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ABSTRACT
As the ongoing standardization process of post-quantum schemes yields initial
outcomes, it becomes increasingly important to not only optimize standalone
implementations but also explore the potential of combining multiple schemes into a
single, unified architecture. In this article, we investigate the combination of two
National Institute of Standards and Technology (NIST)-selected schemes: the
Dilithium digital signature scheme and the Kyber key encapsulation mechanism. We
propose a novel set of optimization techniques for a unified hardware
implementation of these leading post-quantum schemes, achieving a balanced
approach between area efficiency and high performance. Our design demonstrates
superior resource efficiency and performance compared to previously reported
unified architecture (DOI 10.1109/TCSI.2022.3219555), also achieving results that
are better than, or comparable, to those of standalone implementations. The efficient
and combined implementation of lattice-based digital signatures and key
establishment methods can be deployed for establishing secure sessions in high-
speed communication networks at servers and gateways. Moreover, the unique and
compact design that requires small hardware resources can be directly used in small
and cost-effective field programmable gate array (FPGA) platforms that can be used
as security co-processors for embedded devices and in the Internet of Things.

Subjects Computer Networks and Communications, Cryptography, Distributed and Parallel
Computing, Embedded Computing, Security and Privacy
Keywords Dilithium, Kyber, FPGA, Post-quantum cryptography, Unified architecture

INTRODUCTION
Today, quantum computing is a rapidly emerging area that can significantly influence the
cybersecurity of information and communication (ICT) systems based on common
cryptographic schemes. Asymmetric schemes based on non-polynomial (NP) time
complexity problems, such as the integer factorization, discrete logarithm, and elliptic
curve discrete logarithm problems are vulnerable quantum computer attacks that leverage
Shor’s algorithm (see more in Bernstein & Lange, 2017). Therefore, National Institute of
Standards and Technology (NIST) has recently standardized the Kyber (Bos et al. (2018))
and Dilithium (Ducas et al. (2018)) schemes as Module-Lattice-based Key-Encapsulation
Mechanism (ML-KEM) in NIST (2024b) and Module-Lattice-based Digital Signature
Algorithm (ML-DSA) in NIST (2024a), respectively, along with Practical Stateless Hash-
based Signatures (SPHINCS+) (Zhang, Cui & Yu, 2022) as Stateless Hash-Based Digital
Signature Algorithm (SLH-DSA) in NIST (2024c). These quantum-resistant schemes
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should substitute the legacy asymmetric schemes such as Rivest–Shamir–Adleman (RSA),
Digital Signature Algorithm (DSA), Elliptic Curve Digital Signature Algorithm (ECDSA)
etc. in the next few years during the post-quantum transition period, as foreseen in reports,
and recommendations (ANSSI, 2022; NSA, 2022). Deploying the quantum-resistant
schemes will also be motivated by harvest now, decrypt later attacks. The results of the
standardization have increased the demand for efficient and secure implementations of
these cryptographic schemes in practical applications. Software implementations are
popular for their flexibility and ease of deployment. However, the significant
computational requirements of post-quantum cryptographic (PQC) algorithms make
software-only approaches insufficient for many high-performance or resource-constrained
environments. Hardware-based implementations of PQC on Field Programmable Gate
Array (FPGA) platforms offer distinct advantages, particularly by providing lower
latencies and, therefore, higher throughput. High-speed communication and operation
can be essential for servers and gateways that manage hundreds to thousands of security
sessions and have to perform key establishment and signing/verification phases efficiently.
This use case is demonstrated in Fig. 1. Additionally, hardware acceleration improves
security by reducing the susceptibility to certain types of side-channel attacks that are often
present in software implementations. Given that ML-KEM and ML-DSA belong to the
same cryptographic family, they are well suited for unified hardware architectures, which
can reduce resource usage and streamline security processes by securing shared
components only once.

In this work, we focus on integrating these schemes into a single hardware
implementation that can be compact and efficiently (low hardware resources, low latency)
provide basic security operations, i.e., key establishment and data signing/verification that
are usually required while establishing secure communication sessions. The work aims at
two research questions (RQ): RQ1) are there any new optimization approaches that can be
designed and applied in the hardware-implementations of lattice-based schemes (Kyber and
Dilithium)? RQ2) how can the lattice-based standards (Kyber with Dilithium) be efficiently
combined and how efficient can this combination be on the hardware (FPGA) platforms in
comparison with standalone HW implementations?

The rest of this article is organized as follows: “Background” introduces background of
lattice-based schemes and their main phases. “Optimized Unified Hardware Architecture”
presents new optimization techniques that are proposed and deployed in our unified
hardware architecture, and deals with RQ1 and RQ2. “Results and Comparison” shows
results and compares our solution with related works, and deals with RQ2. “Discussion”
discusses the practical deployment, limitations, implementation attacks and future open
problems. In “Conclusion” we conclude this work and present our next steps.

Related work
By finishing the NIST PQC standardization, finalist PQC schemes and winners have been
implemented on various FPGA platforms, tested in various architectures, or co-designed
for Hardware/Software (HW/SW) co-processors. Related works have investigated mostly
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implementation efficiency (e.g., speed, area, latency) and security (e.g., preventing side
channel attacks, hardware trojans, fault injections etc.).

