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ABSTRACT

Sports behavior prediction requires precise and reliable analysis of muscle activity
during exercise. This study proposes a multi-channel correlation feature extraction
method for electromyographic (EMG) signals to overcome challenges in sports
behavior prediction. A wavelet threshold denoising algorithm is enhanced with
nonlinear function transitions and control coefficients to improve signal quality,
achieving effective noise reduction and a higher signal-to-noise ratio. Furthermore,
multi-channel linear and nonlinear correlation features are combined, leveraging
mutual information estimation via copula entropy for feature construction. A
stacking ensemble learning model, incorporating extreme gradient boosting
(XGBoost), K-nearest network (KNN), Random Forest (RF), and naive Bayes (NB) as
base learners, further enhances classification accuracy. Experimental results
demonstrate that the proposed approach achieves over 95% prediction accuracy,
significantly outperforming traditional methods. The robustness of multi-channel
correlation features is validated across diverse datasets, proving their effectiveness in
mitigating channel crosstalk and noise interference. This work provides a scientific
basis for improving sports training strategies and reducing injury risks.

Subjects Algorithms and Analysis of Algorithms, Data Mining and Machine Learning,
Optimization Theory and Computation, Neural Networks

Keywords Electromyographic signals, Multi channel correlation features, Wavelet thresholding,
Mutual information, Copula entropy

INTRODUCTION

In sports research, scholars have always attached great importance to studying the
mechanism of sports fatigue, but so far, there is no recognized theory for the mechanism of
sports fatigue. Over the years, numerous sports researchers have proposed hypotheses with
a theoretical basis; however, these hypotheses fail to explain the mechanism of sports
fatigue adequately. The application of electromyography (EMG) signals in sports is
pervasive, which helps to gain a deeper understanding of muscle movement patterns and
fatigue levels, improve sports skills, and monitor sports injuries (Al-Ayyad et al., 2023). In
competitive sports, athletes usually improve their performance by increasing training
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intensity, but if the exercise intensity is not scientifically controlled, it can easily lead to
fatigue and muscle injury. After high-intensity training, the human body may experience a
decline in muscle function, known as muscle fatigue. The occurrence of muscle fatigue not
only affects athletic performance but can also lead to long-term muscle damage in severe
cases. Therefore, using scientific and technological means to predict athletes’ muscle
fatigue status and adjust training intensity reasonably has important practical application
value (Tan ¢ Ran, 2023).

The changes in EMG signals can effectively reflect muscle fatigue status. However, as
weak bioelectric signals, EMG signals are easily affected by external factors such as power
frequency interference and electronic device noise during the acquisition process, resulting
in valuable information being overwhelmed by noise (Cheng et al., 2023a). Therefore,
effective denoising methods must be adopted to improve the reliability of the signal.
Traditional denoising methods such as Kalman filtering and spectral subtraction have
limited effectiveness in processing noisy EMG signals and cannot fully remove noise. In
response to this issue, this article proposes a denoising method based on wavelet
thresholding, which has been widely applied in weak electrical signal processing and image
denoising.

On the other hand, due to the coupling phenomenon between muscles during
movement, electrodes placed on the target muscle may record activity signals from nearby
muscles, resulting in crosstalk between different channels (Wang et al., 2023). This article
proposes an EMG signal recognition method based on multi-channel correlation (MC)
features to explore the information on EMG signals between multiple channels.
Specifically, the research work of this article includes the following aspects: Firstly, the
application of wavelet threshold denoising algorithm in arm EMG signal detection was
studied. In response to the problems of discrete points and large errors in traditional
algorithms, nonlinear function transition and control coefficients were introduced to
improve the threshold denoising algorithm. The improved algorithm can effectively
improve the accuracy and reliability of signal recognition while removing noise. This
article proposes an EMG signal recognition method based on multi-channel correlation
features. Extract linear correlation features between channels by calculating the
consistency correlation coefficient between channels; Meanwhile, utilize mutual
information to obtain nonlinear correlation features between channels. To improve the
accuracy and efficiency of mutual information estimation, this article introduces a mutual
information estimation method based on copula entropy, which avoids the joint
probability density estimation problem.

