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ABSTRACT
Recent research has demonstrated the effectiveness of utilizing contrastive learning
for training Transformer-based sequence encoders in sequential recommendation
tasks. Items are represented using vectors and the relations between items are
measured by the dot product self-attention, the feature representation in sequential
recommendation can be enhanced. However, in real-world scenarios, user behavior
sequences are unpredictable, and the limitations of dot product-based approaches
hinder the complete capture of collaborative transferability. Moreover, the Bayesian
personalized ranking (BPR) loss function, commonly utilized in recommendation
systems, lacks constraints when considering positive and negative sampled items,
potentially leading to suboptimal optimization outcomes. This presents a complex
challenge that needs to be addressed. To tackle these issues, this article proposes a
novel method involving stochastic self-attention. This article introduces uncertainty
into the proposed model by utilizing elliptical Gaussian distribution controlled by
mean and covariance vector to explain the unpredictability of items. At the same
time, the proposed model combines a Wasserstein self-attention module to compute
the positional relationships between items within a sequence in order to effectively
incorporate uncertainty into the training process. The Wasserstein self-attention
mechanism satisfies the triangular inequality and can not only addresses uncertainty
but also promote collaborative transfer learning. Furthermore, embedding a
stochastic Gaussian distribution into each item will bring additional uncertainty into
the proposed model. Multi-pair contrastive learning relies on high-quality positive
samples, and the proposed model combines the cloze task mask and dropout mask
mechanisms to generate high-quality positive samples. It demonstrates superior
performance and adaptability compared to traditional single-pair contrastive
learning methods. Additionally, a dynamic loss reweighting strategy is introduced to
balance the cloze task loss and the contrastive loss effectively. We conduct
experiments and the results show that the proposed model outperforms the state-of-
the-art models, especially on cold start items. For each metric, the hit ratio (HR) and
normalized discounted cumulative gain (NDCG) on the Beauty dataset improved by
an average of 1.3% and 10.27%, respectively; on the Toys dataset improved by an
average of 8.24% and 5.89%, respectively; on the ML-1M dataset improved by an
average of 68.62% and 8.22%, respectively; and on the ML-100M dataset improved by
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an average of 93.57% and 44.87% Our code is available at DOI: 10.5281/zenodo.
13634624.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Databases, Software
Engineering, Neural Networks
Keywords Sequential recommendation, Contrastive learning, Wasserstein self-attention
mechanism, Bidirectional transformer, Data augmentation

INTRODUCTION
Sequential recommendation (SR) analyses a series of user behavior and item interactions
within a specific time interval to recommend relevant items to users (Vasile, Smirnova &
Paramita, 2020). This technique is commonly applied in e-commerce platforms (Zhang
et al., 2019), where the user’s historical behavior over a specific period is used to predict the
next possible action that the user will take. SR dynamically captures users’ short-term and
long-term interests, thereby enabling real-time recommendations, and enhancing the
accuracy of recommendation services. The essence of SR lies in effectively mining
sequential relationships, with common methodologies including sequence pattern mining
(Zaki, 2020), latent factor representation (Rendle et al., 2019), Markov chain-based
modeling (Rendle, Freudenthaler & Schmidt-Thieme, 2010;He &McAuley, 2016), and deep
learning-driven approaches (Zhang et al., 2019;Wu et al., 2019). Sequence pattern mining
requires substantial computational resources and intricate rule designs, making it
challenging to model complex sequences, which results in unsatisfactory recommendation
accuracy. Time is a crucial factor in recommendation models, as it tracks user interest
evolution; however, applying implicit factor models to implicit feedback recommendations
often faces issues such as insufficient positive feedback and noisy negative feedback,
thereby diminishing recommendation quality (Cheng et al., 2021). Markov chain modeling
involves calculating the probability distribution of state transitions based on user behaviors
at different moment, thereby offering insights into the conditional likelihood of behaviors
occurring compared to the previous step. Nevertheless, this method still struggles with data
sparsity and fails to address the long-tail effect that arises in e-commerce platforms
(Yu et al., 2019). These approaches have inherent limitations in modeling complex
features, feature interactions, and representation learning. With advancements in neural
network technologies, there has been a surge of deep learning-based SRmethods, including
convolutional neural networks (Gehring et al., 2017), long short-term memory (Hidasi,
2016), and attention mechanisms (Kang & McAuley, 2018). Various SR categories exist,
such as multi-behavior sequence recommendation (Xia et al., 2022), multi-interest
sequential recommendation (Li et al., 2019), and multi-scale sequential recommendation
(Liu et al., 2019, 2021).

Contrastive learning is a technique that focuses on learning data representations by
maximizing similarities between relevant samples while minimizing similarities between
irrelevant samples. This approach has gained significant traction within the realm of
unsupervised learning due to its flexible definition of positive and negative samples and its
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high performance. Drawing inspiration from contrastive learning, researchers have
integrated this approach into the domain of sequential recommendation, leading to several
notable research outcomes. Xie et al. (2022) proposed a multi-task framework called
Contrastive Learning for Sequential Recommendation (CL4SRec), aiming to extract user
patterns and effective user representations. By leveraging three data augmentation
methods to create self-supervised signals, the framework demonstrated better
performance. User-item interactions are driven by diverse intentions, but revealing these
underlying motivations can be challenging. Chen et al. (2022) proposed intent contrastive
learning method that learns the distribution of user intentions from unlabelled user
behavior sequences and incorporates the learned intentions into the sequence
recommendation model, thereby improving the quality of recommendations. Qiu et al.
(2022) proposed the DuoRec model, reshaping the distribution of sequence
representations in recommendation tasks, the core idea is to measure the similarity
between sequence representations and item embeddings in the shared space using dot
product. Wang et al. (2022) presented a multi-level contrastive learning framework,
MCLSR, which learns user and item representations from various perspectives at interest
and feature levels through cross-view contrastive learning, resulting in enhanced
recommendation performance.