Standalone hardware implementations
Most research on hardware implementations of PQC schemes has focused on designs
tailored to individual schemes. Several studies have explored hardware implementations of
Dilithium, such as Ricci et al. (2021), Beckwith, Nguyen & Gaj (2021), Land, Sasdrich &
Güneysu (2021), Zhao et al. (2021) and Gupta et al. (2023), and Kyber, such as Xing & Li
(2021), Guo, Li & Kong (2022), Bisheh-Niasar, Azarderakhsh &Mozaffari-Kermani (2021),
Dang, Mohajerani & Gaj (2023), Ni et al. (2023) and Nguyen et al. (2024).

For Dilithium, Ricci et al. (2021) presented the first dedicated hardware implementation,
optimizing the number theoretic transform (NTT) but employing separate architectures
for each phase, which would increase hardware costs when combined into a complete
scheme. Beckwith, Nguyen & Gaj (2021) prioritized high performance, achieving reduced
latency by splitting the rejection loop into a two-stage pipeline. Land, Sasdrich & Güneysu
(2021) proposed a more compact design by optimizing the NTT to use more DSP blocks,
thereby reducing LUT and FF usage. Similarly, Zhao et al. (2021) introduced a segmented
pipelined processing method, dividing algorithms into multiple stages and optimizing key
components such as NTT, SampleInBall, and Decompose. However, both (Land,
Sasdrich & Güneysu, 2021) and Zhao et al. (2021) omitted coefficient packing/unpacking,
which would need to be implemented separately for compatibility with software
implementations. Gupta et al. (2023) achieved the lowest area usage to date for Dilithium
by employing optimization techniques such as resource and control logic sharing, module
fusion, and pre-computed LUTs.

For Kyber, Xing & Li (2021) presented a compact implementation that unified NTT and
pointwise multiplication (PWM) operations, using only a single pair of butterfly units.
Guo, Li & Kong (2022) enhanced this design with a resource-efficient modular reduction

Figure 1 Use case: server-side handling of multiple users with varying security requirements. Full-size DOI: 10.7717/peerj-cs.2746/fig-1
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and further optimized the unified NTT-PWM module. Bisheh-Niasar, Azarderakhsh &
Mozaffari-Kermani (2021) focused on improving the NTT and proposed a hardware-
friendly modular reduction approach. Dang, Mohajerani & Gaj (2023) extended their
work to include benchmarking across multiple schemes, implementing Kyber, NTRU, and
Saber. They proposed a memory-efficient NTT design by incorporating reordering units
before and after the operation, thus reducing the memory requirements. Ni et al. (2023)
achieved the highest throughput for Kyber by employing efficient pipelining, while
(Nguyen et al., 2024) developed the most lightweight implementation by designing a
compact Secure Hash Algorithm 3 (SHA3) hash function architecture and introducing the
first non-memory-based iterative NTT, significantly reducing memory requirements.

A key limitation of these standalone designs is that in practical applications, both digital
signature algorithms (DSAs) and key encapsulation mechanisms (KEMs) are often
required. Thus, using these single-purpose implementations would require combining
them into a single firmware, resulting in additional resource utilization.

Unified hardware architectures

Several studies have focused on the unification of hardware architectures, including those
by Basso et al. (2021), Aikata et al. (2023b), Karl et al. (2024), Aikata et al. (2023a) and
Mandal & Roy (2024).

Basso et al. (2021) implemented a unified polynomial multiplier for the Dilithium and
Saber schemes, proposing modifications to Dilithium’s NTT multiplier, so that it can also
be used for Saber multiplication. This approach resulted in a negligible probability of
incorrect results. Building on this, Aikata et al. (2023b) developed a complete unified
architecture for Dilithium and Saber (D’Anvers et al. (2018)). Although Saber was not
selected for standardization by NIST, their work provides valuable insights into integrating
seemingly incompatible schemes.

The unification of multiple signature schemes was explored by Karl et al. (2024), where
the authors unified the Dilithium signature scheme across all security levels with the
Falcon verification phase for specific use cases.

In the most relevant work, Aikata et al. (2023a) presented the first hardware
implementation of a unified architecture for Dilithium and Kyber. The authors identified
key components that would significantly impact performance, such as polynomial
multiplication and Keccak with rejection samplers, and optimized their sharing. Their
results achieved a single implementation that supports all security levels of Dilithium and
Kyber, with performance comparable to state-of-the-art standalone implementations.
Building on this, Mandal & Roy (2024) focused on further optimizing the unified NTT
multiplication for Dilithium and Kyber. They explored the trade-offs between area
consumption and performance by varying the number of butterfly units, achieving lower
area usage and better performance than the approach in Aikata et al. (2023a).

This article enhances the optimization of the unified architecture in multiple levels in
hardware implementation and so far provides the most efficient trade-off between
efficiency and the amount of required HW resources.
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Contribution
Our contributions are twofold and summarized as follows:

1. We introduce novel approaches to enhance the level of resource reuse within the unified
architecture. Mainly we use a new memory management, reducing the memory used,
polynomial arithmetic, sample and compression units, and efficient operations
schedule. These optimization steps cause a 50% reduction in BRAM usage in our
hardware implementation compared to Aikata et al. (2023a).

2. We present the most compact and high-performance hardware implementation of a
unified architecture that supports both Dilithium and Kyber for all security levels.
Our solution is compared with related works and also standalone HW
implementations. Our efficient solution can also be deployed in small, cost-effective,
and low-density FPGA platforms.

