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ABSTRACT

Cryptography is a cornerstone of power grid security, with the symmetry and
asymmetry of cryptographic algorithms directly influencing the resilience of power
systems against cyberattacks. Cryptographic algorithm identification, a critical
component of cryptanalysis, is pivotal to assessing algorithm security and hinges on
the core characteristics of symmetric and asymmetric encryption methods. A key
challenge lies in discerning subtle spatial distribution patterns within ciphertext data
to infer the underlying cryptographic algorithms, which is essential for ensuring the
communication security of power systems. In this study, we first introduce a plaintext
guessing model (SCGM model) based on symmetric encryption algorithms,
leveraging the strengths of convolutional neural networks to evaluate the plaintext
guessing capabilities of four symmetric encryption algorithms. This model is assessed
for its learning efficacy and practical applicability. We investigate protocol
identification for encrypted traffic data, proposing a novel scheme that integrates
temporal and spatial features. Special emphasis is placed on the performance of
algorithms within both symmetric and asymmetric frameworks. Experimental results
demonstrate the effectiveness of our proposed scheme, highlighting its potential for
enhancing power grid security.
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(Koshiba, Zolfaghari ¢ Bibak, 2023). There are two main directions in cryptographic
algorithm identification: to carry out reverse analysis of software programs and hardware
systems and to identify cryptographic algorithms (Zhang, Shu ¢ Jiang, 2011). For software
programs, disassembling and dynamic debugging techniques are used to analyze the
execution flow and functional structure of the code to deduce the cryptographic algorithm
used in the program; for the analysis of hardware devices, the physical characteristics of
electronic devices, such as side-channel detection technology and the design structure of
electronic components, are used to deduce the cryptographic algorithm. Another area of
research is identifying cryptographic algorithms to extract relevant features with the
ciphertext in the ciphertext-only state and to deduce the algorithm to which the ciphertext
belongs. Shannon proposed two crucial principles of obfuscation and diffusion in 1949,
which are widely used in modern cryptographic algorithm design. Based on these
principles, modern cryptographic algorithms are designed with complex network
structures, polling mechanisms, or mathematical problems to hide shallow features as
much as possible, enhance the difficulty of cracking, and try to make the cypher as similar
to random numbers as possible (Hayashi ¢ Koshiba, 2022). However, some researchers
have found that some cryptographic algorithms generate ciphertext data between the
randomness of the numerical differentiation problem. This provides a critical theory for
the ciphertext-only state to distinguish between cryptographic algorithms (De Souza &
Tomlinson, 2013). Extracting features from the ciphertext can determine and identify
cryptographic algorithms without relying on the key or other auxiliary information.

In the ciphertext-only state, there are two main categories of cypher algorithm
identification methods: one is based on statistics and the other is based on machine
learning. With the increasingly complex design structure of cryptographic algorithms, the
method based on statistics is no longer applicable, and its essence is to utilize statistical
knowledge to design indexes and compare the results obtained from the ciphertext
statistical computation with the preset thresholds to infer the type of cryptographic
algorithm. With the development of artificial intelligence technology, machine learning
methods are applied to cryptographic algorithm identification (Gong, Yao ¢ Nallanathan,
2024). The recognition issue is regarded as a categorization challenge. A supervised
modelling approach is employed to input this ciphertext feature training dataset into the
classifier model to train. After the end of the course, and the test dataset is input into the
classifier model to output the classification results. The deep learning method is a powerful
branch of machine learning methods; However, using deep learning technology to study
cryptographic algorithm recognition is still in its infancy. It stands out in the algorithm
recognition task because of its excellent representation learning ability. It has gradually
become the mainstream research at this stage (Jung et al., 2024). In the study of
cryptographic algorithm recognition, ciphertext feature selection and analysis are essential
tasks and cryptographic algorithm category recognition accuracy is still generally low. In
the face of irregular ciphertext data, single-dimensional features can no longer adequately
reflect the ciphertext information, so attempts are made to extract multi-dimensional
ciphertext features and utilize deep learning algorithms to mine the underlying feature
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relationships of ciphertexts to identify the ciphertexts belonging to the cryptographic
algorithms (Alwhbi, Zou & Alharbi, 2024).