Major contributions
The main contributions of this article are as follows:

In response to the shortcomings of soft and hard threshold denoising methods, this
article introduces nonlinear functions and control coefficients to improve the wavelet
threshold denoising algorithm, significantly enhancing the denoising effect of
electromyographic signals and improving the accuracy and stability of subsequent signal
recognition.
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A method for identifying EMG signals based on multi-channel correlation features is
proposed, which combines the linear and nonlinear correlation characteristics between
channels. The mutual information estimation based on copula entropy effectively solves
the channel crosstalk problem and improves signal recognition’s reliability.

RELATED WORKS

This article mainly introduces related work from three aspects: EMG signal denoising,
feature selection, and classifier integration.

EMG signal denoising

As an extension of the Fourier transform, wavelet analysis has been widely studied in signal
denoising (Song et al., 2023). Wavelet transform (WT) is a multi-resolution analysis tool
suitable for non-stationary and fast transient signals, particularly for studying
neurophysiological signals. Pan et al. (2024) proposed a threshold method based on
wavelet denoising, which decomposes electromyographic signals into wavelets and
analyzes wavelet coefficients using a weighted average of soft and hard thresholds. Finally,
the denoised electromyographic signals are reconstructed, retaining useful information
and effectively removing noise. Qi et al. (2025) proposed a new signal-to-noise ratio (SNR)
estimator that evaluates signal reconstruction quality through wavelet decomposition and
denoising, verifying the effectiveness of wavelet denoising on EMG signals. Houssein et al.
(2024) compared four classic thresholding algorithms: general thresholding, heuristic
thresholding, mixed thresholding, and minimum-maximum thresholding. The results
showed that the general and soft thresholding functions performed the best, and the
second-order Daubechies wavelet was slightly better than other algorithms. Yousuf Mir ¢
Singh (2024) proposed a new method for denoising electrocardiogram signals damaged by
Gaussian white noise using wavelet packet transform and soft thresholding, which
outperforms traditional methods in terms of performance. Li et al. (2024) proposed a time-
frequency analysis method for EMG signals based on wavelet transform, which
outperforms traditional Fourier methods in handling discontinuous and spike signals.

EMG feature selection

Traditional methods for extracting EMG signals often extract many different features,
resulting in high feature dimensions and redundancy, affecting the model’s accuracy of the
data analysis. Feature selection methods can effectively filter out useful features and
remove irrelevant and redundant parts. Depending on the way features are evaluated,
feature selection methods can be divided into three categories: Filter (Simpetru et al., 2024),
Wrapper (Shi et al., 2023), and Embedded methods (Ariyanto et al., 2023).

The Filter method evaluates the quality of features based on the inherent properties of
the data, usually by statistically measuring and analyzing the correlation between features
and categories (Solorio-Ferndndez, Carrasco-Ochoa & Martinez-Trinidad, 2024). A
univariate filter employs a single statistical metric, such as information gain or ReliefF
(Begum et al., 2024), to evaluate and rank features. In contrast, a multivariate filter
considers feature dependencies by analyzing the entire feature subset for selection
(Esfandiari, Khaloozadeh & Farivar, 2023). The wrapper method combines machine
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learning models and uses model performance evaluation as the criterion for feature
selection (Alija et al., 2023). Nouri-Moghaddam, Ghazanfari & Fathian (2023) indicates
that the Wrapper method is usually superior to the Filter method because the Filter ignores
the specific performance of the selected features in the classification algorithm. The
Embedded method combines the advantages of Filter and Wrapper. It simultaneously
searches for the optimal feature set when constructing the classifier based on optimizing
the objective function for feature selection (Zhao et al., 2023).

Classifier construction

After extracting appropriate features, it is necessary to train a classifier to establish a
correlation model between feature vectors and gesture actions to recognize EMG signal
teatures (Prabhavathy, Elumalai ¢ Balaji, 2024).

With the rapid development of deep learning, more and more researchers are applying
neural networks to electromyographic signal recognition. Convolutional neural networks
(CNNs) and recurrent neural networks (RNNs) are commonly used neural network
methods in gesture recognition (Robinson et al., 2023). Wei et al. (2019) compared the
performance of RNN and feedforward neural network (FFNN) in gesture recognition,
and the experiment showed that RNN with fewer parameters can achieve similar
accuracy as FENN in a shorter running time (Simdo, Neto ¢ Gibaru, 2019). In addition,
some researchers combine CNN with RNN to capture temporal and spatial features
fully. Hu et al. (2018) proposed a hybrid CNN-RNN network based on an attention
mechanism in which the upper layer is a multi-layer CNN, and the lower layer is a long
short-term memory (LSTM) network, which can effectively extract spatiotemporal
features.