BACKGROUND
Despite the standards containing Dilithium and Kyber using different names, we will
retain their original designations for consistency with existing articles. This section
provides a brief overview of these schemes, highlighting their similarities that are used in
the unified design.

Dilithium
Dilithium is a lattice-based digital signature scheme whose security relies on the hardness
of module learning with errors (M-LWE) and shortest integer solution (SIS) problems. The
scheme works in three phases: key generation, signing and verification, each involving
multiple operations on polynomials. Below is a brief description of the key operations
involved in these phases.

Polynomial arithmetic

All arithmetic operations on polynomials are performed over the ring

R8380417 ¼ Z8380417½X�=ðX256 þ 1Þ. To enable faster polynomial multiplication, the NTT is
used. Since Dilithium includes a 512th root of unity, the polynomial multiplication is
carried out using the complete-NTT, where the coefficients in the NTT domain
correspond to zeroth-degree polynomials, thus the multiplication process requires only
256 pointwise multiplications.

Coefficients sampling
Dilithium uses two forms of coefficient sampling, both of which involve rejection
sampling. The first occurs during the generation of the matrix A, where rejection sampling
is applied to the output of the SHAKE-128 hash function. The second occurs during the
generation of the secret key and error vectors, where rejection sampling is applied to the
output of the SHAKE-256 hash function. Additionally, a SampleInBall operation is used
to sample the challenge polynomial; however, this operation differs significantly and is
handled by its own dedicated unit.
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Coefficients rounding
Two types of coefficient rounding are used in Dilithium. The first, Power2round, breaks a
coefficient rinto two parts: high bits r1 and low bits r0, such that r ¼ r1 � 2d þ r0 mod q.
The second, Decompose, which similarly decomposes a coefficient into two parts, where
r ¼ r1 � ð2c2Þ þ r0 mod q.

Coefficients unpacking/packing
To reduce the size of keys and signatures, and consequently lower memory and bandwidth
requirements, the coefficients are unpacked and packed to and from the byte arrays.
During these operations, only a specific number of bits from the coefficients are used. In
particular, unpacking and packing operations are required for coefficients of 20-bit, 18-bit,
13-bit, 10-bit, 6-bit, 4-bit, and 3-bit lengths.

Kyber
Kyber is a lattice-based key encapsulation scheme whose security relies on the hardness of
the M-LWE problem. The scheme works in three phases: key generation, key
encapsulation and key decapsulation, each involving multiple operations on polynomials.
Below is a brief description of the key operations involved in these phases.

Polynomial arithmetic
All arithmetic operations on polynomials are performed over the ring

R3329 ¼ Z3329½X�=ðX256 þ 1Þ. Similarly to Dilithium, NTT is used to enable faster
polynomial multiplication. However, since Kyber does not include a 512th root of unity,
the polynomial multiplication is carried out using the incomplete-NTT, where the
coefficients in the NTT domain correspond to first-degree polynomials, thus the
multiplication process is more complex.

Coefficients sampling
Similarly to Dilithium, Kyber also uses two types of coefficient sampling, but only one uses
rejection sampling. The first occurs during the generation of the matrix A, where rejection
sampling is applied to the output of the SHAKE-128 hash function. The second is used for
sampling the secret key and error vectors, during which only a specific number of bits
(without rejection) are sampled from the output of SHAKE-256.

Coefficients compression/decompression
Kyber uses compression to reduce the coefficient sizes by discarding the least significant
bits. The compression function is defined as dð2d=qÞ � xe mod 2d , and decompression as

dðq=2dÞ � xe mod 2d . Decompressing a coefficient and then compressing it again always
gives the same value.

Coefficients decoding/encoding
To reduce the size of keys and ciphertexts, coefficients are decoded and encoded to byte
arrays. During these operations, only a specific number of bits from the coefficients are
used. The decoding and encoding process must support coefficients of 12-bit, 11-bit, 10-
bit, 5-bit, 4-bit, and 1-bit lengths.
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Changes in NIST standards
There were few changes to the standards of ML-KEM and ML-DSA compared to the
original proposals of Kyber and Dilithium.

For ML-KEM, the Fujisaki-Okamoto (FO) transformation has been modified with the
removal of additional message hashing. Furthermore, input validation checks were
introduced, although our implementation omits these, as it is specified that such checks do
not need to be performed directly by the party. Instead, we assume that these correctness
checks would be handled by the controller component within our design.

In the case of ML-DSA, there have been parameter size adjustments, with the primary
modification being the support for both deterministic and non-deterministic variations of
the algorithm.

OPTIMIZED UNIFIED HARDWARE ARCHITECTURE
In this section, our unified hardware architecture is proposed and described. It is based on
the work of Aikata et al. (2023a), but we employ new optimization techniques to make the
design more compact with a better performance.

Concretely, we have improved and optimized these five parts: memory management,
polynomial arithmetic unit, polynomial sample unit, compression unit, and operation
schedule. In addition to those major improvements, we have made further minor
improvements. The following subsections describe major and minor optimization steps.
Figure 2 presents a top-level overview of the architecture, highlighting the unified units
shared by Dilithium and Kyber, Dilithium-specific units such as SampleInBall, and the
memories used to store polynomials.

