
Adaptive divergence for rapid adversarial optimization
Maxim Borisyak Corresp., 1 , Tatiana Gaintseva 1 , Andrey Ustyuzhanin 1, 2

1 Laboratory of Methods for Big Data Analysis, National Research University Higher School of Economics, Moscow, Russia
2 Physics department, Imperial College, London, United Kingdom

Corresponding Author: Maxim Borisyak
Email address: mborisyak@hse.ru

Adversarial Optimization (AO) provides a reliable, practical way to match two implicitly defined
distributions, one of which is usually represented by a sample of real data, and the other is defined by a
generator. Typically, AO involves training of a high-capacity model on each step of the optimization. In
this work, we consider computationally heavy generators, for which training of high-capacity models is
associated with substantial computational costs. To address this problem, we introduce a novel family of
divergences, which varies the capacity of the underlying model, and allows for a significant acceleration
with respect to the number of samples drawn from the generator.

We demonstrate the performance of the proposed divergences on several tasks, including tuning
parameters of a physics simulator, namely, Pythia event generator.

PeerJ Comput. Sci. reviewing PDF | (CS-2019:11:43052:1:1:NEW 28 Feb 2020)

Manuscript to be reviewedComputer Science

Adaptive Divergence for Rapid Adversarial1

Optimization2

Maxim Borisyak1, Tatiana Gaintseva1, and Andrey Ustyuzhanin1, 2
3

1Laboratory of Methods for Big Data Analysis, National Research University Higher4

School of Economics, 20 Myasnitskaya st, Moscow 101000, Russia5

2Physics department, Imperial College, South Kensington, London SW7 2AZ, United6

Kingdom7

Corresponding author:8

Maxim Borisyak1
9

Email address: mborisyak@hse.ru10

ABSTRACT11

Adversarial Optimization (AO) provides a reliable, practical way to match two implicitly defined distributions,

one of which is usually represented by a sample of real data, and the other is defined by a generator.

Typically, AO involves training of a high-capacity model on each step of the optimization. In this work, we

consider computationally heavy generators, for which training of high-capacity models is associated with

substantial computational costs. To address this problem, we introduce a novel family of divergences,

which varies the capacity of the underlying model, and allows for a significant acceleration with respect to

the number of samples drawn from the generator.

12

13

14

15

16

17

18

We demonstrate the performance of the proposed divergences on several tasks, including tuning parame-

ters of a physics simulator, namely, Pythia event generator.

19

20

1 INTRODUCTION21

Adversarial Optimization (AO), introduced in Generative Adversarial Networks (Goodfellow et al., 2014),22

became popular in many areas of machine learning and beyond with applications ranging from genera-23

tive (Radford et al., 2015) and inference tasks (Dumoulin et al., 2016), improving image quality (Isola24

et al., 2017) to tuning stochastic computer simulations (Louppe et al., 2017).25

AO provides a reliable, practical way to match two implicitly defined distributions, one of which is26

typically represented by a sample of real data, and the other is represented by a parameterized generator.27

Matching of the distributions is achieved by minimizing a divergence between these distribution, and28

estimation of the divergence involves a secondary optimization task, which, typically, requires training a29

model to discriminate between these distributions. The model is referred to as discriminator or critic (for30

simplicity, we use term discriminator everywhere below).31

Training a high-capacity model, however, is computationally expensive (Metz et al., 2016) as each32

step of divergence minimization is accompanied by fitting the discriminator; therefore, adversarial training33

often requires significantly more computational resources than, for example, a classification model with a34

comparable architecture of the networks 1. Nevertheless, in conventional settings like GAN, this problem35

is not pronounced for at least two reasons. Firstly, the generator is usually represented by a deep neural36

network, and sampling is computationally cheap; thus, for properly training the discriminator, a sample37

of a sufficient size can be quickly drawn. Secondly, GAN training procedures are often regarded not as38

minimization of a divergence, but as game-like dynamics (Li et al., 2017; Mescheder et al., 2018); such39

dynamics typically employ gradient optimization with small incremental steps, which involve relatively40

small sample sizes for adapting the previous discriminator to an updated generator configuration.41

Computational costs of AO becomes significant when sampling from the generator is computationally42

expensive, or optimization procedure does not operate by performing small incremental steps (Metz et al.,43

1For instance, compare training times, network capacities and computational resources reported by Simonyan and Zisserman

(2014) and Choi et al. (2018).

PeerJ Comput. Sci. reviewing PDF | (CS-2019:11:43052:1:1:NEW 28 Feb 2020)

Manuscript to be reviewedComputer Science

Charles P. Elkan

Charles P. Elkan

Charles P. Elkan

2016). One of the practical examples of such settings is fine-tuning parameters of complex computer44

simulations. Such simulators are usually based on physics laws expressed in computational mathematical45

forms like differential or stochastic equations. Those equations relate input or initial conditions to the46

observable quantities under conditions of parameters that define physics laws, geometry, or other valuable47

property of the simulation; these parameters do not depend on inputs or initial conditions. It is not48

uncommon that such simulations have very high computational complexity. For example, the simulation49

of a single proton collision event in the CERN ATLAS detector takes several minutes on a single core50

CPU (The ATLAS Collaboration, 2010). Due to typically high dimensionality, it takes a considerable51

amount of samples for fine-tuning, which in turn increases the computational burden.52

Another essential property of such computer simulations is the lack of gradient information over the53

simulation parameters. Computations are represented by sophisticated computer programs, which are54

challenging to differentiate2. Thus, global black-box optimization methods are often employed; Bayesian55

Optimization is one of the most popular approaches.56

In this work, we introduce a novel family of divergences that enables faster optimization convergence57

measured by the number of samples drawn from the generator. The variation of the underlying discrimi-58

nator model capacity during optimization leads to a significant speed-up. The proposed divergence family59

suggests using low-capacity models to compare distant distributions (typically, at early optimization60

steps), and the capacity gradually grows as the distributions become closer to each other. Thus, it allows61

for a significant acceleration of the initial stages of optimization. Additionally, the proposed family of62

divergences is broad, which offers a wide range of opportunities for further research.63

We demonstrate the basic idea with some toy examples, and with a realistic challenge of tuning Pythia64

event generator (Sjöstrand et al., 2006, 2015) following Louppe et al. (2017) and Ilten et al. (2017). We65

consider physics-related simulations; nevertheless, all proposed methods are simulation-agnostic.66

2 BACKGROUND67

Adversarial Optimization, initially introduced for Generative Adversarial Networks (GAN) (Goodfellow

et al., 2014), offers a general strategy for matching two distributions. Consider feature space X , ground-

truth distribution P, and parametrized family of distributions Qψ implicitly defined by a generator with

parameters ψ . Formally, we wish to find such ψ∗, that P = Qψ∗ almost everywhere. AO achieves that by

minimizing a divergence or a distance between P and Qψ with respect to ψ . One of the most popular

divergences is Jensen-Shannon divergence:

JSD(P,Qψ) =
1

2

[

KL(P‖Mψ)+KL(Qψ‖Mψ)
]

=
1

2
E

x∼P
log

P(x)

Mψ(x)
+

1

2
E

x∼Qψ

log
Q(x)

Mψ(x)
; (1)

where: KL — Kullback-Leibler divergence, Mψ(x) =
1
2

(

P(x)+Qψ(x)
)

. The main insight of Goodfellow

et al. (2014) is that JSD can be estimated by training a discriminator f to distinguish between P and Qψ :

log2−min
f∈F

L(f ,P,Qψ) =

log2−min
f∈F

{

−
1

2
E

x∼P
log

(

f (x)
)

−
1

2
E

x∼Qψ

log
(

1− f (x)
)

}

=

log2+

{

1

2
E

x∼P
log

(

f ∗(x)
)

+
1

2
E

x∼Qψ

log
(

1− f ∗(x)
)

}

=

log2+

{

1

2
E

x∼P
log

P(x)

Qψ(x)+P(x)
+

1

2
E

x∼Qψ

log
Qψ(x)

Qψ(x)+P(x)

}

=

1

2
E

x∼P
log

P(x)

Mψ(x)
+

1

2
E

x∼Qψ

log
Q(x)

Mψ(x)
= JSD(P,Qψ); (2)

where: L — cross-entropy loss function, F = { f : X → [0,1]} is the set of all possible discriminators,68

and f ∗ is the optimal discriminator. Similar formulations also exist for other divergences such as69

Wasserstein (Arjovsky et al., 2017) and Cramer (Bellemare et al., 2017) distances.70

2There are ways to estimate gradients of such programs, for example, see (Baydin et al., 2019). However, all methods known to

the authors require training a surrogate, which encounters the problem of the expensive sampling procedures mentioned above.