METHODOLOGY

Surface electromyography signal

The processing method of surface EMG signals is an important part of EMG signal analysis
and application, and the choice of processing method primarily depends on the
mechanism of EMG signal generation. There are four main mathematical models for
surface electromyography signals: linear system model, bipolar model, lumped parameter
model, and non-stationary model. The first three models all belong to steady-state analysis
when the muscle exerts constant force in a steady state. When muscles exert uneven force,
the changes in EMG signals are unstable, and non-stationary models can be used to
characterize EMG signals.

y(t) = c(t)m(t) ey
where c(t) is the modulation signal of muscle contraction degree and m(t) is the Gaussian
noise (zero mean unit variance) carrier signal.

The original surface electromyography signal is non-stationary and susceptible to
environmental noise and other bioelectric signals (such as electrocardiogram). It is
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necessary to denoise the original surface electromyography signal. The proper
frequencies of EMG signals are concentrated between 5 and 200 Hz. In this study, the
wavelet threshold denoising method was used to filter out the noise components in the
signal.

The commonly used wavelet filtering methods include Bayesian and non-Bayesian
methods. Non-Bayesian methods can be divided into three types: (1) spatial correlation
filtering algorithm, (2) maximum modulus reconstruction filtering algorithm, and
(3) wavelet threshold filtering. By analyzing and comparing three filtering methods, it is
concluded that the wavelet threshold filtering algorithm has the characteristics of simple
real-time operation and low computational complexity. Therefore, this article conducts
research on the wavelet threshold denoising method.

Let the basic wavelet be ¥,, ,(¢) and f(t) be a square integrable function, as shown
in Eq. (1):

U, (t) = \/iaxy(t ;”) 2)

The continuous wavelet transform of signal f(t) is defined as:

Wy 7 (m, n) \F/ £(0) t;n)dt 3)

where m > 0, n € R, m and n are scale factor and displacement, respectively.

If the basic wavelet U,, ,(t) satisfies the following permissible conditions:

Cj:/R|w|1]\i/(w)|2dw (4)

where Cj is the wavelet transform coefficient.
The continuous wavelet transform is

/ / —W\pf m, n) ¥, ,(t)dmdn. (5)

Through research and analysis, it has been found that after wavelet transform, G
generates a lot of redundancy. Therefore, denoising and restoring noisy signals can utilize
this redundancy. When certain conditions are met, the basis function that can form a
square integrable function with f(t) can be represented by a set of baselines in the square-
integrable function. After theoretical analysis, it is found that the wavelet transform
generates bases in a simple manner.

Based on improved threshold algorithm

Threshold-based wavelet denoising method

The main research content of this article is to improve the denoising effect of signals by
optimizing the selection threshold during the denoising process. The threshold-based

Ye et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2742 5/22


http://dx.doi.org/10.7717/peerj-cs.2742
https://peerj.com/computer-science/

PeerJ Computer Science

Cia

\J

Figure 1 Hard threshold function. Full-size Kal DOI: 10.7717/peerj-cs.2742/fig-1

selection method includes two types, soft threshold and hard threshold, which are
introduced as follows:

(1) Hard threshold function analysis. The hard threshold function is shown in Eq. (6)
. G, |G|>4
o={5" 1< ©
where A is the set threshold, and C] is the wavelet coefficient after threshold filtering. When
the wavelet coefficient C; is less than —/ or greater than /, this part of the wavelet
coefficient is recognized as the wavelet coefficient of the original signal. On the contrary,
the wavelet coefficients are 0.

The hard threshold wavelet denoising method can obtain reconstructed signals with
strong similarity. However, in this method, the signal edge is prone to generating
oscillation thresholds, forming abrupt signals. The function curve is shown in Fig. 1.