Addressing data sparsity is crucial for recommendation performance, and utilizing data
augmentation method plays an important role in addressing this issue. However, such
methods may introduce noise. To mitigate this, Li et al. (2023) proposed a multi-intent
oriented comparative learning recommendation framework that combines sequential
patterns and self-supervised signals at the intent layer to create high quality views.
Wei et al. (2023) developed the MoCo4SRec model, employing contrastive self-supervised
learning and Momentum Contrast (MoCo) to handle sparse and noisy data effectively.
Furthermore, Du et al. (2022) proposed a contrastive learning framework for a
bidirectional Transformer called CBiT for sequential recommendation. The framework
utilized a sliding window technique to divide long user sequences into finer granularities
for data augmentation. By generating high-quality positive samples and employing
contrastive learning, CBiT yielded improved results in sequential recommendation across
four datasets.

In summary, existing contrastive learning methods in sequential recommendation
typically focus on enhancing user-item interaction sequences at the data level through
operations like item cropping, masking, and reordering, or by integrating auxiliary
information such as multi-level and multi-intention aspects. However, these methods
often struggle to provide consistent semantic enhancement samples. Various sequence
models (Kang & McAuley, 2018; Liu et al., 2021; Qiu et al., 2022; Sun et al., 2019; Xu et al.,
2021) leverage Transformer as a sequence encoder to capture item relationships and derive
quality sequence representations using a self-attentive mechanism. To address these
limitations, this article introduces a novel sequential recommendation model called
Contrastive Learning with Wasserstein Self-Attention (CLWSR). The contributions are
summarized as follows.
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(1) We construct a sequential recommendation model based on contrastive learning,
combined stochastic embedding to evaluate the basic interests and interest changes
inherent in user behavior to improve semantic representation. In addition, employing
additional regularization to constrain the distance between positive and negative sampled
items to reduce the BPR loss in sequential recommendation.

(2) We propose a Wasserstein self-attention mechanism based on the Wasserstein
distance to quantify differences between items within a sequence under uncertainty. The
mechanism effectively addresses cold-start by facilitating collaborative transferability.

(3) We employ the cloze task masking and dropout masking, which are data-enhancing
operations that generate positive samples and extend single-pair contrastive learning to
multi-pair instances. In addition, we introduce a novel dynamic loss reweighting strategy
to enhance the smoothing of multi-pair contrast loss.

(4) We conduct a series of experiments and ablation studies on the Beauty, Toys,
ML-1M and ML-100M datasets to validate the effectiveness of CLWSR. The experimental
results show that CLWSR outperforms the state-of-the-art models and achieve excellent
results in both HR and NDCG.

RELATED WORKS
Contrastive learning
Contrastive learning is a unique unsupervised learning technique that aims to derive data
representations by maximizing the similarity between related samples while minimizing
the similarity between unrelated samples. Therefore, the crucial aspect of contrastive
learning lies in establishing rules for generating positive and negative samples with high
flexibility and customization. The basic framework of contrastive learning is showed in
Fig. 1.

The input comprises three parts: positive pare Iþ, anchor IG, and negative pare I�. The
encoder typically consists of two sections: the backbone and the head, the head is crucial in
boosting the model’s performance, while the backbone is typically an encoder such as
ResNet-50 or Transformer, utilized for feature extraction. The loss function can be
computed as Eq. (1).

Lðq;kþ;fk�gÞ ¼ � log
exp qkþ

s

� �
exp qkþ

s

� �
þPk� exp

qk�
s

� �
0
@

1
A: (1)

Here q represents a query representation, kþ denotes the representation of positive
samples, and fk�g represents representation of the negative samples. s represents a
temperature hyperparameter.

BYOL is a self-supervised approach for image learning representations (Grill et al.,
2020). It utilized online and target networks for interactive and collaborative learn. The
online network is trained on augmented views of the image to predict the representation of
the image seen by different augmentations in the target networks. InforNCE is a
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discriminative approach to contrastive learning that utilized contrast prediction coding
(van den Oord, Li & Vinyals, 2018). It focused on extracting valuable representations by
leveraging probabilistic contrast loss to encourage the capture of informative spatial data
relevant for predicting future samples. Negative sampling was also utilized in this method
to facilitate model training. SimCLR introduced a learnable transformation between
representations and contrastive loss functions to enhance the quality of learned visual
representations (Chen et al., 2020). The framework aimed to improve the effectiveness of
learned representations through contrastive losses. SwAV leveraged contrastive methods
for data clustering. It incorporated a swapped prediction mechanism where the code of one
view was predicted based on the representation of another view (Caron et al., 2020). This
approach enhanced representation learning through contrastive techniques. MoCo is a
method designed for unsupervised visual representation learning. MoCo had
demonstrated performance comparable to supervised representation learning in various
visual tasks (He et al., 2020a). The approach incorporated momentum contrast to enhance
the quality of learned visual representations in an unsupervised setting.

The recommendation system requires full use of the user’s behavior sequence to gain
insight into the user’s behavior and potential interests. Transformer is used to fully explore
the user’s behavior sequence and realize the modeling of the user’s behavior sequence. For
example, models such as CBiT use multi-head attention in the Transformer layer to learn
the correlation between the target item and the items in the user’s behavior sequence
(Du et al., 2022). At the same time, the recommendation system needs to consider many
attributes, and the graph representation can represent non-Euclidean data. The edges and

Figure 1 Contrastive learning framework. Full-size DOI: 10.7717/peerj-cs.2749/fig-1
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nodes of the graph can represent rich attribute information, and the graph neural network
can continuously aggregate and update features to obtain the information of high-order
neighbors, thereby obtaining more accurate recommendation services. LightGCN learns
user and item embeddings by linearly propagating them on the user-item interaction
graph, and uses the weighted sum of the embeddings learned at all layers as the final
embedding (He et al., 2020b). Although GNN can capture high-order correlation
information, it also has problems such as over-smoothing.