Securing network communications, protecting network protocols, and identifying
network data stream techniques have been iteratively updated. Currently, the recognition
methods based on port, deep packet inspection and artificial intelligence are no longer
enough (Fujita, Koshiba ¢ Yasunaga, 2022). Meanwhile, deep learning-based methods
have been explored and utilized across various domains, and several researchers have
implemented deep learning techniques for network traffic identification (Altaf et al., 2024).
By reviewing and analyzing the literature on network traffic identification, it has been
found that this field primarily focuses on three areas (Zhang et al., 2022): identification of
the application of encrypted traffic, identification of the protocol of encrypted traffic and
detection of illicit traffic on the network. There is no fundamental distinction in the
research among these areas; they primarily concentrate on recognition schemes and the
choice of traffic characteristics. Significant advancements in these areas will drive
development and progress in the field. The current state of research can be introduced
from the viewpoint of extracting traffic characteristics; it can be categorized into the
following aspects: spatial traffic attributes, temporal traffic attributes, and combined
temporal-spatial traffic attributes (Alrayes et al., 2023).

The contributions of our work can be described as follows.

(1) We propose a convolutional neural network (CNN) model for plaintext guessing of
symmetric cryptography algorithms: Symmetric cryptography guessing model (SCGM),
and try to guess the plaintexts of four symmetric cryptography algorithms to evaluate the
model’s learning ability and practicality.

(2) We study the recognition task of encrypted traffic protocols, optimize the effect of
communication data recognition through data preprocessing and session-level processing,
and propose an algorithmic recognition scheme that incorporates spatio-temporal features
to improve recognition accuracy.

(3) Finally, the validity of the SCGM model and the usability of the algorithmic
identification scheme incorporating spatiotemporal features are demonstrated
experimentally.

RELATED WORK

Cryptographic algorithm recognition

In 2015, Hongchao (2018) used NIST’s randomness test for the first time to extract
ciphertext features and classify and recognize five grouped cryptographic algorithms and
achieved recognition accuracy of about 70% for two-by-two clustering using the K-means
algorithm. This study further explores the development of ciphertext randomness metric
features in cryptographic algorithm recognition. In 2018, Liangtao, Zhicheng ¢» Yaqun
(2018) formally defined the cryptographic algorithm recognition system for the first time,
laying a theoretical foundation for standardizing the cryptographic algorithm recognition
problem into two aspects: the design of the recognition scheme and the extraction of
ciphertext features. On this basis, the random forest algorithm is used as the recognition
model in the study, and three types of recognition scenarios are set up for four
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cryptographic regimes: classical cypher, stream cypher, group cypher and public key
cipher. At the same time, a layered recognition scheme is proposed, which includes two
recognition phases: cluster partition and single partition. Compared with the single-layer
recognition scheme studied by previous researchers, the recognition accuracy of the
layered recognition scheme is improved by about 20%.

In 2020, Ma et al. (2024) improved the theoretical framework of the recognition
problem of cryptographic algorithms. Combined with the Relief feature selection
algorithm, a dynamic scenario recognition scheme for cryptographic algorithms based on
integrated learning was proposed, and the optimal recognition accuracies using this
method were improved by 6.41%, 10.03%, and 11.40%, respectively, under the three
recognition scenarios in the study. In 2021, Huang (2021) proposed three hybrid models
based on the integrated learning idea and used the NIST randomness test. The National
Institute of Standards and Technology (NIST) randomness test method is used as the
feature extraction method, and in the single-layer recognition task of cryptographic
algorithms, the two-classification and five-classification recognition for five grouped
cryptographic algorithms, namely, Advanced Encryption Standard (AES), 3 Data
Encryption Standard (3DES), Blowfish, Carlisle Adams and Stafford Tavares (CAST), and
Rivest Cipher 2 (RC2), are accomplished, respectively. Among them, the accuracy of AES
and 3DES binary classification recognition is not less than 70%; in the binary classification
recognition task, the highest accuracy can reach 77.5%; the most accurate among the five
classification results is 38%, and this recognition effect is better than the non-integrated
learning algorithms. In their studies, Liru (2021), Dai et al. (2022), Lin et al. (2024)
extracted the features of the ciphertexts by using the NIST randomness test method, which
was the first time the deep learning model was applied to the field of cryptographic
algorithm recognition. The study used a random forest algorithm, backpropagation (BP)
neural network, convolutional neural network and sequential neural network algorithms
to train the corresponding cryptographic algorithm recognition classifiers to recognize
eight cryptographic algorithms. The experimental findings demonstrate that deep
learning-based encryption algorithm recognition systems outperform machine learning
recognition schemes such as SVM and random forest, and the recognition accuracy is
about 30% higher than that of the random forest-based scheme. The research in Chuxuan
(2021), Li et al. (2024), Ariyanto et al. (2023) proposed a ciphertext feature extraction
method based on linear transformation and convolutional sampling. In the article, the
cumulative sum method is utilized to process the binary sequences of ciphertext files and
used as ciphertext features to construct a random forest classifier to identify two-class
classification and multi-class classification of four cryptosystems such as AES, 3DES,
Blowfish, and RSA. The experimental results confirm the high feasibility of ciphertext
throttling sequence features in cryptographic algorithm recognition research.

