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ABSTRACT
Intrusion detection in Internet of Things (IoT)-based wireless sensor networks
(WSNs) is essential due to their widespread use and inherent vulnerability to security
breaches. Traditional centralized intrusion detection systems (IDS) face significant
challenges in data privacy, computational efficiency, and scalability, particularly in
resource-constrained IoT environments. This study aims to create and assess a
federated learning (FL) framework that integrates with long short-term memory
(LSTM) networks for efficient intrusion detection in IoT-basedWSNs. We design the
framework to enhance detection accuracy, minimize false positive rates (FPR), and
ensure data privacy, while maintaining system scalability. Using an FL approach,
multiple IoT nodes collaboratively train a global LSTM model without exchanging
raw data, thereby addressing privacy concerns and improving detection capabilities.
The proposed model was tested on three widely used datasets: WSN-DS,
CIC-IDS-2017, and UNSW-NB15. The evaluation metrics for its performance
included accuracy, F1 score, FPR, and root mean square error (RMSE). We evaluated
the performance of the FL-based LSTMmodel against traditional centralized models,
finding significant improvements in intrusion detection. The FL-based LSTM model
achieved higher accuracy and a lower FPR across all datasets than centralized models.
It effectively managed sequential data in WSNs, ensuring data privacy while
maintaining competitive performance, particularly in complex attack scenarios. FL
and LSTM networks work well together to make a strong way to find intrusions in
IoT-based WSNs, which improves both privacy and detection. This study
underscores the potential of FL-based systems to address key challenges in IoT
security, including data privacy, scalability, and performance, making the proposed
framework suitable for real-world IoT applications.

Subjects Algorithms and Analysis of Algorithms, Computer Networks and Communications,
Security and Privacy, Neural Networks, Internet of Things
Keywords Federated learning, LSTM, Intrusion detection, IoT, Wireless sensor networks,
Data privacy, Real-time detection

INTRODUCTION
Within the Internet of Things (IoT) framework, wireless sensor networks (WSNs) offer
great potential for several areas, including healthcare, agriculture, and the military.
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Nevertheless, implementing WSNs in open and/or resource-scarce environments raises
several security issues. Such networks include small, low power sensors that use wireless
communication links for networking and hence are very susceptible to security attacks
when interfaced with the IoT systems. As a result, a sound and secure mechanism in
WSNs, especially for IoT-based applications, is considered a challenging concern. To
mitigate these threats, intrusion detection systems (IDSs) have been integrated to run
constantly in the network to detect intrusions and produce an alert when intrusions are
suspected. This active monitoring enhances the general security of WSNs and reduces the
probability of risks arising from the application of WSNs in sensitive areas (Almomani, Al-
Kasasbeh & Al-Akhras, 2016). WSNs are systems of sensors dispersed geographically that
collect data about their environment and relay the details wirelessly and are an important
component in IoT. They allow real-time data collection and monitoring in various sectors,
making IoT applications more effective. In IoT-based WSNs, an entire network of sensor
nodes is deployed to collect data and transmit it to a base station (BS) or other IoT devices
to make decisions. Integrating IoT with WSNs enhances the opportunities of creating
‘smart’ cities, distant observation and monitoring, and environmental monitoring,
considerably increasing the effectiveness and performance (Akyildiz, 2002). The security
issue in WSNs is embedded since they possess technical features: low power supply,
processing abilities, and memory. Such constraints hinder the traditional security
measures such as Firewall and encryption techniques to be applicable onWSN. As a result,
effective security solutions require developing specific security solutions aligned withWSN
demands (Ghazal et al., 2023; Anwar et al., 2019). The significant adoption of IoT devices
and sensors amplifies the threat exposure on systems due to multiple threats like DoS
attacks, spying, and data amendment (Abuserrieh & Alalfi, 2024). WSNs are typically
implemented in sensitive applications such as health and defense; hence, their security
should be protected. However, usingWSNs in open and possibly adversarial environments
introduces other layers of protection needed for the WSNs. Sensor nodes are vulnerable to
various attacks, affecting the different zones above and causing false data injection or
impediment of normal message transmission. Thus, it is highly important to ensure the
existence of robust yet remaining light and sophisticated security measures for IoT-based
WSNs, considering the data intensity and privacy measures (Yalli, Hasan & Badawi, 2024).
IDS are required for WSNs as these networks require additional layers of protection apart
from basic prevention mechanisms that prevent an attacker from breaking into the WSN.
We also classify Intrusion detection systems based on the IDS scenarios as Signature-based
and Anomaly-based. The signature-based IDS compares network activity against expected
behavioral patterns to identify unconventional patterns that can only be attributed to an
intrusion. Using this approach, one can identify familiar attack patterns, but there is also
the likelihood of receiving numerous alerts for those patterns that are deemed to exist by
the system, even in the absence of an act of intrusion (Ullah et al., 2020). A signature-based
IDS is an ID system that works through the detection of declared attack signatures or
trends. Although this method allows recognition of well-known threats, it cannot
recognize brand-new types of attacks and thus is not very flexible to the newly created
types of threats (Hamza et al., 2024).
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This consequently poses a major challenge to IDS in WSN due to the constraint of
available resources in sensor nodes. However, introducing integrated and real-time IDS in
WSNs remains a tough and incompatible factor with the WSNs architecture.
Consequently, IDS for WSNs must be lightweight and perform efficient operation while
respecting the fact that sensor node platforms have limited processing ability and energy
supply (Roman, Najera & Lopez, 2011). Current research has shifted toward applying ML
and DLmodels, particularly long short-termmemory (LSTM), in optimizing the IDS setup
in WSNs. These algorithms are optimally designed to integrate with today’s ever-changing
networks and improve detection ability while reducing as much as possible false alarms
(Roman, Najera & Lopez, 2011). Federated learning (FL) can become an advantage if
integrated into WSN–IDS when it is aimed at strengthening WSNs using IoT parts. FL
supports distributed model training, so during the training process, each node can
participate in developing a single model while not uploading the raw data, which can
reduce the risk of a particular key point for an attack against the central system. As in the
case of IoT-based WSNs, centralized IDS cannot meet the required specifications of a
network. One of which is the fact that WSN nodes suffer from minimal computation,
memory and power resources. The existing centralized IDS designs receive massive
amounts of data at one central server, and this causes traffic jams and exhausts the sensors
of the nodes (Hajiheidari et al., 2019). This characteristic makes gross and comprehensive
solutions unworkable and counterproductive in expansive IoT networks as they produce
unrelenting data from sundry smart appliances. When the number of nodes within an IoT
infrastructure increases, a centralized IDS can face increasing amounts of data to analyze
and the need to cover a larger geographical territory to identify threat activity. This high
device volume also puts a lot of pressure on the central server to process data and analyze
them; hence, real-time threat detection may prove to be a big challenge due to the
increased data volume that the system can hardly handle (Roman, Alcaraz & Lopez, 2007).
Latency is a significant problem—instead of sending all data to a central point for
processing, it takes time. This can be very important in health or industrial applications
where the response to a command cannot wait for the next few seconds.

