Submitted 25 October 2024
Accepted 10 February 2025
Published 11 March 2025

Corresponding author
Chao Wang, cw@ntnu.edu.tw

Academic editor
Michele Pasqua

Additional Information and
Declarations can be found on
page 18

DOI 10.7717/peerj-cs.2741

() Copyright
2025 Tseng et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Cloud-edge MQTT messaging for latency
mitigation and broker memory footprint
reduction

Yi-Hsuan Tseng, Chao Wang, Yu-Tse Wei and Yu-Ting Chiang

Department of Computer Science and Information Engineering, National Taiwan Normal
University, Taipei City, Taiwan

ABSTRACT

The deployment of smart-city applications has increased the number of Internet of
Things (IoT) devices connected to a network cloud. Thanks to its flexibility in
matching data publishers and subscribers, broker-based data communication could
be a solution for such IoT data delivery, and MQTT is one of the widely used
messaging protocols in this class. While MQTT by default does not differentiate
message flows by size, it is observed that transient local network congestion may
cause size-dependent latency additions, and that the accumulation of large message
copies in the cloud broker could run out of the broker memory. In response, in the
scope of cloud-edge messaging, this research article presents problem analysis,
system design and implementation, and empirical and analytical performance
evaluation. The article introduces three message scheduling policies for subscribers
deployed at network edge, and a memory allocation scheme for MQTT broker
deployed at network cloud. The proposed design has been implemented based on
Eclipse Mosquitto, an open-source MQTT broker implementation. Empirical and
analytical validations have demonstrated the performance of the proposed design in
latency mitigation, and the result also shows that, empirically, the proposed design
may save the run-time broker memory footprint by about 75%. Applicability of the
proposed design to other messaging services are discussed by the end of the article.

Subjects Adaptive and Self-Organizing Systems, Computer Networks and Communications,
Distributed and Parallel Computing, Real-Time and Embedded Systems, Internet of Things
Keywords MQTT, Publish-subscribe, Quality-of-service, Smart cities, Internet of Things

INTRODUCTION

Internet of Things (IoT) technology has helped modern society and its administration to
collect data and orchestrate city-scale smart applications (Bellini, Nesi ¢» Pantaleo, 2022;
Gharaibeh et al., 2017). The types of data collected range from small-size sensing data
(Ullah et al., 2024; Allen & Melgar, 2019) to large-size video data (Pathak et al., 2024; Tian
et al., 2018). In many such applications, besides offline data analysis, online data
processing is critical and requires a suitable data delivery network protocol.

Data delivery in smart-city applications may travel a long route, as the software
ecosystem is often deployed across a network cloud and local networks that are at the edge
of the cloud. Deployed at the city scale, at one end, data publishers are IoT data-collecting
devices such as sensors and cameras; at the other end, data subscribers are applications that
may be deployed either in the network cloud or at the edges of the cloud. Between

How to cite this article Tseng Y-H, Wang C, Wei Y-T, Chiang Y-T. 2025. Cloud-edge MQTT messaging for latency mitigation and broker
memory footprint reduction. Peer] Comput. Sci. 11:e2741 DOI 10.7717/peerj-cs.2741

http://dx.doi.org/10.7717/peerj-cs.2741
mailto:cw@�ntnu.�edu.�tw
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2741
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

PeerJ Computer Science

publishers and subscribers, a software service called broker is deployed in the network
cloud and helps forward data while providing the needed quality-of-service (QoS) levels.

Among network data delivery protocols (Naik, 2017), MQTT (Banks et al., 2019) is
flexible in matching data publishers and subscribers and has inherent support of the QoS
for data delivery guarantees. For example, MQTT can be used to implement the idea of
geofence (Rodriguez Garzon ¢ Deva, 2014) at the city scale for location-aware servicing: by
associating topics for publish/subscribe to geographic regions, clients subscribing to such a
topic may receive data relevant to specific locations. One immediate benefit is messaging
filtering and data traffic reduction.