Network traffic analysis
The researchers in Luyu, Liao & Zhao (2018) and Ding et al. (2024) employed a
convolutional neural network with three convolutional layers to extract the initial 1,024
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bytes of network packet data, converting them into grayscale images. They also used one-
hot encoding for the labels to train the model. The empirical findings indicate that the
model attains an average recognition rate of over 90% for Transmission Control Protocol
(TCP), User Datagram Protocol (UDP), and unknown protocols. However, the method is
less effective in recognizing software layer protocols of secure communication traffic and
lacks universality. In 2019, Wang Lin ¢» Biao (2019) introduced a genetic algorithm-based
improvement to the random forest model, focusing on time-series network flow
characteristics. This method demonstrates improved recognition compared to directly
using the random forest algorithm, achieving around 92% accuracy in identifying 14 SSL
protocol applications. Jing (2019) performed a reconnaissance study on seven types of
encrypted application traffic. They built a deep neural network model and conducted
experimental comparisons with the basic Bayesian algorithm. The study

emphasized the impact of mini-batch size on the model’s training effectiveness. Results
revealed that using a value of 40 yielded the highest recognition accuracy, significantly
surpassing the recognition capability of the basic Bayesian algorithm. The study in Zhao
(2022) employed a temporal examination of network data and suggested a recognition
methodology. That combines time-based characteristics with a support vector machine
(SVM). By segmenting into equal-length sequences at the session level, autonomously
learning temporal features using the Shapelet-Transformer algorithm, and building
classifiers with SVM, the model achieves a 95% accuracy rate in recognizing normal and
malicious traffic.

Nevertheless, this method’s recognition efficiency falls short of expectations. In 2021,
Jisheng, Zheng & Sweet (2022) delved into application layer protocol recognition using the
ISCX2012 dataset. They extracted spatial features through residual networks and temporal
features through bidirectional gated recurrent unit network (BiGRU). The model achieved
an overall accuracy of 96.87%, yet it did not extensively investigate the capability for
recognizing encryption protocols.

METHOD

Firstly, we propose a model for symmetric cryptography algorithms to perform plaintext
guessing: the SCGM, which is a combined convolutional neural network model, and the
model to try to think the plaintexts of the four symmetric cryptography algorithms. The
strength of the model’s learning ability and the practicality of this method are judged by
the results shown in the plaintext data of the four symmetric cryptography algorithms that
are guessed.

Second, we focused on protocol identification of encrypted traffic data and
preprocessed the data accordingly. We analyzed the variability among the captured
network traffic and employed session-level processing to ensure the best communication
data recognition results. Meanwhile, we deeply analyzed the influence of single features
among temporal and spatial features on the recognition effect. We proposed an
algorithmic recognition scheme that fuses temporal and spatial features of encrypted traffic
protocols.
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A neural network model-based scheme for symmetric ciphertext
plaintext guessing

In this article, we propose a model based on a CNN called the SCGM. We utilize
TensorFlow as the foundational framework to predict four symmetric encryption
algorithms: AES, Data Encryption Standard (DES), Blowfish (Symmetric Encryption
Block), and RC4 (Stream Encryption Algorithm).

The decision to employ a CNN is driven by its strong local perception capability,
particularly relevant given the spatial distribution of plaintext and ciphertext. Each node in
the information transfer process must maintain integrity and facilitate smooth
transmission, making the interconnections between characters crucial. The spatial
mapping ability of CNNs allows for effective local feature extraction, enabling the model to
capture relationships within the data efficiently. Additionally, the translation invariance of
CNNss ensures stability in spatial matrices, allowing for robust convolutional feature
extraction while preserving the structural integrity of the information. These properties
make CNNs well-suited for constructing a model that effectively analyzes encryption
patterns.

The network can solve spatial problems by combining multi-module convolutional
neural networks. Convolutional neural networks can abstract an image as a two-
dimensional matrix of pixels and use this matrix to perform operations such as
convolution and pooling, thus improving the efficiency and accuracy of image processing.
A convolutional neural network model usually consists of multiple layers, including an
input layer, a convolutional layer, a pooling layer, a fully connected layer, and an output
layer. The number and order of these layers can be adjusted and optimized according to
the application’s needs.