As evident, FL provides a more feasible approach to address some of the challenges of
centralized IDS in IoT-based WSNs. This is in contrast to a model where only the server is
involved in processing since FL allows each node or device within a network to carry out
model training on the data owned by each of them. This process forms local aggregate
models without transferring raw data to form a global model. Unfortunately, this approach
reduces the amount of data transferred over the network and increases privacy by about
half (Kairouz et al., 2021). FL reduces the communication between nodes and the central
server and, therefore, helps to save energy and bandwidth, which is suitable in WSNs.
Every node performs some computations independently and only sends updates in the
network. This relieves network traffic and increases the sensor node lifetime, scalability,
and efficiency of the system on the total (Bhatti et al., 2024). FL also reduces the probability
of instances of susceptibilities to specific attack points. Since model training happens
simultaneously at some nodes, the impact of a node controlled by a malicious actor is not
tremendously significant. Also, the distributed model of FL makes it difficult for an

Anwar et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2751 3/30

http://dx.doi.org/10.7717/peerj-cs.2751
https://peerj.com/computer-science/


attacker to tamper with the functionalities of this system, thus improving the reliability and
robustness of the IDS (Tonin et al., 2024). In addition, FL, because of its distributed
structure, can smoothly incorporate new devices and nodes into IoT-based WSNs. In this
sense, each new node engages in the learning process, contributing to less demand for
central server performance. It also improves the flexibility of the security solution,
which makes it possible to extend the solution as the size of the network increases
(Salam et al., 2024).

LSTMs are highly suitable for intrusion detection in IoT-based WSNs due to their
ability to process sequential patterns in network traffic data effectively. Their architecture
is specifically designed to model long-term dependencies, enabling them to capture
temporal patterns in intrusion behaviors, such as Distributed Denial of Service (DDoS)
attacks and other multi-step intrusion scenarios. This capability allows LSTMs to
distinguish between normal and abnormal network activities with high accuracy, making
them particularly effective for detecting complex, evolving attack patterns in dynamic IoT
environments.

The article presents an IDS for IoT-basedWSNs that integrates FL with LSTM networks
as an effective security solution. The main contributions of this work include:

� It addresses the limitations of centralized IDS by utilizing decentralized FL, which
enhances scalability and reduces the risk of single points of failure.

� Integrating LSTM enhances detection accuracy by learning from sequential data,
making it highly effective against sophisticated attacks in WSNs.

� This study adopts a multi-dataset approach, utilizing WSN-DS, CIC-IDS-2017, and
UNSW-NB15 to comprehensively evaluate and ensure robust detection performance
across diverse IoT network scenarios.

� Several metrics, including accuracy, F1 score, FPR, root mean square error (RMSE), and
a confusion matrix, were used to evaluate the proposed approach’s performance. This
comprehensive set of metrics provides detailed insights into the system’s effectiveness
and reliability.

These contributions enhance the security of IoT-based WSNs’ operating environment
by improving the reliability and effectiveness of intrusion detection systems. The rest of the
article is organized as follows: the “Related Work” section reviews related work. “Datasets
and Preprocessing” describes datasets and preprocessing. “Proposed Methodology”
explains the proposed FL-based LSTM framework and outlines the experimental setup.
“Results and Analysis” presents the results and analysis. “Discussion” concludes the article
and suggests future research directions.

RELATED WORK
As insecurity incidents increase in IoT andWSNs, the search for an IDS for these networks
grows exponentially. However, because of key constraints such as extensive resource
constraints and the distributed nature of the IoT and WSN architectures, typical IDS
approaches present recognizable problems in these networks. To solve these problems,
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researchers have attempted to study various methods, including traditional digital
signature techniques and new artificial neural networks, to make intrusion detection more
accurate and relevant to functioning networks with limited available resources.

IDS in IoT and WSN
IDS are useful in other unrecognized activities unallowable in IoT-based WSNs. An IDS
resides centrally on a network and monitors the traffic to ensure it is not being infiltrated
or processed erratically. In WSNs and IoT paradigms, IDS must operate under the premise
of adjusting to the capabilities of sensor nodes, including CPU, memory, and energy. There
are two basic categories of IDS: The signature-based and the anomaly-based IDS,
respectively, and there are some differences of advantages and disadvantages between the
two.

Machine and deep learning have recently been used to enhance the detection of accurate
results while reducing computational weight (Jyothsna, Prasad & Prasad, 2011). Signature-
based IDS works on the principle of identifying an intrusion by matching its signatures to
that of a list of recorded ones (Kumar & Kumar, 2023). This method is very efficient at
finding previously encountered threats, often accompanied by a significantly few false
positives, because this method utilizes a set of defined signatures to look for specific types
of attacks. Most existing systems are signature-based because of the operations’ simplicity
and high accuracy regarding previously known threats. Their main drawback is their
failure to identify new or developing attacks since their efficacy depends on their signatures
database. The frequent update of the signature database due to the development of new
threats can prove to be problematic in terms of time and again pinning down the fact that
IoT and WSN have limited bandwidth and availability of storage space (Ananthakumar,
Ganediwal & Kunte, 2015). However, in anomaly-based IDS, intrusions are identified
based on deviations from the expected behavior of the network (Garcia-Teodoro et al.,
2009; Anwar & Abdullah, 2023). This approach closely approximates the expected network
traffic and alerts on traffic that deviates from predicted norms. Anomaly-based IDS helps
identify currently unseen or brand-new types of attacks because an IDS of this kind has no
predefined pattern to search for. This makes them more suited to changes in threats in
IoT-based WSNs. Nevertheless, this results in higher FPRs as normal network traffic
fluctuations may occasionally be considered attacks (Sedjelmaci, Senouci & Al-Bahri,
2016). Furthermore, anomaly-based systems can be expensive in terms of computational
complexity and trivial for WSNs since resources are scarce. Nevertheless, they are helpful
for modern IDS solutions because they can respond to new threats.