Metric learning and distribution representations
Metric learning is a technique relies on a distance metric that aims to determine the
similarity or dissimilarity between objects. Its goal is to bring similar objects closer together
while pushing dissimilar objects further apart. Common examples of distances include the
Euclidean distance, the Mahalanobis distance (McLachlan, 1999) and the graph distance
(Gao et al., 2010). Distances and dot product are distinguished by their metric properties,
with distances typically satisfying triangular inequalities. The triangular inequality serves
as an inductive bias for distances and proves beneficial in dealing with data sparsity issues.
Early works on metric learning in recommendation systems include CML (Hsieh et al.,
2017), which utilized hinge loss to minimize the L2 distance between a user embedding and
an interaction term. LRML expanded on CML by recognizing its geometric constraints and
enhancing distance computation through the introduction of latent relations as translation
vectors (Tay, Anh Tuan & Hui, 2018). TransRec drew inspiration from knowledge
embedding and introduced translation vectors for sequential recommendations (He, Kang
& McAuley, 2017). SML is a metric learning recommendation method that extended CML
by incorporating additional item-centered metrics and adaptive margins (Li et al., 2020).
Distributional representations for objects (e.g., words, nodes, items) had received extensive
attention in research (Sun et al., 2018; Vilnis & McCallum, 2014). Distributional
representations introduce uncertainty and offer more flexibility than fixed embeddings.
DVNE employed Gaussian distributions as node embeddings and proposed a deep
variational model for propagating high-order neighboring information (Zhu et al., 2018).
TIGER represented words as Gaussian distributions and introduced Gaussian attention to
improve the modeling of word entailment relationships (Vilnis & McCallum, 2014; Qian
et al., 2021). DDN represented users and items using Gaussian distributions and learned
mean and covariance embeddings via a neural network (Zheng et al., 2019). DT4SR used
distributions to represent items and learned mean and covariance via separate
Transformers (Fan et al., 2021). The Wasserstein distance measured the distance between
discrete and continuous distributions, enabling continuous transformation from one
distribution to another while preserving distributional features. Fan et al. (2022) designed a
Wasserstein self-attention module to capture positional relationships between items within
a sequence, incorporating uncertainty into model training effectively. During the sampling
process, theWasserstein reservoir operates on sessions with higherWasserstein distance in
recommendation results, leading to lower recommendation likelihood for sessions with
higher Wasserstein distance.
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PRELIMINARIES
Problem definition
Given a set of users U and items V along with their interactions, we can represent user
interaction sequence as Su ¼ ½vu1 ; vu2 ; . . . ; vujSuj�, where vui 2 V denotes the i� th item
interaction sequence, and Su represents the user’s interaction sequence. The objective of SR
is to recommend a list of top N items as the potential the next item in the sequence.

Specifically, we aim to predict p vðuÞðjSujþ1Þ ¼ vjSu
� �

, which calculates the probability that the

user u will interact with item v at the next timestamp jSuj þ 1.

Self-attention for recommendation
The core component of the proposed model is the self-attention mechanism as a sequence
encoder. Firstly, when provided with the users’ sequence of operations Su and the
maximum sequence length n, we truncate the sequence by removing the earliest item if
jSuj > n or we pad it with zeros to create a sequence of fixed length s ¼ ðs1; s2; . . . ; snÞ.
Secondly, we define the item embedding matrix M 2 RjVj�d , where d represents the
number of dimensions. Lastly, we incorporate the trainable position embedding P 2 Rn�d

into the sequence embedding matrix, as illustrated in Eq. (2):

ÊSu ¼ ms1 þ pS1 ;ms2 þ pS2 ; . . . ;msn þ psn½ �: (2)

Specifically, self-attention is used to compute the dot product between items in a
sequence as a means of determining the correlation between them, as shown in Eq. (3):

SAðQ;K;VÞ ¼ softmax
QKTffiffiffi

d
p

� �
V (3)

whereQ ¼ ÊSuWQ, K ¼ ÊSuWK , and V ¼ ÊSuWV . SinceQ and K use the same sequence of
inputs, the scaled dot product component can learn potential correlations between items.

METHODS
The CBiT model employed a Transformer-based sequence encoder to address the issue of
semantic enhancement consistency in sequences, demonstrating good performance in
sequential recommendations (Du et al., 2022). Our model is inspired by CBiT and utilizes a
stochastic embedding layer, Wasserstein self-attention mechanism, and Transformer as
the sequence encoder to generate hidden representations of the sequences. A basic linear
network is used as the prediction layer to convert the hidden sequence representations into
a probability distribution of candidate items.

We describe the architecture of CLWSR in this section. CLWSR incorporates
contrastive learning for sequential recommendation using Wasserstein self-attention and
Transformer. The structure of CLWSR is illustrated in Fig. 2. Initially, the user sequence su
generates m different mask sequences. These stochastic embeddings are further
transformed into embedding vectors. Subsequently, the Wasserstein self-attention module
infers stochastic embeddings of mask sequences, in principle using the Wasserstein
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distance. The Wasserstein distance serves to quantify the distinctions between items in a
sequence amidst uncertain signals. The sequences, after passing through the Wasserstein
self-attention module, are subsequently fed through the Transformer, leading to the
generation of a hidden representation as the final output of the last layer. Let

Z1
u;Z

2
u; . . . ;Z

m
u be recognized as positive samples of the same sequence su, and let T

represent a collection of sequences with a maximum length. The primary objective of
training is established through the cloze task, where the model is tasked with
reconstructing the masked items based on their respective hidden representations. In
addition, the positive sample set for multi-pair contrastive learning is the hidden
representation of all masked sequences. To balance the cloze task loss and the multi-pair
contrastive learning loss, CLWSR proposes a dynamic loss reweighting strategy.