Memory management
Our design employs two dual-port RAMs for coefficient storage: a main memory and a
temporary memory, both with a width of 96 bits. This configuration allows each RAM to
store either 4 Dilithium coefficients or 8 Kyber coefficients, matching the number of
coefficients processed in parallel by other units. The main memory has a depth of 4,096,
sufficient to store all necessary polynomials for any phase of Dilithium or Kyber
operations. In contrast, the temporary memory, with a depth of 512, is used to store
temporarily polynomials, that are decoded from input or sampled. This allows the
polynomial arithmetic unit to process polynomials stored in the main memory in parallel
with the preparation of new polynomials in the temporary memory. This arrangement
optimizes the operation schedule by enabling continuous utilization of the arithmetic unit,
thereby reducing idle times that would otherwise occur if the unit had to wait for
polynomial loading or sampling. The selected depth of the temporary memory ensures that
a sufficient number of polynomials is available in the memory to allow this continuous
processing.

As Dilithium requires significantly more memory to store the polynomials, the memory
optimizations were done only for Dilithium phases. On the other hand, during Kyber
phases, the additional space is used to enable efficient processing.
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Polynomial arithmetic unit
The polynomial arithmetic unit (PAU) performs polynomial multiplication with optional
in-place polynomial addition or subtraction. The design of this unit combines the
proposals of Aikata et al. (2023a) andMandal & Roy (2024) to allow the unified processing
of Dilithium and Kyber polynomials, while the integration coefficients reorder the units
from Dang, Mohajerani & Gaj (2023) to minimize the use of RAM. The unit uses two
unified butterfly units, which enable processing of four Dilithium or 8 Kyber coefficients
every clock cycle.

Unified butterfly unit

The unified butterfly unit (BFU) can perform a butterfly operation, that is a fundamental
operation in the NTT, on either two Dilithium coefficients or four Kyber coefficients. It
uses the modular multiplier and reduction proposed by Aikata et al. (2023a) and the
improved modular adder/subtractor from Mandal & Roy (2024) that fully utilizes fast
carry chains. The architecture of this unit is illustrated in Fig. 3. For clarity, control signals
that determine whether Dilithium or Kyber coefficients are being processed are omitted
from the figure, but are integral to the design. These signals are required for all of the
operations to determine the correct modulus and specify whether operations are
performed on single 23-bit coefficients (for Dilithium) or two 12-bit coefficients (for
Kyber). This adaptability is a key feature allowing the BFU to handle both schemes without
requiring separate hardware blocks. After modular reduction, additional coefficients can
be added or subtracted, enabling in-place operations during polynomial multiplication.

To remove the butterfly feedback unit described in Aikata et al. (2023a) and thus reduce
the area of the PAU, Kyber multiplication is performed in two iterations, with intermediate
results stored in memory. Note that no additional memory is needed for these intermediate
results, as the memory requirements for Dilithium are substantially larger, as outlined in

Figure 2 Overview of top-level units, illustrating both unified and dilithium-specific units, along
with memory details. Full-size DOI: 10.7717/peerj-cs.2746/fig-2
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the previous section. This allows the intermediate results for Kyber to be stored in memory
regions that remain unused during Kyber’s computation.

Optimized memory mapping
Both unified polynomial arithmetic units proposed in Aikata et al. (2023a) andMandal &
Roy (2024) use two dual-port RAMs. While Aikata et al. (2023a) do not specify how they
achieve fully pipelined memory access,Mandal & Roy (2024) provide an efficient memory
mapping scheme, which changes the order of coefficients in both RAMs. However, our
design allows one to write to only one RAM, making their approach inapplicable. To
enable fully pipelined memory access for NTT/INTT, we utilize the head and tail reorder
method from Dang, Mohajerani & Gaj (2023), extending them to handle coefficient access
during multiplication. The key concept of this reordering strategy is to use a 96-bit register
to temporarily store unprocessed coefficients. This ensures that coefficients are stored
consistently in the same order throughout the whole computation process.

An example of the coefficients’ flow during the first iteration of Dilithium’s NTT is
given in Fig. 4. The figure presents two pipelines: the input pipeline, which shows how the
coefficients are reordered before processing by the BFUs, and the output pipeline, which
shows how the coefficients are reordered afterwards. It can be observed that the input and
output order of the coefficients is preserved.

Figure 3 Butterfly unit architecture. Registers between stages are highlighted with red color.
Full-size DOI: 10.7717/peerj-cs.2746/fig-3
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Polynomial sample unit
The polynomial sample unit (PSU) handles all polynomial samplings required for both
Dilithium and Kyber, except for the SampleInBall function, which has a significantly
different implementation. Although the PSU’s performance is not critical, it must sample
coefficients faster than the PAU processes them. This is achievable through efficient
scheduling of operations, which will be discussed in a later section, and the use of
temporary memory, as previously mentioned.

The sampling process in the PSU requires outputs from SHAKE-128 and SHAKE-256
hash functions. To implement these and other necessary hashing functions, such as SHA3-
256 and SHA3-512, we used our previous design from Ricci et al. (2021), with slight
modifications. Given that sampling performance is not a critical factor, we chose to use the
book-keeping approach from Aikata et al. (2023b), reading data in 64-bit transactions.
This choice reduces combinatorial logic without negatively impacting the overall system,
as reduced throughput affects only the first polynomial sampled, a negligible factor
throughout the sampling process.