Modern advancements in machine learning (ML) and deep learning (DL) have created a
new generation of IDS for IoT and WSN. Such systems employ statistical data models to
understand the network traffic better and detect intrusions more effectively. More complex
heuristic-based supervised learning algorithms, such as SVM and RF, have also been
implemented to categorize network activities as normal or malicious (Tsimenidis, Lagkas
& Rantos, 2022). Further, DL models like CNN and RNN have given commendable results
in managing intricate sequential data in WSNs where attack behaviors may transform with
time (Gebremariam, Panda & Indu, 2023). The newer variety of RNNs known as LSTM
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networks has enhanced intrusion detection due to their ability to learn from past
experiences, thus identifying long-term dependencies in traffic patterns. LSTM-based IDS
can identify complex attacks like DDoS and wormhole attacks, as these are longer
processes (Salmi & Oughdir, 2023). Machine learning and deep learning models also have
an advantage in constantly updating after learning more threats than other models,
making them more robust in dynamic IoT conditions. Albeit efficient, ML and DL
approaches involve high computational complexities, which still present a considerable
limitation, especially in constrained WSNs. However, due to these considerations, the
authors report that lightweight models have been combined with FL techniques that enable
distributed model training. Thus, ML and DL solutions are becoming more and more
feasible for practical WSN security (Bonawitz, 1902).

Federated learning for IoT security
Federated learning (FL) has been disclosed as an innovative method for improving security
in IoT scenarios. Unlike the paramount centralized models of machine learning, which
presuppose data to be transferred to a central server, FL presupposes models’ training at
several devices or nodes simultaneously without exchanging raw data. This improves the
decentralized nature of the IoT-based WSNs since traditional central security is ineffective
due to resource and privacy limitations. It is also particularly challenging in an IoT setting
where devices produce large volumes of data to transfer all this data to a central server for
processing, as this will burden the network bandwidth, result in high latency, and consume
a device’s energy (Tran et al., 2019). FL addresses these issues by empowering nodes to
perform and train their models on their own data buckets. Client-side: Only the model
updates, such as weights, are uploaded to the central server, where they are summed to
constitute a global model. This approach helps to decrease the flow of data across the
network as well as to preserve the confidentiality of the information produced by IoT
devices since raw data are retained on the local devices (Kairouz et al., 2021).

FL also addresses a critical challenge in IoT security: the heterogeneity of devices
and environments is a decisive factor in determining networks’ performance and the
quality of provided services. In a conventional IoT network, there are connected devices,
such as smart handheld devices and power-limited sensors. Every device is located in a
different context and deals with various threats. FL enables each device to develop a
model using data and security settings of the local device, making the models
developed more diverse and adaptive to the settings of IoT devices (Li et al., 2020).
However, FL strengthens IoT security by eliminating the bootstrapping problem, which
poses multiple attacks and single points of failure, which are always a severe
weakness in centralized systems. Since the model training is divided among several devices,
the intrusion into one or several devices represents no threat to the whole network
(Bonawitz, 1902).

In the case of IoT security, another key positive attribute of FL is that it is well-suited to
real-time work. Highspeed identification of threats and their containment is important for
many IoT uses like smart healthcare or industrial automation. FL enables IoT devices to
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identify and fight attacks at the edge without adding the latency of interacting with a
central server. This decentralization helps in the fast determination of threats and saves
time for corrective action, which is suitable for applications where time is of the essence
(Neto et al., 2023).

As much as FL has long offered a relatively promising way to enhance the security of
IoT, there are several limitations to its use as well. There are still issues in active research,
including the communication overhead associated with the continual need to update
models, the need to coordinate between devices, and the susceptibility of the global model
to adversarial influence. Challenges like privacy leakage, malicious aggregation, and
network disruption are some of the major concerns that have cropped up in FL, and some
solutions under implementation include secure aggregation, differential privacy, and
Byzantine resilient algorithms for making FL more robust and safe for IoT purpose
(Chen et al., 2023).

LSTM for sequential data in network security
Recurrent neural networks (RNNs) with LSTM are a very popular approach in network
security because they deal with sequential data. Unlike feed-forward networks, LSTMs are
developed to work with long-term dependencies in data, which is essential in applications
where the order of events is important: analysis of network traffic and intrusion detection
(Kim et al., 2016). This ability to process data sequences makes LSTMs good at learning
about temporal patterns, which are crucial when detecting new and emerging attack
techniques in WSNs and IoT.

The network traffic is twofold sequential because packets, transactions, and other
elements forming the network traffic are ordered. Most attack patterns, such as those
engaged in a DDoS attack, the wormhole attack, or the replay attack, are multistep. Due to
the use of memory cells and gates, LSTMs are efficient in these cases as they can learn and
recognize these long sequences of activity deviations that other models cannot detect, for
they lack temporal awareness (Yin et al., 2023; Anwar & Qureshi, 2023). Since LSTM
models keep information over past times, they can better distinguish between normal and
evolving intrusions than the other models that work on static snapshots of network traffic
data.

By design, LSTM networks possess one of the biggest strengths: the ability to effectively
model short- and long-term dependencies. In network security, it is possible to identify
quick and frequent attacks and slow and long-lasting ones. For instance, in DDoS attacks,
traffic tends to be flooded quickly, which LSTM can classify as an anomaly because of the
sequence of un/packet flows (Ullah et al., 2022). While others may take months or even
weeks to penetrate a network, especially given that APTs are known to gather as much
information as possible.

LSTM can learn and detect such anomalies by observing anomalous patterns that span
long durations. In recent studies, LSTMs have been incorporated into IDS in WSNs and
efficiently detect a wide range of complicated attack paths that are invisible to traditional
IDS. It is based on the finding that in network traffic data LSTMmodels, detection rates of
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diverse attacks are high, such as Probe, remote-to-local (R2L), and user-to-root (U2R)
attacks (Liao et al., 2024). The possibility of processing historical data truly helps in
intrusion detection, as LSTM models can rely on a network’s history of activity and learn
about malicious activities in the future.

Nonetheless, using LSTM in environments such as WSNs has been challenging since
LSTM networks have high computational and memory costs. To this, literature research
has looked at optimizing LSTM with lightweight implementations that could run in WSN
without straining system resources. Such optimization measures are pruning technique
and quantization, which help to bring down the size of LSTM, affecting the detection
accuracy least (de Souza et al., 2024). In addition, combining LSTM with FL can even
enhance LSTM’s applicability in WSN more because FL allows model training on each
node to decrease the amount of data transferred and increase privacy (Hulayyil, Li & Xu,
2023).

