitted 15 November 2024
Accepted 19 February 2025
Published 25 March 2025

Corresponding author
Sudhanshu Shekhar Bisoyi,
sudhanshu.bisoyi@gmail.com

Academic editor
Jyotismita Chaki

Additional Information and
Declarations can be found on
page 35

DOl 10.7717/peerj-cs.2752

() Copyright
2025 Panda et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Machine learning techniques for
imbalanced multiclass malware
classification through adaptive feature
selection

Binayak Panda’', Sudhanshu Shekhar Bisoyi®, Sidhanta Panigrahy’ and
Prithviraj Mohanty”

! Department of Computer Science and Engineering, Institute of Technical Education and
Research, Siksha ‘O’ Anusandhan (Deemed to be) University, Bhubaneswar, Odisha, India

% Department of Computer Science and Information Technology, Institute of Technical Education

and Research, Siksha ‘O’ Anusandhan (Deemed to be) University, Bhubaneswar, Odisha, India
® Haas School of Business, University of California, Berkeley, CA, United States

ABSTRACT

Detecting polymorphic or metamorphic variants of known malware is an ever-
growing challenge, just like detecting new malware. Artificial intelligence techniques
are preferred over conventional signature-based malware detection as the number of
malware variants proliferates. This article proposes an Adaptive Multiclass Malware
Classification (AMMC) framework that trains base machine learning models with
fewer computational resources to detect malware. Furthermore, this work proposes a
novel adaptive feature selection (AFS) technique using the greedy strategy on term
frequency and inverse document frequency (TF-IDF) feature weights to address the
selection of influential features and ensure better performance metrics in imbalanced
multiclass malware classification problems. To assess AMMC’s efficacy using AFS,
three open imbalanced multiclass malware datasets (VirusShare with eight classes,
VirusSample with six classes, and MAL-API-2019 with eight classes) on Windows
API sequence features were used. Experimental results demonstrate the effectiveness
of AMMC with AFS, achieving state-of-the-art performance on VirusShare,
VirusSample, and MAL-API-2019 with a macro F1-score of 0.92, 0.94, and 0.84 and
macro area under the curve (AUC) of 0.99, 0.99, and 0.98, respectively. The
performance measurements obtained with AMMC for all datasets were highly
promising.

Subjects Algorithms and Analysis of Algorithms, Data Mining and Machine Learning,
Optimization Theory and Computation, Security and Privacy, Neural Networks
Keywords Greedy feature selection, TE-IDF, Skip-gram, Machine learning, API sequence,
Multiclass malware classification

INTRODUCTION

The internet has become increasingly prevalent in daily life due to advancements in
information and communication technology. People of all ages rely on various
applications operating on various computing devices to meet their daily needs, such as
transportation, health, banking, and retail. The increasing use of apps poses security risks
for devices and applications. Malicious software, also known as malware, poses the greatest

How to cite this article Panda B, Bisoyi SS, Panigrahy S, Mohanty P. 2025. Machine learning techniques for imbalanced multiclass malware
classification through adaptive feature selection. Peer] Comput. Sci. 11:¢2752 DOI 10.7717/peerj-cs.2752

http://dx.doi.org/10.7717/peerj-cs.2752
mailto:sudhanshu.�bisoyi@�gmail.�com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2752
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

PeerJ Computer Science

threat to the cyberworld. Malware programs evolve as technology advances, threatening
our security and privacy. Malware is increasingly being used to carry out a variety of
destructive operations on victims’ devices. Malware causes anomalies in the functioning of
a computer system, raising security concerns. As the number of malware variants
proliferates, conventional signature-based malware detection has become less effective and
time-consuming. Artificial intelligence techniques, such as machine learning and deep
learning, are becoming increasingly popular for studying and analyzing malware behavior
to detect it more efficiently. The malicious payload is delivered to the affected device via
different routes, including email attachments, advertisements, potentially unwanted apps
(PUAs), and free utility software. Malcoders typically obfuscate malware families such as
Trojan, Backdoor, Spyware, and Worm, posing serious threats to system vulnerabilities
(Yan et al., 2023). According to the Quick Heal annual report FY-2022-23, a total of 163.81
million of malware from the families Trojan, Infector, PUA, Worm, Cryptojacking,
Ransomware, and Adware were detected during 2021 and 2022. Figure 1 shows the family-
wise malware detection statistics for 2021 and 2022. Figure 2 shows the top five malware
from July to September 2022. Furthermore, the report shows a substantial number of
instances in each class of malware with an exceptional increase in instances of Trojan and
Cryptojacking (QuickHeal, 2022).

Protecting devices from malware is possible by using the time-consuming and expensive
statistical methods that are really complex in nature. Malware detection is a
computationally hard problem, but the use of statistical methods can restrict undetected
spreading (Cohen, 1987). A lot of efforts are being made to limit the spread of malware. In
this context, classifying malware against benign and malware against malware is an
ongoing need. There are two basic approaches, named static and dynamic, to analyze
malware. Static analysis is about studying some key features, like opcode sequences,
printable strings, etc., of the malware without executing it. It requires some reverse
engineering techniques that can disassemble them. However, there may be challenges with
packed malware when performing static analysis on it. On the contrary, dynamic analysis
is about collecting execution time features like system call graph, application programming
interface (API) sequence, registry file contents, efc. by allowing the malware to execute in a
controlled environment. However, the malware may not exhibit its original execution
pattern when executed under a controlled environment (Damodaran et al., 2017;
Shibahara et al., 2016). Many researchers have applied machine learning techniques to
mitigate the challenges of analyzing metamorphic and polymorphic malware variants
(Wong & Stamp, 2006). Developing an effective malware detection system is tough,
especially when dealing with newer threats. Advancements in virus evasion techniques
have led to significant consequences. Advanced malware detection technologies, such as
machine learning and deep learning, overcome the limitations of traditional methods
(Gopinath ¢ Sethuraman, 2023). The authors examine current malware detection
algorithms for Android OS, i-OS, IoT systems, Windows OS, advanced persistent threats
(APTs), and ransomware. Many dynamic analysis algorithms referred API call sequences
to be a crucial behavioral characteristic that distinguishes malicious programs from benign

Panda et al. (2025), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.2752 2/39

http://dx.doi.org/10.7717/peerj-cs.2752
https://peerj.com/computer-science/

PeerJ Computer Science

TROJAN

INFECTOR

PUA

WORM
CRYPTOJACKING
RANSOMWARE
ADWARE . 2022
2021
0 5 10 15 20 25 30 35 40

Sample size in Millions

Figure 1 Family wise malware detection statistics Quick Heal annual report FY-2022-23.
Full-size k&l DOTL: 10.7717/peerj-cs.2752/fig-1

BN Win32 Pioneer.CZ1 I Trojan.Starter.YY4
[Worm.AUTOIT.Tupym.A B LNK.Cmd.Exploit.F
mmm CRM.CoinHive.4557

Figure 2 Top 5 malware from July to September 2022. Full-size Kl DOI: 10.7717/peerj-cs.2752/fig-2

ones utilizing machine learning and deep learning approaches (Gaber, Ahmed ¢ Janicke,
2024). Windows as an operating system provides APIs for a variety of operations
pertaining to files, networks, I/O, and processes. Any program, including malicious

Panda et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2752 | 13/39

http://dx.doi.org/10.7717/peerj-cs.2752/fig-1
http://dx.doi.org/10.7717/peerj-cs.2752/fig-2
http://dx.doi.org/10.7717/peerj-cs.2752
https://peerj.com/computer-science/

PeerJ Computer Science

software, calls APIs sequentially to do the required tasks. An essential feature set for
analyzing program activity is the API sequence. In order to avoid detection, malware in
particular is designed to call APIs frequently and sporadically. The analysis of benchmark
multiclass malware datasets such as VirusSample, VirusShare (Diizgiin et al., 2021), and
MAL-API-2019 (Ferhat Ozgur et al., 2020) reveals that the length of the API sequences is
either excessively long due to repeated calls or insufficient. The dataset is quite challenging
because of the wide variation in API sequence length. The goal of this work is to improve
performance metrices with regard to multiclass malware datasets that are imbalanced. The
objectives of this work are:

1. Developing a feature selection strategy to address the issue of feature imbalance related
to the diversity of API sequence lengths in malware traces.

2. Developing a unique adaptive feature selector (AFS) that employs a greedy method to
improve the classification metrics for imbalanced multiclass malware classification
problems.

3. Designing a framework called Adaptive Multiclass Malware Classifier (AMMC) to train
base machine learning models that use fewer resources, ensuring better classification
metrics.

“Related Work” will explore related works. “Methodology” elaborates the working
principles of AFS and AMMC. “Experimental Evaluation” discusses the dataset’s
description and the experimental setup with results. The concluding observation is
highlighted in the ‘Conclusion’.

RELATED WORK

Recent malware research has revealed that machine learning and deep learning are often
used for malware investigation and categorization. API sequences for malware
categorization aim to enhance accuracy and efficiency through advanced deep learning
and machine learning methods.

Ye et al. (2008) gathered API call data from PE files and created a verifiable and
comprehensible feature set. They developed an intelligent malware detection system based
on objective-oriented association (OOA) classification. These features were utilized to
determine whether the PE file is malicious or not. They have not predicted different types
of malware. Vinod et al. (2010) used dynamic analysis of four metamorphic classes of
malware to create signature-based malware fingerprints to trace their API sequences. Their
experiment used the API sequences of 80 viruses from four families and 20 harmful apps.
They used the Chi-square test to determine how closely a piece of malware matched a
given class. This method achieved 75%, 75%, 80%, and 80% accuracy rates for the families
NGVCK, IL-SMG, G2 and MPCGEN. They stated that increasing the number of samples
will enhance precision. The signature matching approach is susceptible to recently
identified malware samples. Ding et al. (2013) suggested an API based association mining
strategy that eliminated infrequent items from the API sequences. They selected
association rules with good classification abilities and implemented them to increase

Panda et al. (2025), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.2752 4/39

http://dx.doi.org/10.7717/peerj-cs.2752
https://peerj.com/computer-science/

PeerJ Computer Science

detection accuracy. For classifying malware into 11 families, Kong ¢» Yan (2013) combined
several malware attributes like API calls, registers, opcodes, etc. They developed an
effective system that was capable of recognizing previously unidentified samples using
discriminant distance metric learning, pairwise graph matching, and ensembled
classification (Kong ¢ Yan, 2013).

Mehra, Jain ¢ Uppal (2015) obtained control flow and API call graphs from 600
malware and 150 benign samples. They suggested utilizing Gourmand Feature Selection to
extract desired attributes from API call graphs. The WEKA classification tool yielded 89%,
91.08%, 92.24%, 94.56%, and 99.1% accuracy rates for KNN, SMO, VP, NB, and J-48
classifiers, respectively. They used portable executables instead of parsing API sequences
generated in runtime. A supervised approach, like Random Forests technique, was used by
Pirscoveanu et al. (2015) for the classification of malware. The Cuckoo Sandbox
application was used to gather a total of 42,000 malware behaviours. Windows API calls
were categorised using DNS requests, files that were accessed, mutexes, and registry key
information. Additionally, the labels recognised by the Avast applications outperform the
outcomes offered by the VirusTotal service for the classes of harmful software. System call
sequences were examined by Kolosnjaji et al. (2016) to classify malware. Convolutional and
recurrent network layers were used to extract the best characteristics. Using this hybrid
neural network architecture, they were able to average precision of 85.6% and recall of
89.4%. Zhang et al. (2016) proposed a simple ensemble learning algorithm for the
classification of malware, utilizing data from the Microsoft malware classification
challenge on Kaggle. Malware samples from the unbalanced training dataset were
accurately classified into the proper family.

According to recent studies on malware analysis, deep neural networks and supervised
and unsupervised machine learning techniques are frequently employed to detect
malicious activities with higher accuracy, efficiency, and a lower false positive rate. The
primary components of machine learning-based malware detection techniques are
automatic detection and feature extraction (Ye et al, 2017). Due to the scalability, speed,
and flexibility, machine learning algorithms like logistic regression (LR), support vector
machine (SVM), Random Forest (RF), K-nearest neighbor (KNN), frequent pattern
mining (FPM), efc. are frequently used to discover and categorize unidentified samples for
malware family. Han et al. (2019) applied the TF-IDF technique to 807 benign and 3,027
malicious (including packed and unpacked variants) samples. The MalDAE framework
uses machine learning techniques such as KNN, decision tree (DT), extreme gradient
boosting (XGBoost), and RF to identify and categorize malware based on static, dynamic,
and fused API sequences. Dynamic API sequences outperformed static API sequences with
accuracy rates of 74.74%, 79.65%, 83.15%, and 85.96%, respectively. However, with the
fused API sequence, accuracy improved to 85.26%, 88.42%, 93.33%, and 94.39%,
respectively. Given the difficulty posed by the enormous number of malware kinds, deep
learning techniques were suggested to boost efficiency.

Huda et al. (2016) suggested an automated malware detection method to calculate
statistical information on API calls performed by malicious and benign programs. They

Panda et al. (2025), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.2752 5/39

http://dx.doi.org/10.7717/peerj-cs.2752
https://peerj.com/computer-science/

PeerJ Computer Science

developed two novel hybrid API feature selection methods based on hybrid SVM
encapsulation heuristic method and maximum associated or minimal redundancy filtering
heuristics approach to determine the best API calls to detect malware. Hidden Markov
models (HMMs) were utilized by Damodaran et al. (2017) on their own multiclass
malware dataset, and it has been concluded that the dynamic approach based on API calls
was quite successful. Ucci, Aniello & Baldoni (2019) stated that a malicious program can be
obfuscated as a new program that is mistakenly labelled as benign while retaining the
original behaviour and its consequences. The detection process for this new software might
be readily avoided. Or-Meir et al. (2019) have stated that code obfuscation technique is less
effective on dynamic analysis as compared to static analysis. The heuristic-based malware
detection algorithms often transform a malware sample into a basic form, such as text,
picture, or signal, before extracting essential aspects for further analysis (Hashemi ¢
Hamzeh, 2019; Mohammadi et al., 2019; Fu et al., 2018). The time needed to modify the
sample representation as a system call, opcode sequence, efc. and the time required for
feature extraction resulted in substandard performance on both the training and testing
phases of the algorithms, even though such methods might achieve decent accuracy.
Several researchers have tried to use natural language processing (NLP) techniques on
malware static properties such as Opcode sequences and file header sections to identify
malicious programs. Using feature extraction techniques like n-grams, term frequency and
inverse document frequency (TF-IDF), etc., they discovered low detection accuracy—
below 87%. To perform static analysis on the visual malware pictures used in their
recurrent neural network, Minhash, Visualization, and convolutional neural network
(RMVC) approach, Sun ¢ Qian (2021) used recurrent neural network (RNN) and
convolutional neural network (CNN). They found accuracy better than 92%, even with a
tiny training dataset. Experimental results show that the classification accuracy of malware
classes in the dataset with noise factor is 0.96, higher than the accuracy of 0.83 in a dataset
without noise factor. They suggested that a potential avenue for future research was to
examine the effectiveness of their approach in dynamic analysis. Malware was categorized
using images produced from malware binaries by Hammad et al. (2022). KNN, SVM, and
the elaboration likelihood model (ELM) are trained and tested using the Malimg dataset.
Features are extracted using GoogleNet, a deep learning model, and Tamuar, a texture
feature that correlates with human visual perception. They found that ELM performed
better than any other model. They have recommended using data augmentation, which
could enhance classification outcomes.