The workflow of the CLWSR model includes five steps, as detailed below:
Step 1: Generate sequences with various masks derived from user operation sequences.
Step 2: Encode uncertain items by employing a multidimensional elliptical Gaussian

distribution.

Figure 2 The architecture of CLWSR. Full-size DOI: 10.7717/peerj-cs.2749/fig-2
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Step 3: Utilize the Wasserstein distance to gauge the stochastic embedding disparity
between two items and depict sequence dynamics via the Wasserstein self-attention
mechanism.

Step 4: Transmit sequences through the Transformer to capture intricate relationships
via non-linear processes.

Step 5: Implement contrastive learning to enhance the diversity of positive and negative
samples.

The comprehensive workflow of CLWSR is shown in Fig. 3.

Stochastic embedding layer
We depict items as distributions and incorporate uncertainty into the item embedding.
The various deterministic vectors symbolize the items envisioned as random distributions,
enabling a broader coverage of space and inclusion of more collaborating neighbors. We
utilize a multidimensional elliptical Gaussian distribution to portray the items, with the
mean and covariance vectors governing the distribution’s elliptical shape. The covariance
factor introduces potential uncertainty into the items being represented. We establish a
mean embedding vector Ml 2 RjVj�d and a covariance embedding vector M� 2 RjV j�d

for all items. Given that the mean and covariance convey distinct signals, we introduce
positional embeddings pl 2 Rn�d and p� 2 Rn�d for the mean and covariance,
respectively. Consequently, for user u, the mean and covariance sequential embeddings
can be represented as indicated in Eqs. (4) and (5).

Êl
su ¼ Êl

s1 ; Ê
l
s2 ; . . . ; Ê

l
sn

h i
¼ ml

s1 þ Pl
s1 ;m

l
s2 þ Pl

s2 ; . . . ;m
l
sn þ Pl

sn

h i
(4)

Ê�
su ¼ Ê�

s1 ; Ê
�
s2 ; . . . ; Ê

�
sn

h i
¼ m�

s1 þ P�
s1 ;m

�
s2 þ P�

s2 ; . . . ;m
�
sn þ P�

sn

h i
: (5)

As an illustration, for the sequence’s initial term s1, its stochastic embedding is a
Gaussian distribution of d-dimensional N ¼ ls1 ;

P
s1

� �
, where ls1 ¼ Êl

s1 andP
s1
¼ diagðÊ�

s1Þ 2 Rd�d .

Wasserstein self-attention layer
Challenges persist in modeling the dynamics of sequence information via stochastic
embeddings. One such challenge involves efficiently depicting items with distributions
while adhering to triangular inequalities. Another obstacle pertains to aggregating
sequence signals effectively to derive suitable sequence representations. To tackle these
hurdles, CLWSR employes the Wasserstein distance to gauge the variability among items
and introduces a novel Wasserstein self-attention layer. This layer characterizes attention
weights as the Wasserstein distance between items and utilizes the linear summation trait

Figure 3 The workflow of CLWSR. Full-size DOI: 10.7717/peerj-cs.2749/fig-3
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of the Gaussian distribution to consolidate past items for acquiring a sequence
representation.

Wasserstein attention
In conventional attention mechanisms, attention weights are typically determined through
similarity measures or the dot product of key-value pairs. However, this method may face
challenges when processing lengthy sequences, as it necessitates calculating attention
weights for all potential positions. Consequently, this results in heightened computational
complexity and poses challenges in capturing long-range dependencies.

Wasserstein self-attention provides a more flexible and accurate method by using
Wasserstein distance instead of the traditional similarity measure. Wasserstein distance
considers the difference between the two distributions and aligns them in the different
distribution, and therefore better captures the relationship between the sequences,
especially when dealing with long sequences. We propose a novel self-attention variant
that adapts to stochastic embeddings. The self-attention value is represented as A 2 Rn�n.
Akt signifies the attention value between item sk and item st in the k-th and t-th positions in
the sequence, where k � t with causality considerations, respectively. According to Eq. (6),
the traditional self-focused attention weight is calculated using the Eq. (6).

Akt ¼ QkKT
tffiffiffi
d

p : (6)

Nevertheless, the dot product is not intended for assessing the difference between
distributions (i.e., stochastic embeddings) and does not uphold the triangular inequality.
Therefore, the distance between the stochastic embeddings of the two items is measured
using the Wasserstein distance. Formally, given two items sk and st , the corresponding
stochastic embeddings are Nðlsk ;

P
sk
Þ and Nðlst ;

P
st
Þ, where lsk ¼ Êl

sk
Wl

K ,P
sk
¼ ELU diag Ê�

sk
W�

K

� �� �
þ 1, lst ¼ Êl

stW
l
Q;
P

st
¼ ELU diag Ê�

st W
�
Q

� �� �
þ 1.

Exponential linear unit (ELU) is used to ensure the positive definite property of the
covariance, which maps inputs to the range ½�1;þ1Þ. We use the negative 2-Wasserstein
distance W2ð:; :Þ to define the attention weights, which are computed as in Eq. (7):

Akt ¼�W2ðsk; stÞ ¼ � jjlsk � lst jj22 þ trace �sk þ�st � 2 �
1
2
sk�sk�

1
2
st

� �1
2

� �� �
: (7)

Wasserstein distance offers several advantages. Firstly, Wasserstein distance can assess
the item dissimilarity using uncertainty information because it is adept at gauging the
disparity between distributions. Secondly, Wasserstein distance adheres to the triangle
inequality, enabling inductive reasoning to capture collaborative transferability in
sequence modelling. Lastly, while dealing with non-overlapping distributions, the
Wasserstein distance provides a smoother measure, thus contributing to a more stable
training process. In contrast, Kullback–Leibler divergence may yield an infinite distance,
leading to numerical instability.
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Wasserstein attentive aggregation
For each position in the sequence, the similarity to other positions is first calculated using
Wasserstein distance, then these similarities are converted into weights, and finally the
embeddings from the previous steps are weighted and summed with these weights to
obtain the output embedding for the current position. Thus, when the attention weights
are normalized, weighted summation of the embeddings means that the embeddings from
the previous steps are weighted and summed using these normalized weights as
coefficients to obtain the output embedding for the current position. With this approach,
the model can concentrate on the information in the sequence that is most relevant to the
current location, leading to better modelling and prediction.