(2) Soft threshold function. The soft threshold function is shown in Eq. (7)

-7, G2
G=40, [C< (7)
C+4 G< —i

In Eq. (7), when Cj is greater than A, subtract A from the wavelet coefficients; When Gis
less than — /4, the wavelet coefficients plus 4 can be used as reconstruction objects; When G
is between —/4 and /, filter out this part of the wavelet coefficients, and the processed
wavelet coefficients are 0. By using wavelet soft thresholding denoising method,
reconstructed signals with good smoothness can be obtained. However, the threshold set in
this method is biased, which can cause the filtered signal to sometimes be too smooth,
resulting in significant errors. The function curve is shown in Fig. 2.
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Figure 2 Soft threshold function. Full-size K&l DOT: 10.7717/peerj-cs.2742/fig-2

Analysis of improving threshold denoising method
In the initial stage of denoising EMG signals, although the hard thresholding algorithm can
obtain reconstructed signals with strong similarity, due to the fluctuation of its threshold
function, it will produce many abrupt noise points in signals containing multiple
oscillations. At this time, the filtered signal will exhibit many distortion phenomena.
Although the soft thresholding algorithm function is continuous, it appears relatively
smooth when processing the wavelet coefficients of oscillating signals, which largely
overcomes the shortcomings of the hard thresholding algorithm. Similarly, this algorithm
significantly impacts wavelet coefficients with large absolute values. It can also cause loss of
high-frequency component information in the signal, resulting in overly smooth processed
signals and blurred signal edges, which can also increase errors in the reconstructed signal.
Therefore, by introducing a nonlinear function and control coefficients during the
transition phase of the function, threshold parameters can be set using such a threshold
function.

Based on the above analysis, this article adopts a nonlinear function for transition and
introduces control coefficients. The expression of the improved threshold algorithm is
shown in Eq. (8).

R Cj—/l—i-ae)'—a, G >4
G =q ale“ -1, —A<Ci<i (8)
Ci+i—ae*+a, G -4

where a is the introduced control coefficient, which affects the degree of variation of
wavelet coefficient C; in different ranges, the function curve is shown in Fig. 3.

The improved threshold function proposed in this article is based on the soft threshold
function and introduces control coefficients to make the original signal and noise signal
excessively smooth, and the filtered signal is closer to the original signal. This method has a
simple idea and is conducive to improving the denoising effect.
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Figure 3 Improve the threshold function. Full-size K&l DOT: 10.7717/peerj-cs.2742/fig-3

Multi-channel correlation characteristics of EMG signals

When analyzing the correlation information between channels of EMG signals, traditional
methods of measuring correlation usually only describe the linear correlation between two
channels and rarely consider nonlinear correlation, making it difficult to represent the
characteristics of nonlinear EMG signals accurately. This article calculates the linear
correlation features between channels, estimates the nonlinear correlation features, and
combines the two to construct multi-channel correlation features for pose recognition.

Linear correlation features between channels

In Fraschini et al. (2019), a calculation method for inter-channel consistency correlation
coefficient (CCC) is defined to measure the consistency relationship between two variables.
It is widely used in data reproduction and image comparison research. This article uses
CCC to measure the linear correlation between channels as feature information for posture
recognition. Use x = {x1,xy,---,xy} andy = {y1, 2, - -, yn } to represent the time series
of two different channels, and calculate the CCC between the two channels according to
Egs. (3)-(5), where y is similar to x and si is similar to s:

_ sty
p_s§+s§+(5c—y)2 ®)
g
x:ﬁ;xn (10)
2 1y x)* (11)
Sx_NnZ;(xn_x)

1 N
Sxy = N;(xn —X)n — ) (12)
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where x and y are the average values of x and y. sﬁ and s2 are the variances of x and y. s, is
the covariance between x and y.

Then, in this article, the EMG signal collected by the EMG sensor containing M
channels is denoted as X = {X;, X5, - - -, Xj }. Therefore, the CCC of the i-th and j-th
channels is represented as

Pxx, = px.x (13)

]

where i # j,and i = 1,2,---,M — 1, j = i + 1. The linear correlation feature between
channels is represented as

P=[Py,....P ..., Pry_1] (14)
Where Pk - |:pXka+17pXka+27 "'7'0XkXM:| and k == 1,2, ...,M — 1.