The architecture of this unit is shown in Fig. 5. The bytes signal, representing 8 bytes of
hash output, is processed in parallel by the CBD, Reject Bounded, and Reject NTT

sampling units. Each of these units uses a bit from the mode signal to determine which
parameters to apply, as each sampling method can operate in one of two modes: CBD can
be set to g ¼ 2 or g ¼ 3, Reject Bounded can be set to g ¼ 2 or g ¼ 4, and Reject NTT

can use rejection bounds q ¼ 3,329 for Kyber or q ¼ 8380147 for Dilithium. Afterward,
the output from the corresponding unit is selected based on the mode signal and is then
output from the full unit.

Furthermore, we decided not to integrate Keccak with coefficient sampling, diverging
from the approach in Aikata et al. (2023a). By keeping Keccak separate, it can serve
multiple hashing purposes, thereby enhancing the versatility of the designed cryptographic
core.

Compression unit
The compression unit unifies all operations that modify the bit size of the coefficients, be it
by reducing or extending it. It performs compression and decompression of all coefficient
sizes for Kyber, and Decompose, Power2round and coefficient modification before

Figure 4 Coefficients flow during first iteration of Dilithium’s NTT. Red color highlights coefficients that are stored in registers.
Full-size DOI: 10.7717/peerj-cs.2746/fig-4

Dobias et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2746 10/22

http://dx.doi.org/10.7717/peerj-cs.2746/fig-4
http://dx.doi.org/10.7717/peerj-cs.2746
https://peerj.com/computer-science/


packing or after unpacking in Dilithium. This combination results in a minor reduction in
area utilization, but more importantly, it simplifies the architecture by reducing the
complexity when switching between components.

For the compression of the Kyber coefficient, we use sufficient precision to convert a
division by q into multiplication and shift operations. To further reduce complexity, we
propose a new optimized algorithm, shown in Algorithm 1, which takes advantage of the
lower precision required for different bit sizes. Unlike Aikata et al. (2023a), our approach
uses a single constant for multiplication, regardless of the compression level. This reduces
both the complexity and critical paths in the compression process.

Efficient operations schedule
To maximize the utilization of components and minimize delays between operations, the
order of operations was carefully scheduled. The temporary memory, discussed earlier,
plays a crucial role in enabling parallel loading/sampling of polynomial coefficients while
previously loaded/sampled ones are being processed. This allowed us to schedule
operations so that the PAU runs continuously after the first polynomial is loaded.

Two examples of efficient scheduling are shown in Fig. 6, which both illustrate vector-
matrix multiplication during the key generation phase, one for the Dilithium scheme and
the other for the Kyber scheme. The rectangles represent the polynomials sampled or
processed during arithmetic operations, with the order of operations shown sequentially
over time. Two memory units are depicted as lines, with arrows indicating storing or
reading from these memories. In both examples, it can be observed that after sampling the
initial polynomial s0, the PAU starts processing and runs continuously as the subsequent
polynomials are sampled in the meantime. In this first example, two key points are
important:

1. The vector and matrix polynomials are sampled interleaved because the sampling of the
matrix polynomial takes slightly more cycles than the multiplication. This can be
compensated for by the depth of the temporary memory. However, if all the

Figure 5 Architecture of polynomial sample unit. Full-size DOI: 10.7717/peerj-cs.2746/fig-5
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multiplications happened without interleaving with the NTT operation as it was done in
previous work, the depth of the temporary memory would have to increase.

2. During the second phase of multiplication, in-place addition is performed by the
butterfly units. This is possible because, while coefficients are loaded from temporary
memory, the coefficients in the main memory can be accessed simultaneously.

The second example focuses on the Kyber scheme. Since polynomial multiplication in
Kyber occurs in two phases (with the second phase highlighted in orange), it takes more
cycles than rejection sampling, making interleaving unnecessary. Additionally, to take
advantage of in-place addition with the error vector, it is beneficial to first sample and

Algorithm 1 Optimized compression algorithm.

In: x 2 Z3329, d 2 f1; 4; 5; 10; 11g
Out: y ¼ dð2d=3329Þ � xe
1: t ¼ x þ ðx � 2Þ þ ðx � 3Þ
2: t ¼ ðt � 7Þ þ ðt � 6Þ þ ðt � 3Þ þ ðt � 1Þ þ ðt � 4Þ þ ðx � 10Þ þ ð1 � ð21� dÞÞ
3: y ¼ t � ð22� dÞ
4: return y 2d

Figure 6 Operations schedule of vector-matrix multiplication during Dilithium and Kyber key generations.
Full-size DOI: 10.7717/peerj-cs.2746/fig-6
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convert the vectors to the NTT domain before performing the multiplications, as
interleaving this part would unnecessarily complicate the scheduling. Similarly to the first
example, in-place addition is used to enable efficient processing.

Minor optimizations
Some minor optimizations were further applied to reduce the total area consumption as
well as remove critical paths to increase the design working frequency.

Data storing

As all of the internal data are processed in 64-bit transactions, we were able to use a 64-bit
wide Look-Up Table Random Access Memory (LUTRAM) to store all the necessary data
(seeds for key generations and for samplings, challenge in Dilithium,…) removing the
need for 2,048 registers that would be needed otherwise.

Encode and decode units
For the implementation of encode and decode units, we followed the approach proposed
by Aikata et al. (2023a), with a slight modification. In our design, we combine these units
with the pack and unpack units, respectively. Similarly as with the compression unit, this
combination results in a minor reduction in area utilization, but more importantly, it
simplifies the architecture by reducing the complexity when switching between
components.