The output embedding of the item at each position in the sequence is a weighted sum of
the embeddings from the previous steps, so the weighted sum of the embeddings is
weighted by normalizing the attention weights, where the weights are the normalized
attention values ~A as in Eq. (8):

~Akt ¼ AktPt
j¼1 Ajt

: (8)

As a result of representing each item as a stochastic embedding with both mean and
covariance characteristics, these two components must be aggregated separately. We use
the linear combination property of the Gaussian distribution as Eq. (9).

zlst ¼
Xt
k¼1

~AktV
l
sk
; z�st ¼

Xt
k¼1

~A2
ktV

�
sk
: (9)

Transformer layer
Each Transformer block includes a multi-head self-attention module and a feed-forward
network. The multi-head self-attention module for efficient access to information in
various subspaces at different positions. The calculation method is shown in Eq. (10).

z�st ¼
QkKT

tffiffiffi
d

p : (10)

where Q ¼ ðz�stWÞQ, K ¼ ðz�stWÞK , V ¼ ðz�stWÞV , and * can be either l or �.
As multi-head self-attention primarily relies on linear projections, incorporating a feed-

forward network post the attention layer aids in capturing non-linear features. The
calculation process is expressed as Eqs. (11) and (12).

FFNlðZl
stÞ ¼ ELUðZl

stW
l
1 þ bl1ÞWl

2 þ bl2 : (11)

FFN�ðZ�
st Þ ¼ ELUðZ�

st W
�
1 þ b�1 ÞW�

2 þ b�2 : (12)

whereW�
1 2 Rd�d,W�

2 2 Rd�d , b�1 2 Rd , and b�2 2 Rd are learnable parameters, and * can
be l or �. Given the numerical stability benefit of the Exponential Linear Unit (ELU), we
opt for ELU over Rectified Linear Unit (ReLU). Additionally, we incorporate other
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components like residual connections, normalization layer, and residual layers. The output
of the layer can be expressed as:

Zl
st ¼ zlst þ DropoutðFFNlðLayerNormðzlstÞÞÞ (13)

Z�
st ¼ ELU z�st þ Dropout FFN� LayerNorm z�st

� �� �� �� �
þ 1: (14)

The proposed model utilizes the combination of ELU activation and covariance
embedding to ensure the positive definite nature of the covariance.

Prediction layer
Considering the final output of any hidden representation zt at position t, where the mean
embedding and covariance embedding at each position are summed to obtain zt , we adopt
a straightforward linear layer to transform zt into a probability distribution over candidate
items:

PðvÞ ¼ wpzt þ bp: (15)

In Eq. (15), wp 2 RjV j�d is the weight matrix, and bp 2 RjVj is the bias term for the
prediction layer.

Based on our practical observations, we do not use feed forward networks with item
embedding matrices (Sun et al., 2019), but instead choose to use basic linear layers. We
found that employing a prediction layer with a shared item embedding matrix can
undermine the contrastive learning task, which depends on the shared item embedding
matrix to compute item similarities. In addition to reducing computational overhead, the
prediction layer without the item embedding matrix also decouples the dependency
between the cloze task and the contrastive learning task, making the two tasks independent
of each other.

Learning with the cloze task
The traditional BPR loss function is used to optimize the ranking of candidate items that
users are interested in. It is trained by maximizing the rating difference between positive
and negative samples, and is defined as shown in Eq. (16). However, this method is prone
to overfitting or local optimization, resulting in uneven distribution of positive and
negative samples, or too small interval between positive and negative samples.

L ¼ �
X

ðu;i;jÞ2D
log rðr̂ui � r̂ujÞ (16)

where ðu; i; jÞ denotes a triad where u is the user, i is a positive sample (items that the user
likes), and j is a negative sample (items that the user does not like). r̂ui is the predicted
rating of item i by user u. r̂uj is the predicted rating of item j by user u. r is the sigmoid
function used to map the rating difference between ð0; 1Þ.

In this article, we generate multiple positive samples by introducing the cloze task, and
in this way extend the sample generation method of traditional BPR. Unlike the traditional
approach of considering only a pair of positive and negative samples for training, the new
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approach allows a user to learn by comparing and contrasting with multiple items,
improving the model’s learning ability. In addition to this, dropout mask is a regularization
technique commonly used in neural network training to avoid overfitting by randomly
dropping some neurons. Here, dropout mask is not only used for neural network training
but also used to generate multiple positive samples. This allows the model to generate
multiple sample pairs for comparative learning during training, thus enhancing the
model’s learning of potential preferences and features.

In summary, to train the Transformer, the cloze task is brought in. For each iteration
step, given the sequence su, we use different random seeds to generate m masking
sequences s1u; s

2
u; . . . ; s

m
u . In each masking sequence sju (1 � j � m), the proportion q of all

items in the sequence su is randomly replaced with a masking marker (mask), and the
position index of the masked item is denoted as Iju. The model requires reconstruction of
the masked items. Based on top of the BPR loss function formulation, the training target of
the loss function with the cloze task is defined as Eq. (17):

Lmain ¼ �
Xm
j¼1

X
t2Iju

log rðPðvt j sjuÞÞ þ
X
v�t =2su

log 1� rðPðv�t j sjuÞÞ
2
4

3
5: (17)

Here, r represents the sigmoid function, and the probability Pð�Þ is defined as Eq. (15).
Each ground truth item vt is paired with a randomly sampled negative item v�t . Note that
in computing the loss function for the cloze task, we only consider masked items.