A convolutional neural network is an efficient image-processing technique that extracts
features through convolution and pooling operations and can process image data
efficiently with high classification and recognition accuracy. According to Eq. (1), the input
of the convolution operation is x(t), the kernel function is k(t), and the output is y(t).

H =f<bj + Zwij*xi). (1)

Two fundamental concepts in convolutional operations, local connectivity and
parameter sharing, play a huge role in convolutional operations. Local connectivity: ‘Local
connectivity’ means that neurons in a neural network are not entirely connected but are
only adjacent. ‘Weight sharing’ means sharing a weight between multiple neurons in a
neural network. This approach reduces the number of parameters, reduces computational
complexity, improves the network’s performance, and enables regularisation. With weight
sharing, the number of parameters can be significantly reduced as they can use fewer
parameters with the same weights to effectively express the same information, thus
considerably improving the generalization ability of the neural network.

The Natural Language Toolkit (NLTK) is a Python library that supports and simplifies
natural language processing. The character-level technique is a natural language
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processing technique that breaks down text into individual characters by first collecting
57,000 sentences in the Brown English corpus and then splitting each word in each
paragraph of the sentence, thus enabling the encryption of the word or sentence and
analyzing and processing based on these characters. To better understand the plain text,
the 57 most common characters were chosen and the ‘unknown’ mark was added to
distinguish the unencrypted words in the plain text. After encryption by the

encryption algorithm, a list of 85 words was reconstructed to better understand each
word in the plain text.

In data processing, sentences must be extracted from the NLTK library, and their
lengths must be truncated. If the size of the sentences exceeds a predefined range, they are
truncated, while if the size of the sentences is less than a predefined range, a zero-
completion operation is performed. The original plaintext can be converted into a cypher
and digitally encoded using encryption algorithms. Finally, the encoded cypher can be
processed to reduce the computational complexity of the neural network matrix.

This article will describe the following three scenarios: unknown key scenario, unknown
plaintext scenario, and unknown ciphertext scenario. Unknown key scenario: This
scenario’s core meaning is that the key encrypts the plaintext to generate the ciphertext.
Then, according to the refinement of this process, it can be considered that the interaction
between the plaintext and the key generates the ciphertext. The interaction between the
plaintext and the ciphertext generates the ciphertext, which is not necessarily the key. The
process is not a simple role, but the plaintext and the ciphertext can generate new roles
between the plaintext and the ciphertext, where the role generator is called a pseudo key.
Here, this interaction is called a pseudo-key. This overall scenario is 247, called the
unknown critical scenario as shown in Fig. 1.

Figure 1 illustrates the interactions between the pseudo-explicit text, pseudo-key, and
the model. The attacker utilizes the resulting plaintext and key to re-encrypt the ciphertext
based on the mapping laws. This process is central to the model’s ability to infer plaintext
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from ciphertext under scenarios where the key is unknown. Unknown plaintext scenario:
The core meaning of this scenario is still the same as 249 in the previous scenario, except
that the input variables have been changed to ciphertext 250 and pseudo-key, and
according to the expression of the last idea, the product of the 251 interaction between
ciphertext and pseudo-key is called pseudo-plaintext. This whole 252 scenario is called the
unknown plaintext scenario as shown in Fig. 2.

Unknown ciphertext scenario: the core meaning of this scenario is the same as the
expression of the previous two scenarios; the input variables are changed again to pseudo-
plaintexts and pseudo-keys, and according to the idea stated earlier, then the product of
256, the interaction between pseudo-plaintexts and pseudo-keys is called pseudo-
ciphertexts. And call this whole scenario an unknown ciphertext scenario, as shown
in Fig. 3.
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After the above three scenarios are constructed, tasks can be assigned to each
convolutional neural network module, and the parameters of the input layer, convolutional
layer, fully connected layer, and output layer of the convolutional neural network can be
set. The module coupling is also adjusted to make the data reasonable and representative. It
is hoped that the data can be guessed through the different scenarios without considering
the changes in other variables. With further adjustments, the model may be compatible
with asymmetric encryption systems, which include RSA and elliptic curve cryptography
(ECC). The system needs specific modifications because encryption schemes and key
management systems differ between different implementations. Extra research and
specialized feature extraction techniques for asymmetric encryption structures must be
developed to enable the model to generalize between symmetric and asymmetric
techniques. The development of an expanded dataset for analyzing abilities and adaptation
modifications to the model remains vital because it aims to include AV, encryption
techniques, and their unique characteristics. Expanding and adapting the model remains
important because the methodology analyzes different encryption schemes while creating
new methods to extract better-modifying standards.