Critical path removal
Critical paths in the design were identified through multiple iterations using Vivado timing
reports. Registers were inserted into these paths during the implementation process to
incrementally improve the overall frequency of the design.

RESULTS AND COMPARISON
In this section, we present results of our unified architecture. Our design was implemented
using Very High-Speed Integrated Circuit Hardware Description Language (VHDL) and
tested using the reference C implementations, which were modified to match the changes
in NIST standards, alongside the Python-based cocotb framework. The results are
obtained using Vivado 2022.2 after completing the place-and-route phase of the
implementation. For a fair comparison with the original unified architecture for Dilithium
and Kyber proposed by Aikata et al. (2023a), the same target platform, UltraScale+
ZCU102, was used. Furthermore, to demonstrate the scalability and usability of our design
in highly resource-constrained environments, we also targeted the Artix-7 (XC7A35T)
platform, enabling direct comparisons with compact-focused designs.

Results
Table 1 presents the hardware resource utilization of the primary components in our
design, as well as the total resource usage for the top-level component that implements
both the Dilithium and Kyber schemes. It is important to note that the sum of the
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individual components’ resource usage is lower than the total design utilization, as some
utility components, such as memories and state machines, are not included in the
individual breakdown. The top-level component utilizes 17,138 Look-Up Table (LUTs),
6,559 Flip-Flop (FFs), 4 Digital Signal Processing (DSPs), and 12.5 Block Random Access
Memories (BRAMSs), with the largest impact from the Keccak, polynomial arithmetic, and
compression units. While the Keccak and polynomial arithmetic units have the most
significant impact in previous research and are therefore the focus of most optimizations,
the impact of the compression unit in our design is notable because it combines multiple
operations. These include Kyber’s compression/decompression and Dilithium’s
power2round and decompose, which are typically reported as separate operations in
existing studies. For the Artix-7 platform, this represents 82% LUT, 16% FF, 5% DSP and
25% BRAM utilizations. Fully routed design is shown in Fig. 7 with the top three highest
utilization components highlighted.

Table 2 presents the performance results for all security levels of Kyber and Dilithium
with our implementation targeting a working frequency of 375 MHz. The table shows both
the number of cycles and the corresponding execution time for each phase. For the
Dilithium signing phase, we report the best-case scenario, where the signature is valid in a
single iteration.

Comparison
When comparing our results with existing work, we primarily compare them with designs
of unified architectures. However, only the works of Aikata et al. (2023a) and Aikata et al.
(2023b) implemented hardware designs that can be compared with ours that we know of.
However, it is important to note that the Aikata et al. (2023b) design unifies Dilithium with
Saber, making a direct comparison not entirely fair. Therefore, we also include
comparisons with Dilithium-only and Kyber-only implementations for a broader
evaluation.

Table 1 Hardware resources utilization of designed components.

Component LUT FF DSP BRAM

Compress 2,418 1,061 0 0

Decode 583 284 0 0

Encode 786 380 0 0

Keccak 4,135 1,713 0 0

MakeHint 784 286 0 0

Polynomial arithmetic 2,856 1,347 4 0

Sample 864 456 0 0

SampleInBall 177 87 0 0

UseHint 476 233 0 0

ValidityCheck 139 129 0 0

Top 17,138 6,559 4 12.5
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Comparison with unified hardware implementations
When comparing our design with the combined architecture of Aikata et al. (2023a), our
implementation outperforms theirs in both area and performance for both Dilithium and
Kyber. Specifically, our memory management strategy reduces BRAM usage by nearly half.
In addition, efficient operation scheduling reduces the clock cycles required for

Figure 7 Components placement after the place-and-route step for the Artix-7 board. The three highest utilization components are highlighted:
compress (green), Keccak (yellow), and polynomial arithmetic (blue). Full-size DOI: 10.7717/peerj-cs.2746/fig-7

Table 2 Performance results of Dilithium and Kyber.

Variant Key generation Sign/Encapsulation Verify/Decapsulation

Cycles ls Cycles ls Cycles ls

Dilithium-2 9,279 24.7 22,508 60.0 10,137 27.0

Dilithium-3 15,646 41.7 33,169 88.5 16,728 44.6

Dilithium-5 24,278 64.7 49,124 131.0 26,986 72.0

Kyber-512 2,146 5.7 2,638 7.0 3,740 10.0

Kyber-768 3,523 9.4 4,087 10.9 5,544 14.8

Kyber-1024 5,195 13.9 5,831 15.5 7,644 20.4
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computation, while critical path removal and pipelining maximize operating frequency,
resulting in substantial performance improvements. In particular, for the highest security
level, our implementation achieves a performance improvement of 2.2x/1.9x/2.4x for
Dilithium across all phases and 2.3x/2.8x/2.5x for Kyber across all phases, along with a
reduction in area usage by 27% in terms of LUTs and 33% in terms of FFs. In the case of
Aikata et al. (2023b), we compare only the Dilithium portion of their design. Our
implementation again achieves superior resource utilization and performance, with
approximately half the BRAM usage and even more significant gains in performance.
Although differences in area utilization are less pronounced, our design still exhibits better
results. In Table 3, both implementations are compared with our work.