System call sequences from 3,536 benign and 3,567 malicious applications for Android-
OS were employed by Xiao et al. (2019) on the long short-term memory (LSTM) model.
They discovered a low FPR of 9.3% and a high recall of 96.6%. Two LSTM models make up
their classifier: one is used to train the malware, while the other is used to train the trusted
application. New sequences were classified using the similarity score that was derived from
the two models. Mathew ¢ Ajay Kumara (2020) have employed TF-IDF embeddings with
N-grams for feature extraction and selection. Using API call sequences, the proposed
LSTM model is used to classify applications as benign or malicious. The authors obtained a

Panda et al. (2025), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.2752 6/39

http://dx.doi.org/10.7717/peerj-cs.2752
https://peerj.com/computer-science/

PeerJ Computer Science

92% accuracy score on unidentified test API call sequences. The feature that represents
hidden malicious behavior plays a vital role in malware detection. The insignificant feature
leads to poor classification performance. To increase classification performance, eliminate
insignificant and noisy features from the dataset. Bhat, Behal ¢» Dutta (2023) suggested a
very stable and reliable malware binary classification model based on the ensemble
technique. To improve intrusion detection systems’ accuracy, Taheri, Ahmadzadeh ¢
Kharazmi (2015) employed the Cuttlefish algorithm for feature reduction. Four distinct
datasets, KDD5000, KDD10000, KDD100000, and KDD500000, were used for selecting
various feature numbers, such as 3, 5, 10, 13, and 41. They reported promising results using
the dataset and an artificial neural network as the evaluation function. Taheri et al. (2024)
have investigated two adversarial techniques, Data Poisoning with Noise Injection (DP-
NI) and Gradient-based Data Poisoning (GDP), to assess the vulnerability of deep
learning-based Android malware classifiers. They have suggested a novel defense
technique called Differential Privacy-Based Noise Clipping (DP-NC) to make Android
malware classifiers more resilient to these adversarial attacks. By employing adversarial
training techniques and deep neural networks, DP-NC demonstrates remarkable efficacy
in mitigating the impact of GDP and DP-NI attacks. Panda & Tripathy (2020) have created
a host-based anomaly detection system by using the TF-IDF word embedding approach on
the DLL sequence of all in-memory processes to identify abnormal processes. Panda,
Bisoyi & Panigrahy (2023) have trained multiple 1D-CNN models using the one-vs.-rest
strategy and generated API embeddings using the Word2Vec word embedding technique.
They proposed ModifiedSoftVoting to integrate classification capabilities in multiclass
malware classification challenges to improve classification metrics.

Ferhat Ozgur et al. (2020) published a dynamic data set named MAL-API-2019 using
the Cuckoo Sandbox, comprising 7,107 API sequences for eight different forms of
malware. The data set has also been trained to perform multiclass classification using
single-layer LSTM, two-layer LSTM, SVM, KNN, RF, and DT. Compared to all other
models, the single-layer LSTM achieved macro F1-score of 0.47 as the maximum. Li ¢
Zheng (2021) used LSTM and gated recurrent unit (GRU) models on the benchmark
dataset MAL-API-2019 to classify malware classes using long-sequence API calls. They
have achieved a precision of 0.56 in both approaches and a recall of 0.58 and 0.59,
respectively, in LSTM and GRU. The broad applicability of LSTM and the best architecture
for malware classification were examined by Avci, Tekinerdogan ¢ Catal (2023). Using the
MAL-API-2019 dataset, they evaluated and compared the performance of several LSTM
architectures, such as CNN-LSTM, stacked-LSTM, bi-directional LSTM, and vanilla-
LSTM. In order to produce comprehensible results and classification metrics, Galli et al.
(2024) integrated the eXplainable artificial intelligence (XAI) technique with an AI-based
malware detection process. They evaluated various deep learning models on the dataset
MAL-API-2019, BiLSTM and achieved the best experimental classification results, with
accuracy, precision, recall, and F1-scores of 52.88%, 54.89%, 53.99%, and 54.31%,
respectively. CAFTrans, a framework that processes API sequences using CNN and LSTM
networks, was proposed by Qian ¢» Cong (2024). The MAL-API-2019 dataset was used to

Panda et al. (2025), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.2752 7/39

http://dx.doi.org/10.7717/peerj-cs.2752
https://peerj.com/computer-science/

PeerJ Computer Science

Table 1 State-of-the-art approaches for multiclass malware classification with API sequences.

Author Description Method
Ye et al. (2008) Developed an intelligent malware detection system based on Objective-Oriented Association (OOA) OOA
classification.

Mehra, Jain & Uppal ~ They suggested utilizing Gourmand Feature Selection to extract desired attributes from API call graphs. KNN
(2015)

Huda et al. (2016) Proposed an automated malware detection method to calculate statistical information on API calls SVM
performed by malicious and benign programs.

Pirscoveanu et al. (2015) Classify the windows API calls using DNS requests, files that were accessed, mutexes, and registry key =~ Random

information. Forest
Manavi & Hamzeh The headers of executable files, more significantly portable executable files, are used to detect ransomware.
(2022) A graph is then made using the headers of executable files, and the “Power Iteration” approach is used to
map the graph in an eigenspace.
Kolosnjaji et al. (2016) Examine the System call sequences to classify the malware using hybrid neural network. CNN + RNN
Sun & Qian (2021) The techniques of recurrent neural networks (RNN) and convolutional neural networks (CNN) are
combined with the static analysis of malicious code to generate malware feature images.
Kong & Yan (2013) They developed an effective system that was capable of recognizing previously unidentified samples. Ensemble
Zhang et al. (2016) Classify the malware samples from the unbalanced training dataset accurately.
Bhat, Behal & Dutta Suggested a very stable and reliable malware binary classification model.
(2023)
Ferhat Ozgur et al. Using sequential data taken from Windows operating system API calls, the LSTM model is utilized to
(2020) categorize malware into eight families.
Xiao et al. (2019) System call sequences from 3,536 benign and 3,567 malicious applications for Android-OS were employed LSTM

on LSTM for classification.

Mathew ¢ Ajay Kumara Employed TF-IDF embeddings with N-grams for feature extraction and selection.
(2020)
Li & Zheng (2021) Employed LSTM and GRU (Gated Recurrent Unit) models on the benchmark dataset MAL-API-2019 to
classify malware classes using long-sequence API calls.

Avci, Tekinerdogan ¢ Examined the broad applicability of LSTM and the best architecture for malware classification.
Catal (2023)

Galli et al. (2024) Proposed a framework called as CAFTrans that processes API sequences using CNN and LSTM networks
and asserted more accurate classification of malware.

Galli et al. (2024) Integrated the eXplainable Artificial Intelligence (XAI) technique with an Al-based malware detection BiLSTM
process.

Demirkiran et al. (2022) Classified malware into multiple classes using the benchmark datasets VirusShare, VirusSamle, and RTF
MAL-API-2019.

Miao et al. (2024) Proposed a lightweight malware detection model based on knowledge distillation that exhibited a superior DistillMal and
classification performance. BERT

test the framework, and the results showed an F1-score of 0.65 and an area under the curve
(AUC) of 0.89. They asserted that by identifying malware in their families more accurately
than in others on the same dataset, CAFTrans improves accuracy.

Diizgiin et al. (2021) published two datasets VirusShare and VirusSample. These are
created using MD5 malware hashes, with 14,616 samples taken from VirusShare and 9,795
from VirusSample sites, respectively. The malware samples’ API calls are retrieved using
the Python module PEfile, which extracts API calls from a program’s Portable Executable

Panda et al. (2025), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.2752 8/39

http://dx.doi.org/10.7717/peerj-cs.2752
https://peerj.com/computer-science/

PeerJ Computer Science

(PE) file header. These static analysis techniques result in static API call sequences. They
have used the balanced version of these two datasets on several machine learning and deep
learning models. On VirusShare with SVC, they achieved the highest macro F1-score of
0.76, whereas on VirusSample, the highest macro F1 the CANINE model is 0.91.
Demirkiran et al. (2022) classified malware into multiple classes using the benchmark
datasets VirusShare, VirusSamle, and MAL-API-2019. Their suggested RTF model
outperforms the Transformer, CANINE-S, and BERT deep learning models. With the RTF
model, they have achieved the highest macro F1-scores on the benchmark dataset, which
are 0.72, 0.80, and 0.61, respectively. Miao et al. (2024) proposed a lightweight malware
detection model based on knowledge distillation (DistillMal) that exhibited superior
classification performance in several evaluation metrics when applied to VirusShare and
VirusSample datasets. On the VirusSample dataset, DistillMal’s experimental performance
metrics showed an accuracy of 0.94, a macro precision of 0.50, a macro recall of 0.73,and a
macro Fl-score of 0.60. In contrast, VirusShare’s accuracy was 0.89, accompanied by a
macro Fl-score of 0.69, macro recall of 0.63, and macro precision of 0.88.

The challenge of the imbalanced multiclass malware classification problem is addressed
using various strategies, with the API sequence being the most crucial feature sequence.
Table 1 summarises works by several other researchers considering API sequence as a
critical feature. This study solves the issue of feature imbalance concerning diversity in API
sequence length of the multiclass malware classification problem using the unique feature
selection technique AFS. As machine learning models use fewer resources to train than
deep learning models, the proposed AMMC framework trains base machine learning
models using Skip-gram API embeddings to ensure superior classification reports with
fewer resources. Using base machine learning models instead of deep learning or other
complicated models reduces the higher resource requirements for malware detection.

METHODOLOGY

The AMMC workflow is depicted in Fig. 3 as a sequence of stages. This framework takes a
labeled imbalanced Multiclass Malware API Sequence Dataset as input. It ensures a better
classification result through a novel AFS process that works iteratively. In the
Nonconventional API Name Removal stage, each API sequence in the dataset is scanned to
drop the nonconventional API names. A nonconventional API name may contain symbols
beyond the allowed symbols [A..Z], [a..z], [0..9], and []. Such API names are found in the
case of static API sequence datasets.

API call sequences, in both static and dynamic datasets, tend to be lengthy due to
repeated occurrences of identical API calls. A notable characteristic of malware behaviour
is the repetition of specific API calls within these sequences to evade detection
mechanisms. Each API call corresponds to a machine-level task, and analyzing the
sequence of unique calls provides valuable insights into malware activity. The proposed
AMMC framework introduces a Duplicate API Removal step to address redundancy in
API sequences before AFS. This step ensures the preservation of the first occurrence of
each distinct API call while eliminating subsequent duplicates. By focusing on unique API

Panda et al. (2025), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.2752 9/39

http://dx.doi.org/10.7717/peerj-cs.2752
https://peerj.com/computer-science/

PeerJ Computer Science

e

| Final API Sequences |

Classification
Report

Wait for next

Feature Weight Matrix No

Multiclass Malware API
Sequence Dataset
Nonconventional API
Name Removal
Duplicate APl Removal

Feature Weight Threshold

— > Select Feature By Class Using TF-IDF

best F1 since last
known best F1

with SkipGram

lMachine Learning ModelJ

Greedy Strategy For
Updated Feature y gy
Weight Threshold Updating Feature Weight
Threshold

Final Classification Report
Final Class-wise Feature Weight Threshold

Adaptive Feature Selector

Figure 3 Workflow of adaptive multiclass malware classifier.

Full-size K&l DOT: 10.7717/peerj-cs.2752/fig-3

calls, the sequence reflects the underlying machine-level tasks performed by the malware
more accurately. For instance, consider an encoded API sequence: (2,2, 2,5,5,2,2,5, 1, 1,
2,2,5,2,51,1,4,4,2,2,2,5,1,1,1,1,4,4,4,4,7,7,1,1,4,4,2,2,5,2,2,5,1,1, 1,4, 4,4, 2,
2,2,5522552251,1,1,4447,7 1, 1,4, 1, 1, 4]. After applying duplicate API
removal, the processed sequence becomes: [2, 5, 1, 4, 7]. This step reduces the sequence size
and ensures that critical, non-redundant information about the malware’s operations is
retained, enhancing the efficiency of subsequent analysis stages.

The AFS stage in the framework works iteratively over three substages. The substage
Select Feature by Class selects influential APIs in an API sequence considering the TF-IDF
feature weight threshold. During influential feature selection, it mitigates the feature
sequence imbalance problem concerning API sequence length. At the same time, it
preserves the class-wise sample size. The substage Machine Learning Model trains and tests
specific classifiers on the finalized API sequences. Considering the classification report of
the model, the substage Greedy Strategy for Updating Feature Weight Threshold updates
the feature weights for the following selection of influential features by Select Feature by
Class. A new goal is set to obtain better classification results once a desired macro F1-score
is reached. The best-found classification report of all iterations is produced if the desired
macro F1 is not reached after a predetermined number of iterations.