2/19PeerJ Comput. Sci. reviewing PDF | (CS-2019:11:43052:1:1:NEW 28 Feb 2020)

Manuscript to be reviewedComputer Science

Charles P. Elkan

Charles P. Elkan

Charles P. Elkan

Charles P. Elkan

In classical GAN, both generator and discriminator are represented by differentiable neural networks.71

Hence, a subgradient of JSD(P,Qψ) can be easily computed (Goodfellow et al., 2014). The minimization72

of the divergence can be performed by a gradient method, and the optimization procedure goes iteratively73

following those steps:74

• using parameters of the discriminator from the previous iteration as an initial guess, adjust f by75

performing several steps of the gradient descent to minimize L (f ,P,Qψ);76

• considering f as a constant, compute the gradient of L (f ,P,Qψ) w.r.t. ψ , perform one step of the77

gradient ascent.78

For computationally heavy generators, gradients are usually practically unfeasible; therefore, we79

consider black-box optimization methods. One of the most promising methods for black-box AO80

is Adversarial Variational Optimization (Louppe et al., 2017), which combines AO with Variational81

Optimization (Wierstra et al., 2014). This method improves upon conventional Variational Optimization82

(VO) over Jensen-Shannon divergence by training a single discriminator to distinguish samples from83

ground-truth distribution and samples from a mixture of generators, where the mixture is defined by84

the search distribution of VO. This eliminates the need to train a classifier for each individual set of85

parameters drawn from the search distribution.86

Bayesian Optimization (BO) (Mockus, 2012) is another commonly used black-box optimization87

method, with applications including tuning of complex simulations (Ilten et al., 2017). As we demonstrate88

in Section 5, BO can be successfully applied for Adversarial Optimization.89

3 ADAPTIVE DIVERGENCE90

Notice, that in equation (2) minimization is carried over the set of all possible discriminators F =91

{ f : X 7→ [0,1]}. In practice, this is intractable and set F is approximated by a model such as Deep92

Neural Networks. Everywhere below, we use terms ’low-capacity’ and ’high-capacity’ to describe93

the set of feasible discriminator functions: low-capacity models are either represent a narrow set of94

functions (e.g., logistic regression, shallow decision trees) or are heavily regularized (see Section 4 for95

more examples of capacity regulation); high-capacity models are sufficient for estimating JSD for an96

Adversarial Optimization problem under consideration.97

In conventional GAN settings, the generator is represented by a neural network, sampling is computa-98

tionally cheap, and usage of high-capacity discriminators is satisfactory. In our case, as was discussed99

above, simulations tend to be computationally heavy, which, combined with a typically slow convergence100

of black-box optimization algorithms, might make AO with a high-capacity model practically intractable.101

The choice of the model has its trade-off: high-capacity models provide good estimations of JSD,

but, generally, require large sample sizes to be properly trained. In contrast, low-capacity models tend to

require fewer samples for training; however, they might provide biased estimations. For example, if the

classifier is represented by a narrow set of functions M ⊆F , then quantity:

DM(P,Q) = log2−min
f∈M

L(f ,P,Q); (3)

might no longer be a divergence, so we refer to it as pseudo-divergence.102

Definition 1. A function D : Π(X)×Π(X)→ R is a pseudo-divergence, if:103

(P1) ∀P,Q ∈Π(X) : D(P,Q)≥ 0;104

(P2) ∀P,Q ∈Π(X) : (P = Q)⇒ D(P,Q) = 0;105

where Π(X) — set of all probability distributions on space X .106

It is tempting to use a pseudo-divergence DM produced by a low-capacity model M for Adversarial107

Optimization, however, a pseudo-divergence might not guarantee proper convergence as there might exist108

such ψ ∈ Ψ, that JSD(P,Qψ) > 0, while D(P,Qψ) = 0. For example, naive Bayes classifier is unable109

to distinguish between P and Q that have the same marginal distributions. Nevertheless, if model M is110

capable of distinguishing between P and some Qψ , DM still provides information about the position of the111

3/19PeerJ Comput. Sci. reviewing PDF | (CS-2019:11:43052:1:1:NEW 28 Feb 2020)

Manuscript to be reviewedComputer Science

Charles P. Elkan

optimal parameters in the configuration space ψ∗ by narrowing search volume, Ilten et al. (2017) offers a112

good demonstration of this statement.113

The core idea of this work is to replace Jensen-Shannon divergence with a so-called adaptive diver-114

gence that gradually adjusts model capacity depending on the ’difficulty’ of the classification problem115

with the most ’difficult’ problem being distinguishing between two equal distributions. Formally, this116

gradual increase in model complexity can be captured by the following definitions.117

Definition 2. A family of pseudo-divergences D = {Dα : Π(X)×Π(X)→ R | α ∈ [0,1]} is ordered118

and complete with respect to Jensen-Shannon divergence if:119

(D0) Dα is a pseudo-divergence for all α ∈ [0,1];120

(D1) ∀P,Q ∈Π(X) : ∀0≤ α1 < α2 ≤ 1 : Dα1
(P,Q)≤ Dα2

(P,Q);121

(D2) ∀P,Q ∈Π(X) : D1(P,Q) = JSD(P,Q).122

There are numerous ways to construct a complete and ordered w.r.t. JSD family of pseudo-divergences.123

In the context of Adversarial Optimization, we consider the following three methods. The simplest one is124

to define a nested family of models M = {Mα ⊆F | α ∈ [0,1]}, (e.g., by changing number of hidden125

units of a neural network), then use pseudo-divergence (3) to form a desired family.126

Alternatively, for a parameterized model M = { f (θ , ·) | θ ∈ Θ}, one can use a regularization R(θ) to127

control ’capacity’ of the model:128

Dα(P,Q) = log2−L(f (θ ∗, ·),P,Q); (4)

θ ∗ = argmin
θ∈Θ

L(f (θ , ·),P,Q)+ c(1−α) ·R(θ);

where c : [0,1]→ [0,+∞) is a strictly increasing function and c(0) = 0.129

The third, boosting-based method is applicable for a discrete approximation:130

Dc(i)(P,Q) = log2−L(Fi,P,Q); (5)

Fi = Fi−1 +ρ · argmin
f∈B

L(Fi−1 + f ,P,Q);

F0 ≡
1

2
;

where: ρ — learning rate, B — base estimator, c : Z+ → [0,1] — a strictly increasing function for131

mapping ensemble size onto α ∈ [0,1].132

Although Definition 2 is quite general, in this paper, we focus on families of pseudo-divergence133

produced in a manner similar to the examples above. All these examples introduce a classification algo-134

rithm parameterized by α , then define pseudo-divergences Dα by substituting the optimal discriminator135

in Equation (2) with the discriminator trained in accordance with this classification algorithm with the136

parameter α . Of course, one has to make sure that the resulting family of pseudo-divergences is ordered137

and complete w.r.t. Jensen-Shannon divergence. Appendix A1 provides formal definitions and proofs for138

the examples above.139

With this class of pseudo-divergences in mind, we refer to α as capacity of the pseudo-divergence140

Dα ∈ D relative to the family D , or simply as capacity if the family D is clear from the context. In141

the examples above, capacity of pseudo-divergence is directly linked to the capacity of underlying142

discriminator models: to the size of the model in equation (3), to the strength of the regularization in143

equation (4) (which, similar to the previous case, effectively restricts the size of the set of feasible models)144

or to the size of the ensemble for a boosting-based family of divergences in equation (5).145

Finally, we introduce a function that combines a family of pseudo-divergences into a single divergence.146

Definition 3. If a family of pseudo-divergences D = {Dα | α ∈ [0,1]} is ordered and complete with

respect to Jensen-Shannon divergence, then adaptive divergence ADD produced by D is defined as:

ADD (P,Q) = inf{Dα(P,Q) | Dα(P,Q)≥ (1−α) log2} . (6)

We omit index in ADD when the family D is clear from the context or is not important.147