Multi-pair contrastive learning
The purpose of contrastive learning is to bring positive samples closer to each other while
separating negative samples from positive ones. Normally, given a batch of sequences

fsugNu¼1 with batch size N, a pair of hidden representations Zx
u and Zy

u stemming from the

same original sequence su are brought together as a pair of positive samples while the other
2ðN � 1Þ hidden representations from the same batch are considered negative samples
(Chen et al., 2020). We define the contrastive learning loss for one pair based on InfoNCE
(van den Oord, Li & Vinyals, 2018) as Eq. (18):

lðZx
u;Z

y
uÞ ¼ � log

ehZ
x
u;Z

y
ui=s

ehZx
u;Z

y
ui=s þPN

k¼1;k6¼u

P
c2fx;yg e

hZx
u;Z

c
ki=s

: (18)

where s is a temperature hyper-parameter, and x and y denote the index of two different
mask sequences, with 1 � x; y � m. The cosine similarity function hf1;f2i ¼ fT

1 �f2
jjf1jj jjf2jj is

used to calculate the similarity between two hidden representations.

RESULTS
Datasets
We conduct experiments on four benchmark datasets: Beauty, Toys, MovieLens-1M, and
MovieLens-100M. The Amazon dataset (McAuley et al., 2015) contains reviews of
products from various domains with relatively short sequence lengths. We choose Beauty
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and Toys as two distinct datasets derived from the Amazon dataset in our experiments.
MovieLens-1M (ML-1M) and MovieLens-100M (ML-100M) comprise user ratings of
movies with considerably long sequences (Harper & Konstan, 2015). All interactions are
treated as implicit feedback. We eliminate duplicate interactions and compile user
sequences by organizing each user’s interactions chronologically. Following the data
filtering techniques outlined in previous studies (Liu et al., 2021; Qiu et al., 2022; Sun et al.,
2019), we exclude users with fewer than five interactions and items associated with fewer
than five users. Our approach employs a leave-one-out evaluation setup: the last item is
reserved for testing, the penultimate item for validation, and the remaining items for
training. The statistical details of the preprocessed datasets are presented in Table 1.

As can be seen from Table 1, these four datasets include different purposes, the data is
extremely sparse, and the average length and data size are also significantly different,
especially ML-100M, whose actions scale reaches 33,000,000, and the data volume is
extremely large.

Metrics
For a fair comparison, we rank the predictions for the entire item set (Krichene & Rendle,
2020). We report top-K hit rate (HR@K) and NDCG@K as metrics.

HR@K ¼ 1
N

XN
i¼1

hitsðiÞ (19)

where N is the total number of users. hitsðiÞ represents whether the value visited by the i-th
user is in the recommendation list. It is 1 if yes, 0 otherwise.

NDCG@K ¼ 1
N

XN
j¼1

1
log2ðpi þ 1Þ (20)

where pi is the real visit value of the i-th user in the position of the recommendation list. If
the value does not exist in the recommendation list, then pi ! 1.

Hyperparameter settings
The experimental setup utilizes the PyTorch framework, featuring two Transformer blocks
with two attention heads, a hidden dimension, and a batch size of 256 each. The mask ratio
q is configured at 0.15, following the recommendation from BERT. We employ the Adam
optimizer (Diederik, 2014) with a learning rate of 0.001, b1 ¼ 0:9 and b2 ¼ 0:999, while

Table 1 Statistics of datasets.

Datasets #Users #Items #Actions Avg. length Sparsity

Beauty 22,363 12,101 198,502 8.9 99.93%

Toys 19,412 11,924 167,597 8.6 99.95%

ML-1M 6,040 3,953 1,000,209 163.5 95.21%

ML-100M 330,975 86,000 33,000,000 99.8 99.88%
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incorporating exponential decay of the learning rate after every 100 epochs (Loshchilov,
2017). In the process of hyperparameter tuning, we explore the dropout ratio from 0.1 to
0.9, the factor k from 1 to 9, s from 0.1 to 6, the count of positive samples M from 2 to 8,
and a values f0:0001; 0:0005; 0:001; 0:05; 0:1g. The model is trained for 250 epochs, and
checkpoints demonstrating the best NDCG@10 on the validation set are selected for
testing.

Experimental results
The presented baselines used for comparison are as follows:

- CoSeRec (Liu et al., 2021): Enhances CL4SRec by integrating data augmentation
techniques.

- CBiT (Fan et al., 2022): Utilizes a bidirectional Transformer to enhance performance
in sequential recommendation tasks through contrastive learning.

- HGN (Ma, Kang & Liu, 2019): Combines BPR to get both long-term and short-term
user preferences.

- LightGCN (He et al., 2020b): Includes GCN-neighborhood aggregation, a pivotal
component for collaborative filtering.

- TGT (Xia et al., 2022): Presents a temporal graph Transformer recommendation
framework to capture dynamic short-term and long-term user-item interaction patterns
jointly.

- HAM (Peng et al., 2021): Generates sequential recommendations by considering long-
term preferences of users, recent activities, and item synergies. Item representation is
achieved through simple pooling, while synergy modeling involves element-wise product
operations.

- MADGA (Wang et al., 2024): MADGA dynamically transforms subsequences into
graphs to capture the evolving interdependencies. Uniquely, this GA approach involves
explicit alignment of both nodes and edges, employing Wasserstein distance for nodes and
Gromov-Wasserstein distance for edges.

- SwiMDiff (Tian et al., 2024): SwiMDiff employs a scene-wide matching approach that
effectively recalibrates labels to recognize data from the same scene as false negatives. This
adjustment makes CL more applicable to the nuances of remote sensing.

CLWSR’s performance is evaluated against these baseline models, and the experimental
results are summarized in Table 2.

From the analysis presented in Table 2, the CLWSR model performs relatively stably on
all four datasets and outperforms other models overall, especially on the ML-1M and ML-
100M dataset, where they perform better that other baseline models. This success can be
attributed to the longer average sequence length of this database compared to other
datasets. The Wasserstein self-attention mechanism implemented in the model effectively
captures the dependencies between various positions in the extended session sequences. In
addition, leveraging the cloze task for Transformer training contributes to improve the
performance of the model.