Table 1 highlights the strengths, weaknesses, and performance of LSTM (Hochreiter,
1997), GRU (Chung et al., 2014), and CNN (LeCun, Bengio & Hinton, 2015) models in
intrusion detection, emphasizing LSTM’s suitability for sequential and temporal data.

DATASETS AND PREPROCESSING
This section discusses the three key datasets used in our research: It was performed in
WSN-DS, CIC-IDS-2017, and UNSW-NB15 datasets. These datasets are important in
assessing the performance of the proposed Intrusion Detection System (IDS), especially in
determining different types of attacks in IoT-based WSNs. In addition to these datasets
described in the following section, we also discuss the basic preprocessing required to
prepare the data for training and testing.

Datasets
The datasets used in this article hold diverse network traffic and attack characteristics. We
can construct a more accurate model by having two types of datasets since each type is
differently structured. Table 2 gives each dataset a brief description.

Table 1 Comparative analysis of LSTM, GRU, and CNN for intrusion detection in IoT-based WSNs.

Model Strengths Weaknesses Performance in intrusion detection

LSTM
(Hochreiter,
1997)

Excellent at capturing long-term
dependencies in sequential data; well-
suited for modeling temporal patterns.

Computationally intensive; requires more
training time and resources.

Achieves the highest accuracy and
precision in detecting multi-step attacks
(e.g., DDoS) and temporal anomalies.

GRU (Chung
et al., 2014)

Computationally efficient; faster training
and lower memory requirements
compared to LSTM.

Less effective in modeling long-term
dependencies in complex temporal
sequences.

Performs reasonably well but struggles
with detecting prolonged or complex
sequential intrusion behaviors

CNN (LeCun,
Bengio &
Hinton,
2015)

Highly effective for extracting spatial
features; computationally efficient for
non-sequential data.

Not designed for sequential modeling; lacks
temporal awareness crucial for detecting
evolving attack patterns.

Performs well on static features but fails
to identify dynamic, time-dependent
intrusion patterns in network traffic
data.
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WSN-DS dataset
For intrusion detection inWSN, the author introduced aWSN-DS dataset. It contains data
from simulation experiments in the Network Simulator 2 (NS2) environment. The dataset
includes four major types of Denial of Service (DoS) attacks: Blackhole, Grayhole,
Flooding, and Scheduling attacks. WSN-DS will analyze the LEACH routing protocol as
this has been the preferred routing technique for WSNs because of the low energy
consumption. The dataset has 23 attributes in this experiment, including network
parameters like received signal strength indication (RSSI) energy consumed, distance to
cluster head, etc. These features signify normal and attack behavior in the network
(WSN-DS, 2016).

For WSN-DS, we excluded records that seemed unrelated or contained missing
information during data preprocessing. All the values were scaled down or up because
features were normalized to make the scales of all data points as similar as possible. The set
was divided into training and testing data to equalize the attack distribution and normal
instances.

CIC-IDS-2017 dataset
The CIC-IDS-2017 dataset is one of the largest intrusion detection datasets, covering five
days of real network traffic. It mocks modern attacks like DDoS, Brute Force, Web, and
Infiltration. The targeted observed network features amount to 80 and cover a wide set of
characteristics: flow duration, packet size, time between packets, etc. The dataset is
organized so that each record is labeled as either normal traffic or belonging to a particular
type of attack (CIF Cybersecurity, 2017). Since the CIC-IDS-2017 dataset is large,
preprocessing included sampling to extrude most of it to make training time
reasonable. We also used feature selection to make the dataset less dimensional to identify
the most important attributes for intrusion detection. A label encoding strategy was
employed to transform categorical data, especially the attack types, into numerical data for
modeling.

UNSW-NB15 dataset
The UNSW-NB15 dataset is real-world network traffic with stimulation of attack
conditions. Nine distinct attack kinds are included: Fuzzers, Backdoors, Worms, and more,
which is a primary representation of possible network weaknesses. The preprocessed data
contains 49 features that characterize different aspects of network traffic and is used to
differentiate between network traffic generated by an abusive node and normal behavior

Table 2 Summary of datasets with records, features, and attack types.

Dataset Data type Number of records Number of features Attacks included

WSN-DS Simulated WSN 374,661 23 Blackhole, Grayhole, Flooding, Scheduling

CIC-IDS-2017 Real Network Data 2,830,743 80 DoS, DDoS, Brute Force, Infiltration

UNSW-NB15 Hybrid Network Data 2,540,044 49 Fuzzers, Analysis, Backdoors, Worms
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(UNSW, 2015). In the case of UNSW-NB15 log files, we have treated empty values and
further normalized the feature set. However, this article also employed some techniques of
handling class imbalance to enhance the classifiers’ effectiveness so that the models
understood the attack types when training them.

Data preprocessing
Data preprocessing is a critical step in transforming raw data into a form suitable for
modeling, ensuring that the datasets are aligned with the unique challenges of IoT-based
WSNs. The three datasets used in this study—WSN-DS, CIC-IDS-2017, and
UNSW-NB15—underwent comprehensive preprocessing steps, including feature
extraction, normalization, and class balancing. These steps were designed to address
IoT-specific challenges such as resource constraints, heterogeneous data distributions, and
the need for efficient analysis of low-bandwidth, high-variability traffic patterns. For the
WSN-DS dataset, preprocessing involved removing irrelevant or incomplete records
and normalizing network parameters, such as RSSI and energy consumption, to reflect the
constrained nature of WSN environments. CIC-IDS-2017, a more diverse dataset, required
dimensionality reduction and categorical label encoding to handle its high-dimensional
structure and ensure compatibility with sequential modeling. UNSW-NB15, known for its
sophisticated attack scenarios, underwent additional steps to balance attack and normal
instances, mitigating the class imbalance common in IoT-related datasets.

Data cleaning and handling missing values

Data cleaning is an initial phase of data preprocessing that focuses on removing duplicities,
inconsistencies, or irrelevant data. One part of this process involves treating missing
values, which can be typical for several reasons, including but not limited to malfunctions
of the ships’ sensors or corruption of the data. Sparse data may be a moot point because
multiple machine learning algorithms require assistance in processing datasets with
complete data.

We used the mean, median, and mode imputation methods to address missing values.
For all numerical features, missing values were substituted by the mean or median of this
feature to maintain the data’s distribution.