4/19PeerJ Comput. Sci. reviewing PDF | (CS-2019:11:43052:1:1:NEW 28 Feb 2020)

Manuscript to be reviewedComputer Science

Algorithm 1 General procedure for computing an adaptive divergence by grid search

Require: D = {Dα | α ∈ [0,1]}— ordered and complete w.r.t. Jensen-Shannon divergence family of

pseudo-divergences; ε — tolerance; P, Q — input distributions

α ← 0;

while Dα(P,Q)< (1−α) log2 do

α ← α + ε
end while

return Dα(P,Q)

A linear ‘threshold’ function τ(α) = 1−α is used in the definition, however, it can be replaced by

any strictly decreasing τ : [0,1]→ [0,1], such that τ(0) = 1 and τ(1) = 0:

ADD (P,Q) = inf{Dα(P,Q) | Dα(P,Q)≥ τ(α) log2} , (7)

but, since one can redefine the family D as D ′ = {Dτ(α) | α ∈ [0,1]}, this effectively leads to the same148

definition. Nevertheless, it might be convenient in practice to use τ other than τ(α) = 1−α as most149

model families have a natural ordering, e.g., regularization strength.150

The coefficient log2 naturally arises as the maximal value of Jensen-Shannon divergence as well as151

an upper bound of any pseudo-divergence based on equation (3) if the function f0(x) = 1/2 is included in152

the underlying classification model M. Since almost all popular models are capable of learning constant153

estimators, log2 is included in the definition. Nevertheless, to adopt definition 3 for exotic models or154

divergences other than Jensen-Shannon (e.g., Wasserstein distance), this coefficient (and, possibly, the155

‘threshold’ function) should be reconsidered.156

Note, that due to property (D1), Dα(P,Q) is a non-decreasing function of α , while (1−α) log2 is

a strictly decreasing one. Hence, if family D is such that for any two distributions P and Q Dα(P,Q) is

continuous w.r.t. α , equation (6) can be simplified:

ADD (P,Q) = Dα∗(P,Q), (8)

where α∗ is the root of the following equation:

Dα(P,Q) = (1−α) log2. (9)

A general procedure for computing ADD for this case is outlined in algorithm 1.157

Intuitively, an adaptive divergence ADD switches between members of D depending on the ‘difficulty’158

of separating P and Q. For example, consider family D produced by equation (4) with a high-capacity159

neural network as model M and l2 regularization R on its weights. For a pair of distant P and Q, even160

a highly regularized network is capable of achieving low cross-entropy loss and, therefore, ADD takes161

values of the pseudo-divergence based on such network. As distribution Q moves close to P, ADD lowers162

the regularization coefficient, effectively increasing the capacity of the underlying model.163

The idea behind adaptive divergences can be viewed from a different angle. Given two distributions164

P and Q, it scans the producing family of pseudo-divergences, starting from α = 0 (the least powerful165

pseudo-divergence), and if some pseudo-divergence reports high enough value, it serves as a ‘proof’ of166

differences between P and Q. If all pseudo-divergences from the family D report 0, then P and Q are167

equal almost everywhere as the family always includes JSD as a member. Formally, this intuition can be168

expressed with the following theorem.169

Theorem 3. If ADD is an adaptive divergence produced by an ordered and complete with respect to170

Jensen-Shannon divergence family of pseudo-divergences D , then for any two distributions P and Q:171

JSD(P,Q) = 0 if and only if AD(P,Q) = 0.172

A formal proof of Theorem 3 can be found in Appendix A2. Combined with the observation that173

AD(P,Q) ≥ 0 regardless of P and Q, the theorem states that AD is a divergence in the same sense as174

JSD. This, in turn, allows to use adaptive divergences as a replacement for Jensen-Shannon divergence in175

Adversarial Optimization.176

As can be seen from the definition, adaptive divergences are designed to utilize low-capacity pseudo-177

divergences (with underlying low-capacity models) whenever it is possible: for a pair of distant P and178

5/19PeerJ Comput. Sci. reviewing PDF | (CS-2019:11:43052:1:1:NEW 28 Feb 2020)

Manuscript to be reviewedComputer Science

Q one needs to train only a low-capacity model to estimate AD, using the most powerful model only to179

prove equality of distributions. As low-capacity models generally require fewer samples for training, AD180

allows an optimization algorithm to run for more iterations within the same time restrictions.181

Properties of ADD highly depend on the family D , and choice of the latter might either negatively or182

positively impact convergence of a particular optimization algorithm. Figure 1 demonstrates both cases:183

here, we evaluate JSD and four variants of ADD on two synthetic examples. In each example, the generator184

produces a rotated version of the ground-truth distribution and is parameterized by the angle of rotation185

(ground-truth distributions and examples of generator distributions are shown in Fig. 1A and Fig. 1D). In186

Fig. 1B and Fig. 1C AD shows behavior similar to that of JSD (both being monotonous and maintaining a187

significant slope in the respective ranges). In Fig. 1E, both variants of AD introduce an additional local188

minimum: as the rotation angle approaches π/2, marginal feature distributions become identical, which189

interferes with decision-tree-based algorithms (this is especially pronounced for AD with logarithmic190

capacity function as it prioritizes low-capacity models). This behavior is expected to impact convergence191

of gradient-based algorithms negatively.192

In contrast, in Fig. 1F neural-network-based AD with l2 regularization stays monotonous in the193

range [0,π/2] and keeps a noticeable positive slope, in contrast to saturated JSD. The positive slope is194

expected to improve convergence of gradient-based algorithms and, possibly, some variants of Bayesian195

Optimization. In contrast, neural-network-based AD with dropout regularization behaves in a manner196

similar to adaptive divergences in Fig. 1E. The most likely explanation is that l2 regularization mostly197

changes magnitude of the predictions without significantly affecting the decision surface and, therefore,198

largely replicates behavior of JSD, while dropout effectively lowers the number of units in the network,199

which biases the decision surface towards a straight line (i.e., towards logistic regression).200

4 IMPLEMENTATION201

A general algorithm for computing an adaptive divergence is presented in algorithm 1. This algorithm202

might be an expensive procedure as the algorithm probes multiple pseudo-divergences, and for each of203

these probes, generally, a model needs to be trained from scratch. However, two of the most commonly204

used machine learning models, boosting-based methods (Friedman, 2001) and Neural Networks, allow205

for more efficient estimation algorithms due to the iterative nature of training procedures for such models.206

4.1 Gradient Boosted Decision Trees207

Gradient Boosted Decision Trees (Friedman, 2001) (GBDT) and, generally, boosting-based methods,208

being ensemble methods, intrinsically produce an ordered and complete with respect to Jensen-Shannon209

divergence family of pseudo-divergences in the manner similar to equation (5). This allows for an efficient210

AD estimation procedure shown by algorithm 2. Here, the number of base estimators serves as capacity211

of pseudo-divergences, and mapping to α ∈ [0,1] is defined through an increasing capacity function212

c : Z+→ [0,1] 3.213

In our experiments, for ensembles of maximal size N, we use the following capacity functions:214

linear capacity: c(i) = c0
i

N
; (10)

logarithmic capacity: c(i) = c0
log(i+1)

log(N +1)
. (11)

Notice, however, that Equation (5) defines a discrete variant of AD, which most certainly will result215

in a discontinuous function4. This effect can be seen on Fig. 1E.216

4.2 Neural Networks217

There is a number of ways to regulate the capacity of a neural network. One of the simplest options218

is to vary the total number of units in the network. This, however, would almost certainly result in a219

discontinuous adaptive divergence, similarly to Gradient Boosted Decision Trees (Fig. 1E), which is not220

ideal even for black-box optimization procedures.221

3Technically, this function should be extended on [0,+∞) to be in agreement with definition 2.
4Note, that introducing a continuous approximation of the ensemble by, for example, varying learning rate for the last base

estimator in the current ensemble from 0 to ρ , eliminates discontinuity of AD.