Algorithmic fusion of spatiotemporal features for encrypted traffic
protocol identification

We suggest an encrypted traffic protocol recognition scheme that merges spatiotemporal
traffic features, employing Transformer and attention CNN models to handle input data.
The model identifies encrypted traffic protocols using the Transformer encoder model to
process network data’s temporal byte stream details and the CNN model with an attention
mechanism to process its spatial information. The CNN model maintains the conventional
structure of convolutional neural networks with layers such as convolutional, pooling, and
fully connected layers. Additionally, it incorporates a normalization layer to enhance
generalization capability. The model inputs preprocessed session-level traffic classification
data and generates predicted object labels as output. Including an attention mechanism
improves the distinction among network protocol features, facilitating the accurate
identification of network protocols.

Considering the timeliness of the recognition in massive network traffic data, the two
models in the recognition scheme adopt a parallel structure. The parallel structure also has
the following advantages: (1) Since different forms of data sources have different features
and structures, the use of different models can better extract and process the features of the
data sources, thus improving the recognition accuracy of the neural network; (2) The use
of the parallel structure can separately process and extract the features of the different data
sources, thus reducing the training time of the model and the demand for computational
resources; (3) The scalability of the neural network can be improved, and more models can
be added to handle different types of data sources, thus improving the recognition ability of
the neural network.

Network traffic data consists of bits, which can be viewed as hexadecimal sequences or
strings for ease of understanding and is essentially one-dimensional data. The traffic data is
first preprocessed into images, and the one-dimensional data is converted into
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two-dimensional 28*28 data. In the first convolution layer to train a two-dimensional
convolution kernel, traffic features grayscale map input to the CNN model, apply a
16-channel 3 x 3 convolutional kernel, resulting in a feature map with 16 channels. With
appropriate padding parameters, the feature map size remains at 28 x 28. The convolution
operation is expressed by Eq. (1):

H=f (bi + Z wij*xi> : (2)

H' and x! i denote the jth output mapping and the ith input mapping, respectively. w'
represents the convolution filter weights,* signifies convolution, and b/ is the bias
component of the jth mapping. The function f signifies the transfer function, with ReLU
being utilized in this convolutional layer to bolster the model’s resilience against
over-learning. The transfer function is denoted by Eq. (2) as

x, x>0

We transformed the single-dimensional traffic data by dividing its raw data into
specific-length sequences prior to image conversion. The resolution of 28 x 28 emerged
from experimental selection because it struck a dependable compromise between model
efficiency and fundamental temporal and spatial element retention from the raw data. Due
to the 28 x 28 dimensions, the model maintains a suitable input size for its convolutional
neural network component while capturing data spatial relationships locally. Padding is
used to make every sequence uniform in length. The data sequence needs extra zero-
padding sent to its end to reach 784 pixels (28 pixels by 28 pixels). Long sequences with
more than 784 elements will be cut down to match the dimension 28 x 28. The method
achieves data normalization across inputs while reducing the computational workload.
The data is normalized into a grayscale intensity range from 0 to 255 to make the input
features usable by the model. By combining padding, scaling, and normalization, the
model’s processing efficiency increases, as does its ability to discover relevant features.
ReLU helps the model explore feature correlations better, enhance fitting capabilities, and
mitigate gradient vanishing issues. A batch normalization layer is included before the
activation function to normalize features, ensuring a zero-mean state and a statistical
dispersion of one.

The model includes three convolutional layers, three pooling layers, a normalization
layer, an attention mechanism, and a fully connected layer. The final output feature vector
is linked to the attention layer; the output from the attention layer is then fed into a fully
connected layer consisting of 128 neurons, incorporating dropout for regularization. The
activation mechanism employed is ReLU. Following the activation mechanism, the output
is combined with the ultimate result from the Transformer encoding module.

Figure 4 illustrates the flowchart of spatio-temporal feature fusion for recognizing types
of encrypted traffic protocols. During training, starting from the training data Pcap file, the
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data file undergoes the stages of preprocessing, Feature extraction and fusion, model
training, outputting recognition outcomes, and ultimately, the protocol recognition model
trained; during training, the same data Pcap file chosen, and the selected file undergoes
stages of preprocessing, feature extraction, and feature fusion, and then the file is inputted
into the trained model for recognition of traffic protocols. The final output is the
recognition results.