Nonlinear correlation characteristics between channels

Mutual information is an essential tool for measuring nonlinear relationships and is widely
used in fields such as recommendation systems. This article uses copula mutual
information to measure the nonlinear correlation between channels as feature information
for pose recognition. The mutual information between sequences X and Y is defined as

1069) = [ [ pestay) log%dxdy (1)

where px(x) and py(y) are the edge probability density functions of X and Y, respectively,
and pxy(x, y) is the joint probability density of X and Y.
On the other hand, the relationship between mutual information and copula entropy is

I(X,Y) = —H.(u,v) (16)

where u = Px(x) and v = Py(y). H.(u, v) is the copula entropy of u and v, Px(x) and
Py(y) are the cumulative distribution functions of X and Y, respectively.

For two time series X = [X;, X;| with N samples in different channels, perform a
probability integral transformation on X based on the empirical distribution function to
generate a pseudo observation value U, = [Um, Unz], where n = 1,2,---,N. The
calculation formula for U, is:

A 1
Un =
N+1

where 1, is the order statistic of X,y in {X,1, -+, X, - Xy}, [ = 1,2.
Finally, the nonlinear correlation features are represented as vectors

T'nl (17)

I=[IL,....Je, e, Iy | (18)
where Ik = [HXka+17HXka+27 "'7HXkXM] and k = 1,2, e ,M — 1.

Multi-channel correlation characteristics of multi-channel EMG signals

By using the above method to calculate the linear correlation features between channels
and estimate the nonlinear correlation features between channels, a multi-channel EMG
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Algorithm 1 MC feature construction method.

Input: Single M-dimensional multi-channel time series sample
Output: MC feature vector F.

1: Based on a single M-dimensional data sample X = [X;,X,, - -, Xy], calculate CCC features between multiple channels:

P= I:lesz e PX Xy PXoXsr s PXoXags -+ 9 PXoyg 1 X ]

2: Calculate Copula MI features between multiple channels:

I= [HX1X27 s aHX1XM7HXzX37 [ERR} HXzXM7 s ’HXM—IXM ]

3: Construct MC features by combining channel linear and nonlinear correlation features:

F= [pXIXZa s PXy X HXIXZ7 s 7HXM—IXM ]

4: Normalize the MC feature vector:

F — norm(F)

signal multi-channel correlation feature is constructed by combining the two correlation
features:

F:[P17P27‘-'7PM—17117127"'aIM—l] (19)

For a dataset containing S samples, S feature vectors with dimension M (M — 1) will be
obtained, denoted as:

Fp: j}),la"'af M(M_l)a_f M(M_1)+1aaﬁ),M(M—l) (20)

ps B ps 2

Next, normalize the features of each dimension in the feature vector separately:

Thus, obtaining a normalized feature vector

Fp= |fprr-of M(M—l)’f M(M — 1) v o f o) (22)

7 : +1
P LA

The specific method for constructing MC features is shown in Algorithm 1.
Remark 1. There are several reasons for choosing copula MI in our study. Firstly, copula
MI has a strong theoretical foundation for measuring nonlinear channel correlations. It is
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Figure 4 Block diagram of stacking ensemble learning model.
Full-size K&l DOT: 10.7717/peerj-cs.2742/fig-4

directly related to mutual information and can effectively capture complex dependency
relationships between variables. Secondly, copula MI demonstrated excellent performance
in processing data features in our electromyographic signal analysis. Compared with other
methods, it can better adapt to the nonlinearity and non-stationarity of electromyographic
signals.

Regarding other nonlinear metrics, such as Pearson correlation or Hilbert Huang
transform (HHT) for phase synchronization, although they may have their own
advantages in certain situations, they also have limitations. For example, Pearson
correlation with phase synchronization may be more sensitive to specific phase
relationships and may not fully capture general nonlinear dependencies in our data. HHT
may involve more complex calculations, and interpreting the results in the context of our
specific problem may not be as simple. Therefore, based on our data’s characteristics and
our research’s requirements, copula MI has been determined as the most suitable
nonlinear metric for extracting nonlinear correlated features of electromyographic signals.