6/19PeerJ Comput. Sci. reviewing PDF | (CS-2019:11:43052:1:1:NEW 28 Feb 2020)

Manuscript to be reviewedComputer Science

1.0 0.5 0.0 0.5 1.0 1.5

1.0

0.5

0.0

0.5

1.0

1.5

generator
ground-truth

A

0.0 0.5 1.0 1.5 2.0 2.5 3.0
rotation angle

0.0

0.1

0.2

0.3

0.4

0.5

0.6

di
ve

rg
en

ce

JSD
linear AD
logarithmic AD

B

0.0 0.5 1.0 1.5 2.0 2.5 3.0
rotation angle

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

di
ve

rg
en

ce

JSD
AD, dropout
AD, l2

C

4 3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

generator
ground-truth

D

0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
rotation angle

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

di
ve

rg
en

ce

JSD
linear AD
logarithmic AD

E

0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
rotation angle

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

di
ve

rg
en

ce

JSD
AD, dropout
AD, l2

F

Figure 1. Synthetic examples. (A) and (D): ground-truth distributions and example configurations of

generators. Both generators are rotated versions of the corresponding ground-truth distributions.

(B) and (E): JSD — Jensen-Shannon divergences estimated by Gradient Boosted Decision Trees with 500

trees of depth 3 (B), 100 trees of depth 3 (E); linear AD and logarithmic AD — adaptive divergences

based on the same models as JSD with linear and logarithmic capacity functions, dashed lines represent

some pseudo-divergences from the families producing adaptive divergences. (C) and (F): JSD —

Jensen-Shannon divergences estimated by fully-connected Neural Networks with one hidden layer with

64 units (C) and 32 units (F); AD, dropout and AD, l2 — adaptive divergences based on the same

architectures as the one for JSD, with dropout and l2 regularizations; dashed lines represent some of the

pseudo-divergences from the dropout-produced family. See Section 4 for the implementation details.

Algorithm 2 Boosted adaptive divergence

Require: XP, XQ — samples from distributions P and Q, B — base estimator training algorithm, N —

maximal size of the ensemble, c : Z+→ [0,1] — capacity function; ρ — learning rate;

F0← 1/2

i← 0

L0← log2

for i = 1, . . . ,N do

if Li > c(i) log2 then

Fi+1← Fi +ρ ·B(Fi,XP,XQ)
Li+1← L(Fi+1,XP,XQ)
i← i+1

else

return log2−Li

end if

end for

return log2−LN

7/19PeerJ Comput. Sci. reviewing PDF | (CS-2019:11:43052:1:1:NEW 28 Feb 2020)

Manuscript to be reviewedComputer Science

In this work, we instead use well-established dropout regularization Srivastava et al. (2014). Effects222

of dropout are somewhat similar to varying number of units in a network, but at the same time dropout223

offers a continuous parametrization — it is clear that setting dropout probability p to 0 results in an224

unregularized network, while p = 1 effectively restricts classifier to a constant output and intermediate225

values of p produce models in between these extreme cases. To produce a family of pseudo-divergences226

we equip dropout regularization with a linear capacity function: c(α) = 1−α , where α corresponds to227

dropout probability p.228

Methods with explicit regularization terms can also be used to produce a family of pseudo-divergences.229

In this work, we examine l2 regularization on network weights as one of the most widely used. In this230

case, a family of pseudo-divergences is defined by equation (4) with a logarithmic capacity function:231

c(α) =− log(α).232

Regularization methods mentioned above were selected primarily due to their simplicity and popularity233

in the field. Our experiments indicate that these methods perform well. Nevertheless, further studies are234

required to determine best-performing regularization techniques.235

In our experiments, we observe that unregularized networks require significantly more samples to be236

properly trained than regularized ones. To reduce discriminator variance, we suggest to use additional237

regularization r, strength of which is independent from the capacity parameter α , e.g.:238

Dα(P,Q) = log2−L(f (θ ∗, ·),P,Q); (12)

θ ∗ = argmin
θ∈Θ

L(f (θ , ·),P,Q)+ c(1−α) ·R(θ)+ r(θ).

In this work, following Louppe et al. (2017), we use gradient regularization r = R1 suggested239

by Mescheder et al. (2018). Note, that such family of pseudo-divergences is no longer complete w.r.t240

Jensen-Shannon divergence, i.e., D1 6= JSD. Nevertheless, D1 is still a proper divergence (Mescheder et al.,241

2018) (which closely resembles JSD), and all results in this work hold with respect to such divergences242

including main theorems and claims, i.e., the family defined above still produces a (generalized) variant243

of adaptive divergence.244

The proposed procedures for estimating AD is outlined in algorithms 3 and 4. As chosen regularization245

methods result in families of pseudo-divergences continuous w.r.t α , the proposed algorithm employs246

equation (8), i.e., it varies the strength of the regularization depending on the current values of the247

cross-entropy. The values of the loss function are estimated with an exponential moving average over248

losses on mini-batches during iterations of Stochastic Gradient Descent, with the idea that, for slowly249

changing loss estimations and small enough learning rate, network training should converge (Liu et al.,250

2018). We find that initializing exponential moving average with log2, which corresponds to the absent251

regularization, works best.252

5 EXPERIMENTS253

Adaptive divergence was designed to require fewer samples than its conventional counterparts. However,

for practical purposes, it is meaningless to consider this quantity outside the context of optimization. To

illustrate this claim, consider the following divergence:

ID(P,Q) =

{

0, if P = Q almost everywhere;

1, otherwise.

Such divergence can be estimated in a manner similar to that of adaptive divergence: starting with a254

low-capacity model, train the model to distinguish between P and Q, if the model reports any differences255

between distributions, return 1, otherwise increase the capacity of the model and repeat, until a sufficiently256

high capacity is reached, in which case return 0. In terms of the number of samples, ID is expected to257

be more efficient than AD; at the same time, ID is a textbook example of intrinsically hard optimization258

problem, rendering it useless for Adversarial Optimization. Therefore, we judge the performance of259

adaptive divergence only within an optimization procedure.260

Note that adaptive divergence is not expected to improve the optimization surface; nevertheless, as261

Fig. 1 demonstrates, the improvement is seemingly present in some instances; however, our experiments262

show that it does not play any significant role (see Appendix A3 for details). In the cases, when degradation263

of the optimization surface takes place, global optimization procedures, such as Bayesian Optimization,264

8/19PeerJ Comput. Sci. reviewing PDF | (CS-2019:11:43052:1:1:NEW 28 Feb 2020)

Manuscript to be reviewedComputer Science

Algorithm 3 Adaptive divergence estimation by a dropout-regularized neural network

Require: XP, XQ — samples from distributions P and Q;

fθ : X ×R→ R — neural network with parameters θ ∈Θ, the second argument represents dropout

probability and is zero if unspecified; c — capacity function;

ρ — exponential average coefficient;

β — coefficient for R1 regularization;

γ — learning rate of SGD.

Lacc← log2

while not converged do

xP← sample(XP)
xQ← sample(XQ)

ζ ← c
(

1− Lacc
log2

)

g0← ∇θ L(fθ (·,ζ),xP,xQ)
g1← ∇θ‖∇θ fθ (xP)‖

2

Lacc← ρ ·Lacc +(1−ρ) ·L(fθ ,xP,xQ)
θ ← θ − γ (g0 +βg1)

end while

return log2−L(fθ ,XP,XQ)

are still expected to benefit from the usage of AD by being able to perform more steps within the same265

budget on the number of generator calls.266

We compare adaptive divergence against JSD on three tasks5, each task is presented by a parametrized267

generator, ’real-world’ samples are drawn from the same generator with some nominal parameters.268

Optimization algorithms are expected to converge to these nominal parameters.269

We evaluate the performance of adaptive divergences with two black-box optimization algorithms,270

namely Bayesian Optimization and Adversarial Variational Optimization. As computational resources271

spent by simulators are of our primary concern, we measure convergence of Adversarial Optimization272

with respect to the number of samples generated by the simulation, which is expected to be roughly273

proportional to the total time in case of computationally heavy simulations. We chose to neglect the time274

spent on training models as the proposed methods are intended for simulations that are significantly more275

computationally intensive than training of any model with a reasonable capacity, for example, running276

ATLAS simulation (The ATLAS Collaboration, 2010) for the same number of times as budgets in our277

experiments would require several years on a single-core CPU.278

To measure the number of samples required to estimate a divergence, we search for the minimal279

number of samples such that the difference between train and validation losses is within 10−2 for Gradient280

Boosted Decision Trees and 5 ·10−2 for Neural Networks6. As a significant number of samples is involved281

in loss estimation, for simplicity, we use point estimations of losses. For GBDT, we utilize a bisection282

root-finding routine to reduce time spent on retraining classifiers; however, for more computationally283

expensive simulators, it is advised to gradually increase the size of the training set until the criterion is284

met.285

For each experiment, we report convergence plots — Euclidean distance from the current guess to286

the nominal parameters as a function of the number of examples generated by the simulator. As the287

performance of Bayesian Optimization is influenced by choice of the initial points (in our experiments,288

5 points uniformly drawn from the search space), each experiment involving Bayesian Optimization289

is repeated 100 times, and aggregated results are reported. Similarly, experiments with Variational290

Optimization are repeated 20 times each.291

5.1 XOR-like synthetic data292

This task repeats one of the synthetic examples presented in Fig. 1D: ground truth distribution is an293

equal mixture of two Gaussian distributions, the generator produces a rotated version of the ground-truth294

5Code of the experiments is available at https://github.com/HSE-LAMBDA/rapid-ao/
6This procedure requires generating an additional validation set of the size similar to that of the training set, which might be

avoided by, e.g., using Bayesian inference, or cross-validation estimates.