EXPERIMENT

Experimental environment

The experiments utilized version 1.7.0 of PyTorch through PyCharm as their development
environment. NVIDIA RTX 3090 GPU and 43 GB of RAM operated with an Intel Xeon
Platinum 8350C CPU (2.60 GHz). Ubuntu 18.04 was used as the operating system, and the
Python version was 3.8. The dataset employed for training consisted of more than 100,000
labelled examples of encrypted network data. The training process required 50 epochs,
with each batch containing 64 samples. Each model required various amounts of time for
training, and the total training period reached 6 h based on the encryption algorithm’s
intricacy and the model design specifications. The experiment uses PyTorch deep learning
framework and PyCharm software as the 320 model training environment; the specific
hardware and software environment is shown 321 below:

The traffic data contains different cryptographic system patterns that represent
standard encryption algorithms. A distinct dataset containing various encrypted network
traffic for eight protocol types, such as Hypertext Transfer Protocol (HTTP), Domain
Name System (DNS), UDP, and secure shell (SSH), served to develop the protocol
identification scheme. The database we used for this operation includes unprocessed traffic
information and annotations at the session level. The samples within traffic datasets
contain three classes of information, including byte stream records, packet measurement
data, and timestamp measurements. The training data included more than 100,000
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Table 1 Experimental hardware and software environment.

Equipment name Equipment model

Display card (computer) RTX3090

RAM 43G

CPU Intel(R)Xeon(R)Platinum 8350 C CPU 2.60 GHz
Operating system Ubuntu 18.04

Python 3.8

PyTorch 1.7.0

instances of encrypted traffic that received processing and then transformed into feature
vectors for model input. The data split divided the information into two parts: training
alongside testing, where 70% of elements were used for training and 30% for testing.
Different algorithms have different encryption processes, and the length of the 323
encryption parameters is also different. Therefore, the plaintext length, key length, and 324
ciphertext length of the inputs of the AES algorithm, DES algorithm, Blowfish algorithm,
and RC algorithm are designed in the following way, as shown in the Table 1. The
encryption algorithm depends on the relationship between plaintext, key, and ciphertext
length. Usually, the ciphertext length is fixed, while the key length can affect the 328
security and performance of the encryption algorithm. This article focuses on a fixed 329
length for analysis. Symmetric algorithm data containing AES, DES, Blowfish, and RC4
were used during the experimental training phase for the SCGM model. The training
consisted of pairs containing ciphertext and plaintext data, which were used to create a
prediction model that derived plaintext from ciphertext.

The evaluation metrics for symmetric algorithm performance measured accuracy with
precision, recall, and F1-score. The accuracy assessments counted correct plaintext
predictions to the entire sample collection. The precision evaluation consisted of two
elements: the adequate prediction of positive plaintext results and the total predictions of
positive plaintext. The ratio between correctly predicted positive plaintext samples and the
total actual positive samples represented the measure for recall performance. The F1-score
function calculated as the precision and recall harmonic mean offered a performance
balance for the model. The SCGM model did not directly evaluate asymmetric algorithms,
but the investigation examined protocol identification that could require asymmetric
encryption. Similar metrics evaluated the protocol identification scheme through accuracy,
precision, recall, and F1-score measurements to measure classification success. Our model
evaluation included utilizing the area under the curve method from receiver operating
characteristic curves to measure its effectiveness in differentiating between different
protocols as in Table 2.

Experimental results and analysis

The experimental dataset consists of encrypted traffic generated through four symmetric
encryption algorithms: AES, DES, Blowfish, and RC4. This dataset enables model
evaluation and comparison but fails to deploy real-world traffic encryption variety since it
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Table 2 Setting the length of plaintext, key, and ciphertext for different algorithms.

Arithmetic Explicit length Key length Ciphertext length
AES-128 128 128 128

DES 64 64 64

Blow-fish 128 64 128

RC4 128 64 128

excludes complex or combination encryption systems and protocols not analyzed in this
study. The synthetic dataset lacks endpoint features that characterize real-world encrypted
traffic because the latter contains dynamic elements that do not exist in the former. Since
other methods are based on experiments with passwords generated by specific 332 rules,
such as HashCat Best64, HashCat gen2, and JTR SpiderLab, the passwords generated in
333 in this article are based on symmetric encryption algorithms so that no comparison
can be made 334 here. The hit rate results of plaintext guessing of the AES algorithm are
shown in Fig. 5. In the SCGM model, as the number of iterations increases, the learning
ability of the 336 model also increases, so the hit rate curve under the model is upward.
Then, the hit 337 rate is gradually stabilized at about 60%, which indicates that the SCGM
model is adequate. The curve stabilizes at 60% after 50 epochs with a batch size of 64 and a
learning rate of 0.001. The x-axis represents the number of training iterations (epochs),
and the y-axis shows the accuracy achieved by the model on the plaintext guessing task.
The SCGM model reaches a 60% success rate in plaintext prediction during a challenging
encryption task, which prevents it from accessing the encryption secret. The achieved
accuracy level through this model serves practical purposes because it proves its ability to
uncover significant patterns inside encrypted information. Within cryptanalysis, the
challenge of obtaining plaintext when lacking key access is reduced when the methodology
delivers a 60% success rate. The 60% accuracy rating provides an initial point from which
future model developments can be built utilizing better data inputs, model optimization,
and advanced techniques.