However, it can be seen on the Beauty dataset that it slightly lags behind HAM at HR@5
and MADGA at NDCG@5 and NDCG@10, respectively. From the Toys dataset, it can be
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seen that it lags behind MADGA at NDCG@5 and SwiMDiff at NDCG@20, respectively.
The main reason for the lagging behind is due to the fact that the three models have
stronger adaptations on the shorter-length sequences, while our model is more adapted to
longer length sequences. The performance enhancement observed in CLWSR model can
be attributed to the synergistic influence of three key components: distributed embedding,
Wasserstein self-attention, and the advantages derived from multi-pair comparison
learning. The variation curves of NDCG@10 and HR@10 on four different datasets are
shown in Figs. 4–7. We can see that the use of distributed embedding, Wasserstein self-
attention and multi-pair comparison learning in CLWSR significantly improves
performance on all four datasets.

Model complexity analysis
The computational complexity of CLWSR is dominated by the randomized mask
operation, the Wasserstein self-attention layer, the feedforward network, Transformer
layer, and contrastive learning module. The Wasserstein self-attention defined in Eq. (7)

Table 2 Experimental results.

Dataset Metric HGN CoSeRec LightGCN TGT HAM CBiT MADGA SwiMDiff CLWSR

Beauty HR@5 0.0276 0.0504 0.0285 0.0653 0.0736 0.0637 0.0684 0.0588 0.0732

HR@10 0.0459 0.0726 0.0853 0.0835 0.0982 0.0905 0.0987 0.0892 0.1125

HR@20 0.0788 0.1035 0.1156 0.1088 0.1199 0.1223 0.1193 0.1082 0.1233

NDCG@5 0.0332 0.0339 0.0174 0.0491 0.0421 0.0451 0.0592 0.0391 0.0520

NDCG@10 0.0421 0.0410 0.0231 0.0529 0.0506 0.0537 0.0679 0.0599 0.0589

NDCG@20 0.0655 0.0488 0.0538 0.0623 0.0671 0.0617 0.0770 0.0606 0.0772

Toys HR@5 0.0483 0.0533 0.0266 0.0502 0.0075 0.0640 0.0591 0.0610 0.0691

HR@10 0.0659 0.0755 0.0508 0.0800 0.1070 0.0865 0.0926 0.0796 0.1110

HR@20 0.0877 0.1037 0.0799 0.1187 0.1237 0.1167 0.1233 0.1022 0.1251

NDCG@5 0.0311 0.0370 0.0173 0.0378 0.0368 0.0462 0.0367 0.0568 0.0491

NDCG@10 0.0581 0.0442 0.0479 0.0511 0.0471 0.0535 0.0488 0.0599 0.0629

NDCG@20 0.0652 0.0513 0.0591 0.0692 0.0582 0.0610 0.0915 0.0703 0.0714

ML-1M HR@5 0.1231 0.1128 0.0360 0.0199 0.0098 0.2095 0.3152 0.2135 0.3648

HR@10 0.2064 0.1861 0.0431 0.0871 0.1730 0.3013 0.4012 0.2987 0.4091

HR@20 0.3081 0.2950 0.0659 0.1188 0.2142 0.3998 0.4871 0.3826 0.5243

NDCG@5 0.1065 0.0692 0.0368 0.0621 0.1070 0.1436 0.1312 0.1363 0.1662

NDCG@10 0.1449 0.0915 0.0692 0.0885 0.1387 0.1694 0.1574 0.1704 0.1728

NDCG@20 0.1688 0.1247 0.0749 0.1076 0.1639 0.1957 0.1892 0.1993 0.2092

ML-100M HR@5 0.1033 0.0964 0.0211 0.0136 0.0097 0.1871 0.1960 0.1899 0.2158

HR@10 0.1102 0.0932 0.0234 0.0198 0.0802 0.2151 0.1977 0.1900 0.2196

HR@20 0.1107 0.0993 0.0227 0.0211 0.0844 0.2312 0.2034 0.1972 0.3134

NDCG@5 0.0931 0.0764 0.0301 0.0545 0.1101 0.1456 0.1163 0.1143 0.1516

NDCG@10 0.1002 0.0723 0.0318 0.0691 0.1265 0.1504 0.1193 0.1159 0.1577

NDCG@20 0.1145 0.0788 0.0412 0.0785 0.1290 0.1610 0.1354 0.1290 0.1611
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can be converted to using batch matrix multiplications. The second term in Eq. (7) can be
transformed as a calculation of Euclidean norm as Eq. (21):

trace
X
St

þ
X
Sk

� 2
X1=2
Sk

X
St

X1=2
Sk

 !1=2
0
@

1
A ¼

X1=2
St

�
X1=2
Sk

�����
�����

�����
�����
2

F

(21)

where jj � jj2F is the Frobenius norm, which can be calculated by matrix multiplications.
Also, since

P
St
and

P
Sk
are both diagonal matrices, we can further reduce the

computational complexity to: nd2 þ n2d
2 þ 2n2, The Euclidean norm of the mean

Figure 4 NDCG@10 and HR@10 on Beauty dataset. Full-size DOI: 10.7717/peerj-cs.2749/fig-4

Figure 5 NDCG@10 and HR@10 on Toys dataset. Full-size DOI: 10.7717/peerj-cs.2749/fig-5
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embeddings part in Eq. (7) can also be calculated by matrix multiplications with the same
time complexity. Therefore, the overall time complexity of the Wasserstein self-attention
is: Oðnd þ n2d þ 4n2Þ. The random cloze task is a mechanism for generating positive and
negative samples by randomly masking part of the sequence. Assuming that each sample
generates P negative samples, the overall complexity of the random cloze task is
OðB � P � nÞ, where B is the batch size. In contrastive learning, the main computational