Xnew ¼ 1
n

Xn
i¼1

Xi (1)

where Xi is the value of the feature and n is the number of available (non-missing) values.
For categorical features, missing values were filled with the mode, i.e., the most frequent

value in the feature column. In some cases, rows with excessive missing values were
dropped to prevent introducing too much bias into the dataset.

Feature extraction and selection
Feature extraction involves transforming raw data into informative features, while feature
selection helps identify the most relevant features for model training. Given the high
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dimensionality of our datasets, selecting the right features was crucial for reducing model
complexity and improving performance.

The following methods were used for feature selection:

� Correlation matrix: We computed the correlation coefficient ρ\rhoρ between pairs of
features to identify and remove highly correlated features, where:

r X;Yð Þ ¼
P

Xi � �Xð Þ Yi � �Yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
Xi � �Xð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
Yi � �Yð Þ2

q : (2)

Features with a correlation coefficient pj j . 0:9 were considered redundant.

� Recursive feature elimination (RFE): RFE was applied to rank features by importance.
The algorithm recursively eliminates the least important features based on model
performance.

� Principal component analysis (PCA): PCA was used to reduce dimensionality while
preserving variance. PCA transforms the dataset into a set of linearly uncorrelated
components:

Z ¼ XW (3)

where X is the original data, W is the matrix of principal components, and Z is the
transformed data with reduced dimensions.

Normalization and standardization
To ensure that features with different scales do not disproportionately influence the model,
normalization and standardization were applied:

Normalization scales the data to a range between 0 and 1. This technique is beneficial
for algorithms like neural networks that rely on distance-based calculations:

Xnorm ¼ X � Xmin

Xmax � Xmin
(4)

where Xmin and Xmax are the minimum and maximum values of feature X.
Standardization rescales the data to have a mean of 0 and a standard deviation of 1,

which helps with algorithms like support vector machines and logistic regression:

Xstd ¼ X � m

�
(5)

where m is the mean and � is the standard deviation of the feature.

Dataset balancing techniques
Class imbalance is a common issue in intrusion detection datasets, where the
number of normal instances often far exceeds the number of attack instances. Imbalanced
datasets can lead to biased models that perform poorly in minority classes. To address
this, we used the following balancing techniques: To create additional synthetic samples of
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the minority class, the Synthetic Minority Over-sampling Technique (SMOTE) was
applied. This method creates new instances by interpolating existing minority class
samples:

Xnew ¼ Xminority þ � Xnearest neighbor � Xminority
� �

(6)

where � is a random number between 0 and 1, and Xnearest neighbor is the nearest neighbor of
the minority sample.

We randomly reduced the number of majority class instances to balance the dataset and
ensure the training process did not favor the dominant class. For algorithms that support
it, such as decision trees and neural networks, we applied class weighting to assign higher
weights to the minority class, reducing the bias towards the majority class during training.

PROPOSED METHODOLOGY
FL is an algorithmic machine learning model involving several devices or nodes without
directly sharing raw data. This approach is most suitable in IoT-based WSNs; privacy,
bandwidth, and resource scarcities render using traditional centralized learning
approaches problematic. In an FL framework, every node in the network builds a model on
its own data set. Every node sends not the whole set of data, but only the updates to the
model (for example, the weights) to a particular central server called an aggregator. The
aggregator then integrates these updates to build a global model and disseminates it with
all the nodes involved. This process is repeated over several federated rounds until the
model at the global level meets optimal performance. Figure 1 presents a visual
representation of the FL framework.

LSTM architecture for intrusion detection
LSTM networks are RNNs developed to model long-duration dependencies in sequences.
This makes LSTM appropriate for identifying intrusions in IoT-basedWSNs where attacks
occur in a temporal pattern. One serious drawback of traditional RNNs is the vanishing
gradient problem, while LSTMs can accumulate information over long sequences,
therefore identifying immediate and delayed attack behaviors. The key components of
LSTM architecture is:

� Memory cell: LSTM’s memory cell retains information occasionally. It can consolidate
which information to recall or forget depending on the network’s requirements,
efficiently managing long data sequences.

� Gates: A basic LSTM employs three gates: the input gate, the forget gate, and the output
gate. These gates regulate the data flow in and out of the memory cell. The forget gate
controls which information from the previous memory state should be discarded.

ft ¼ � Wf � ht�1; xt½ � þ bf
� �

(7)

where ft is the forget gate’s output, ht�1 is the previous hidden state, xt is the input, andWf

and bf are the weights and bias. Updates the memory cell with new information.
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it ¼ � Wi � ht�1; xt½ � þ bið Þ (8)

Determines the output based on the current memory and hidden states.

ot ¼ � Wo � ht�1; xt½ � þ boð Þ (9)

Figure 1 Federated learning framework. Full-size DOI: 10.7717/peerj-cs.2751/fig-1
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The cell state carries information through the network. It is updated at each step based
on the information passed through the gates, allowing the network to retain crucial
information from earlier steps.

Figure 2 LSTM architecture for intrusion detection. Full-size DOI: 10.7717/peerj-cs.2751/fig-2
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LSTM networks are particularly effective in detecting anomalies or intrusions in WSNs
by learning from network traffic sequences and identifying normal and abnormal behavior
patterns over time. By analyzing the temporal dependencies, LSTM can recognize attacks
like DDoS, probing, or slow-rate attacks, which unfold gradually. Figure 2 depicts the
visual representation of LSTM Architecture.

This architecture efficiently detects network intrusions by learning from the sequence of
network data, making it ideal for IoT-based WSNs where attacks evolve. LSTMs help to
enhance detection accuracy, reduce false positives, and capture complex temporal patterns
in network behavior.

Integrating LSTM with FL
The integration of LSTM and FL enhances LSTM’s ability to perform temporal
information processing in addition to FL’s decentralized, privacy-preserving training. This
approach is especially helpful for intrusion detection in IoT-based WSNs since
constellation and time series are essential for such networks. This architecture uses only
three LSTM layers to balance the performance with computational efficiency. By using the
limited number of layers coupling with dropout regularization, it reduces the overall
memory usage, complexity, and computational cost. The lightweight architecture ensures
that the model remains effective in the resource constraints IoT devices.

Local model training
Thus, in an FL framework, every node, for instance, a sensor in aWSN, trains a local LSTM
model on the data it receives. This enabled the model to learn local network traffic patterns
and future intrusions without flooding the raw data to the central server, respecting data
privacy. These nodes then use backpropagation through time (BPTT) to train their LSTM
models by minimizing an essential loss function that can be a binary cross-entropy
function in the case of the binary classifier or categorical cross-entropy in the case of the
multiclass classifier.