9/19PeerJ Comput. Sci. reviewing PDF | (CS-2019:11:43052:1:1:NEW 28 Feb 2020)

Manuscript to be reviewedComputer Science

Algorithm 4 Adaptive divergence estimation by a regularized neural network

Require: XP, XQ — samples from distributions P and Q;

fθ : X → R — neural network with parameters θ ∈Θ;

R : Θ→ R — regularization function; c — capacity function;

ρ — exponential average coefficient;

β — coefficient for R1 regularization;

γ — learning rate of SGD.

Lacc← log2

while not converged do

xP← sample(XP)
xQ← sample(XQ)

ζ ← c
(

1− Lacc
log2

)

g0← ∇θ [L(fθ ,xP,xQ)+ζ ·R(fθ)]
g1← ∇θ‖∇θ fθ (xP)‖

2

Lacc← ρ ·Lacc +(1−ρ) ·L(fθ ,xP,xQ)
θ ← θ − γ (g0 +βg1)

end while

return log2−L(fθ ,XP,XQ)

distribution with the angle of rotation being the single parameter of the generator. The main goal of295

this example is to demonstrate that, despite significant changes in the shape of the divergence, global296

optimization algorithms, like Bayesian Optimization, can still benefit from the fast estimation procedures297

offered by adaptive divergences.298

For this task, we use an adaptive divergence based on Gradient Boosted Decision Trees (100 trees with299

the maximal depth of 3) with linear and logarithmic capacity functions given by Equations (10) and (11)300

and c0 = 1/4. Gaussian Process Bayesian Optimization with Matern kernel (ν = 3/2 and scaling from301

[10−3,103] automatically adjusted by Maximum Likelihood fit) is employed as optimizer.302

Convergence of the considered divergences is shown in Fig. 2. As can be seen from the results,303

adaptive divergences tend to request fewer generator calls per estimation; and, given the same budget,304

both variants of adaptive divergence converge on parameters around an order of magnitude closer to305

the optimum than traditional JSD. Notice, that the initial rapid progress slows as optimizer approaches306

the optimum, and the slope of the curves becomes similar to that of JSD: this can be explained by AD307

approaching JSD as probed distributions become less distinguishable from the ground-truth one.308

5.2 Pythia hyper-parameter tuning309

This task is introduced by Ilten et al. (2017) and involves tuning hyper-parameters of the Pythia event310

generator, a high-energy particle collision simulation used at CERN. For this task, electron-positron311

collisions are simulated at a center-of-mass energy 91.2 GeV. As initial electron and positron collide312

and annihilate, new particles are created, some of which are unstable and might decay into more stable313

particles. A collision event is described by the properties of the final (stable) products. This process314

is intrinsically stochastic (due to the laws of physics) and covers a large space of possible outcomes,315

moreover, even with relatively large changes in generator’s hyper-parameters, outcome distributions316

overlap significantly, which makes it an excellent example for adversarial optimization. The nominal317

parameters of the Pythia event generator are set to the values of the Monash tune (Skands et al., 2014).318

In work by Ilten et al. (2017), various physics-motivated statistics of events are used as observables7,319

with a total of more than 400 features. The same statistics were originally used to obtain the Monash320

tune. For the purposes of the experiment, we consider one hyper-parameter, namely alphaSValue, with321

the nominal value of 0.1365 and search range [0.06,0.25].322

7Note, that this task is rather a realistic toy example — in practical settings, Pythia event generator is followed by a much more

computationally expensive detector simulation such as GEANT (Allison et al., 2016), the latter translates outcomes of an event

generator, such as Pythia, into observable values. For comparison, full ATLAS simulation (event generator and detector simulation)

mentioned above takes several minutes per sample, while Pythia alone typically require less than a second per event (milliseconds in

our settings).

10/19PeerJ Comput. Sci. reviewing PDF | (CS-2019:11:43052:1:1:NEW 28 Feb 2020)

Manuscript to be reviewedComputer Science

0 10000 20000 30000 40000 50000 60000
number of generator calls

10 2

10 1

100

Eu
cli

de
an

 d
ist

an
ce

 to
 th

e
so

lu
tio

n

JSD
linear AD
logarithmic AD

A

64 128 256 512 1024 2048 4096 8192 16384
generator calls per optimization step

0.00

0.05

0.10

0.15

0.20

0.25

fra
ct

io
n

of
 th

e
to

ta
l n

um
be

r o
f s

te
ps

JSD
linear AD
logarithmic AD

B

Figure 2. XOR-like synthetic example, Gradient Boosted Decision Trees. (A) Convergence of Bayesian

Optimization on: Jensen-Shannon divergence (marked as JSD), adaptive divergences with a linear

capacity function (marked as linear AD), and a logarithmic capacity function (logarithmic AD). Each

experiment was repeated 100 times; curves are interpolated, median curves are shown as solid lines,

bands indicate 25th and 75th percentiles. (B) Distribution of computational costs per single optimization

step measured by the number of generator calls requested for divergence estimation; each optimization

step requires exactly one divergence estimation; note logarithmic scaling of the x-axis.

We repeat settings of the experiment8described by Ilten et al. (2017). We employ Gradient Boosting323

over Oblivious Decision Trees (CatBoost implementation by Prokhorenkova et al., 2018) with 100 trees of324

depth 3 and other parameters set to their default values. We use Gaussian Process Bayesian Optimization325

with Matern kernel (ν = 3/2 and scaling from [10−3,103] automatically adjusted by Maximum Likelihood326

fit) as optimizer. Comparison of unmodified Jensen-Shannon divergence with adaptive divergences with327

linear and logarithmic capacity functions (defined by Equations (10) and (11) and c0 = 1/4) presented328

on Fig. 3.329

Results, shown in Fig. 3, indicate that, given the same budget, Bayesian Optimization over adaptive330

divergences yields solutions about an order of magnitude closer to the nominal value than Jensen-Shannon331

divergence. This acceleration can be attributed to the proposed estimation procedures that require far332

fewer generator calls than JSD. Additionally, notice that the slope of the convergence curves for AD333

gradually approaches that of AD as the proposal distributions become closer to the ground-truth one.334

5.3 Pythia alignment335

In order to test the performance of adaptive divergences with Adversarial Variational Optimization, we336

repeat the Pythia-alignment experiment suggested by Louppe et al. (2017). The settings of this experiment337

are similar to the previous one. In this experiment, however, instead of collecting physics-motivated338

statistics, we consider a simplified detector simulation, represented by a 32× 32 spherical grid with339

cells uniformly distributed in pseudorapidity ν ∈ [−5,5] and azimuthal angle φ ∈ [−π,π] space. Each340

cell of the detector records the energy of particles passing through it. The detector has 3 parameters:341

x,y,z-offsets of the detector center relative to the collision point, where z-axis is placed along the beam342

axis, the nominal offsets are zero, and the initial guess is (0.75,0.75,0.75). Fig. 4 shows averaged detector343

responses for the example configurations and samples from each of these configurations.344

8Methods proposed by Ilten et al. (2017) compare a fixed set of statistics computed over multiple examples. As adversarial

methods operate with individual examples, we use the same statistics computed for single events, i.e., original data can be recovered

from ours by simply averaging across events.