The assessment includes experimental results and theoretical analysis of our model’s
operating performance. The SCGM model contains convolutional layers that perform local
feature extraction that provides built-in resistance against minor encryption pattern
fluctuations through the effective attainment of spatial relationships by filters. Through its
self-attention mechanism, the Transformer boosts robustness by understanding distant
acquaintances between elements in the dataset, thus ensuring accurate predictions despite
troublesome input data. The model architecture possesses an efficient design for encrypted
traffic variations by uniting temporal and spatial features to determine the most crucial
protocol information. The model can generalize across encrypted datasets and encryption
methods because of its adaptive design. To verify the effectiveness of the suggested
Transformer-Attention_CNN 339 model on the task of classifying encrypted
communication protocol, this article uses the preprocessed dataset to conduct
experiments, and Table 3 displays the accuracy, retrieval, and F1-scores for the eight
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Figure 5 SCGM plaintext guessing experiment results. Full-size Kal DOI: 10.7717/peerj-cs.2750/fig-5

Table 3 Transformer-Attention CNN classification results.

Type of protocols Accuracy Retrieval F1-score
International SSL 97.32% 97.95% 97.67%
Secure socket layer 98.16% 97.51% 97.83%
International IPSec 97.72% 97.36% 97.54%
Secure socket layer 96.58% 97.51% 97.58%
SSH 98.93% 98.81% 98.87%
HTTP 98.87% 98.55% 98.71%
DNS 99.12% 98.82% 98.96%
UDP 98.47% 98.94% 98.72%

categories of traffic agreement. The classification results demonstrate that all protocols
within each category achieve over 97% accuracy. Notably, unencrypted communication
protocols such as HTTP, DNS, and UDP broadly exhibit greater 344 accuracy indices than
encrypted protocols 345.
The promising cryptographic performance of the SCGM model requires evaluating how
easily it may be vulnerable to adversarial attacks. Attacks from malicious entities become
possible if they detect the model’s weaknesses or structure because they can generate
adversarial examples to trick the system. The ongoing research will concentrate on
advancing model resilience because adversarial robustness functions are absent from their
current state. We will add both adversarial training with tailored adversarial inputs and
model regularization techniques during the training process to make the model resistant to
potential attacks. The model needs robust optimization methods to build defensive
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Table 4 The experimental results of each model.

Model Accuracy
1D-CNN 91.61%
Prt-CNN 94.67%
Our model 97.23%

architectures because this enhances its ability to resist adversarial attacks. To verify the
reliability and validity of the proposed model scheme, 346 subsequent comparative
experiments will be conducted using the same dataset. The data in dataset 347 consists of
raw traffic that has not been preprocessed, allowing for preprocessing based on the
requirements of each model. The proposed model will be compared in the experiments
with the one-dimensional convolutional neural network model proposed in the reference
Liet al. (2020) and Feng et al’s (2020) PrtCNN model. These two comparative models are
representative in the field of protocol identification. The comparison results of each model
are shown in 352 (Table 4). These findings did not separate the attention mechanism’s
impact on accuracy outcomes from the rest of the model since the mechanism was
integrated to enhance feature concentration. An ablation study will assess the model’s
performance without the attention mechanism to measure its impact relative to the
complete model. The ablation study will help calculate the attention mechanism’s
dedicated effect and provide critical knowledge about its role in accuracy enhancement.

Table 4 shows that the proposed model outperforms the other two models regarding
various metrics, including recognition accuracy, with the 1D-CNN scheme exhibiting
poorer performance. The proposed protocol identification model achieves an average
recognition accuracy of 97.23%, which is 5.62% higher than the 1D-CNN scheme and
2.56% higher than the PrtCNN scheme. The proposed model utilizes the self-attention
mechanism of the Transformer and the characteristics of Attention_ CNN to filter out
irrelevant features further, highlight important ones, and explore potential correlations
from the perspective of spatiotemporal feature fusion. The SCGM model was tested against
two established models: the 1D-CNN and the PrtCNN models. The 1D-CNN is a basic
convolutional model designed for feature extraction from one-dimensional data, while the
PrtCNN model has been widely used for encrypted traffic classification. Our results show
that the SCGM model outperforms the 1D-CNN and PrtCNN models, with a recognition
accuracy of 97.23%.