The training process on each node follows these steps:

1. Initialize the LSTM: Define the LSTM architecture with input, hidden, and output
layers.

2. Forward propagation: Pass the time-sequence input X through the LSTM to generate a
prediction ŷ.

ŷ ¼ f X;W; bð Þ (10)

where W and b represent the weights and biases of the LSTM layers and f is the LSTM
function.

3. Loss calculation: Compute the loss L ŷ; yð Þ, where y is the true label and ŷ is the
predicted output.

4. Backpropagation: Use BPTT to compute the loss gradient concerning the model
parameters.
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@L
@W

¼ @L
@ŷ

� @ŷ
@W

: (11)

5. Update model parameters: Adjust the LSTM weights using gradient descent.

Wnew ¼ Wold � h
@L
@W

(12)

where h is the learning rate.

This process repeats for several epochs until the local model reaches satisfactory
accuracy. The trained local model is then ready to share its weights or gradients with the
central server for aggregation.

Federated aggregation and global model
After each local node has completed its training, the model parameters (e.g., weights) are
sent to a central server for aggregation. The server does not receive raw data; only the
updated model parameters from each participating node are received. The most common
aggregation method in FL is Federated Averaging (FedAvg), which combines the local
updates to create a global model.

The Federated Aggregation Algorithm works as follows:

1. Receive local models: The server collects the local models’ weightsWk from each node
k for all K nodes.

2. Aggregate weights: The global model’s weights Wglobal are calculated by averaging the
local weights, weighted by the number of data samples nk at each node:

Wglobal ¼ 1
N

XK
k¼1

nkWk (13)

where N ¼ PK
k¼1

nkWk is the total number of data samples across all nodes.

3. Update global model: The central server updates the global model with the new
aggregated weights.

4. Distribute global model: The updated global model is then distributed back to each
local node for further training in the next round.

5. The aggregation step is repeated over several federated rounds until the global model
converges to a high level of accuracy. This iterative process allows the global model
to learn from the distributed, diverse data across all nodes without compromising the
privacy of the data stored locally at each node.

Algorithm 1 shows how FL with LSTM effectively processes dispersed datasets in IoT-
based WSN while gaining privacy and scalability.

Anwar et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2751 16/30

http://dx.doi.org/10.7717/peerj-cs.2751
https://peerj.com/computer-science/


Model training and hyperparameter tuning
Model training in an FL paradigm using LSTM networks is sensitive to hyperparameter
settings. These parameters intervene directly in the correct functioning of the model, its
capacity to converge, and, not least, its ability to generalize. This section concerns
important parameters such as the loss function and optimizer, learning rate, number of
epochs, batch size, and model size.

Loss function and optimizer
A loss function determines how well your model performs, i.e., how wrong it is, and an
optimizer decides the direction and speed of the model’s learning. Any machine learner
depends on the loss function, as it tends to quantify the distance between the true value and
the model estimates. For intrusion detection, where the task is often binary classification
(normal vs. attack) or multiclass classification (different types of attacks), the choice of the
loss function depends on the output type:

� For binary classification, we use binary cross-entropy:

L ¼ � 1
n

Xn
i¼1

yilog ŷi
� �þ 1� yið Þlog 1� ŷi

� �� �
(14)

where yi is the true label and ŷi is the predicted probability, for instance i.

Algorithm 1 FL with LSTM for intrusion detection.

Input:

Initial global model Wð0Þ
global

Local data Dk for each node k

Output:

Final global model Wð0Þ
global

1. Initialize

Central server sends Wð0Þ
global to all nodes.

2. For each federated round, t ¼ 1; 2; . . . ;T do:

3. For each node k ¼ 1; 2; . . . ;K in parallel do:

Train local LSTM model on Dk using local data.

Update local model WðtÞ
k after training.

4. Send local model WðtÞ
k to the central server.

5. Central server aggregates local models:

WðtÞ
global ¼ 1

N

PK
k¼1

nkW
ðtÞ
k

where N ¼ PK
k¼1 nkWk is the total number of data samples across all nodes.

6. Send updated global model WðtÞ
global to all nodes.

7. End For loop (federated rounds).

8. Return final global model WðTÞ
global
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� For multiclass classification, the categorical cross-entropy loss is more suitable:

L ¼ � 1
n

Xn
i¼1

XC
c¼1

yi;c log ŷi;c

� �
(15)

where C is the number of classes and yi;c is the true label for class c in instance i.

To minimize the loss, we use stochastic gradient descent (SGD) or one of its variants,
like Adam. The Adam optimizer is particularly popular due to its adaptive learning rate:

�tþ1 ¼ �t � h
mtffiffiffiffi
vt

p þ �
(16)

where mt and vt are the first and second moments of the gradients, respectively, and h is
the learning rate.

Learning rate and epochs
The learning rate h controls how much the model’s weights are updated during training.
The model may converge quickly to a suboptimal solution if the learning rate is too high. If
it is too low, convergence can be slow, or the model may get stuck in local minima. In our
LSTM model, the learning rate is initialized at a moderate value (e.g., 0.001) and adjusted
over time using techniques like learning rate decay, where:

htþ1 ¼ ht �
1

1þ decay rate � t (17)

where t is the current epoch and decay rate controls how fast the learning rate decreases.
Epochs refer to the number of times the entire dataset passes through the model. A

higher number of epochs allows the model to learn more but can lead to overfitting if
trained too long. The choice of epochs is often determined through early stopping, where
training is halted when performance on a validation set stops improving.

Batch size and model complexity
Batch size defines the number of samples used to compute each update to the model’s
weights. Larger batches provide more accurate estimates of the gradient but require more
memory and computational power. In contrast, smaller batches introduce more noise in
the gradient estimates but are computationally efficient. Typical batch sizes range from 32
to 256, with mini-batch gradient descent using a compromise between the extremes of
stochastic gradient descent (batch size of 1) and full-batch gradient descent (batch size
equal to the dataset size):

Gradient Estimate ¼ 1
Bj j

X
i2B

rL �; xi; yið Þ (18)

where Bj j is the batch size, and rL is the gradient of the loss.
The complexity of the LSTMmodel is determined by the number of layers and neurons

in each layer. A deeper network with more LSTM units can capture more complex patterns
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but requires more computational resources and is more prone to overfitting. The model
complexity can be regulated through techniques such as:

� Dropout regularization, where a random portion of neurons are ignored during
training:

Outputi ¼ 0; with probability p
Original Outputi; with probability 1� p

	
(19)

where p is the dropout probability.