The AFS adapts changes in feature selection criteria to achieve better performance. The
functioning of the AFS is detailed in Algorithm 1. It necessitates three inputs: Fj, Wy, and
Dypi. F{ is to be provided as a target for the macro Fl-score and is expected to be achieved
by AFS. In the event that the maximum macro F1 (F"*) achieved does not reach the
target, the W, constant is supplied to end the search for F; instead of going into an
infinite loop. Dgy; is a benchmark multiclass malware dataset with 7 classes. Listed are the
data structures in statement 1 through statement 4 used in algorithm AFS to search for F;.
F}"* is initialized to 0 and used to keep track of the maximal macro F1-score achieved over
the iterations against the set Fj. Wait,,, is initialized to W, and is used to restrict the

Panda et al. (2025), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.2752

10/39

http://dx.doi.org/10.7717/peerj-cs.2752/fig-3
http://dx.doi.org/10.7717/peerj-cs.2752
https://peerj.com/computer-science/

PeerJ Computer Science

Algorithm 1 AdaptiveFeatureSelector.
Require: F}, Wy, Dypi
Ensure: cr, CFWT, F{"™*

1. Fmex =0

2: Waitey = Wey

3: CFWT[1..n]={0.0}

4: F[1..n+1]={0.0}

5: while True do

6: Di,; = SelectFeatureByClass(Dgpi, CFWT)
7: cr = TrainTestModel(Dy,;)

8: Fi[1..n+ 1] = CollectF,Score(cr)
9: if Fi[n + 1] >= F/"* then

10: Frex — Fy[n 4 1]

11: CFWTy = CFWT

12: Clse] = CT

13: Waitey = Wen

14: else

15: Wait,; = Wait,,; — 1

16: end if

17: if Wait.,; == —1 then

18: Return (crys, CFWTy, FJ'¥)
19: end if

20: if Fi[n+ 1] <= F! then

21: fori=1— ndo

22: if F1[i] <= F;[n + 1] then
23; CFWTIi] = CFWTJi] + 0.01
24: end if

25: end for

26: else

27: Fi = F! +0.05

28 end if

29: end while

> To track maximal macro F1 i.e., F"* score achieved so far
> Count to restrict from entering to an infinite loop
> To track class wise feature weight threshold

> To track class wise and macro F1-scores

> Check current iterations macro F1 is better than F}"** or not

> Wait,, exhausted, F} not achieved and return maximal macro F1

D> F! achieved and adjust it to seek superior macro F1

search process entering into an infinite loop while the targeted F| is not becoming

realizable. CFWTT | is an array of size n to define the classwise feature weight threshold,

and all elements are initialized to 0. CFWT gets updated after each iteration to tighten

classwise feature section criteria. F)|[] is an array of size n + 1 where the first n elements

represent F1-scores of n classes and the last element represents macro Fl-score of the

Panda et al. (2025), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.2752

11/39

http://dx.doi.org/10.7717/peerj-cs.2752
https://peerj.com/computer-science/

PeerJ Computer Science

Algorithm 2 SelectFeatureByClass.
Require: D,,;, CFWT

. F
Ensure: Dapl-

L: Dgpi =¢

2: forCy=1—ndo

3 d., = select APl from D,y; by Cig

4 We, [1] = TFIDFWeightEvaluator(d.,,)
5: d.,, = SelectFeature(d.,,, Wc,, CFWT[Cy])
6 Dani = Dani Ude,

7: end for

8: return D

api

classifier. The scores in F1] | are used to keep track of improvements while searching for
the F] of the classifier.

AFS iterates around statement 5 to statement 29 in the while loop to find the F}"** score.
By choosing the features from dataset D,); that meet the corresponding weights for each
class in CFWT, SelectFeatureByClass generates the final dataset Dqui. TrainTestModel
builds the classifier and produces the classification report (cr) using the dataset Dgpi.
CollectF;Score creates the Fl-score array. Furthermore, the classifier’s macro F1 is
compared against F{"™ to record any improvement. The classifier’s macro F1-score is
compared to the F} in each iteration to determine additional weight adjustments in CFWT.
When a class’s F1-score is less than the classifier’s macro F1-score, the feature weight for
the classes is incremented by 0.01. F! is incremented by 0.05 to look for a better macro
Fl-score if the F}"™ score reaches the F}. Lastly, the F"** score with the associated cr
calculated in addition to the CFWT weights is returned if the F} is not realized for the W,
number of iterations after achieving a F]"** score.

In order to solve the feature imbalance issue brought on by the variety of API sequence
lengths in the D,;, which poses a challenge to the classifier’s effectiveness, the algorithm
AFS calls the subroutine SelectFeatureByClass in statement 6. This subroutine chooses
significant APIs from API sequences as outlined in Algorithm 2. The statements of
SelectFeatureByClass are explained in detail below.

o Statement 3 selects APl from Dg,;, where each d., will hold the API sequences of the
Dgyi whose class is Cjy. It divides the D,; into several disjoint datasets d,,, d,,, . .., d.,
where d,,, is the API data for class Cyg.

o Statement 4 uses a TF-IDF weighting schema to select APIs in API,, that qualify the
mentioned weights in CFWT by C. It calculates a weight matrix (i.e., W¢,[][]) for
every d,, in order to address the data imbalance problem associated with the variety of
API sequence lengths. The TF-IDF weighting schema is applied to each d, to decide the
weights for each distinct API name concerning the API sequence in d,,. TF-IDF is a

Panda et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2752 12/39

http://dx.doi.org/10.7717/peerj-cs.2752
https://peerj.com/computer-science/

PeerJ Computer Science

Algorithm 3 TrainTestModel.

Require: Dgpi

Ensure: cr

L ful][] = Word2vec.SkipGram(Dy,;)
Dy, Dys = TrainTestSplit(DE ., 0.8)

2 api’
3: Model.train(Dyy, fur)

4

5

D> cr: classification report
> fi: Feature weight matrix

D> Dy,: Train set and Dy,: Test set

cr = Model.predict(Dys, fur)

return cr

statistical measure that ensures the importance of a word (i.e., a distinct API) to a
document (i.e., API,) in the collection of documents (i.e., d,,). Considering TF-IDF
over raw frequencies of occurrences of APIs is to scale down the impact of very
frequently occurring APIs in an APIy, in the collection of API sequences, which is
empirically less informative than the APIs of less frequency. The weight of ith API to jth
API sequence is denoted as Wj; in the W¢,[][] and defined as given in Eq. (1).

W;; = TF; X IDF; (1)

TF;; in Eq. (1) is the term frequency for ith API with respect to the jth API sequence and
defined as given in Eq. (2).

TE. — Number of times i API appears in j"™ API Sequence
T Total number of APIs in j™ API sequence

(2)

IDF; in Eq. (1) quantifies i API’s infrequency throughout d_,,. It is determined by
taking the logarithm of the ratio between the total number API sequences in d.,, and the
number of API sequences that contain the i API as given in Eq. (3). Penalizing APIs that
appear in every API sequence is the aim.

(3)

Total number API sequences in d,,,
IDF; = log ’

Number of API sequences that contain the i API

o The finalized d, is found by iterating over each API sequence and retaining those APIs
whose weight as per the W, [][] qualifies the weight threshold stated in CFWT|[Cy].
This is done using statement 5. If none of the APIs meet the threshold, a preventive
measure is also taken to return the sequence to its previous state. This prevention step
keeps shorter API sequences from being excluded and preserves the sample size of d_,.

* In statement 6, the final dataset Dgpi is constructed by combining each of the classwise

finalized datasets d_,,. This final dataset (Dgpi) is returned to train and validate a classifier.

AFS employs the TrainTestModel as outlined in Algorithm 3 to ensure several
performance metrics by training and evaluating a classifier on Dgpi. It returns the

Panda et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2752 13/39

http://dx.doi.org/10.7717/peerj-cs.2752
https://peerj.com/computer-science/

PeerJ Computer Science

Input Layer Hidden Layer Output Layer
[1XM] N Linear Neurons M Neurons
2
0 Z Softmax
0
c
:‘g Soﬂzmax
3 0
o
o
1
g Z Softhax
>
= 0
0 Softmax
0 Z °
~ [
L [
(]
fu[1[] .
0
Softmax

Figure 4 SkipGram model for API feature weight matrix.
Full-size K&l DOT: 10.7717/peerj-cs.2752/fig-4

classification report (cr) to AFS for further improvements in CFWT to meet the Fi. The
steps of TrainTestModel are explained below in detail.

o Statement 1 calculates f,,[][] the feature matrix of API embeddings via the Skip-Gram

approach of Word2Vec, a neural network model (Mikolov et al., 2013). Technically, it
calculates the likelihood of an API being a context API for a specified target APIL. This
way, it also explores the multicollinearity between APIs, taking their semantic
relationship. The output probabilities generated by the network will tell us how likely it is
to find each vocabulary API near our input API. Figure 4 displays a shallow network with
an input layer, a single hidden layer, and an output layer. The fascinating thing is that we
do not employ the trained neural network. Instead, the goal is to learn the hidden layer’s
weights while predicting the surrounding APIs. These weights represent API
embeddings. The input is a one-hot encoded vector corresponding to the API vocabulary
size in Dgpi,
neurons equal to the API vocabulary size, and the Softmax activation function is used to

with a specific API being the target API. The output layer is made up of

Panda et al. (2025), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.2752 14/39

http://dx.doi.org/10.7717/peerj-cs.2752/fig-4
http://dx.doi.org/10.7717/peerj-cs.2752
https://peerj.com/computer-science/

PeerJ Computer Science

calculate the appropriate probability for each API in the API vocabulary. The hidden
layer is linear, and its optimal weights are used to generate the learned API embeddings.
For example, API embedding of a target API will be a vector of dimension [1 X NJ,
obtained by multiplying [1 X M] matrix (the one-hot vector of the target API) with [M X
N] matrix (the feature weight matrix f,,[|[] at the hidden layer), where ‘M’ is the API
vocabulary size and ‘N’ is the number of neurons in the hidden layer.

e In statements 2 and 3, the usual 80:20 split ratio for training and testing data is
considered during training and evaluating a model. While training, feature weight
vectors are normalized, and hyperparameters are tuned with the grid search,
emphasizing regularization in the model.

o Statement 4 calculates the classification report (cr) and returns it to AFS for further
processing.

The cr represents several performance metrics such as accuracy, precision, recall,
F1-score, and AUC, which ensures the model’s efficacy.

e Accuracy is the measure of a classifier’s ability to make accurate predictions. In balanced
classes, accuracy is a valuable metric; nevertheless, it is not a suitable fit in imbalanced
classes. Furthermore, the distribution of false positives and negatives is unclear.
Accuracy for multiclass classification instances will be calculated using Eq. (4).

Accuracy = Z;lﬁl emli,

i=1 Z;l:l cmli, j]

o Precision is helpful when false positives pose a greater risk than false negatives. It is

(4)

helpful for skewed and unbalanced datasets. As more false positives are predicted by the
model, the precision falls. The accuracy of a model’s predictions of the target class is
guaranteed by its precision. Precision for multiclass classification instances will be
calculated using Eq. (5). The classifier’s macro-averaged precision score is calculated
using the unweighted mean of each class’s precision score.

cmlc, c|
Zill Cm[iv C]

* Recall describes the model’s ability to predict the real positive cases accurately. When a

(5)

Precision. =

false positive is more concerning than a false negative, recall is a valuable statistic. Recall
decreases with the number of false negatives the model predicts. Recall for multiclass
classification instances will be calculated using Eq. (6). The classifier’s macro-averaged
recall score is calculated using the unweighted mean of each class’s recall score.

cmlc, c|

2ty emle, i

Recall, = (6)

Panda et al. (2025), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.2752 15/39

http://dx.doi.org/10.7717/peerj-cs.2752
https://peerj.com/computer-science/

PeerJ Computer Science

Table 2 An illustration of AFS showcasing update in feature weight and improvement in the macro F1-score of the SVC model on VirusShare
dataset. Bold values indicates change in CFWT and corresponding F1-score array iteration wise. The italic values indicate the metrics of best
iteration.

Iteraion CFWT array [C0,C1,C2, Fl-score array [C0,C1,C2,C3, Update CFWT array [CO0,C1, Tighten feature Fllnax, iteration

C3, C4,C5,C6,C7] C4,C5,C6,C7,Macro] C2,C3, C4,C5,C6,C7] selection criteria of and Wait_,,
classes
1 [0.0,0.0,0.0,0.0, [0.60°,0.17,0.91°,0.59’, ‘0.98’, [0.01,0.01,0.0,0.01, Co,C1,C5,Cs 0.73,1,5
0.0,0.0,0.0,0.0] 0.93’, ‘0.96’,0.70°, ‘0.73°] 0.0,0.0,0.0,0.01]
2 [0.01,0.01,0.0,0.01, [‘0.59’, ©0.17°,0.91°,0.59’, ‘0.98’, [0.02,0.02,0.0,0.02, Co,C1,C3,Cy 0.73,2,5
0.0,0.0,0.0,0.01] 0.94’, ‘0.96’, 0.71°, ‘0.73’] 0.0,0.0,0.0,0.02]
3 [0.02,0.02,0.0,0.02, [0.62°0.17°,0.92°,0.59’, 0.98, [0.03,0.03,0.0,0.03, Co,C1,C5,Cy 0.73,3,5
0.0,0.0,0.0,0.02] 0.94’, 0.96’, ‘0.70°, ‘0.73’] 0.0,0.0,0.0,0.03]
4 [0.03,0.03,0.0,0.03, [‘0.64°, ©0.26°,0.917,0.59’, ‘0.98’, [0.04,0.04,0.0,0.04, Co,C1,C3,C, 0.75,4,5
0.0,0.0,0.0,0.03] 0.94’, ‘0.96’, 0.71°, ‘0.75’] 0.0,0.0,0.0,0.04]
5 [0.04,0.04,0.0,0.04, [‘0.84’, ‘0.31’, ‘0.92’, 0.84’, 0.98’, [0.04,0.05,0.0,0.04, C,Cy 0.81,5,5
0.0,0.0,0.0,0.04] 0.95’, 0.96’, ‘0.72’, 0.81’] 0.0,0.0,0.0,0.05]
6 [0.04,0.05,0.0,0.04, [0.85, 0.81°,0.92°,0.67, €0.98’, [0.05,0.06,0.0,0.05, Co,C1,C5,Cs 0.86,6,5
0.0,0.0,0.0,0.05] 0.96’, 0.96’, ‘0.73’, ‘0.86’] 0.0,0.0,0.0,0.06]
7 [0.05,0.06,0.0,0.05, [‘0.86’, 0.75°,0.91°,0.84°, ‘0.98’, [0.06,0.07,0.0,0.06, Co,C1,C3,Cy 0.87,7,5
0.0,0.0,0.0,0.06] 0.96’, 0.96’, 0.72’, ‘0.87’] 0.0,0.0,0.0,0.07]
8 [0.06,0.07,0.0,0.06, [0.91°, ©0.89°,0.92, 0.93°, 0.98’, [0.07,0.08,0.0,0.06, Co,C1,C5 0.91,8,5
0.0,0.0,0.0,0.07] 0.96°, 0.96°, 0.72°, 0.91’) 0.0,0.0,0.0,0.08]
9 [0.07,0.08,0.0,0.06, [°0.90,0.36°, 0.91’, 0.89’, ‘0.98’, [0.07,0.09,0.0,0.06, C,C, 0.91,8,4
0.0,0.0,0.0,0.08] 0.96’, ‘0.96’, ‘0.70°, ‘0.83’] 0.0,0.0,0.0,0.09]
10 [0.07,0.09,0.0,0.06, [0.91’, ‘0.38’, ‘0.92’, 0.95, 0.98’, [0.07,0.10,0.0,0.06, C,Cy 0.91,8,3
0.0,0.0,0.0,0.09] 0.96’, ‘0.96’, 0.70°, ‘0.84°] 0.0,0.0,0.0,0.10]
11 [0.07,0.10,0.0,0.06, [0.92’, ©0.37%, ©0.92’, 0.93’, 0.98’, [0.07,0.11,0.0,0.06, C,C, 0.91,8,2
0.0,0.0,0.0,0.10] 0.96’, 0.96’, ‘0.75°, ‘0.85’] 0.0,0.0,0.0,0.11]
12 [0.07,0.11,0.0,0.06, [°0.90’, ‘0.36°, 0.91°, “0.88’, 0.98’, [0.07,0.12,0.0,0.06, C,Cy 0.91,8,1
0.0,0.0,0.0,0.11] 0.96’, ‘0.96’, 0.79’, ‘0.84°] 0.0,0.0,0.0,0.12]
13 [0.07,0.12,0.0,0.06, [0.92’, ©0.37’, ©0.92’, ‘0.91’, 0.98’, [0.07,0.13,0.0,0.06, C,C, 0.91,8,0
0.0,0.0,0.0,0.12] 0.96’, 0.96’, ‘0.78’, 0.85’] 0.0,0.0,0.0,0.13]
14 [0.07,0.13,0.0,0.06, [0.91’, ©0.38’, ‘0.91°, 0.92’, ‘0.98’, [0.07,0.14,0.0,0.06, C,C, 0.91,8,-1 STOP
0.0,0.0,0.0,0.13] 0.96’, 0.96’, ‘0.78’, ‘0.85’] 0.0,0.0,0.0,0.14]
Note:

* Best iteration.

o The weighted average of recall and precision is known as the F1-score. Recall and

precision must both be strong for the classifier to have a high F1-score. This measure

only gives preference to classifiers with comparable recall and precision. F1-score for

multiclass classification instances will be calculated using Eq. (7). The classifier’s macro-

averaged F1-score is calculated using the unweighted mean of each class’s F1-score.

2

FIC: 1

_1 4 1
Recall, + Precision,

(7)

Table 2 provides an example of AFS demonstrating the modification of the selection

criteria and enhancement of the macro Fl-score of the SVC model on the VirusShare

Panda et al. (2025), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.2752

16/39

http://dx.doi.org/10.7717/peerj-cs.2752
https://peerj.com/computer-science/

PeerJ Computer Science

Table 3 Description of dataset.

(A) Imbalanced class

(B) Imbalanced feature sequence

Malware VirusSample VirusShare MAL-API- API sequence length VirusSample VirusShare MAL-API-2019
class 2019
Original Dup_Rem Original Dup_Rem Original Dup_Rem

Virus 2,367 2,490 1,001 >0&<20 6,821 6,821 7,458 7,458 55 1,227
Trojan 6,153 8,919 1,001 >=20&<40 331 335 473 478 281 2,316
Worms 441 524 1,001 >=40&<60 470 490 600 619 294 2,241
Backdoor 447 510 1,001 >=60&<80 116 127 434 455 191 845
Adware 222 908 379 >=80&<100 275 323 717 819 237 372
Downloader NA 218 1,001 >=100&<150 1,118 1,037 1,616 1,594 316 106
Agent 102 165 NA >=150&<200 66 70 746 627 270 0
Ransomware NA 115 NA >=200&<250 172 167 902 897 267 0
Spyware NA NA 832 >=250&<300 290 289 408 409 263 0
Dropper NA NA 891 >=300 73 73 495 493 4,933 0
Total sample 9,732 13,849 7,107 Total no. of API 9,732 9,732 13,849 13,849 7,107 7,107

size sequences

dataset. The greedy approach in updating the feature selection criteria over iterations is
shown in this table. Since the goal is to improve the model’s performance for an
imbalanced multiclass problem, the greedy property ensures improvement in the macro
F1-score of the model by improving the F1-score of the classes with poor performance.
Here, the greedy approach updates CFWT][] while considering the F1[] score array from
the model’s cr. The primary step of the technique is only to update a class’s feature
selection threshold criteria in CFWT[] when the class’s F1-score is less than or equal to the
model’s macro F1-score.

In every iteration, AFS compares F; with the macro F1-score of the model. The initial
value of F{ for the first iteration in Table 2 is 0.75, which is greater than the model’s macro
F1-score of 0.73. The fourth iteration resets F} to 0.80, which is attained in the fifth.
Moreover, the model’s F"** score is determined to be 0.91 in iteration 8, and F; is reset to
0.95. AFS ends after the fourteenth iteration since the model’s macro F1-score has not
increased during the previous six iterations. Whenever the model detects a macro F1-score
higher than or equal to the most recent known F}"*, the parameter Wait,,,,; returns to its
initial value, and F]"** gets updated. When the macro F1-score does not exceed the most
recent F"™, the Wait,,,; decreases to prevent AFS from nonterminating. After the
fourteenth iteration, the search for a higher macro F1-score ended since the parameter
Wait y,n, which has an initial value of 5, expired. Finally, AFS returned the F{"™* of 0.91,
CFWT array [0.07,0.08,0.0,0.06,0.0,0.0,0.0,0.08] of eight classes and iteration number 8
representing the classification report of the iteration with the maximum macro F1-score.

EXPERIMENTAL EVALUATION

This section highlights the datasets used to evaluate the proposed framework in terms of its
efficacy with several performance metrics. The experimental work for the described

Panda et al. (2025), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.2752 17/39

http://dx.doi.org/10.7717/peerj-cs.2752
https://peerj.com/computer-science/

PeerJ Computer Science

Table 4 Ten-fold cross validation performance measures of AMMC for VirusShare.

(A) Without AFS

(B) With AFS (F! = 0.95 and W, = 5)

SVC RF KNN ECLF SVC RF KNN ECLF
Precision 0.88 + 0.01 0.90 + 0.01 0.84 + 0.02 0.89 + 0.03 0.94 + 0.01 0.97 £ 0.00 0.93 + 0.01 0.95 +0.01
Recall 0.69 = 0.00 0.68 + 0.01 0.71 £ 0.02 0.64 = 0.03 0.87 £ 0.01 0.87 £ 0.01 0.88 + 0.00 0.81 £0.03
F1 0.73 + 0.00 0.73 £ 0.00 0.75 + 0.01 0.70 + 0.02 0.90 + 0.01 0.92 + 0.01 0.91 + 0.00 0.87 + 0.02

Accuracy 0.90 £ 0.00 0.90 + 0.01 0.90 + 0.00 0.90 + 0.01 0.95 £+ 0.00 0.95 + 0.00 0.94 + 0.00 0.94 + 0.01

Table 5 Ten-fold cross validation performance measures of AMMC for VirusSample.

(A) Without AFS

(B) With AFS (F! = 0.95 and W, = 5)

SVC RF KNN ECLF SVC RF KNN ECLF
Precision 0.94 + 0.03 0.93 + 0.07 0.88 + 0.04 0.93 + 0.04 0.95 £ 0.02 0.97 £ 0.01 0.95 + 0.01 0.96 + 0.01
Recall 0.71 £ 0.02 0.72 = 0.03 0.75 £ 0.05 0.72 = 0.02 0.87 = 0.03 0.87 £ 0.03 0.86 = 0.03 0.87 £ 0.03
F1 0.76 = 0.02 0.78 = 0.03 0.78 £ 0.02 0.76 + 0.02 0.90 * 0.02 0.92 £ 0.02 0.90 + 0.02 0.91 £ 0.02

Accuracy 0.94 + 0.01 0.95 + 0.00 0.94 + 0.01 0.94 + 0.01 0.96 + 0.01 0.96 + 0.01 0.96 + 0.01 0.96 + 0.00

Table 6 Ten-fold cross validation performance measures of AMMC for MAL-API-2019.

(A) Without AFS

(B) With AFS (F! = 0.85 and W, = 15)

SVC RF KNN ECLF SVC RF KNN ECLF
Precision 0.65 £ 0.01 0.66 £+ 0.01 0.62 £ 0.01 0.66 = 0.01 0.81 £ 0.02 0.79 £ 0.01 0.73 £ 0.02 0.80 £ 0.01
Recall 0.65 + 0.01 0.64 + 0.01 0.62 + 0.01 0.65 + 0.01 0.80 + 0.02 0.77 £ 0.01 0.74 + 0.01 0.79 £ 0.01
F1 0.65 + 0.01 0.65 + 0.01 0.61 £ 0.01 0.65 + 0.01 0.81 + 0.02 0.78 £ 0.01 0.73 £ 0.01 0.79 £ 0.01
Accuracy 0.64 £ 0.01 0.64 £ 0.01 0.61 £ 0.01 0.64 £ 0.01 0.81 + 0.02 0.77 + 0.01 0.73 + 0.01 0.79 + 0.01

AMMC is carried out using an Intel(R) Core(TM) i5-1035G1 CPU @ 1.00GHz X 8 PC
with 16 GB of RAM, Ubuntu-22.04.5 LTS, and Python 3.9.

Dataset description

The experiment was conducted using three benchmark multiclass malware datasets, as
shown in Table 3, to demonstrate the efficacy of AMMC. The multiclass dataset MAL-
API-2019 contains 7,107 dynamically collected API call sequences from eight types of
malware on the Windows operating system. This dataset, which includes sequential API
calls, enables researchers to comprehend how metamorphic malware modifies its behavior
(i.e., API calls) by appending opcodes that have no significance. VirusSample and
VirusShare datasets contain 9,795 and 14,616 statically collected API call sequences
extracted from six and eight types of malware portable executable (PE) file headers,
respectively. During the experiment, all malware classes in VirusSample and VirusShare

Panda et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2752 18/39

http://dx.doi.org/10.7717/peerj-cs.2752
https://peerj.com/computer-science/

PeerJ Computer Science

svC

ECLF

APl Sequence Length Reduction with ML models after AFS

2000 4000 8000 10000 12000 14000
No. of malware samples in the range concerning to APl sequence length
. >0&<20 B >=40&<60 W >=80&<100 m >=150&<200 EEm >=250&<300

mm >=20&<40 mmm >=60&<80 mmm >=100&<150 mmm >=200&<250 mmm >=300

Figure 5 Reduced length API sequences at iteration with maximal macro F1 for VirusShare with AFS.
Full-size Kl DOT: 10.7717/peerj-cs.2752/fig-5

- I

svc

API Sequence Length Reduction with ML models after AFS

2000 8000 10000
No. of malware samples in the range concermng to APl sequence length
. >0&<20 E >=40&<60 mmm >=80&<100 e >=150&<200 W >=250&<300

m >=20&<40 mmm >=60&<80 mmm >=100&<150 mmm >=200&<250 mmm >=300

Figure 6 Reduced length API sequences at iteration with maximal macro F1 for VirusSample with AFS.
Full-size K&l DOT: 10.7717/peerj-cs.2752/fig-6

Panda et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2752 M 0000 1939

http://dx.doi.org/10.7717/peerj-cs.2752/fig-5
http://dx.doi.org/10.7717/peerj-cs.2752/fig-6
http://dx.doi.org/10.7717/peerj-cs.2752
https://peerj.com/computer-science/

PeerJ Computer Science

RF

svc

ECLF

API Sequence Length Reduction with ML models after AFS

Before AFS

1000 2000 3000 4000 5000 6000 7000

0
No. of malware samples in the range concerning to APl sequence length

mE >0&<20 mm >=40&<60 =W >=80&<100 m >=150&<200 mmE >=250&<300
mm >=20&<40 mmm >=60&<80 mmm >=100&<150 mmm >=200&<250 mmm >=300

Figure 7 Reduced length API sequences at iteration with maximal macro F1 for MAL-API-2019
with AFS. Full-size &) DOTI: 10.7717/peerj-cs.2752/fig-7

with more than 100 samples were considered; however, MAL-API-2019 was considered
thoroughly. The sample sizes of different classes outlined in Table 3A illustrate the class-
wise data imbalance issue. Furthermore, all three datasets contain API sequences of
varying lengths. Considering an API request as a feature of a sample, such diversity in API
sequence length represents feature-wise imbalance. Table 3B depicts the variation in API
sequence length concerning the frequency of such API sequences in all datasets before and
after the duplicate APT’s elimination in each sequence. During the experiment, AMMC
handled the issue of feature sequence imbalance by preserving the class-wise sample
imbalance issue.

Result analysis
Three fundamental machine learning models, RF, KNN, and SVC, are employed for
training and testing in order to guarantee the goal of validating AMMC with models that
use fewer computational resources. KNN is used as one of the supervised non-linear
machine learning models on vector distance logic, RF is used as an implicit ensemble
model, and SVC is used as a candidate linear and non-linear model that can operate on
diverse datasets. Additionally, ECLF is employed as an ensemble classifier, with the above
three being estimators based on soft voting.

The hyperparameters (WindowSize=10, VectorSize=200) are set through a random
search to estimate API weight vectors using the Skip-gram model. Furthermore, the API
weight vectors are normalized using the Standard Scalar after considering multiple

Panda et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2752 M 0]20/39

http://dx.doi.org/10.7717/peerj-cs.2752/fig-7
http://dx.doi.org/10.7717/peerj-cs.2752
https://peerj.com/computer-science/

PeerJ Computer Science

1.0 1.0 1
0.9 1 0.9
0.8 0.8
0.7 4 0.7
Q w
> o
[e
£ (=]
; 0.6 1 g 0.6 1
o O
@ a
< -
g 08 % 0.5
0.4 -
0.4
0.3 1
0.3
0.2 1
0.2 A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Iteration Iteration
Adware —— Downloader Virus —— MACRO Adware —— Downloader Virus —— MACRO
—— Agent —— Ransomware —— Worms —— [teration with Optimum MACRO F1 ~— Agent —— Ransomware = —— Worms —— Iteration with Optimum MACRO F1
—— Backdoor ~—— Trojan —— Backdoor = —— Trojan
1.0 1
1.0
/ —
0.9 1
0.9
\ 0.8
0.8 \
T\/—’/\ -
§ 0.7 A \ g g
< \ i
“ \ “
S \]
© 0.6 \ @ 061
S \ S
] \]
T o5 \\ T 051
\\\
0.4 | I o sem 0.4
0.3 A 0.3
024 T 0.2
T T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 i 2 3 4 5 6 ¢ 8 9 10 11 12 13 14 15
Iteration Iteration
Adware —— Downloader Virus —— MACRO Adware —— Downloader Virus —— MACRO
— Agent —— Ransomware —— Worms —— Iteration with Optimum MACRO F1 —— Agent —— Ransomware —— Worms —— Iteration with Optimum MACRO F1
—— Backdoor =~ —— Trojan —— Backdoor =~ —— Trojan

Figure 8 (A-D) Change in F/"** in search of maximal macro F1 with F} = 0.95 and W,,,; = 5 for VirusShare.
Full-size 4] DOT: 10.7717/peerj-cs.2752/fig-8

normalization techniques such as MinMax, Robust, and Standard Scalar. Through the grid
search technique, emphasizing regularization, the hyperparameters for SVC, RF, and KNN
are determined to be (gamma="‘auto’, kernel="rbf’, C=10, max_iter=10000),
(n_estimators=200, criteria = ‘entropy’, bootstrap=True, max_depth=1000), and
(n_neighbors=8, weights="distance’, algorithm="auto’, leaf size=30, p=2,
metric="minkowski’), respectively.