Comparison with hardware implementations of dilithium
In Table 4, we detail the comparison with Dilithium standalone hardware
implementations. Beckwith, Nguyen & Gaj (2021) split the signature generation process
into two stages, achieving a higher performance than our design at the expense of
significantly higher area utilization. Another high-performance design by Li et al. (2024)
uses parallel instruction execution to minimize latency, although it requires nearly double
the LUT usage and six times more DSP blocks than our implementation. Moreover, both
of these designs operate at lower frequencies.

Lastly, Gupta et al. (2023) offers a design with a area utilization comparable to ours,
achieving approximately 20% lower LUT usage but almost three times the BRAM usage.
Additionally, their design’s performance is more than twice as slow as ours.

Table 3 Comparison of unified hardware implementations.

Ref Device Area (LUT/FF/DSP/BRAM) Frequency[MHz] Variant Performance ls

TW ZUS+ 17.1k/6.6k/4/12.5 375 Dilithium-2 24.7/60.0/27.0

Dilithium-3 41.7/88.5/44.6

Dilithium-5 64.7/131.0/72.0

Kyber-512 5.7/7.0/10.0

Kyber-768 9.4/10.9/14.8

Kyber-1024 13.9/15.5/20.4

Aikata et al. (2023b) ZUS+ 18.5k/9.3k/4/24 200 Dilithium-2 70.9/151.6/75.2

Dilithium-3 114.7/237.0/127.6

Dilithium-5 194.2/342.1/228.9

LightSaber 29.6/40.4/58.3

Saber 54.9/69.7/94.9

FireSaber 87.6/108.0/139.4

Aikata et al. (2023a) ZUS+ 23.3k/9.8 k/4/24 270 Dilithium-2 54.1/117.2/57.1

Dilithium-3 87.5/180.5/96.8

Dilithium-5 147.2/258.3/172.9

Kyber-512 12.6/18.4/25.2

Kyber-768 23.2/29.1/41.8

Kyber-1024 33.7/42.0/51.5
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Focusing on compactness, Zhao et al. (2021) and Wang et al. (2022) focus on reduced
area usage while maintaining reasonable performance. Zhao et al. (2021) employ a
segmented pipelining technique that reduces storage requirements and processing time.
Although their BRAM usage is slightly lower than ours, their overall area utilization
remains higher, while offering better performance.Wang et al. (2022). implement only the
core functions in hardware, relying on software for pre-processing and post-processing.
Their design achieves minimal area usage, yet remains marginally higher than ours.

Comparison with hardware implementations of Kyber
In Table 5, we detail the comparison with standalone Kyber hardware implementations. In
particular, each work presents results for different security levels, and some use distinct
designs for client-and server-side computations, with the exception of Nguyen et al. (2024),
who report results across all security levels.

Among high-performance designs, Dang, Mohajerani & Gaj (2023) achieve low latency
through k-polynomials parallel execution. Their design has similar area utilization: they

Table 4 Comparison of Dilithium-5 hardware implementations.

Ref Device Area (LUT/FF/DSP/BRAM) Frequency [MHz] Performance ½ls�
TW* ZUS+ 17.1k/6.6k/4/12.5 375 64.7/131.0/72.0

Aikata et al. (2023a)* ZUS+ 23.3k/9.8k/4/24 270 147.2/258.3/172.9

Aikata et al. (2023b)* ZUS+ 18.5k/9.3k/4/24 200 194.2/342.1/228.9

Beckwith, Nguyen & Gaj (2021) VUS+ 53.9k/28.4k/16/29 256 54.8/91.2/53.3

Li et al. (2024) ZUS+ 32.0k/9.7k/24/14 300 36.3/1841/42.3

Gupta et al. (2023) ZUS+ 14.0k/6.8k/4/35 391 161.0/291.0/173

TW* Artix-7 17.1k/6.6k/4/12.5 160 151.6/307.0/168.8

Zhao et al. (2021) Artix-7 30.0k/10.4k/10/11 96.9 90.5/163.0/93.3

Wang et al. (2022) Z-7000 21.0k/9.7k/10/28 159 127.0/592.81/99.8

Notes:
* Unified design.
1 Reports average results.

Table 5 Comparison of Kyber-1024 hardware implementations.

Ref Device Area (LUT/FF/DSP/BRAM) Frequency [MHz] Performance ½ls�
TW* ZUS+ 17.1k/6.6k/4/12.5 375 13.9/15.5/20.4

Aikata et al. (2023a)* ZUS+ 23.3k/9.8k/4/24 270 33.7/42.0/51.5

Dang, Mohajerani & Gaj (2023) ZUS+ 11.6k/11.6k/8/10.5 450 8.0/10.6/13.2

Ni et al. (2023)1 ZUS+ 17.8k/14.0k/2/0 435 6.2/7.8/9.4

TW* Artix-7 17.1k/6.6k/4/12.5 160 32.6/36.3/47.8

Xing & Li (2021) Artix-7 7.4k/4.6k/2/3 161 58.2/67.9/86.2

Bisheh-Niasar, Azarderakhsh & Mozaffari-Kermani (2021) Artix-7 10.5k/9.9k/8/13 200 17.3/20.6/31.3

Guo, Li & Kong (2022) Artix-7 7.9k/3.9k/4/16 159 49.1/52.8/66.0

Nguyen et al. (2024) Artix-7 5.5k/3.4k/2/3.5 185 45.9/54.6/69.7

Notes:
* Unified design.
1 Results only for server-side.
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use fewer LUTs and BRAMs, whereas our design uses fewer FFs and DSPs, while achieving
slightly better performance. An even more performant design by Ni et al. (2023) leverages
efficient pipelining and FIFO-based buffering for maximum parallelization. While Ni et al.
(2023)’s architecture uses zero BRAMs, their FF utilization is notably higher. Bisheh-
Niasar, Azarderakhsh & Mozaffari-Kermani (2021) aimed at high-performance on more
constrained FPGA. Their optimized design achieves the best frequency on the Artix-7
platform.