Figure 6 NDCG@10 and HR@10 on ML-1M dataset. Full-size DOI: 10.7717/peerj-cs.2749/fig-6

Figure 7 NDCG@10 and HR@10 on ML-100M dataset.
Full-size DOI: 10.7717/peerj-cs.2749/fig-7
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complexity comes from the generation of positive and negative samples, the similarity
calculation, and the loss function calculation. Therefore, the general complexity of
contrastive learning is OðB � P � n � d þ B � PÞ. By also considering the feed-forward
networks, we obtain the final asymptotic computational complexity as

O nd þ n2d þ 4n2 þ nd2
2 þ B � P � n � ð1þ dÞ þ B � P� 	

. The computational complexity of

traditional self-attention is Oðn2d þ nd2Þ. Note that both complexities are typically
dominated by the Oðn2dÞ term as d is typically much larger than 4. This indicates that
CLWSR has asymptotic time complexity similar to general conventional models.

We use the same GPU to measure the average running time per epoch. We compare the
running time of the proposed model with several benchmarks. As shown in Table 3,
CLWSR achieves the best results on Beauty, ML-1M, and ML-100M. The running time on
the Toys datasets is moderate. Further analysis of the dataset in Table 2 shows that CLWSR
performs better when operating on datasets with longer average sequence lengths, as
Beauty, ML-1M, and ML-100M have relatively longer average sequences, so they
effectively capture dependency relationships at various positions within extended
sequences.

Ablation studies
We perform ablation studies of augmentation strategies that utilize stochastic embedding
and Wasserstein self-attention mechanism to evaluate their effectiveness in this section.

We use a stochastic Gaussian distribution for each item, leveraging covariance to
introduce sequence uncertainty into our model. The development of a novel Wasserstein
self-attention model aids in defining item-item positional relationships within sequences,
thereby effectively integrating uncertainty into the model training process. Moreover, the
Wasserstein self-attention mechanism encourages collaborative and objective learning by
adhering to the triangle inequality principle. Our model incorporates both stochastic
embedding and Wasserstein self-attention mechanisms.

To evaluate these two strategies’ individual efficacy, we conducted ablation experiments
on our approach, modifying only one of the mechanisms while maintaining optimal

Table 3 The average running time of each epoch.

Beauty (s) Toys (s) ML-1M (s) ML-100M (s)

HGN 2.063 2.281 1.852 2.764

CoSeRec 1.879 1.988 1.297 2.657

LightGCN 1.894 1.959 1.583 1.986

TGT 0.957 1.392 0.795 1.312

HAM 0.820 0.991 0.701 1.178

CBiT 0.883 0.892 0.315 1.031

MADGA 0.796 0.601 0.219 0.642

SwiMDiff 0.561 0.653 0.375 0.523

CLWSR 0.216 0.640 0.085 0.461
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settings for the other hyperparameters. As depicted in Fig. 8, enabling contrastive learning
surpasses a model without contrastive learning altogether. Notably, neither stochastic
embedding nor the Wasserstein self-attention mechanism in isolation can achieve
performance comparable to our combined hybrid strategy. This disparity can be traced to
two key factors:

1. The amalgamation of these mechanisms introduces additional perturbations to the
original sequence, yielding more challenging and higher-quality samples for comparative
learning.

2. The collaborative and objective learning ingrained within CLWRS, where such
principles aid cold items in identifying more collaborative neighbors, as popular items may
exhibit correlations through triangular inequalities. This underlines the collaborative
transferability signals’ requisite and superiority in the realm of sequential
recommendation.

Discussion
The primary distinction betweenWasserstein self-attention and the conventional attention
mechanism lies in the calculation of attention weights. While the traditional attention
mechanism employs dot product, Wasserstein self-attention utilizes negative 2-
Wasserstein distances. As a result, the distribution of attention weights in Wasserstein self-
attention tends to be more uniform compared to the traditional attention mechanism,
which tends to focus on a select few items in the sequence. This difference can be attributed
to the concept of collaborative transmissibility, which facilitates a closer association
between neighboring items and introduces a wider range of collaborative neighbors in the
modeling of item-item transitions.

Figure 8 Ablation studies on stochastic embedding and Wasserstein self-attention mechanism for
augmentation strategies (NDCG@10). Full-size DOI: 10.7717/peerj-cs.2749/fig-8
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Although the CLWSR model has achieved good performance on datasets of different
sizes and its time cost is also low, the model still has some limitations, mainly manifested in
the performance bottleneck on datasets with short sequence. For example, on the Beauty
and Toys datasets, whose average sequence lengths are 8.9 and 8.6, respectively, the
CLWSR model is not as good as the MADGAmodel in terms of NDCG. The reason is that
the model we proposed combines the cloze task mask and dropout mask mechanisms to
generate high-quality positive samples, but the sequence is short, and the cloze task mask
and dropout mask mechanisms are difficult to play a role, which affects the performance of
the model to a certain extent.

CONCLUSIONS
In this article, a pioneering Wasserstein self-attention sequential recommendation model
is introduced, employing a multidimensional elliptical Gaussian distribution to represent
items. The elliptical Gaussian distribution consists of a vector of means and a vector of
covariances, where the covariance factor reflects the underlying item uncertainty. This
framework is utilized to model dynamic uncertainties and capture synergistic
transferability within the recommendation system. Additionally, a novel regularized BPR
loss function is introduced to ensure a considerable separation between positively and
negatively sampled items. The incorporation of the cloze mask task and dropout mask
enables the generation of multiple positive samples, expanding the scope of pairwise
comparison learning to encompass multiple pairs of instances. We conducted experiments
on four public datasets, and the results show that our proposed method outperforms
several contemporary methods, underscoring the effectiveness of our strategy in tackling
the cold start item recommendation challenge and emphasizing the significance of
collaborative transferability in sequential recommendation tasks.
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