An ablation study is carried out on the three benchmark datasets by dropping the stage
Select Feature by Class and the Greedy Strategy for updating feature weights in AMMC to

Panda et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2752

21/39

http://dx.doi.org/10.7717/peerj-cs.2752/fig-8
http://dx.doi.org/10.7717/peerj-cs.2752
https://peerj.com/computer-science/

PeerJ Computer Science

1.0 A 1.0 A
{ _/;
\m 0.9 4
0.8 1 —\ ‘ N
|
| ey ——/| NN\
o ' '
0.6 w
>
) f < 074
5 » s 1
g ! g !
] | 3 |
o 0.4 I , 0.6 ’
|
-\ 4
\ |
\ 0.5 I
|
0.2 \ / I
\ | [
\ / I
\ / 0.4
\/
\/ 1
\
0.0 V J
—T T T T T T T T T T T T T T — T 0.3 — 77— 71— — T T T
123 456 7 8 91011121314 1516 17 18 19 20 21 22 2324 2526 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Iteration Iteration
—— Adware ——— Backdoor = —— Virus —— MACRO —— Adware —— Backdoor = —— Virus —— MACRO
—— Agent —— Trojan —— Worms —— Iteration with Optimum MACRO F1 —— Agent —— Trojan — Worms —— Iteration with Optimum MACRO F1
1.0 1.04
[T
[== ‘!
0.9 1 0.9 1
]’
[081
0.8 : [\
z | |
z
g | 2 0.7 '
5 0.7 | s ‘
v ' g f
o o
a | " 0.6 I
T 0.6 I' T
l' '
‘ 0.5 !
0.5 |
| |
[
J 0.4 A '
0.4 —~ -
> - ~J
T T T T T T T T T T T T T T T 0.3 —T T T T T T T T T T T T T T T T T T T — T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1234567 8 91011121314151617181920212223242526272829
Iteration Iteration
—— Adware ——— Backdoor =~ —— Virus —— MACRO —— Adware —— Backdoor —— Virus —— MACRO
—— Agent —— Trojan —— Worms —— Iteration with Optimum MACRO F1 —— Agent —— Trojan — Worms —— Iteration with Optimum MACRO F1

Figure 9 (A-D) Change in F{"* in search of maximal macro F1 with F{ = 0.95 and W,,, = 5 for VirusSample.
Full-size K&l DOT: 10.7717/peerj-cs.2752/fig-9

ensure the impact of AFS. This experiment on AMMC without AFS uses the API
sequences generated by the Duplicate API Removal stage to train and validate classifiers.
The mean and standard deviation of 10-fold cross-validation results for macro precision,
macro recall, macro F1-score, and accuracy are displayed in Tables 4A, 5A and 6A

respectively.

To validate AMMCs efficacy, we reran the experiment on the three benchmark datasets
with AFS. The AFS-Pruned dataset is obtained via SelectFeatureByClass. To stress

22/39

Panda et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2752

http://dx.doi.org/10.7717/peerj-cs.2752/fig-9
http://dx.doi.org/10.7717/peerj-cs.2752
https://peerj.com/computer-science/

PeerJ Computer Science

0.9
0.9 4
0.8 { N
0.8 q
7/
[}
@ 071 & 071
s s
5 5
a a
~ z
“ 06 0.6 1
0.54 054
L e e e e e L e e ———— T T — — T T—— T T
12345678 910111213141516171819202122232425262728293031323334353637383940 12345678 9101112131415161718192021222324252627282930 31 3233 34353637
Iteration lteration
Adware —— Backdoor — Ransomware Virus — MACRO Adware —— Backdoor —— Ransomware Virus — MACRO
—— Agent —— Downloader ~—— Trojan —— Worms —— lteration with Optimum MACRO F1 —— Agent = Downloader ——— Trojan —— Worms = lteration with Optimum MACRO F1
0.9
0.8
0.8 1
0.7
z 5
g 9 074
w“ w
c 1)
< <
<] <]
v v
0.6 w
- -
'S LN
0.6
0.5
0.5 1
0.4 I e e e s e e s e e B M B e o s i e e B R m s e m w L LSRN PR R R S O N e 7 TR A B TN B TN S 7R ST [T [N R R W /PO 7 SR [O B R
12345678 9101112131415161718192021222324252627282930 31 3233 34353637 12345678 9101112131415161718192021222324252627282930 313233 34353637
Iteration Iteration
Adware —— Backdoor —— Ransomware Virus —— MACRO Adware —— Backdoor —— Ransomware Virus —— MACRO
—— Agent — Downloader ~—— Trojan —— Worms = Iteration with Optimum MACRO F1 —— Agent — Downloader ~—— Trojan —— Worms = Iteration with Optimum MACRO F1

(C) KNN

(D) ECLF

Figure 10 (A-D) Change in F"** in search of maximal macro F1 with F; = 0.85 and W_,,; = 15 for MAL-API-2019.

Full-size K] DOI: 10.7717/peerj-cs.2752/fig-10

consistency in performance indicators, each model undergoes a 10-fold cross-validation.
AFS goes through multiple iterations in each fold to get the maximal macro F1-score

(F"*) by training and evaluating the basic machine learning and ensemble models

outlined before. Compared to the macro F1-score without AFS, a higher macro F1 target

(F}) and Wait,,, are gradually adjusted to seek a superior macro F1-score with AFS. Tables

4B, 5B, and 6B exhibit the 10-fold cross-validation findings, including the mean and
standard deviation of maximal macro F1-scores for each fold. Furthermore, the target
macro F1 (F!) and the related Wait,,, are superscribed in the Tables 4B, 5B, and 6B,

Panda et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2752

23/39

http://dx.doi.org/10.7717/peerj-cs.2752/fig-10
http://dx.doi.org/10.7717/peerj-cs.2752
https://peerj.com/computer-science/

PeerJ Computer Science

Table 7 Maximal performance metrics of VirusShare. Bold values indicate the best performance.

Models Fold Iteration Feature weight threshold array CFWT [1..n] for maximal macro F1 Macro Macro MCC MTTD
F1 ROC- (ms)
Adware Agent Backdoor Downloader Ransomware Trojan Virus Worms AUC Test
size
2,770
SVC 5 8 0.06 0.07 0.00 0.06 0.00 0.00 0.00 0.07 0.91 0.98 0.90 0.330
RF 1 9 0.06 0.07 0.02 0.07 0.00 0.00 0.00 0.08 0.92 0.99 091 0.030
KNN 2 8 0.06 0.07 0.00 0.05 0.00 0.00 0.00 0.07 0.91 0.97 0.90 0.247
ECLF 8 9 0.07 0.07 0.01 0.06 0.00 0.00 0.00 0.08 0.91 0.99 091 0.760
Table 8 Maximal performance metrics of VirusSample. Bold values indicate the best performance.
Models Fold Iteration Feature weight threshold array CFWT [1..n] for maximal macro F1 Macro F1 Macro MCC MTTD (ms)
ROC-AUC
Adware Agent Backdoor = Trojan Virus Worms Test size 1,947
SVC 2 20 0.11 0.06 0.00 0.00 0.00 0.18 0.94 0.98 094 0.146
RF 2 14 0.07 0.06 0.00 0.00 0.00 0.13 0.94 0.99 0.94 0.024
KNN 3 10 0.09 0.06 0.00 0.00 0.00 0.09 0.92 0.98 092 0.186
ECLF 2 23 0.08 0.06 0.00 0.00 0.00 0.22 0.94 0.99 094 0.701
Table 9 Maximal performance metrics of MAL-API-2019. Bold values indicate the best performance.
Models Fold Iteration Feature weight threshold array CFWT([1..n] for maximal macro F1 Macro Macro MCC MTTD
F1 ROC-AUC (ms)
Adware Backdoor Downloader Dropper Spyware Trojan Virus Worms Test size
1,422
svC 9 24 0.07 0.12 0.03 0.10 0.23 022 000 0.14 0.84 098 0.82 1.143
RF 7 22 0.03 0.14 0.05 0.12 0.21 0.21 0.00 0.08 0.80 0.97 0.77 0.040
KNN 9 24 0.05 0.14 0.07 0.12 0.23 0.23 0.00 0.08 0.75 0.94 0.74 0.361
ECLF 9 21 0.02 0.14 0.04 0.12 0.20 0.20 0.00 0.08 0.82 0.98 0.79 1.872

together with the macro precision, recall, and accuracy. Considering all the classifier’s
performance, the impact of AMMC with AFS in contrast to AMMC without AFS is well
justified by showing significant improvement with the several performance metrics
outlined in Tables 4-6.
Figures 5-7 depicts the reduction in API sequence length achieved by selecting APIs

that meet the weight criterion via SelectFeatureByClass for all models on all datasets during

the fold, with the highest macro F1-score with the previously indicated macro F;. In the

dataset found after Duplicate API Removal stage, there were 493 API sequences of length

greater than 300 for VirusShare, as shown in Fig. 5. However, using SelectFeatureByClass in
AFS lowered the number of API sequences with lengths >=300 from 493 to 429, 415, 420,

Panda et al. (2025), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.2752

24/39

http://dx.doi.org/10.7717/peerj-cs.2752
https://peerj.com/computer-science/

PeerJ Computer Science

Adware- 158 0 0 0 0
Agent - 1 28 0 0 9
Backdoor = 0 0 87 0 0
Downloader - 0 0 0 40 0o
E
<
Ransomware = 0 (0] 0 0 22
Trojan - 5) 1 1 2 9
Virus - 0] o 0 0 9
Worms = 4 o 0 1 9
Advllare Aglent Back‘ﬂoor Down;oader Ranso.mware
Predicted
Adware - 157 0 0 0 o)
Agent = 2 27 [0 0 0
Backdoor = 0 0 87 0 0
Downloader = 0 0 0 40 0
g
Ransomware = 0 0 9 0 23
Trojan = 10 0 3 5) o)
Virus - 0 0 0 1 0
Worms - 2 1 0 0 0
Adv;are Ag‘enz Eack‘dnor Down\.oader Ransa:nware
Predicted

24 0 0 Adware- 153 0 0] 0o 0 27 1 1
1600 1600
2 1 1 1400 Agent - 1 27 0 0 0 8 2 0 1400
15 o 0 1200 Backdoor= O 0 87 0 0 15 0 0 1200
3 0 0 1000 Downloader = 0 (o] 0 41 0 2 0 0 1000
!
<
1 o 0 [800 Ransomware- O 0 0 0 22 1 0 0 [eco
- 600 600
1767 1 7 Trojan = 5] 0 2 (0] 0 1769 8 5)
400 400
36 461 1 Virus - 0 0 0 0 0 32 465 i)
200 200
38 1 66 Worms = a 0 0 0 0 32 3 69
. . . -0 -0
Trojan Virus Worms, Adware Agent Backdoor Downloader Ransomware Trojan Virus Worms
Predicted
24 o 1 Adware - 157 1 0 0 o 22 0 2
1600 1600
a o o 1400 Agent- 1 27 0 0 o 3 1 1 1400
15 o 0 1200 Backdoor- 0 0 87 0 0 15 0 0 1200
3 0 0 1000 Downloader - 1 [0] 0 40 0 2 0] (0] 1000
s
g
0 0 0 - 800 Ransomware- 0 0 0 0 22 1 0 0 [800
=600 600
1749 1 16 Tojan- 4 0 2 0 0 1769 0 9
400 400
a5 461 1 Vius= 0 0 0 0 0 36 461 1
200 200
26 1 75 worms - 1 0 0 1 0 34 1 68
. -0
Tm'jan Virus Worms -0 Adware Agent Backdoor Downloader Ransomware Trojan Virus Worms
Predicted

Figure 11 (A-D) Confusion matrix of models for the iteration with maximal macro F1 of VirusShare.

Full-size K&l DOT: 10.7717/peerj-cs.2752/fig-11

and 415, respectively, for the evaluated models. As a result, the number of API sequences
increases in the range >=100&<150, >=60&<80, >=40&<60, >=20&<40, and >0&<20,
respectively. It is observed that in the dataset formed after Duplicate API Removal stage,
longer API sequences are becoming shorter and shifting toward the lower-length API
sequences. Figures 6 and 7 show similar observations for the VirusSample and MAL-API-
2019 datasets, respectively. With the reduced API sequences referring to the mean
accuracy, precision, recall, and F1-scores for all three datasets highlighted in Tables 4-6 the
effect of AFS is well established.

Figure 8 depicts the process of iteratively searching superior macro F1 at the fold with
the highest macro F1 for all models using VirusShare. We stopped our experiment at
F! = 0.95 and W,,; = 5. In the eighth iteration, both SVC and KNN achieved the F}"*
score of 0.91 and ended the quest for a higher macro F1-score in iteration 14. However, RF
and ECLF achieved the F]"* score of 0.92 and 0.91 at iteration 9 and ended their pursuit
for a higher macro F1-score in iteration 15. Similarly, Figs. 9 and 10 depict iteratively
searching for superior macro F1 at the fold with the highest macro F1 for all models using
VirusSample and MAL-API-2019.