� Weight regularization, a penalty term is added to the loss function to prevent large
weights. L2 regularization is commonly used:

Lnew ¼ Loriginal þ �
Xn
i¼1

w2
i (20)

where � controls the strength of regularization.

If these hyperparameter choices are tuned appropriately, the LSTM model can
effectively learn and detect intrusions in IoT-based WSNs without overfitting or
underfitting.

Experimental setup
The experiments were performed in a distributed terrain emulating an IoT-based WSN
setting. We utilized several nodes based on local devices, each containing its data set. FL
framework was deployed using TensorFlow Federated (TFF), and the LSTM models were
developed using Keras. A key innovation implemented was using a central server with
NVIDIA GPUs to perform model training and aggregation to accelerate computations.
The programming environment was implemented in Python 3.8. Also, for data
manipulation, NumPy and Pandas were used while Matplotlib and Seaborn were
employed for data visualization. To evaluate our proposed IDS using FL with LSTM, we
applied several evaluation metrics that give an overview of the model’s accuracy, precision,
and verification performance. Accuracy is the straightforward and most commonly used
technique of measure that calculates the ability of correct predictions out of all the
predictions made, whether they are true positives or negatives. It is defined as:

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

(21)

where TP is the number of true positives, TN is the number of true negatives, FP is the
number of false positives and FN is the number of false negatives.

While accuracy is useful, it can be misleading in imbalanced datasets where one class is
dominant. Other metrics like F1 score and FPR are more informative in such cases.
Specifically, the F1 score is the weighted average of precision and recall. When the data are
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not usually balanced, the F1 score is preferable to the other two. It is useful for assessing the
model’s ability to produce False Positives and False Negatives, which are absolutely helpful.

F1 Score ¼ 2 � Precision � Recall
Precisionþ Recall

(22)

Precision ¼ TP
TP þ FP

(23)

Recall ¼ TP
TP þ FN

: (24)

The F1 score balances precision and recall, particularly when false positives and
negatives need to be minimized equally.

The FPR calculates the percentage of normal (negative) instances mistakenly identified
as attacks (positive). It is important in IDS because a high FPR brings about unnecessary
alerts, compromising the integrity of a given system.

FPR ¼ FP
FP þ TN

: (25)

A lower FPR means the model effectively distinguishes between normality and
anomalous behaviors, which helps avoid unnecessary alerts in network environments.

RMSE is commonly used for regression problems, although we can use it to measure the
error between the predicted means and the actual means of the probabilities in this task.
For classification tasks, where probabilities used for classification are predicted (e.g.,
likelihood of intrusions), RMSE may describe prediction uncertainty.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ŷi � yi
� �2s

(26)

where ŷi is the predicted probability, yi is the actual label, and n is the number of samples.
RMSE provides insight into the magnitude of the prediction errors, with lower values
indicating more accurate models.

Experimental scenarios
We performed cross-dataset evaluation by training and testing the model across three
distinct datasets: WSN-DS, CIC-IDS-2017, and UNSW-NB15. The model’s performance
in classifying the attacks improved when tested with different datasets from those used
during training, thus providing a good test of the generalization’s capability. The FL setup
included multiple nodes that acted as IoT sensors with local data to simulate the FL
environment. To further evaluate our algorithm, we set up different numbers of nodes
(e.g., 10, 50, 100) and controlled the number of communication rounds of the local training
and the global aggregation. This aided in evaluating the performance difference between
matrices with different frequencies and numbers of nodes. The hyperparameters of the
LSTM model for each dataset were optimized separately: the number of layers, hidden
units, and dropout rates. This allowed for the characteristics of each dataset of the model to
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be well adapted for analyzing the given sequential network traffic data. To assess the
system’s scalability, we ran experiments on the proposed model while varying the number
of nodes as well as the size of the data. Computation demands, memory consumption, and
time to process were assessed to guarantee the efficiency of the FL approach even in light of
expansive IoT networks. The code is uploaded to GitHub repository and can be accessed at
Anwar et al. (2025).

RESULTS AND ANALYSIS
This section presents the performance of our LSTM model integrated with FL across three
datasets. The datasets used in this article include WSN-DS, CIC-IDS-2017, and UNSW-
NB15 datasets. The evaluation is based on several key metrics: Likewise, to evaluate the
results, you will have precision, recall, F1 score, FPR, RMSE, and confusion matrix. The
results show how the model can detect intrusions in different network scenarios.

Table 3 Performance metrics of LSTM on the WSN-DS dataset.

Metric Value

Accuracy 97.52%

Precision 0.973

Recall 0.982

F1 score 0.978

FPR 0.015

RMSE 0.073

Figure 3 Confusion matrix for the WSN-DS dataset. Full-size DOI: 10.7717/peerj-cs.2751/fig-3
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Performance of LSTM with FL across datasets
The FL-based LSTM model was applied to all three datasets for analysis. The performance
metrics of each of the datasets are presented below. The attacks featured in this dataset

Table 4 Performance metrics of LSTM on the CIC-IDS-2017 dataset.

Metric Value

Accuracy 96.85%

Precision 0.961

Recall 0.967

F1 score 0.964

FPR 0.024

RMSE 0.084

Figure 4 Confusion matrix for the CIC-IDS-2017 dataset.
Full-size DOI: 10.7717/peerj-cs.2751/fig-4

Table 5 Performance metrics of LSTM on the UNSW-NB15 dataset.

Metric Value

Accuracy 95.78%

Precision 0.955

Recall 0.962

F1 score 0.958

FPR 0.032

RMSE 0.091
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mainly include black hole and gray hole attacks on wireless sensor networks. Table 3 shows
that the LSTM model has been highly accurate in identifying these types of intrusions.

The confusion matrix for the WSN-DS dataset is presented in Fig. 3.
Compared to the UM-Attack datasets, the CIC-IDS-2017 dataset comprises more

different kinds of attacks, including DDoS and Brute Force. As Table 4 indicates that the
LSTMmodel maintained high accuracy and other performance metrics while handling the
diverse dataset.

The confusion matrix for the CIC-IDS-2017 dataset is shown in Fig. 4.
The UNSW-NB15 dataset includes other attack types, such as Backdoors and Worms,

making it more difficult. However, the proposed LSTM model makes a similar
performance with the other datasets that is slightly lower, but still competitive, as
presented in Table 5.