Stacking ensemble learning model
After constructing the MC features of multi-channel EMG signals, the feature vector is
input into the classifier for gesture recognition. The traditional classification method
identifies the most appropriate feature distribution function within the assumed function
space as the basis for classification. However, with the increase in data volume and
diversity, especially the influence of individual differences, the distribution of actual data
often has uncertainty, which leads to a single classifier’s weak generalization ability in
multi-classification tasks due to sample uncertainty. In contrast, learning methods
integrating multiple classifiers exhibit more significant advantages in high-precision
classification tasks.

This article adopts the stacking ensemble learning method. Firstly, the base learner is
trained on the initial training set, and then the predicted results of the base learner are used

Ye et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2742 11/22


http://dx.doi.org/10.7717/peerj-cs.2742/fig-4
http://dx.doi.org/10.7717/peerj-cs.2742
https://peerj.com/computer-science/

PeerJ Computer Science

as a new feature set to train the fusion device. In this stacking framework, extreme gradient
boosting (XGBoost), K-nearest neighbors (KNN), Random Forest (RF), and naive Bayes
(NB) are selected as base learners, and logistic regression (LR) models are used as fuses.
The structural diagram of the model is shown in Fig. 4.

Remark 2. For the KNN algorithm, we conducted a grid search within the range of
k-values. We start with a set of [3,5,7,9,11] and evaluate the model’s performance using a
validation set. The performance indicators are accuracy, precision, recall, and F1 score.
Through this process, we found that the k-values of [27,29,31,33,35] produced the best
overall performance across multiple datasets.

EXPERIMENTAL RESULTS

Experimental preparation
The data used in this article are the leg EMG signals mentioned in de Freitas ¢» Kohn
(2024), the biceps EMG signals mentioned in Khodadadi et al. (2023), the hand EMG
signals mentioned in Hao et al. (2023b), and the lumbar EMG signals mentioned in Cheng
et al. (2023b), Wang et al. (2024), Hao et al. (2023a). The raw data is shown in Fig. 5.
The application was written in Python 3.7, and the experiment was carried out within
the PyCharm environment. The machine was set up with an Intel Xeon E5 series
processor, 8 GB of RAM, and a 64-bit version of Windows 10. This chapter performs
performance evaluation on the test set after the model’s training on the training set to
assess the recognition performance of the suggested approach. Performance evaluation
indicators include precision (P), recall (R), F1, accuracy (Ac), and Matthews correlation
coefficient (MCC). The formula for calculating these indicators is as follows:

TP + TN
Ac = 23
“TTPYFP+ TN+ EN (23)
- TP+ FP

TP+ EN

2PR
Fl=_>"7" (26)

P+R

TP x TN — EP x EN
C= . . (27)

/(TP + EP)(TP + EN)(TN + FP)(IN + FN)

where TP is the positive sample that the model anticipates to be positive, The model
predicts TN, a negative sample, to be negative, and FP, a negative sample, to be positive.
FN is a positive sample that the model anticipated to be negative.

This article superimposes noise with different signal-to-noise ratios (10, 20, 30, 40, and
50 dB) on the original signal to evaluate the signal-to-noise ratio of different methods. The
experimental results are shown in Table 1. It can be seen that the improved threshold
function proposed in this article has a higher signal-to-noise ratio, indicating that the
proposed method can better remove noise.
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Table 1 Improved noise performance under different threshold values (dB).

Method 10 dB 20 dB 30 dB 40 dB 50 dB
Soft threshold function 14.8 13.5 10.9 8.7 82
Hard threshold function 15.1 14.7 12.1 9.5 8.0
Improving threshold function 20.9 19.7 17.4 16.5 16.2
Method 10 dB 20 dB 30 dB 40 dB 50 dB
Soft threshold function 14.8 13.5 10.9 8.7 82

Experimental analysis

Firstly, this article uses a control coefficient of a = 0.3 to conduct denoising experiments
on the surface EMG signal of the arm. The simulation results are shown in Fig. 6. Using
simulation results and signal-to-noise ratio as performance indicators, the higher the
signal-to-noise ratio, the better the denoising effect and the better the ability to recover the
original signal.

Perform ten-fold cross-validation on each dataset separately, take the average of ten
performance evaluation metrics as the result, and calculate the mean of all performance
evaluation metrics. The recognition results are shown in Table 2.