In comparison, the 1D-CNN model achieved an accuracy of 91.61%, and the PrtCNN
model reached 94.67%. The SCGM model also demonstrated higher precision, recall, and
F1 scores, further underscoring its ability to identify cryptographic algorithms and classify
encrypted traffic protocols. The advantage of the SCGM model lies in its combination of
convolutional neural networks with a self-attention mechanism, which allows it to focus
on the most relevant features of encrypted data and adapt more effectively to varying
encryption schemes.

Research on broadening generalization capacity remains essential to extending the
proposed models across various cryptographic systems, including hybrid cryptosystems
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and encryption features that may change. The deep learning models achieve data pattern
recognition through convolutional networks and attention mechanisms, which indicates
they can properly adapt to encryption systems that combine symmetric and asymmetric
techniques. To establish total robustness and scalability, additional testing must be done
on hybrid cryptosystems and evolving traffic data, including encryption protocol
changes. To address the scalability issues, future work will concentrate on

implementing dynamic batch size, which will enable the system to automatically adjust the
batch size according to available computational resources and dataset features. The
model’s efficiency in handling larger datasets remains ensured when there is no memory or
computational power overload. The model will be modified to process messages with
adjustable lengths in addition to fixed key inputs. Because of the model’s adaptable
structure, different encryption schemes and real-world traffic conditions can be
adequately handled.

Hybrid cryptographic frameworks, such as those used in modern secure
communication protocols (e.g., SSL/TLS), combine the efficiency of symmetric encryption
for data encryption with the security of asymmetric encryption for key exchange. The
SCGM model can be adapted to classify encrypted data from such hybrid systems,
provided appropriate datasets are available for training. Future research will extend the
model to handle these more complex encryption schemes, incorporating symmetric and
asymmetric elements in the analysis. This will require updates to the model’s architecture
to accommodate the unique features of hybrid systems, such as key exchange processes
and different encryption layer behaviors.

CONCLUSIONS

This article proposes a multi-module combined CNN model and applies it to four
symmetric encryption algorithms. Through experimental analysis, we demonstrate that
the accuracy of predicting plaintexts improves as the number of training iterations
increases, eventually stabilizing at a specific convergence point.

Additionally, we focus on the protocol identification of encrypted traffic data,
incorporating appropriate preprocessing techniques. By analyzing the variability of
captured network traffic, we employ session-level processing to enhance the accuracy of
communication data identification. Furthermore, we examine the impact of individual
temporal and spatial features on recognition performance and propose an algorithmic
scheme that integrates both feature types to improve the identification of encrypted traffic
protocols.

Passwords serve as a fundamental authentication mechanism, yet biometrics may
eventually replace them. Our study of password security aims to prevent unauthorized
access for personal gain and enhance data protection through precise analysis and
evaluation. The key contributions of this research include improving the tracking of
cryptographic algorithms and encrypted traffic protocols, thereby strengthening security
across communication networks. This advancement is particularly relevant for Internet of
Things (IoT) devices, financial systems, and cloud services applications, where accurate
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encrypted traffic analysis is crucial. The model’s adaptability to different encryption
algorithms makes it a valuable tool for future cryptographic research and implementation.

Neural networks play a significant role in mapping relationships within data. Under
optimal conditions, they can recognize and generalize underlying patterns, potentially
aiding in cryptographic analysis. However, several aspects require further investigation,
including selecting activation functions, configuring convolutional and pooling layers, and
the overall architecture of fully connected layers. Future research should focus on refining
these parameters to enhance model compatibility with different encryption schemes.
Expanding data collection and analysis will also help build a more comprehensive and
robust model.

While these models can enhance cryptographic research and security, they also pose
risks, such as unauthorized decryption, privacy violations, and potential cyberattack
misuse. Ethical concerns regarding surveillance and unauthorized data analysis must be
addressed. To mitigate these risks, we emphasize the importance of responsible use in
regulated environments, ensuring transparency, accountability, and adherence to ethical
guidelines.

The current model employs a single 1D convolutional layer for feature extraction.
Future research should explore deeper architectures by stacking multiple convolutional
layers with residual blocks to enhance pattern recognition in cryptographic data.
Additionally, integrating novel techniques with the model could further improve its ability
to identify cryptographic patterns. Our research will continue to explore advanced network
architectures to enhance accuracy and stability. Future developments will also focus on
creating adaptive methods that dynamically adjust to evolving traffic patterns and
emerging cryptographic techniques.
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