Panda et al. (2025), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.2752

25/39

http://dx.doi.org/10.7717/peerj-cs.2752/fig-11
http://dx.doi.org/10.7717/peerj-cs.2752
https://peerj.com/computer-science/

PeerJ Computer Science

1.09 1.01 T AT EE == =
I”’
0.9 0.9 e
.
-
xa
0.8 0.8 s
2
/
,/
%
0.7 0.7 4 "
a
a
,/
%
% 0.6 % 0.6 1 ,,’
o o 7z
o o /,
= = e
=] i = g
g 0.5 Z 0.5 ,,,
a a 4
] K e
= 0.4 = 0.4 e
0.3 /’ = micro-average (AUC = 0.99) 0.3 micro-average (AUC = 1.00)
: i - macro-average (AUC = 0.98) macro-average (AUC = 0.99)
,/ Adware (AUC = 0.98) Adware (AUC = 0.99)
0.2 /’ —— Agent (AUC = 0.97) 0.2 1 Agent (AUC = 0.98)
P ——— Backdoor (AUC = 0.97) —— Backdoor (AUC = 0.99)
,/ —— Downloader (AUC = 1.00) —— Downloader (AUC = 1.00)
0.1 d —— Ransomware (AUC = 1.00) 0.1 A —— Ransomware (AUC = 1.00)
/, —— Trojan (AUC = 0.96) —— Trojan (AUC = 0.98)
'z’ Virus (AUC = 0.99) 0.0 Virus (AUC = 0.99)
0.0 —— Worms (AUC = 0.96) : —— Worms (AUC = 0.97)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate False Positive Rate
RO 1.01 T E===== ’d
u" ,---.----l"' ,,r’
=] ’
0.9 1 0.9 ,//
,
"
0.8 | 0.8 "
I vl
| P
i %
0.7 4 0.7 1 Vi
i 4
Il ’
i e
206 | 2 0.6 el
T] .
o o ,I
2 2
3051 g 031 -
a [-% ’
o > "
> E] e
= 0.4 = 0.4 "
0.3 /’ = = micro-average (AUC = 0.99) 0.3 micro-average (AUC = 1.00)
// = = macro-average (AUC = 0.97) ’ macro-average (AUC = 0.99)
4 Adware (AUC = 0.95) Adware (AUC = 0.99)
0.2 s Agent (AUC = 0.94) 0.2 1 Agent (AUC = 0.97)
i —— Backdoor (AUC = 0.96) —— Backdoor (AUC = 0.98)
,/ —— Downloader (AUC = 0.99) —— Downloader (AUC = 1.00)
0.1 PV —— Ransomware (AUC = 1.00) 0.1 —— Ransomware (AUC = 1.00)
,/ —— Trojan (AUC = 0.97) —— Trojan (AUC = 0.98)
'1’ Virus (AUC = 0.98) Virus (AUC = 0.99)
0.01 —— Worms (AUC = 0.93) 0-01 —— Worms (AUC = 0.96)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

False Positive Rate

(C) KNN

0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate

(D) ECLF

Figure 12 (A-D) ROC-AUC of models for the iteration with maximal macro F1 of VirusShare. Full-size k&l DOTI: 10.7717/peerj-cs.2752/fig-12

Table 7 highlights the maximum macro F1-score and macro ROC-AUC achieved on
VirusShare for all the models with their respective fold and iteration in that fold. One
statistical method used to assess a model’s ability to predict multiclass classifications is the
Matthews correlation coefficient (MCC). It is employed in machine learning to assess how
well predictions are made. On unbalanced datasets, it is more trustworthy than accuracy
and F1-score, which might be deceptive. Because it considers the balance of the four

Panda et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2752 26/39

http://dx.doi.org/10.7717/peerj-cs.2752/fig-12
http://dx.doi.org/10.7717/peerj-cs.2752
https://peerj.com/computer-science/

PeerJ Computer Science

B/

Backdoor Agent Adware
' ' '
(=] (=]

Actual

Trojan
'
o

a
2 - (0]
£
g
5 - (0]
=

Adware
@
g- 31
3
<
€
g - (0]
g
5
]
- 1
g
3

=&

]

g
&

5. 0
g
2- o
=
g
5- (0]
=

Adware

19

Agent

19

0

Agent

(o) 7
(0] 1
82 8
O
1 16
o) 21
Backdoor Trojan
Predicted
(A) SVC
(o] 12
(0] 1
80 9
1
(o] 22
(o] 16
Backdoor Trojan
Predicted
(C) KNN

1200 1200

o
o 0 2. 36 0 0 8 ¢} 0
2
1000 1000
g - o] 19 0 1 o] o}
(o] o] 2
800 é 800
o o g- o 0 82 8 o 0
=8
600 g 600
<
> 6 = 0 0 0 1220 4 7
I3
400 400
457 o E 0 0 0 14 460 0
200 200
) 67 § s} 0 0 21 o 67
Virus Worms -0 Adware Agent BacKdoor Trojan Virus Worms -0
Predicted
1200 1200
<4
1 0 £- 40 (o] ¢} 4 0 o
2
1000 1000
o 0 g - 0 19 0 1 0 0
£
800 = 800
g
0) g- 0 o 82 8 0 o}
=8
s
600 g - 600
1 13 5 0 0 o 1222 2 7
2
400 - 400
452 0 é 0 o 0 15 459 o
200 200
0 72 § -1 0 0 22 0 65
. . -0 -0
Virus Worms Adware Agent Backdoor Trojan Virus Worms
Predicted

Figure 13 (A-D) Confusion matrix of models for the iteration with maximal macro F1 of VirusSample.

Full-size K&l DOT: 10.7717/peerj-cs.2752/fig-13

confusion matrix entries (TP, TN, FP, and FN), it is more informative than accuracy and
F1-score. Since class sizes vary in all the datasets, the MCC scores for each model are also
shown in this table to guarantee a fair evaluation. Furthermore, the mean time to detect
(MTTD) in milliseconds shows the detection time efficiency in this multiclass problem.
During the search for the F}"** score via AFS, the F1-score for classes Ransomware, Trojan,
and Virus always stands higher than the macro F1-score of the model. Hence,
SelectFeatureByClass method does not make any changes to their API sequences. However,
for all other classes, the API selection in a sequence is done by comparing the respective
class weight threshold in CFWT via SelectFeatureByClass. The contents of CFWT for the
iteration with the maximum macro F1-score are also shown in the table. Tables 8 and 9
represent the CFWT, MCC, and MTTD details of the fold and iteration with maximum
macro F1 concerning datasets VirusSample and MAL-API-2019.

Figures 11 and 12 show the confusion matrix and ROC curve with AUC scores for all
the models on VirusShare of the fold with maximum macro F1-score. Similarly, Figs. 13

Panda et al. (2025), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.2752

27/39

http://dx.doi.org/10.7717/peerj-cs.2752/fig-13
http://dx.doi.org/10.7717/peerj-cs.2752
https://peerj.com/computer-science/

PeerJ Computer Science

i 1.04
1.0 e = 0)
0 -
a a
- %
0.9 1 e 0.9 1 e
- 2
7’ d
2 %
% -
/ e
0.8 S 0.8 ,
' 7’
/’ ’I
4 d
% 2
a %
0.7 4 S 0.7 L
a 2
7’ 4
a -
% "
2 0.6 - @ 0.6 1 L
© e T 2
-4 - 24 a
[’ o Jie
> e = e
= B 4 = 0.5
5 05 s g L
a ’ a 7’
[4 (3 '
S - ES e
= 0.4+ e = 0.4 %
/, ,/
7’ 4
2 /
% xa
0.3 7 0.3 L
a 2
,/ = = micro-average (AUC = 0.99) ,’, = = micro-average (AUC = 1.00)
0.2 4 ,z, - macro-average (AUC = 0.98) 0.2 1 ,/’ = = macro-average (AUC = 0.99)
Vi Adware (AUC = 1.00) Vd Adware (AUC = 1.00)
ot —— Agent (AUC = 0.98) 7 —— Agent (AUC = 0.99)
0.14 e —— Backdoor (AUC = 1.00) 0.1+ ot —— Backdoor (AUC = 0.99)
,/ —— Trojan (AUC = 0.97) Pl —— Trojan (AUC = 0.99)
- —— Virus (AUC = 0.99) ood ¥ —— Virus (AUC = 1.00)
0.0 —— Worms (AUC = 0.95) : —— Worms (AUC = 0.99)
00 01 02 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 07 08 09 10
False Positive Rate False Positive Rate
1.0 A 1.0 A e
’
2
%
-
.
0.9 1 0.9 e
-
%
-
.
0.8 1 0.8 e
.
a
/
,/
0.7 1 0.7 4 e
2
2
%
,/
£ 0.6 £ 0.6 e
& 2 "
2] 7
2 0.5 = g 4
g g 0.5 L
- -9 P4
[(] td
> g a
= 0.4 = 0.4 Ve
e
.
%
a
0.3 0.3 7
"
,/ = = micro-average (AUC = 0.99) ,/ = = micro-average (AUC = 1.00)
0.2 4 ,1’ = = macro-average (AUC = 0.98) 0.2 /,’ = = macro-average (AUC = 0.99)
P Adware (AUC = 0.96) P Adware (AUC = 1.00)
e Agent (AUC = 1.00) 7 —— Agent (AUC = 0.99)
0.1 ,/ —— Backdoor (AUC = 0.98) 0.1 P —— Backdoor (AUC = 1.00)
R —— Trojan (AUC = 0.98) ,/’ —— Trojan (AUC = 0.99)
0.0 '/’ —— Virus (AUC = 0.99) ',’ —— Virus (AUC = 1.00)
: —— Worms (AUC = 0.98) 0.0 1 —— Worms (AUC = 0.98)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 010 0:1 012 0:3 0:4 0:5 016 Oj7 0:8 019 1:0
False Positive Rate False Positive Rate

(C) KNN (D) ECLF

Figure 14 (A-D) ROC-AUC of models for the iteration with maximal macro F1 of VirusSample. Full-size &l DOT: 10.7717/peerj-cs.2752/fig-14

and 14 for VirusSample and Figs. 15 and 16 for MAL-API-2019 show the confusion matrix
and ROC curve with AUC scores for all the models of the fold with maximum macro
F1-score. Considering the principal diagonal of all three classifiers’ confusion matrix, their
classification ability is well justified. For all three datasets, the AUC scores of the ROC
curve indicate the prominence in performance for multiclass malware classification
problems on all the models using AMMC with AFS.

Panda et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2752 28/39

http://dx.doi.org/10.7717/peerj-cs.2752/fig-14
http://dx.doi.org/10.7717/peerj-cs.2752
https://peerj.com/computer-science/

PeerJ Computer Science

Adware =

Backdoor =

Downloader =

Dropper -

Actual

Spyware -

Trojan -

Virus =

Worms -

Adware =

Backdoor =

Downloader =

Dropper -

Actual

Spyware -

Trojan -

Virus =

Worms =

61 o} 4 2 0 ¢} 8 1
160
o 1 o 1 13
140
1 2 0 9 3 120
2 [0 0 5 2 100
o} 1 1 ¢} 127 34 3 1 - 80
0 1 11 1 37 [o0
- 40
1 3 14 4 2
=20
o} 10 3 8 1
Adware Backdoor Downloader Dro;';per Spy\;vare 'rro'jan Virus Worms -0
Predicted
61 2 6 2 1 1 1 2 160
1 6 23 1 1 6 9 140
4 0o 6 0 (o] 11 27 120
1 3 7 144 o] 1 9 13 100
0 21 0 7 [80
=60
1 18 1 9
=40
4 o} 5 2
=20
1 4 11 4 14
Adware Backdoor Downioader Dropper Spyware Tojan Vius Worms -e
Predicted

Actual

Actual

Adware -

Backdoor =

Downloader -

Dropper -

Spyware -

Trojan -

Virus =

Worms =

Adware -

Backdoor =

Downloader =

Dropper -

Spyware -

Trojan -

Virus =

Worms =

55} 1 6 1 0 1 9 3 175
(0] 164 [0} 15 S} 8 4 6 150
(o] (o] (o] 16 25 125
(0] 12 6 5 8

100
[0} 10 50 (0] 1

-75
(0] 12 2 2 23 161 (0] 0

=50
1 0 5 (0] 0 (o] 185 10

=25
(0] 1 8 11 0 (0] 11 169

Adware Backdoor Downjoader Dropper Spyware Trojan Virus Worms 0
Predicted

58 2 7 1 0 (0] 6 2

160

140

120

100

- 80

- 60

- 40

10

Adware Backdoor Downloader Dropper Spyware Trojan Virus

Predicted

(D) ECLF

Worms

Figure 15 (A-D) Confusion matrix of models for the iteration with maximal macro F1 of MAL-API-2019.

Full-size K&] DOT: 10.7717/peerj-cs.2752/fig-15

Case study

During the experiment, the case study on different malware classes of the three benchmark
datasets revealed notable findings on their possible detection rate. As all the datasets are
imbalanced, the precision-recall curves are plotted to emphasize all the classifiers” positive
class prediction performance. The identification of Spyware and Trojans is more
complicated than that of the other six malware classes: Adware, Backdoor, Downloader,
Dropper, Virus, and Worms in the dynamic API sequence-based unbalanced dataset
MAL-API-2019 even though they have a good number of samples. However, even with a
smaller sample size for Adware, all the classifiers showed a better detection rate than
Spyware and Trojan. The precision-recall curves for the classifiers SVC, RF, KNN, and
ECLF are plotted in Fig. 17, and all the classifiers agree with lower precision-recall AUC
scores for Trojan and spyware in contrast to other classes.