11/19PeerJ Comput. Sci. reviewing PDF | (CS-2019:11:43052:1:1:NEW 28 Feb 2020)

Manuscript to be reviewedComputer Science

0 10000 20000 30000 40000 50000 60000
number of generator calls

10 2

10 1

100

Eu
cli

de
an

 d
ist

an
ce

 to
 th

e
so

lu
tio

n

JSD
linear AD
logarithmic AD

A

64 128 256 512 1024 2048 4096 8192 16384
generator calls per optimization step

0.00

0.05

0.10

0.15

0.20

0.25

fra
ct

io
n

of
 th

e
to

ta
l n

um
be

r o
f s

te
ps

JSD
linear AD
logarithmic AD

B

Figure 3. Pythia hyper-parameter tuning, CatBoost. (A) Convergence of Bayesian Optimization on:

Jensen-Shannon divergence (marked as JSD), adaptive divergences with a linear capacity function

(marked as linear AD), and a logarithmic capacity function (logarithmic AD). Each experiment was

repeated 100 times, curves are interpolated, median curves are shown as solid lines, bands indicate 25th

and 75th percentiles. (B) Distribution of computational costs per single optimization step measured by

the number of generator calls requested for divergence estimation; each optimization step requires exactly

one divergence estimation; note logarithmic scaling of the x-axis.

A B C D

E F G H

Figure 4. Illustration of the Pythia-alignment task. (A) Aggregated events for zero offset (the nominal

configuration), 0.25 offset along x-axis (B), y-axis (C), and z-axis (D). (E-H) Single-event examples from

the corresponding configurations above — each activated pixel indicate a particle or multiple particles

passing trough the corresponding region of the detector.

For this task, a 1-hidden-layer Neural Network with 32 hidden units and ReLU activation function is345

employed. R1 regularization, proposed by Mescheder et al. (2018), with the coefficient 10, is used for346

the proposed divergences and the baseline. Adam optimization algorithm (Kingma and Ba, 2014) with347

learning rate 10−2 is used to perform updates of the search distribution. We compare the performance of348

two variants of adaptive divergence (dropout and l2 regularization) described in Section 4.349

Results are shown in Fig. 5. Adaptive divergences require considerably fewer samples for their350

12/19PeerJ Comput. Sci. reviewing PDF | (CS-2019:11:43052:1:1:NEW 28 Feb 2020)

Manuscript to be reviewedComputer Science

0 5000 10000 15000 20000 25000 30000
number of generator calls

100

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1
Eu

cli
de

an
 d

ist
an

ce
 to

 th
e

so
lu

tio
n

JSD
AD, dropout
AD, l2

A

128 256 512 1024 2048 4096 8192 16384
generator calls per optimization step

0.0

0.1

0.2

0.3

0.4

0.5

fra
ct

io
n

of
 th

e
to

ta
l n

um
be

r o
f s

te
ps

JSD
AD, dropout
AD, l2

B

Figure 5. Pythia-alignment, Neural Networks. (A) Convergence of Adversarial Variational Optimization

on: adaptive divergence produced by l2 regularization (AD, l2), dropout regularization (AD, dropout), and

the baseline divergence with constant R1 regularization (marked as JSD). Each experiment was repeated

20 times, curves are interpolated, median curves are shown by solid lines, bands indicate 25th and 75th

percentiles; steps-like patterns are interpolation artifacts. (B) Distribution of computational costs per

single optimization step measured by the number of generator calls requested for divergence estimation;

each optimization step requires exactly one divergence estimation; note logarithmic scaling of the x-axis.

estimation than the baseline divergence with only R1 regularization, which, given the same budget, allows351

both variants of adaptive divergence to accelerate Adversarial Optimization significantly. Note that the352

acceleration is even more pronounced in comparison to JSD estimated by an unregularized network: in353

our experiments, to achieve the set level of agreement between train and test losses, the unregularized354

network often requires more samples than the entire budget.355

6 DISCUSSION356

To the best knowledge of the authors, this work is the first one that explicitly addresses computational costs357

of Adversarial Optimization for expensive generators. Interestingly, several recent developments, like358

Progressive GAN (Karras et al., 2017) and ChainGAN (Hossain et al., 2018), use multiple discriminators359

of increasing capacity; however, this is done mainly to compensate for the growing capacity of the360

generators and, probably, not for reducing computational costs.361

Several recent papers propose improving stability of Adversarial Optimization by employing diver-362

gences other than Jensen-Shannon (Gulrajani et al., 2017; Arjovsky et al., 2017; Bellemare et al., 2017).363

Note that all results in this paper also hold for any divergence that can be formulated as an optimization364

problem, including Wasserstein (Arjovsky et al., 2017) and Cramer (Bellemare et al., 2017) distances. It365

can be demonstrated by adjusting Definition 2 and repeating the proof of Theorem 1 for a new divergence;366

presented algorithms also require only minor adjustments.367

Multiple works introduce regularization (Sønderby et al., 2016; Arjovsky and Bottou, 2017; Roth et al.,368

2017; Kodali et al., 2017; Mescheder et al., 2018) for improving stability and convergence of Adversarial369

Optimization. Most of the standard regularization methods can be used to regulate model capacity in370

adaptive divergences. Also, one can use these regularization methods in addition to adaptive divergence as371

any discriminator-based regularization effectively produces a new type of divergence. Pythia-alignment372

experiment (Section 5.3) demonstrates it clearly, where we use R1 regularization with constant coefficient373

in addition to varying-strength dropout and l2 regularization.374

As we discussed in Section 3, properties of adaptive divergences highly depend on the underlying375

families of pseudo-divergences; the impact of various regularization schemes is a subject of future376

research.377

13/19PeerJ Comput. Sci. reviewing PDF | (CS-2019:11:43052:1:1:NEW 28 Feb 2020)

Manuscript to be reviewedComputer Science

7 CONCLUSION378

In this work, we introduce adaptive divergences, a family of divergences meant as an alternative to Jensen-379

Shannon divergence for Adversarial Optimization. Adaptive divergences generally require smaller sample380

sizes for estimation, which allows for a significant acceleration of Adversarial Optimization algorithms.381

These benefits were demonstrated on two fine-tuning problems involving Pythia event generator and382

two of the most popular black-box optimization algorithms: Bayesian Optimization and Variational383

Optimization. Experiments show that, given the same budget, adaptive divergences yield results up to an384

order of magnitude closer to the optimum than Jensen-Shannon divergence. Note, that while we consider385

physics-related simulations, adaptive divergences can be applied to any stochastic simulation.386

Theoretical results presented in this work also hold for divergences other than Jensen-Shannon387

divergence.388

ACKNOWLEDGMENTS389

We wish to thank Mikhail Hushchyn, Denis Derkach, and Marceline Ivanovna for useful discussions and390

suggestions on the text.391

FUNDING STATEMENT392

The research leading to these results has received funding from Russian Science Foundation under grant393

agreement n◦ 19-71-30020.394

14/19PeerJ Comput. Sci. reviewing PDF | (CS-2019:11:43052:1:1:NEW 28 Feb 2020)

Manuscript to be reviewedComputer Science

Charles P. Elkan

REFERENCES395

Allison, J., Amako, K., Apostolakis, J., Arce, P., Asai, M., Aso, T., Bagli, E., Bagulya, A., Banerjee,396

S., Barrand, G., Beck, B., Bogdanov, A., Brandt, D., Brown, J., Burkhardt, H., Canal, P., Cano-Ott,397

D., Chauvie, S., Cho, K., Cirrone, G., Cooperman, G., Cortés-Giraldo, M., Cosmo, G., Cuttone, G.,398

Depaola, G., Desorgher, L., Dong, X., Dotti, A., Elvira, V., Folger, G., Francis, Z., Galoyan, A.,399

Garnier, L., Gayer, M., Genser, K., Grichine, V., Guatelli, S., Guèye, P., Gumplinger, P., Howard, A.,400

Hřivnáčová, I., Hwang, S., Incerti, S., Ivanchenko, A., Ivanchenko, V., Jones, F., Jun, S., Kaitaniemi,401

P., Karakatsanis, N., Karamitros, M., Kelsey, M., Kimura, A., Koi, T., Kurashige, H., Lechner, A.,402

Lee, S., Longo, F., Maire, M., Mancusi, D., Mantero, A., Mendoza, E., Morgan, B., Murakami, K.,403