Table 2 shows that the recognition accuracy of each dataset has reached over 96%, and
the mean values of various evaluation indicators have also exceeded 96%, indicating that
the algorithm has achieved good recognition performance. In the final cross-validation, the
parameters of the stacking model were set, as shown in Table 3.
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Figure 6 Simulation results of three threshold denoising methods.
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Table 2 Recognition results of different datasets.

Data Ac P R F1 MCC
Leg 0.9677 0.9680 0.9633 0.9725 0.9700
Biceps muscle 0.9635 0.9654 0.9681 0.9821 0.9679
Hand 0.9738 0.9689 0.9768 0.9689 0.9716
Lumbar 0.9768 0.9813 0.9719 0.9699 0.9713
Average value 0.9706 0.9709 0.9700 0.9734 0.9702
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Table 3 Stacking model parameters.

Parameter name

The number and learning rate of weak learners in XGBoost model 100, 0.01
The number of nearest neighbors in KNN model 100
The number and maximum depth of RF model trees 80, 5
Minimum sample size on leaf nodes 1
Minimum sample size on branch nodes 2

Table 4 Recognition results of model parameters tuning.

Adjustment parameters Ac P R F1 MCC
Before adjusting parameters 0.9536 0.9369 0.9593 0.9435 0.9410
After adjusting parameters 0.9768 0.9813 0.9719 0.9699 0.9713

Parameter settings have a significant impact on model performance. To verify the
recognition performance of the stacked model after parameter optimization, this article
randomly selected a single dataset for experiments. In the experiment, the parameters of
the stacking model were set to default values, and the average of ten performance
evaluation metrics was taken as the final evaluation result. The recognition results are
shown in Table 4.

Table 4 shows that compared to the model with default parameters, the model with
optimized parameters has a higher recognition accuracy, indicating that reasonable
parameter settings can effectively improve model performance. Meanwhile, the adjusted
parameters have a faster training time.

To verify the effectiveness of the MC feature proposed in this article, it was compared
with four commonly used time-domain features: mean absolute value of amplitude
(MAV), zero crossing points (ZC), wavelength (WL), and slope change number (SSC).
Extract these four time-domain and MC features from all training and testing datasets and
complete the classification model training on the training dataset. Then, experiments on
the testing dataset will be conducted to obtain the classification results. The average
recognition accuracy is shown in Fig. 7.

Opverall, the recognition performance of MC features is the best. The recognition
accuracy of the four commonly used time-domain features is 78.2% (MAV), 52.8% (ZC),
72.4% (WL), and 58.8% (SSC), respectively. The recognition accuracy of the MC feature is
significantly higher than that of these time-domain features, increasing by 41.9 percentage
points compared to the ZC feature, reaching 94.7%. Although commonly used time-
domain feature extraction is simple and convenient, it is easily affected by changes in force
or speed in practical scenarios, resulting in significant fluctuations in feature values and
ultimately affecting recognition performance. The MC feature proposed in this study
quantifies linear and nonlinear correlations between EMG channels, providing a measure
of intermuscular coupling and demonstrating enhanced robustness. Compared to single
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time-domain features, MC features effectively leverage inter-channel information, offering
a more comprehensive representation of multi-channel EMG characteristics and
significantly improving feature recognition accuracy.

To further validate the recognition performance of the stacking model in this article, five
commonly used classification models (XGBoost, KNN, RF, NB, LR) were compared with
the stacking model to explore their impact on EMG feature recognition. The parameter
settings of each model are consistent with those in the stacking model. After extracting MC
features from all datasets, the models were trained using the training set and validated on
the test set through five-fold cross-validation. The mean and variance of five recognition
accuracy measurements were used as evaluation metrics. The experimental results are
presented in Fig. 8.

Ye et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2742 16/22


http://dx.doi.org/10.7717/peerj-cs.2742/fig-8
http://dx.doi.org/10.7717/peerj-cs.2742/fig-7
http://dx.doi.org/10.7717/peerj-cs.2742
https://peerj.com/computer-science/

PeerJ Computer Science

I\ Leg EMG signals

20( %:;%O%Q%% . O Biceps EMG signals
10 At‘iﬁ&gsﬁ ’ O Hand EMG signals

e <> Lumbar EMG signals

20 —20

Figure 9 t-SNE visualization results. Full-size K&] DOT: 10.7717/peerj-cs.2742/fig-9

Figure 8 shows that XGBoost has the highest accuracy among the four basic models,
while the LR model has the lowest recognition accuracy. The recognition accuracy of the
stacking model is significantly better than other single classification models, with an
average of 96%. This indicates that the stacking model performs better overall and has a
higher gesture recognition rate. The reason is that in multi-class classification problems,
the representation ability of a single machine learning method is limited, while stacking
ensemble learning reduces variance and improves generalization ability by combining the
outputs of multiple base classifiers and the learning of fusion devices, thereby improving
classification accuracy.