Identifying the class Worms is more complicated than all other classes in the static API
sequence-based imbalanced datasets VirusShare and VirusSample. The detection rates of

Panda et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2752

29/39

http://dx.doi.org/10.7717/peerj-cs.2752/fig-15
http://dx.doi.org/10.7717/peerj-cs.2752
https://peerj.com/computer-science/

PeerJ Computer Science

1.01 ST X N — S ——
%
%
/,,
0.9 0.9 1 e
4
%
e
0.8 0.8 it
-
,/
%
0.7 0.7 1 e
%
e
2 0.6 1 @ e
5 . 2 0.6 1
o
[
3] o
205 | 205
o | 3
a | a
El |]
= 0.4 | = 0.4+
1
i
034 : ,/ = = micro-average (AUC = 0.98) 0.3 = = micro-average (AUC = 0.97)
) /’ = = macro-average (AUC = 0.98) : = = macro-average (AUC = 0.97)
{ /z Adware (AUC = 0.98) Adware (AUC = 0.98)
024 | L —— Backdoor (AUC = 0.98) 0.2 1 —— Backdoor (AUC = 0.97)
I ,,’ —— Downloader (AUC = 0.98) —— Downloader (AUC = 0.97)
: e —— Dropper (AUC = 0.99) —— Dropper (AUC = 0.97)
0.1] ,/ —— Spyware (AUC = 0.97) 0.1 —— Spyware (AUC = 0.96)
I Ie —— Trojan (AUC = 0.98) —— Trojan (AUC = 0.97)
0.0 ne —— Virus (AUC = 0.99) Virus (AUC = 0.99)
- Worms (AUC = 0.98) 0.0 Worms (AUC = 0.98)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 01 02 03 0.4 05 06 07 08 09 10
False Positive Rate False Positive Rate

(A) SVC (B) RF

1.0 1.0 - e s s s s
-
%
'
.
2
0.9 0.9 1 i
%
a
7’
,/
0.8 1 0.8 1 L
a
/
,/
0.7 1 0.7 - e
a
4
2
"
2 0.6 2 0.6 i
£ & L
2 2 e
= 0.5 4 = 4 4
3 g 0.5 L
o - Py
@ () 4
= = ’
< 0.4 £ 0.4+ e
4
0.3 ,/’ = = micro-average (AUC = 0.94) 034 = = micro-average (AUC = 0.98)
,,’ = = macro-average (AUC = 0.94) . = = macro-average (AUC = 0.98)
e Adware (AUC = 0.95) Adware (AUC = 0.98)
0.2 1 L7 ~—— Backdoor (AUC = 0.93) 0.2 —— Backdoor (AUC = 0.98)
,,' —— Downloader (AUC = 0.94) —— Downloader (AUC = 0.97)
e —— Dropper (AUC = 0.94) —— Dropper (AUC = 0.98)
0.1 ’,’ —— Spyware (AUC = 0.91) 0.1+ —— Spyware (AUC = 0.97)
(e —— Trojan (AUC = 0.94) —— Trojan (AUC = 0.98)
0.0 e —— Virus (AUC = 0.97) —— Virus (AUC = 0.99)
- Worms (AUC = 0.95) 0.01 Worms (AUC = 0.98)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 OjO 011 OjZ 0f3 OT4 015 0j6 0‘.7 Ot8 0i9 le
False Positive Rate False Positive Rate

(C) KNN (D) ECLF

Figure 16 (A-D) ROC-AUC of models for the iteration with maximal macro F1 of MAL-API-2019.
Full-size &) DOT: 10.7717/peerj-cs.2752/fig-16

Adware, Agent, and Backdoor are found to be relatively higher than that of Worms with
the VirusSample dataset, even though their sample sizes are nearly equal. In the VirusShare
dataset, the detection rate of Worms and Agent is found to be lesser than that of all other
classes. For both VirusShare and VirusSample, due to the presence of a higher number of
samples for Virus and Trojan, the detection rate is very high compared to others in all the
classifiers. The precision-recall curves plotted in Figs. 18 and 19 also show lower precision-

Panda et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2752 30/39

http://dx.doi.org/10.7717/peerj-cs.2752/fig-16
http://dx.doi.org/10.7717/peerj-cs.2752
https://peerj.com/computer-science/

PeerJ Computer Science

1.0 4
0.9 1
0.8 1
0.7 1

0.6 1

Precision

0.4 1

0.3 1

0.2 1

0.0

0.9

0.7

0.6

0.5

Precision

0.4

0.3

0.2

0.1

0.0

0.5 1

=== Adware (AUC=0.93)
Backdoor (AUC=0.93)
Downloader (AUC=0.93)
Dropper (AUC=0.92)
Spyware (AUC=0.81)
Trojan (AUC=0.85)
Virus (AUC=0.93)
Worms (AUC=0.93)

°
)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall

(A) SVC

1.0

m— Adware (AUC=0.88)
Backdoor (AUC=0.85)
Downloader (AUC=0.87)
Dropper (AUC=0.84)
Spyware (AUC=0.72)
Trojan (AUC=0.79)

Virus (AUC=0.91)
Worms (AUC=0.85)

©
<)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall

(C) KNN

1.0

0.9 1

0.8 1

0.7 1

0.6 1

0.5 1

Precision

0.4 1

0.3 1

0.2 1

0.0 1

= Adware (AUC=0.89)
memmm Backdoor (AUC=0.91)
=== Downloader (AUC=0.90)
=== Dropper (AUC=0.88)
=== Spyware (AUC=0.76)
=== Trojan (AUC=0.84)

s Virus (AUC=0.94)

messs Worms (AUC=0.91)

1.0 4

0.9 1

0.8 1

0.7 1

0.6 1

Precision

0.4 1

0.3 1

0.2 1

0.1 4

0.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

(B) RF

0.5 1

=== Adware (AUC=0.88)
Backdoor (AUC=0.93)
Downloader (AUC=0.90)
Dropper (AUC=0.92)
Spyware (AUC=0.85)
Trojan (AUC=0.88)

Virus (AUC=0.95)
Worms (AUC=0.92)

o
o

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

(D) ECLF

Figure 17 (A-D) Precision-recall curves of models for the iteration with macro F1 with MAL-API-2019.

Full-size K&] DOT: 10.7717/peerj-cs.2752/fig-17

recall AUC scores for the class Worms on all the classifiers with VirusShare and

VirusSample datasets, respectively.

Comparison with other works

In this article, the framework is experimented on the aforementioned three open

benchmark datasets. Many researchers have considered these datasets to evaluate their

model. Their findings helped to make a convincing comparison. Tables 10 and 11

Panda et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2752

I 31/39

http://dx.doi.org/10.7717/peerj-cs.2752/fig-17
http://dx.doi.org/10.7717/peerj-cs.2752
https://peerj.com/computer-science/

PeerJ Computer Science

Precision

Precision

1.0

0.9 1

0.8 1

0.7 1

o
o

o©
3

o
'S

0.3 1

0.2 1

0.0 1

1.0 4

0.8

0.7 1

o
o

o
)

0.4

0.3 1

0.2

0.0 1

= Adware (AUC=0.90)
mes Agent (AUC=0.88)
=== Backdoor (AUC=0.85)
=== Downloader (AUC=0.97)
ms== Ransomware (AUC=0.99)
mmm= Trojan (AUC=0.96)

mess Virus (AUC=0.97)

s \Worms (AUC=0.75)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

(A) SVC

== Adware (AUC=0.93)
mmms Agent (AUC=0.90)

mmmmm Backdoor (AUC=0.92)
=== Downloader (AUC=0.93)

4 mms== Ransomware (AUC=1.00)

=== Trojan (AUC=0.98)
mssss Virus (AUC=0.98)
s Worms (AUC=0.80)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

(C) KNN

Precision

Precision

1.0 4

0.9 1

0.8 1

0.6 1

0.5 1

0.4 1

0.3 1

0.0 1

1.0

0.9

0.8

0.6

0.5

0.3

0.1

0.0

] === Agent (AUC=0.87)

o === Ransomware (AUC=0.97)

=== Adware (AUC=0.95)

=== Backdoor (AUC=0.93)
=== Downloader (AUC=0.98)

mmmm= Trojan (AUC=0.99)
s Virus (AUC=0.98)
s \Worms (AUC=0.82)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

(B) RF

= Adware (AUC=0.96)
mmm Agent (AUC=0.88)

mmmm= Backdoor (AUC=0.92)
=== Downloader (AUC=0.98)
mmmmm Ransomware (AUC=1.00)
mmmm= Trojan (AUC=0.99)

s Virus (AUC=0.98)

s \WOrms (AUC=0.78)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

(D) ECLF

Figure 18 (A-D) Precision-recall curves of models for the iteration with maximal macro F1 with VirusShare.

Full-size &l DOI: 10.7717/peerj-cs.2752/fig-18

compares earlier researchers’ results against AMMC with AFS for VirusShare and

VirusSample datasets. Diizgiin et al. (2021) have worked on an imbalanced version of both

datasets, where the maximum macro F1-score is 0.73 using SVM on VirusSahre and 0.78

using LSTM on VirusSample. They have also worked on a balanced version of both

datasets where the maximum macro F1-score is 0.76 using SVM on VirusShare and 0.91
using CANINE on VirusSample. Demirkiran et al. (2022) got macro F1-scores of 0.72 and
0.80 using RTF on the imbalanced version of VirusSahre and VirusSample, respectively.
Considering the above-mentioned best two results on the imbalanced version, our

Panda et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2752

I 32/39

http://dx.doi.org/10.7717/peerj-cs.2752/fig-18
http://dx.doi.org/10.7717/peerj-cs.2752
https://peerj.com/computer-science/

PeerJ Computer Science

1.0
0.9
0.8
0.7
0.6
i=4
k=
[}
S 0.5
Q
&
0.4
0.3
0.2
=== Adware (AUC=0.93)
mms Agent (AUC=0.95)
0.1 { === Backdoor (AUC=0.96)
mmm= Trojan (AUC=0.96)
mms Virus (AUC=0.98)
0.0 | === Worms (AUC=0.82)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

(A) SVC

1.0 1

0.9

0.8 1

0.6 1

0.5 1

Precision

0.4 1

0.3 1

0.2 1
mmm— Adware (AUC=0.91)

ms Agent (AUC=0.98)
0.1 o === Backdoor (AUC=0.95)
== Trojan (AUC=0.99)
s Virus (AUC=0.99)

0.0 { === Worms (AUC=0.89)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

(C) KNN

Precision

Precision

1.0 9

0.9 1

0.8 1

0.6 1

0.5 1

0.4 1

0.3 1

0.0 1

1.0 4

0.9 1

0.8 1

0.6 1

0.5 1

0.4 1

0.3 1

0.1 1

0.0 1

| = Adware (auc=0.97)

m Agent (AUC=0.95)

o === Backdoor (AUC=0.95)

mmm= Trojan (AUC=0.99)
mmmm \irus (AUC=0.99)
= \WOorms (AUC=0.87)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Recall

(B) RF

| = Adware (auc=0.96)

mmms Agent (AUC=0.95)
=== Backdoor (AUC=0.98)
mmmmm Trojan (AUC=0.99)
mmmm \/irus (AUC=0.99)
=== \Worms (AUC=0.87)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Recall

(D) ECLF

Figure 19 (A-D) Precision-recall curves of models for the iteration with maximal macro F1 with VirusSample.
Full-size &l DOI: 10.7717/peerj-cs.2752/fig-19

Table 10 Comparison on VirusShare. Bold values indicate the best performance.

Models Macro F1 ROC-AUC
Diizgiin et al. (2021) SVM 0.73 0.92
XGBoost 0.72 0.96
Diizgiin et al. (2021) (balanced) SVM 0.76 0.94
XGBoost 0.75 0.96
(Continued)
Panda et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2752 I 133/39

http://dx.doi.org/10.7717/peerj-cs.2752/fig-19
http://dx.doi.org/10.7717/peerj-cs.2752
https://peerj.com/computer-science/

PeerJ Computer Science

Table 10 (continued)

Models Macro F1 ROC-AUC
Demirkiran et al. (2022) RTF 0.72 0.95
Miao et al. (2024) DistillMal 0.69 -
BERT-base 0.70 -
AMMC with AFS (the proposed framework) RF 0.92 0.99
Table 11 Comparison on VirusSample. Bold values indicate the best performance.
Models Macro F1 ROC-AUC
Diizgiin et al. (2021) XGBoost 0.74 0.98
LSTM 0.78 0.97
CANINE 0.72 0.96
Diizgiin et al. (2021) (balanced) XGBoost 0.90 0.99
LSTM 0.84 0.95
CANINE 0.91 0.98
Demirkiran et al. (2022) RTF 0.80 0.97
Miao et al. (2024) DistillMal 0.60 -
BERT-base 0.56 -
AMMC with AFS (the proposed framework) RF 0.94 0.99
Table 12 Comparison on MAL-API-2019. Bold values indicate the best performance.
Models Macro F1 ROC-AUC
Ferhat Ozgur et al. (2020) Single Layer LSTM 0.47 -
Li & Zheng (2021) GRU (Case-2) 0.57 -
Demirkiran et al. (2022) RTF 0.61 0.88
Cannarile et al. (2022) ExtraTree 0.58 0.75
Avci, Tekinerdogan & Catal (2023) CNN LSTM 0.24 0.83
Galli et al. (2024) BiLSTM 0.54 -
Qian & Cong (2024) CAFTrans 0.65 0.89
AMMC with AFS (the proposed framework) SvC 0.84 0.98

framework AMMC with AFS outperformed all for both datasets with macro F1-scores of

0.92 and 0.94, respectively. Similarly, Table 12 highlights the superior performance of
AMMC on MAL-API-2019 with a macro F1-score of 0.84 using SVC compared to the

macro Fl1-scores of 0.65, 0.61, 0.58, 0.57, 0.54, and 0.47 achieved by others.

LIMITATIONS AND FUTURE WORK

In this work, the iterative feature selection technique AFS goes through many iterations to

find a better feature weight. Hence, the additional time of AFS may be an overhead in

Panda et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2752

34/39

http://dx.doi.org/10.7717/peerj-cs.2752
https://peerj.com/computer-science/

PeerJ Computer Science

terms of the total model training time. AFS employs a greedy technique to search weights
to select influential APIs in an API sequence. AFS terminates after a fixed number of
iterations when there is no evidence of performance improvement. Deciding on the
terminating iteration depends on the dataset.

Future work will be devoted to exploring the usefulness of other optimization
techniques in contrast to the greedy approach in AFS for a better classification score. The
selection of optimal weights through AFS from one of the best-performing base machine
learning models can be applied to deep learning techniques. It may highlight better
classification abilities in the case of multiclass malware classification problems. A
recursive feature selection technique to select influential APIs from API sequences for
multiclass malware datasets may be contrasted with the proposed iterative feature selection
technique AFS.

CONCLUSION

This research presents an AMMC framework on variable length API sequences for
efficient imbalanced multiclass malware classification. The primary goal has been to
develop a technique for adaptively selecting features (i.e., APIs) by class using AFS and
demonstrate its applicability and usefulness in multiclass malware classification situations.
The greedy search approach used by AFS is fundamental to this work. The described
studies on three open multiclass malware datasets, VirusSahre, VirusSample, and
MAL-API-2019, demonstrated, as stated in the findings section, the efficacy of AMMC
employing AFS. AMMC ensures macro F1 values of 0.92, 0.94, and 0.84 for VirusSahre,
VirusSample, and MAL-API-2019, with macro ROC-AUC scores of 0.99, 0.99 and 0.98,
respectively. The comparison of AMMC’s performance with the results of other authors on
the same datasets reveals considerable improvements. Furthermore, the results of all of the
base machine learning models and the ensemble model outlined in Tables 7-9 in this
research performed better with AMMC than the results of others shown in Tables 10-12.
Exploring other strategies to ensure a better selection of APIs in varying length API
sequences on API sequence-based malware datasets will increase detection efficiency even
more.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

The authors received no funding for this work.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions

* Binayak Panda conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

Panda et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2752 35/39

http://dx.doi.org/10.7717/peerj-cs.2752
https://peerj.com/computer-science/

PeerJ Computer Science

o Sudhanshu Shekhar Bisoyi conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures and/
or tables, authored or reviewed drafts of the article, and approved the final draft.