Nikitina, T., Pandola, L., Paprocki, P., Perl, J., Petrović, I., Pia, M., Pokorski, W., Quesada, J., Raine,404

M., Reis, M., Ribon, A., Fira, A. R., Romano, F., Russo, G., Santin, G., Sasaki, T., Sawkey, D., Shin,405

J., Strakovsky, I., Taborda, A., Tanaka, S., Tomé, B., Toshito, T., Tran, H., Truscott, P., Urban, L.,406

Uzhinsky, V., Verbeke, J., Verderi, M., Wendt, B., Wenzel, H., Wright, D., Wright, D., Yamashita, T.,407

Yarba, J., and Yoshida, H. (2016). Recent developments in geant4. Nuclear Instruments and Methods408

in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,409

835:186 – 225.410

Arjovsky, M. and Bottou, L. (2017). Towards principled methods for training generative adversarial411

networks.412

Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein gan. arXiv preprint arXiv:1701.07875.413

Baydin, A. G., Shao, L., Bhimji, W., Heinrich, L., Naderiparizi, S., Munk, A., Liu, J., Gram-Hansen, B.,414

Louppe, G., Meadows, L., Torr, P., Lee, V., Cranmer, K., Prabhat, M., and Wood, F. (2019). Efficient415

probabilistic inference in the quest for physics beyond the standard model. In Advances in Neural416

Information Processing Systems 32, pages 5459–5472.417

Bellemare, M. G., Danihelka, I., Dabney, W., Mohamed, S., Lakshminarayanan, B., Hoyer, S., and418

Munos, R. (2017). The cramer distance as a solution to biased wasserstein gradients. arXiv preprint419

arXiv:1705.10743.420

Choi, Y., Choi, M., Kim, M., Ha, J.-W., Kim, S., and Choo, J. (2018). Stargan: Unified generative421

adversarial networks for multi-domain image-to-image translation. In 2018 IEEE/CVF Conference on422

Computer Vision and Pattern Recognition, pages 8789–8797. IEEE.423

Dumoulin, V., Belghazi, I., Poole, B., Mastropietro, O., Lamb, A., Arjovsky, M., and Courville, A. (2016).424

Adversarially learned inference. arXiv preprint arXiv:1606.00704.425

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics,426

pages 1189–1232.427

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and428

Bengio, Y. (2014). Generative adversarial nets. In Advances in neural information processing systems,429

pages 2672–2680.430

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. C. (2017). Improved training of431

wasserstein gans. In Advances in neural information processing systems, pages 5767–5777.432

Hossain, S., Jamali, K., Li, Y., and Rudzicz, F. (2018). Chaingan: A sequential approach to gans. arXiv433

preprint arXiv:1811.08081.434

Ilten, P., Williams, M., and Yang, Y. (2017). Event generator tuning using bayesian optimization. Journal435

of Instrumentation, 12(04):P04028.436

Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. (2017). Image-to-image translation with conditional adver-437

sarial networks. In Proceedings of the IEEE conference on computer vision and pattern recognition,438

pages 1125–1134.439

Karras, T., Aila, T., Laine, S., and Lehtinen, J. (2017). Progressive growing of gans for improved quality,440

stability, and variation. arXiv preprint arXiv:1710.10196.441

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint442

arXiv:1412.6980.443

Kodali, N., Abernethy, J., Hays, J., and Kira, Z. (2017). On convergence and stability of gans. arXiv444

preprint arXiv:1705.07215.445

Li, J., Madry, A., Peebles, J., and Schmidt, L. (2017). Towards understanding the dynamics of generative446

adversarial networks. arXiv preprint arXiv:1706.09884.447

Liu, H., Simonyan, K., and Yang, Y. (2018). Darts: Differentiable architecture search. arXiv preprint448

arXiv:1806.09055.449

15/19PeerJ Comput. Sci. reviewing PDF | (CS-2019:11:43052:1:1:NEW 28 Feb 2020)

Manuscript to be reviewedComputer Science

Louppe, G., Hermans, J., and Cranmer, K. (2017). Adversarial variational optimization of non-450

differentiable simulators. arXiv preprint arXiv:1707.07113.451

Mescheder, L., Geiger, A., and Nowozin, S. (2018). Which training methods for gans do actually452

converge? In International Conference on Machine Learning, pages 3478–3487.453

Metz, L., Poole, B., Pfau, D., and Sohl-Dickstein, J. (2016). Unrolled generative adversarial networks. In454

ICLR.455

Mockus, J. (2012). Bayesian approach to global optimization: theory and applications, volume 37.456

Springer Science & Business Media.457

Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., and Gulin, A. (2018). Catboost: unbiased458

boosting with categorical features. In Advances in Neural Information Processing Systems, pages459

6638–6648.460

Radford, A., Metz, L., and Chintala, S. (2015). Unsupervised representation learning with deep convolu-461

tional generative adversarial networks. arXiv preprint arXiv:1511.06434.462

Roth, K., Lucchi, A., Nowozin, S., and Hofmann, T. (2017). Stabilizing training of generative adversarial463

networks through regularization. In Advances in neural information processing systems, pages 2018–464

2028.465

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale image466

recognition. arXiv preprint arXiv:1409.1556.467

Sjöstrand, T., Ask, S., Christiansen, J. R., Corke, R., Desai, N., Ilten, P., Mrenna, S., Prestel, S., Rasmussen,468

C. O., and Skands, P. Z. (2015). An introduction to pythia 8.2. Computer physics communications,469

191:159–177.470

Sjöstrand, T., Mrenna, S., and Skands, P. (2006). Pythia 6.4 physics and manual. Journal of High Energy471

Physics, 2006(05):026.472

Skands, P., Carrazza, S., and Rojo, J. (2014). Tuning pythia 8.1: the monash 2013 tune. The European473

Physical Journal C, 74(8):3024.474

Sønderby, C. K., Caballero, J., Theis, L., Shi, W., and Huszár, F. (2016). Amortised map inference for475

image super-resolution. arXiv preprint arXiv:1610.04490.476

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout: a477

simple way to prevent neural networks from overfitting. The journal of machine learning research,478

15(1):1929–1958.479

The ATLAS Collaboration (2010). The atlas simulation infrastructure. European Physical Journal C:480

Particles and Fields, 70(3):823–874.481

Wierstra, D., Schaul, T., Glasmachers, T., Sun, Y., Peters, J., and Schmidhuber, J. (2014). Natural482

evolution strategies. The Journal of Machine Learning Research, 15(1):949–980.483

APPENDIX A1. FORMAL DEFINITIONS AND PROOFS484

Definition 4. A model family M = {Mα ⊆F | α ∈ [0,1]} is complete and nested, if:485

(N0) (x 7→ 1/2) ∈M0;486

(N1) M1 = F ;487

(N2) ∀α,β ∈ [0,1] : (α < β)⇒ (Mα ⊂Mβ).488

Theorem 1. If a model family M = {Mα ⊆F | α ∈ [0,1]} is complete and nested, then the family

D = {Dα : Π(X)×Π(X)→ R | α ∈ [0,1]}, where:

Dα(P,Q) = log2− inf
f∈Mα

L(f ,P,Q), (13)

is a complete and ordered with respect to Jensen-Shannon divergence family of pseudo-divergences.489

Proof. Let’s introduce function f0(x) = 1/2. Now we prove the theorem by proving that the family490

satisfies all properties from Definition 2.491

Property (D0) Due to Properties (N0) and (N2), f0 is a member of each set Mα . This implies, that492

Dα(P,Q)≥ 0 for all α ∈ [0,1]. For P = Q, cross-entropy loss function L(f ,P,Q) achieves its minimum493

in f = f0, therefore, Dα(P,Q) = 0 if P = Q for all α ∈ [0,1]. Therefore, for each α ∈ [0,1] Dα is a494

pseudo-divergence.495

16/19PeerJ Comput. Sci. reviewing PDF | (CS-2019:11:43052:1:1:NEW 28 Feb 2020)

Manuscript to be reviewedComputer Science

Property (D1) From Property (N2) follows, that for all 0≤ α < β ≤ 1:

Dα(P,Q) = log2− inf
f∈Mα

L(f ,P,Q)≥ log2− inf
f∈Mβ

L(f ,P,Q) = Dβ (P,Q).