Other studies, such as those by Xing & Li (2021), Guo, Li & Kong (2022) and Nguyen
et al. (2024), focus on compact implementations while maintaining a solid performance.
Each of these designs utilizes less hardware resources, which is expected, as Dilithium in
our combined design brings higher area utilization. In terms of performance, our design
significantly outperforms these with about 40% reduction in execution time.

Overall, these results indicate that standalone Kyber implementations, optimized for
efficiency, would be better suited for applications that do not require a digital signature
algorithm.

DISCUSSION
The results in the previous section demonstrate significant advantages of the unified
design, particularly with regard to reduced area utilization. This reduction stems from
resource sharing between the DSA and KEM units, highlighting a key efficiency: In a
scenario where a standalone implementation is used for DSA and KEM separately, each
would require unique resources. In our unified design, however, the implementation of
Kyber requires minimal additional area, as most resources are already allocated for
Dilithium. This essentially renders Kyber support nearly “free” in terms of area costs
within the unified framework, a substantial advantage for system design. This unified
approach is beneficial in two primary contexts. First, on high-efficiency server platforms,
where support for multiple cryptographic schemes is necessary, the unified design provides
streamlined resource use and flexibility.

Practical deployment
Server environments often require varied cryptographic algorithms, and this design
supports multiple variants without having to replicate resource blocks for each scheme
independently. Especially servers and gateways in high-speed communication networks
can deploy this efficient solution to manage secure sessions. Second, for resource-
constrained platforms, such as IoT devices, the unified design offers an efficient means to
implement both DSA and KEM without the need for separate hardware for each function.
This approach not only reduces the area, but may also lead to lower power consumption,
which is crucial for battery-operated or low-power devices.

Implementation attacks
While the theoretical security of both cryptographic schemes is well-established,
implementation-specific vulnerabilities remain a concern. Potential threats include side-
channel attacks, as demonstrated in works such as Primas, Pessl & Mangard (2017),
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Kim et al. (2020), Zhao et al. (2023), and fault-injection attacks, such as Bindel, Buchmann
& Krämer (2016), Ravi et al. (2023). Hardware implementations generally offer enhanced
resistance to such attacks due to reduced signal-to-noise ratios and parallel processing
capabilities. However, these features alone may not fully prevent information leakage
through power consumption or electromagnetic emissions, which could reveal sensitive
data.

To mitigate basic side-channel attacks, such as those exploiting timing execution
leakage, we ensured that all secret-sensitive operations in our design are implemented
in constant time, consistent with reference implementations. Against more
sophisticated attacks, including simple or differential power analysis, as well as template-or
deep learning-based attacks, countermeasures such as masking or shuffling could be
integrated.

These advanced countermeasures will be explored in future work, where we plan to
conduct a detailed evaluation of their resource utilization and potential impact on
performance.

Open problems
Future work could explore further optimizations especially for constrained hardware
platforms, small FPGA boards. One such modification could involve reducing the number
of coefficients processed in parallel to further minimize area usage. Another possible
optimization is to tailor the design to specific variants of the schemes, rather than
supporting all variants universally. These changes would enable a more application-
specific implementation that conserves both area and power.

Another open issue that remains is a deep investigation of side-channel leakage, which
is possible despite the designed solution deploying parallel processing, reducing the signal-
to-noise ratio, thus preventing simple tracing of secret data.

CONCLUSION
In this article, we proposed a set of novel optimization techniques for the unified hardware
implementation of two leading post-quantum cryptographic schemes: Dilithium and
Kyber. The optimization steps mainly dealt with new improved memory management,
operation schedule, and more efficient parts such as polynomial arithmetic unit,
polynomial sample unit, and compression unit. Our design focuses on achieving a balance
between area efficiency and high performance, with the top component utilizing only 17.1k
LUTs, 6.6k FFs, four DSPs, and 12.5 BRAMs, while achieving a working frequency of 375
MHz on the high-efficiency Zynq Ultrascale + platform, respectively, working of 160 MHz
on the resource-constrained Artix-7 platform. These figures represent a significant
improvement over existing unified architectures, particularly with a nearly 50% reduction
in BRAM usage compared to Aikata et al. (2023a). Moreover, we demonstrate that our
unified solution is even comparable with standalone implementations in terms of
hardware resources and efficiency, but it saves costs by deploying only one compact
implementation that can be beneficial in smaller and more cost-efficient FPGA platforms
such as Artix-7.
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As part of our future work, we plan to conduct a thorough side-channel leakage analysis
to assess the vulnerability of our unified architecture. We will also explore and implement
potential countermeasures aimed at mitigating these side-channel threats, with a particular
focus on how these protections can be efficiently integrated within the unified design,
ensuring both robust security and continued performance efficiency.
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