» Sidhanta Panigrahy conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures and/
or tables, authored or reviewed drafts of the article, and approved the final draft.

» Prithviraj Mohanty conceived and designed the experiments, analyzed the data, prepared
figures and/or tables, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The MAL-API-2019 Dataset is available at Mendeley: Catak, Ferhat Ozgiir (2019),
“Mal-API-2019”, Mendeley Data, V2, DOI 10.17632/w393cchcb7.2

The VirusShare and VirusSample Datasets are available at GitHub: https://github.com/
khas-ccip/api_sequences_malware_datasets.

The source codes are available in the Supplemental File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.2752#supplemental-information.

REFERENCES

Avci C, Tekinerdogan B, Catal C. 2023. Analyzing the performance of long short-term memory
architectures for malware detection models. Concurrency and Computation: Practice and
Experience 35(6):¢7581 DOI 10.1002/cpe.7581.

Bhat P, Behal S, Dutta K. 2023. A system call-based android malware detection approach with
homogeneous & heterogeneous ensemble machine learning. Computers & Security
130(6):103277 DOI 10.1016/j.cose.2023.103277.

Cannarile A, Carrera F, Galantucci S, Iannacone A, Pirlo G. 2022. A study on malware detection
and classification using the analysis of API calls sequences through shallow learning and
recurrent neural networks. In: Italian Conference on Cybersecurity, June 20-23, 2022. Rome,
Italy.

Cohen F. 1987. Computer viruses: theory and experiments. Computers ¢ Security 6(1):22-35
DOI 10.1016/0167-4048(87)90122-2.

Damodaran A, Di Troia F, Visaggio CA, Austin T, Stamp M. 2017. A comparison of static,
dynamic, and hybrid analysis for malware detection. Journal of Computer Virology and Hacking
Techniques 13(1):1-12 DOI 10.1007/s11416-015-0261-z.

Demirkiran F, Cayir A, Unal U, Dag H. 2022. An ensemble of pre-trained transformer models for
imbalanced multiclass malware classification. Computers ¢ Security 121(4):102846
DOI 10.1016/j.cose.2022.102846.

Ding Y, Yuan X, Tang K, Xiao X, Zhang Y. 2013. A fast malware detection algorithm based on
objective-oriented association mining. Computers & Security 39(1):315-324
DOI 10.1016/j.cose.2013.08.008.

Diizgiin B, Cayir A, Demirkiran F, Kayha CN, Gengaydin B, Dag H. 2021. New datasets for
dynamic malware classification. ArXiv DOI 10.48550/arXiv.2111.15205.

Panda et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2752 36/39

http://dx.doi.org/10.17632/w393cchcb7.2
https://github.com/khas-ccip/api_sequences_malware_datasets
https://github.com/khas-ccip/api_sequences_malware_datasets
http://dx.doi.org/10.7717/peerj-cs.2752#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2752#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2752#supplemental-information
http://dx.doi.org/10.1002/cpe.7581
http://dx.doi.org/10.1016/j.cose.2023.103277
http://dx.doi.org/10.1016/0167-4048(87)90122-2
http://dx.doi.org/10.1007/s11416-015-0261-z
http://dx.doi.org/10.1016/j.cose.2022.102846
http://dx.doi.org/10.1016/j.cose.2013.08.008
http://dx.doi.org/10.48550/arXiv.2111.15205
http://dx.doi.org/10.7717/peerj-cs.2752
https://peerj.com/computer-science/

PeerJ Computer Science

Ferhat Ozgur C, Ahmet Faruk Y, Ogerta E, Javed A. 2020. Deep learning based sequential model
for malware analysis using windows exe api calls. Peer] Computer Science 6(81):¢285
DOI 10.7717/peerj-cs.285.

Fu J, Xue J, Wang Y, Liu Z, Shan C. 2018. Malware visualization for fine-grained classification.
IEEE Access 6:14510-14523 DOI 10.1109/ACCESS.2018.2805301.

Gaber MG, Ahmed M, Janicke H. 2024. Malware detection with artificial intelligence: a systematic
literature review. ACM Computing Surveys 56(6):1-33 DOI 10.1145/3638552.

Galli A, La Gatta V, Moscato V, Postiglione M, Sperli G. 2024. Explainability in Al-based
behavioral malware detection systems. Computers & Security 141(2):103842
DOI 10.1016/j.cose.2024.103842.

Gopinath M, Sethuraman SC. 2023. A comprehensive survey on deep learning based malware
detection techniques. Computer Science Review 47(3):100529
DOI 10.1016/j.cosrev.2022.100529.

Hammad BT, Jamil N, Ahmed IT, Zain ZM, Basheer S. 2022. Robust malware family
classification using effective features and classifiers. Applied Sciences 12(15):7877
DOI 10.3390/app12157877.

Han W, Xue J, Wang Y, Huang L, Kong Z, Mao L. 2019. MalDAE: detecting and explaining
malware based on correlation and fusion of static and dynamic characteristics. Computers &
Security 83(100):208-233 DOI 10.1016/j.cose.2019.02.007.

Hashemi H, Hamzeh A. 2019. Visual malware detection using local malicious pattern. Journal of
Computer Virology and Hacking Techniques 15(1):1-14 DOI 10.1007/s11416-018-0314-1.

Huda S, Abawajy J, Alazab M, Abdollalihian M, Islam R, Yearwood J. 2016. Hybrids of support
vector machine wrapper and filter based framework for malware detection. Future Generation
Computer Systems 55:376-390 DOI 10.1016/j.future.2014.06.001.

Kolosnjaji B, Zarras A, Webster G, Eckert C. 2016. Deep learning for classification of malware
system call sequences. In: Kang BH, Bai Q, eds. AI 2016: Advances in Artificial Intelligence. Vol.
9992. Cham: Springer, 137-149.

Kong D, Yan G. 2013. Discriminant malware distance learning on structural information for
automated malware classification. In: Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. New York, NY: Association for
Computing Machinery, 1357-1365.

Li C, Zheng J. 2021. API call-based malware classification using recurrent neural networks. Journal
of Cyber Security and Mobility 10(3):617-640 DOI 10.13052/jcsm2245-1439.1036.

Manavi F, Hamzeh A. 2022. A novel approach for ransomware detection based on PE header using
graph embedding. Journal of Computer Virology and Hacking Techniques 18(4):285-296
DOI 10.1007/s11416-021-00414-x.

Mathew J, Ajay Kumara MA. 2020. API call based malware detection approach using recurrent
neural network—LSTM. Advances in Intelligent Systems and Computing 940:87-99
DOI 10.1007/978-3-030-16657-1.

Mehra V, Jain V, Uppal D. 2015. DaCoMM: detection and classification of metamorphic malware.
In: 2015 Fifth International Conference on Communication Systems and Network Technologies,
Gwalior, India, 668-673.

Miao C, Kou L, Zhang], Dong G. 2024. A lightweight malware detection model based on
knowledge distillation. Mathematics 12(24):4009 DOI 10.3390/math12244009.

Mikolov T, Chen K, Corrado G, Dean J. 2013. Efficient estimation of word representations in
vector space. ArXiv DOI 10.48550/arXiv.1301.3781.

Panda et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2752 37/39

http://dx.doi.org/10.7717/peerj-cs.285
http://dx.doi.org/10.1109/ACCESS.2018.2805301
http://dx.doi.org/10.1145/3638552
http://dx.doi.org/10.1016/j.cose.2024.103842
http://dx.doi.org/10.1016/j.cosrev.2022.100529
http://dx.doi.org/10.3390/app12157877
http://dx.doi.org/10.1016/j.cose.2019.02.007
http://dx.doi.org/10.1007/s11416-018-0314-1
http://dx.doi.org/10.1016/j.future.2014.06.001
http://dx.doi.org/10.13052/jcsm2245-1439.1036
http://dx.doi.org/10.1007/s11416-021-00414-x
http://dx.doi.org/10.1007/978-3-030-16657-1
http://dx.doi.org/10.3390/math12244009
http://dx.doi.org/10.48550/arXiv.1301.3781
http://dx.doi.org/10.7717/peerj-cs.2752
https://peerj.com/computer-science/

PeerJ Computer Science

Mohammadi S, Mirvaziri H, Ghazizadeh-Ahsaee M, Karimipour H. 2019. Cyber intrusion
detection by combined feature selection algorithm. Journal of Information Security and
Applications 44(5):80-88 DOI 10.1016/}.jisa.2018.11.007.

Or-Meir O, Nissim N, Elovici Y, Rokach L. 2019. Dynamic malware analysis in the modern era—
a state of the art survey. ACM Computing Surveys 52(5):1-48 DOI 10.1145/3329786.

Panda B, Bisoyi SS, Panigrahy S. 2023. An ensemble approach for imbalanced multiclass malware
classification using 1D-CNN. Peer] Computer Science 9(3):e1677 DOI 10.7717/peerj-cs.1677.

Panda B, Tripathy SN. 2020. Detection of anomalous in-memory process based on DLL sequence.
International Journal of Advanced Computer Science and Applications 11(10):185-194
DOI 10.14569/1JACSA.2020.0111025.

Pirscoveanu R, Hansen S, Larsen T, Stevanovic M, Pedersen J, Czech A. 2015. Analysis of
malware behavior: type classification using machine learning. In: 2015 International Conference
on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA), 1-7
DOI 10.1109/CyberSA.2015.7166115.

Qian L, Cong L. 2024. Channel features and API frequency-based transformer model for malware
identification. Sensors 24(2):580 DOI 10.3390/s24020580.

QuickHeal. 2022. Quick Heal annual report FY-2022-23. Available at https://www.quickheal.co.in/
documents/investors/quick-heal-annual-report-fy-2022-23.pdf.

Shibahara T, Yagi T, Akiyama M, Chiba D, Yada T. 2016. Efficient dynamic malware analysis
based on network behavior using deep learning. In: 2016 IEEE Global Communications
Conference (GLOBECOM). Piscataway: IEEE, 1-7 DOI 10.1109/GLOBECOM31983.2016.

Sun G, Qian Q. 2021. Deep learning and visualization for identifying malware families. IEEE
Transactions on Dependable and Secure Computing 18(01):283-295
DOI 10.1109/TDSC.2018.2884928.

Taheri R, Ahmadzadeh M, Kharazmi MR. 2015. A new approach for feature selection in intrusion
detection system. Fen Bilimleri Dergisi (CFD) 36(6):1344-1357.

Taheri R, Shojafar M, Arabikhan F, Gegov A. 2024. Unveiling vulnerabilities in deep learning-
based malware detection: differential privacy driven adversarial attacks. Computers & Security
146(25):104035 DOI 10.1016/j.cose.2024.104035.

Ucci D, Aniello L, Baldoni R. 2019. Survey of machine learning techniques for malware analysis.
Computers & Security 81(4):123-147 DOI 10.1016/j.cose.2018.11.001.

Vinod P, Jain H, Golecha Y, Gaur M, Laxmi V. 2010. MEDUSA: MEtamorphic malware dynamic
analysis using signature from APL In: SIN’10-Proceedings of the 3rd International Conference of
Security of Information and Networks. New York, NY: Association for Computing Machinery,
263-269.

Wong W, Stamp M. 2006. Hunting for metamorphic engines. Journal in Computer Virology
2(3):211-229 DOI 10.1007/s11416-006-0028-7.

Xiao X, Zhang S, Mercaldo F, Hu G, Sangaiah AK. 2019. Android malware detection based on
system call sequences and LSTM. Multimedia Tools and Applications 78(4):3979-3999
DOI 10.1007/s11042-017-5104-0.

Yan S, Ren J, Wang W, Sun L, Zhang W, Yu Q. 2023. A survey of adversarial attack and defense
methods for malware classification in cyber security. IEEE Communications Surveys & Tutorials
25(1):467-496 DOI 10.1109/COMST.2022.3225137.

Ye Y, Li T, Adjeroh D, Iyengar SS. 2017. A survey on malware detection using data mining
techniques. ACM Computing Surveys 50(3):40 DOI 10.1145/3073559.

Panda et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2752 38/39

http://dx.doi.org/10.1016/j.jisa.2018.11.007
http://dx.doi.org/10.1145/3329786
http://dx.doi.org/10.7717/peerj-cs.1677
http://dx.doi.org/10.14569/IJACSA.2020.0111025
http://dx.doi.org/10.1109/CyberSA.2015.7166115
http://dx.doi.org/10.3390/s24020580
https://www.quickheal.co.in/documents/investors/quick-heal-annual-report-fy-2022-23.pdf
https://www.quickheal.co.in/documents/investors/quick-heal-annual-report-fy-2022-23.pdf
http://dx.doi.org/10.1109/GLOBECOM31983.2016
http://dx.doi.org/10.1109/TDSC.2018.2884928
http://dx.doi.org/10.1016/j.cose.2024.104035
http://dx.doi.org/10.1016/j.cose.2018.11.001
http://dx.doi.org/10.1007/s11416-006-0028-7
http://dx.doi.org/10.1007/s11042-017-5104-0
http://dx.doi.org/10.1109/COMST.2022.3225137
http://dx.doi.org/10.1145/3073559
http://dx.doi.org/10.7717/peerj-cs.2752
https://peerj.com/computer-science/

PeerJ Computer Science

Ye Y, Wang D, Li T, Ye D, Jiang Q. 2008. An intelligent PE-malware detection system based on
association mining. Journal in Computer Virology 4(4):323-334
DOI 10.1007/s11416-008-0082-4.

Zhang Y, Huang Q, Ma X, Yang Z, Jiang J. 2016. Using multi-features and ensemble learning
method for imbalanced malware classification. In: 2016 IEEE Trustcom/BigDataSE/ISPA, 965-
973 DOI 10.1109/TrustCom.2016.0163.

Panda et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2752 39/39

http://dx.doi.org/10.1007/s11416-008-0082-4
http://dx.doi.org/10.1109/TrustCom.2016.0163
http://dx.doi.org/10.7717/peerj-cs.2752
https://peerj.com/computer-science/

	Machine learning techniques for imbalanced multiclass malware classification through adaptive feature selection
	Introduction
	Related work
	Methodology
	Experimental evaluation
	Limitations and future work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