The confusion matrix for the UNSW-NB15 dataset is provided in Fig. 5.

DISCUSSION
The FL-based LSTM model demonstrates high accuracy and low FPR across all datasets
evaluated in this study. Experimental results indicate that the WSN-DS dataset achieved
the highest accuracy due to its comparatively simpler attack traces. Similarly, the model
maintained robust performance on the more complex CIC-IDS-2017 and UNSW-NB15
datasets, with only slightly increasing RMSE and FPR. Additionally, the model’s resilience
in identifying diverse intrusions highlights its adaptability in IoT-based WSNs. Integrating
LSTM with FL enables the construction of an efficient sequential model and ensures data
privacy by retaining raw data at the local nodes. Furthermore, challenges inherent to FL,

Figure 5 Confusion matrix for the UNSW-NB15 dataset.
Full-size DOI: 10.7717/peerj-cs.2751/fig-5
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such as communication overhead, data heterogeneity, and straggler nodes, were effectively
mitigated through techniques like Federated Averaging, adaptive aggregation, and
threshold-based exclusion. These results underscore the feasibility and robustness of the
proposed approach for intrusion detection across varying network environments and
attack types, laying a strong foundation for future advancements in IDS for WSN and IoT
security. We evaluated the training duration and power consumption of the proposed FL-
based LSTM framework to ensure its practicality for resource-constrained IoT
environments. Experiments demonstrated that the training duration per node was reduced
by employing lightweight LSTM architectures and Federated Averaging (FedAvg), which
aggregates model updates periodically, decreasing computational load. Regarding power
consumption, local training significantly reduced the energy required for data
transmission compared to centralized models. The framework reduced overall network
transmission energy by only sharing model updates instead of raw data. The average
energy consumption per training round was measured, and the results indicated a 30–40%
reduction compared to centralized training approaches. These findings highlight the
framework’s suitability for IoT nodes with limited battery life.

Table 6 Comparative performance metrics of FL-based LSTM and centralized models across
datasets.

Dataset Model Accuracy (%) F1 score FPR RMSE

WSN-DS FL-based LSTM 97.8 0.96 0.02 0.15

Centralized model 94.3 0.92 0.05 0.28

CIC-IDS-2017 FL-based LSTM 93.5 0.91 0.04 0.21

Centralized model 88.7 0.85 0.08 0.35

UNSW-NB15 FL-based LSTM 91.2 0.89 0.05 0.24

Centralized model 86.4 0.81 0.09 0.39

Figure 6 True positive results. Full-size DOI: 10.7717/peerj-cs.2751/fig-6
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Table 6 compares key performance metrics, including accuracy, F1 score, FPR, and
RMSE, for the FL-based LSTM and centralized models on the WSN-DS, CIC-IDS-2017,
and UNSW-NB15 datasets.

The proposed model’s true positive results for each dataset (WSN-DS, CIC-IDS-2017,
UNSW-NB15), shown in Fig. 6, prove that the model can accurately identify actual attacks.
The FL approach performs better against the centralized model and across all datasets,
especially in the UNSW-NB15 data set.

Figure 7 emphasizes the comparison of learning vs. accuracy of centralized learning and
FL approaches using multiple datasets. This figure shows that the FL model reaches higher
accuracies faster than the other models, especially regarding datasets comprising different
network attacks, proving the appropriateness of distributed learning in IoT-based WSNs.

Figure 7 Learning vs. accuracy of centralized and FL. Full-size DOI: 10.7717/peerj-cs.2751/fig-7

Figure 8 Root mean squared error (RMSE) in each method.
Full-size DOI: 10.7717/peerj-cs.2751/fig-8

Anwar et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2751 25/30

http://dx.doi.org/10.7717/peerj-cs.2751/fig-7
http://dx.doi.org/10.7717/peerj-cs.2751/fig-8
http://dx.doi.org/10.7717/peerj-cs.2751
https://peerj.com/computer-science/


Figure 8 shows the RMSE analysis of centralized and FL for all datasets. The FL model
thus generally takes a lower RMSE across the board, including markedly CIC-IDS-2017
and UNSW-NB15, to demonstrate better predictive proficiency when dealing with
sequential data.

Table 7 presents the specific attack types included in the datasets used in the study,
demonstrating the diversity and complexity of scenarios tested to evaluate the proposed
FL-based LSTM framework.

CONCLUSION AND FUTURE WORK
In this study, we proposed an FL framework for intrusion detection systems using LSTM
networks in IoT-based WSNs. The framework effectively addresses critical challenges such
as data privacy, resource constraints, and scalability, making it well-suited for IoT security
applications. By leveraging FL, the model ensures that private data remains on each local
node while enabling collaborative learning across all nodes. The performance evaluation
on WSN-DS, CIC-IDS-2017, and UNSW-NB15 datasets demonstrated high accuracy, low
FPR, and low RMSE, highlighting the model’s robustness in realistic IoT environments.
The findings indicate significant improvements in intrusion detection rates compared to
centralized approaches while maintaining essential data privacy.

Future research will focus on improving the framework’s effectiveness and practicality.
Key directions include incorporating contextual information and sensor data tables to
enhance prediction algorithms and extending the framework for real-time intrusion
detection in large-scale IoT applications by reducing computational complexity and
response times. The system’s ability to handle diverse and evolving attack types will be
strengthened by exploring continuous learning techniques such as reinforcement learning
and self-supervised learning. Efforts will also be directed toward reducing energy
consumption, particularly for implementing LSTM models in resource-constrained IoT
nodes like sensors. Additionally, the framework’s potential applications will be explored in
other IoT areas of interest, such as smart grids, smart homes, and UWSNs, to validate its
novelty and flexibility further. Limitations, including challenges under extreme resource
constraints and dynamic network changes, will also be addressed in future work to ensure
a more robust and adaptive solution.

Table 7 Types of attacks covered in the study across datasets.

Dataset Attack types Relevance to IoT-based WSNs

WSN-DS Blackhole, Grayhole, Flooding, Scheduling Common attacks in resource-constrained WSNs, disrupting communication and
depleting node resources.

CIC-IDS-2017 Distributed Denial of Service (DDoS), Brute
Force, Web-based Attacks

Reflects modern intrusion scenarios in IoT networks with heterogeneous traffic
and high-variability attack vectors.

UNSW-NB15 Backdoors, Worms, Fuzzers, Analysis Advanced threats targeting IoT systems, simulating sophisticated, multi-step
attacks on network integrity.
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