Property (D2) This property is directly follows from Property (N1) and Equation (13).496

Definition 5. If M is a parameterized model family M = { f (θ , ·) : X → [0,1] | θ ∈ Θ}, then a function497

R : Θ→ R is a proper regularizer for the family M if:498

(R1) ∀θ ∈Θ : R(θ)≥ 0;499

(R2) ∃θ0 ∈Θ :
(

f (θ , ·)≡ 1
2

)

∧ (R(θ) = 0).500

Theorem 2. If M is a parameterized model family: M = { f (θ , ·) | θ ∈Θ} and M = F , R : Θ→ R is a501

proper regularizer for M , and c : [0,1]→ [0,+∞) is a strictly increasing function such, that c(0) = 0,502

then the family D = {Dα : Π(X)×Π(X)→ R | α ∈ [0,1]}:503

Dα(P,Q) = log2− min
θ∈Θα (P,Q)

L(f (θ , ·),P,Q);

Θα(P,Q) = Argmin
θ∈Θ

LR
α(θ ,P,Q);

LR
α(θ ,P,Q) = L(f (θ , ·),P,Q)+ c(1−α)R(θ);

is a complete and ordered with respect to Jensen-Shannon divergence family of pseudo-divergences.504

Proof. We prove the theorem by showing that the family D satisfies all properties from Definition 2.505

Property (D0) Due to Property (R2), there exists such θ0, that f (θ0, ·) ≡ 1/2 and R(θ0) = 0. Notice,506

that, for all P and Q, LR
α(θ0,P,Q) = log2 and LR

α(θ ,P,Q)≥ L(f (θ , ·),P,Q), therefore, Dα(P,Q)≥ 0 for507

all P,Q ∈Π(X) and for all α ∈ [0,1]. For the case P = Q, θ0 also delivers minimum to L(f (θ0, ·),P,Q)+508

c(1−α)R(θ0), thus, Dα(P,Q) = 0 if P = Q. This proves Dα to be a pseudo-divergence for all α ∈ [0,1].509

Property (D1) Let’s assume that 0 ≤ α < β ≤ 1, yet, for some P and Q, Dα(P,Q) > Dβ (P,Q). The

latter implies, that:

min
θ∈Ξα

L(f (θ , ·),P,Q)< min
θ∈Ξβ

L(f (θ , ·),P,Q); (14)

where: Ξα = Θα(P,Q) and Ξβ = Θβ (P,Q). Let us pick some model parameters:510

θα ∈ Argmin
θ∈Ξα

L(f (θ , ·),P,Q);

θβ ∈ Argmin
θ∈Ξβ

L(f (θ , ·),P,Q).

Since θβ ∈ Ξβ , then, by the definition of Θβ (P,Q):

LR
β (θβ ,P,Q)≤ LR

β (θα ,P,Q). (15)

From the latter and assumption (14) follows, that R(θβ) < R(θα). By the conditions of the theorem,

C = c(1−α)− c(1−β)> 0 and:

C ·R(θβ)<C ·R(θα). (16)

Adding inequality (15) to inequality (16):

LR
α(θβ ,P,Q)< LR

α(θα ,P,Q),

which contradicts the definition of θα . This, in turn, implies that the assumption (14) contradicts conditions511

of the theorem.512

Property (D2) Since c(0) = 0 and M = F , D1 = JSD by the definition.513

17/19PeerJ Comput. Sci. reviewing PDF | (CS-2019:11:43052:1:1:NEW 28 Feb 2020)

Manuscript to be reviewedComputer Science

APPENDIX A2. PROOF OF THEOREM 1514

Theorem 3. If ADD is an adaptive divergence produced by a complete and ordered with respect to515

Jensen-Shannon divergence family of pseudo-divergences D , then for any two distributions P and Q:516

JSD(P,Q) = 0 if and only if AD(P,Q) = 0.517

Proof. For convenience, we repeat the definition of an adaptive divergence ADD here:

ADD (P,Q) = inf{Dα(P,Q) | Dα(P,Q)≥ (1−α) log2} . (17)

Firstly, we prove that from JSD(P,Q) = 0 follows ADD (P,Q) = 0. Due to Property (D2), D1(P,Q) =518

JSD(P,Q) = 0, therefore, ∀α ∈ [0,1] : Dα(P,Q) = 0 due to Properties (D2) (pseudo-divergences form a519

non-decreasing sequence) and (P1) (non-negativity of pseudo-divergences), which, in turn, implies that520

AD(P,Q) = inf{0}= 0.521

Secondly, we prove that from ADD (P,Q) = 0 follows JSD(P,Q) = 0. Let’s assume that, for some

P and Q, AD(P,Q) = 0, but JSD(P,Q) = C > 0. Let us define the set of active capacities AD (P,Q) as

follows:

AD (P,Q) = {α | Dα(P,Q)≥ (1−α) log2} . (18)

Note, that for every proper family D and for every pair of P and Q: {1} ⊆AD (P,Q) and, if α ∈AD (P,Q)522

then [α,1]⊆AD (P,Q). The latter follows from Property (D1) (pseudo-divergences form a non-decreasing523

sequence) and the fact, that (1−α) log2 is a strictly decreasing function.524

The previous statement implies that there are three possible forms of AD (P,Q):525

1. a single point: AD (P,Q) = {1};526

2. an interval: AD (P,Q) = [β ,1];527

3. a half-open interval: AD (P,Q) = (β ,1];528

for some β ∈ [0,1). The first case would contradict our assumptions, since ADD (P,Q) = inf{D1(P,Q)}=529

C > 0. To address the last two cases, note, that ∀α ∈ AD (P,Q) : Dα(P,Q) ≥ (1−β) log2 > 0 due to530

the definition of AD (P,Q). However, this implies that ADD (P,Q) = inf{Dα(P,Q) | α ∈ AD (P,Q)} ≥531

(1−β) log2 > 0, which contradicts our assumptions.532

From the statements above, we can conclude that if ADD (P,Q) = 0, then JSD(P,Q) = 0. Combined533

with the previouly proven (JSD(P,Q) = 0)⇒ (ADD (P,Q) = 0), this finishes the proof.534

APPENDIX A3. SOURCE OF THE ACCELERATION535

Figures 2, 3, and 5 demonstrate that usage of adaptive divergence allows to accelerate Adversarial Opti-536

mization and lower requirements on the number of generator calls clearly play a major role. Nevertheless,537

this acceleration can be potentially attributed to the changes in the shape of the target function. Figure 6538

shows convergence plots for the experiments described above; however, the x-axis corresponds to the539

optimization step rather than number of generator calls. These convergence plots demonstrate that changes540

in shape either do not affect convergence speed (Figs. 6A and 6B) or have a negative impact (Fig. 6C).541

18/19PeerJ Comput. Sci. reviewing PDF | (CS-2019:11:43052:1:1:NEW 28 Feb 2020)

Manuscript to be reviewedComputer Science

0.0 2.5 5.0 7.5 10.0 12.5
optimization step

10 2

10 1

100

Eu
cli

de
an

 d
ist

an
ce

 to
 th

e
so

lu
tio

n

JSD
linear AD
logarithmic AD

A

0 2 4 6 8 10
optimization step

10 3

10 2

Eu
cli

de
an

 d
ist

an
ce

 to
 th

e
so

lu
tio

n

JSD
linear AD
logarithmic AD

B

0 20 40 60 80 100
optimization step

100

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Eu
cli

de
an

 d
ist

an
ce

 to
 th

e
so

lu
tio

n

JSD
AD, dropout
AD, l2

C

Figure 6. Convergence plots as functions of optimization step: (A) XOR-like synthetic dataset, (B)

Pythia hyper-parameter tuning, (C) Pythia alignment. Curves are interpolated, median curves are shown

as solid lines, bars indicate 25th and 75th percentiles. For visual clarity curves are

interpolated/extrapolated up to the median total number of steps for the corresponding method.

19/19PeerJ Comput. Sci. reviewing PDF | (CS-2019:11:43052:1:1:NEW 28 Feb 2020)

Manuscript to be reviewedComputer Science

	Introduction
	Background
	Adaptive Divergence
	Implementation
	Gradient Boosted Decision Trees
	Neural Networks

	Experiments
	XOR-like synthetic data
	Pythia hyper-parameter tuning
	Pythia alignment

	Discussion
	Conclusion
	References
	Formal definitions and proofs
	Proof of Theorem 1
	Source of the acceleration