After classification experiments on the data, the MC features extracted from the test set
are mapped to three-dimensional space using the t-SNE method for visualization analysis.
Figure 9 shows the visualization results of extracting MC features from the test set data. It
can be seen that after MC feature extraction, the intra-class distance of various gestures is
relatively small, and the inter-class distance is relatively large, showing obvious
separability.

To comprehensively analyze the advantages and disadvantages of different feature
extraction methods and further demonstrate the superiority of our MC features, the
method proposed in this article is compared with power spectral density (PSD) and short-
time Fourier transform (STFT) frequency domain features. For PSD, we will calculate the
power distribution at different frequencies to capture the frequency characteristics of the
signal. For STFT, we will use appropriate window sizes and overlaps to obtain the time-
frequency representation of the signal. The experimental results are shown in Table 5.

To verify the algorithm’s effectiveness proposed in this article, we removed the CCC and
copula MI features separately to evaluate their independent effects. The experimental
results are shown in Table 6.
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Table 5 Comparison of experimental results of different different features.

Method Ac P R F1 MCC
PSD 0.8723 0.8103 0.9078 0.7239 0.8187
STFT 0.8472 0.8311 0.9185 0.8285 0.8796
MC 0.9263 0.9183 0.9413 0.9086 0.9518

Table 6 Results of ablation experiment.

Method Ac P R F1 MCC

Removed the CCC 0.8523 0.7958 0.8567 0.8423 0.8672
Removed the Copula MI 0.8627 0.8078 0.9012 0.8752 0.9011
Proposed method 0.9263 0.9183 0.9413 0.9086 0.9518

Table 7 The performance of the method proposed in this article on various datasets.

Datasets Ac (%) MCC AUC-ROC (%)
Arm muscle electrical signal 96.3 0.92 98.5
Thigh muscle electrical signal 95.8 091 97.9
Hand electromyographic signal 94.7 0.89 96.8
Lumbar electromyography signal 96.5 0.93 98.6

The experimental results show that the model using CCC features alone performs better
than only copula MI features. Still, the best performance is achieved by combining the MC
features, indicating that linear and nonlinear features complement each other in different
scenarios.

Finally, this article added the AUC-ROC metric to evaluate the model’s performance
further, and together with existing metrics (accuracy, MCC), it demonstrated the
performance of the stacked model on various datasets. The results are shown in Table 7.

Limitations of the approach

The proposed method achieves high accuracy in sports behavior prediction, but its
generalizability across different sports and movement patterns remains uncertain. The
computational complexity of multi-channel feature extraction and ensemble learning may
limit real-time applicability, and the reliance on sensor quality introduces variability.
Feature selection bias and the lack of interpretability in the stacking model could hinder
practical use. Although the approach effectively mitigates noise and crosstalk, its
robustness under extreme conditions requires further validation. Additionally, broader
comparisons with deep learning models and dynamic adaptation for real-time monitoring
could enhance its practical impact.
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CONCLUSIONS

To better meet the needs of daily sports work, this article constructs multi-channel related
features of electromyographic signals generated by sports behavior. It uses a stacked
ensemble learning model for recognition. Firstly, soft and hard threshold denoising
methods and improved threshold denoising methods are used to process noisy signals.
Next, the concordance correlation coefficient (CCC) computed the linear correlation
features between channels. In contrast, the nonlinear correlation features were estimated
using copula-based MI to construct the MC features. Finally, a stacked classification model
with XGBoost, KNN, RF, and NB as base classifiers and LR as fusion is used for feature
recognition. The experimental results show that this method outperforms 95% in accuracy,
precision, recall, F1 value, and Matthews correlation coefficient for four common EMG
signals.

In future research, the author will further explore the performance of the MC method in
different biological signals and verify its generality and robustness.
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