But MQTT also adds peculiar challenges to the cloud-edge data communication. In
MQTT, as all message deliveries have to go through the broker, the cloud broker may
become a bottleneck of both temporal performance (data delivery latency) and spatial
performance (memory and storage demand at the broker). Consider a generic data traffic
pattern in smart-city applications: small-size messages targeting at low latency (e.g., event
notifications) and large-size messages targeting at high reliability (e.g., detail account of an
event), and that each message published may need to be delivered to multiple subscribers.
Using MQTT, in its attempts to deliver a large-size message downstream a temporarily
congested edge network, the cloud broker could delay other messages; moreover, the large-
message copies queued up within the broker could quickly consume the memory on the
broker host. This could be a problem in particular when the broker is deployed in a cloud
VM with limited memory capacity.

Accordingly, this article describes a study on the following research question: Given
different-sized message streams in cloud-edge MQTT messaging scenarios, and with
transient network congestion, how to both limit latency penalty on each message and bound
memory consumption on the broker host? The research contributions of this work include
the following items:

1) A problem analysis and empirical performance micro-benchmark: This article presents
two experiments that demonstrate both the temporal and spatial performance issues in
cloud-edge messaging, as mentioned above. Multiple pairs of data communication were
conducted across the network cloud and edge networks, with an MQTT broker
deployed in an AWS EC2 VM.

2) A set of message-size-aware scheduling policies for an MQTT broker: three adaptive
message scheduling policies are proposed to reduce the small-size message latency while
bounding the large-size message latency. The scheduling policies take into account
downstream network conditions and withhold large-size message deliveries in favor of
small-size message latency performance. The decision to resume a large-size message
delivery is based on historical and estimated network conditions.

3) An improved memory allocation strategy for a cloud MQTT broker: a lazy memory
allocation strategy is proposed to decouple the relation between the size of run-time
memory footprint and the number of subscribers of large-size messages.

4) An implementation of the proposed design: the proposed design has been
implemented based on an open-source MQTT broker named Eclipse Mosquitto

Tseng et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2741 2/20

http://dx.doi.org/10.7717/peerj-cs.2741
https://peerj.com/computer-science/

PeerJ Computer Science

(https://mosquitto.org/), and the implementation of the design is available as open
source software (https://github.com/wangc86/Adaptive-MQTT-Transmit-Policy).

5) Empirical and analytical performance evaluation: the implementation has been
evaluated in a cloud-edge deployment setting, and comprehensive analytical analysis is
conducted to show the performance nuances of the proposed design under a range of
design parameters.

The rest of this article is structured as follows. “Related Work” surveys known results in
general network performance management, related work in integrating MQTT with some
other protocols, and the ones that are specific for MQTT. “System Model and Problem
Analysis” describes the system model and problem analysis, with two micro-benchmark
experiments motivating the research question and solution. “Cloud MQTT Broker Design”
introduces both the scheduling policies and the memory allocation strategy for MQTT
cloud broker. “Implementation and Performance Validation” describes the
implementation and performance evaluation, with empirical results and analytical
analyses. Subsequently, “Discussion” gives a list of configuration recommendations for the
usage of the proposed work, and a discussion is included on how the experimental
parameters affect the empirical results, and how the proposed approach generalizes to
different MQTT brokers and other broker-based systems. “Concluding Remarks”
concludes the article.

RELATED WORK

Fundamentals in how data routing and flow control impact data network latency have
been known since the early days of computer networks research and development
(Bertsekas & Gallager, 1992), and queueing theory has shown itself applicable in many
practical settings (Harchol-Balter, 2013). Nevertheless, given the increasing capacity of the
modern network core in both bandwidth and speed, and as new applications have become
more tangible (such as those in Tactile Internet; Promwongsa et al., 2020), both network
resource management (Shakarami et al., 2022) and quality-of-service guarantee
(Zolfaghari et al., 2020) have become yet more important. In contrast to clean-slate designs
that target at the network core (Anjum et al., 2024), MQTT takes the approach at the
application layer and is agnostic to the network functionalities from the layers beneath.

A comparative study on MQTT and HTTP (Yokotani ¢» Sasaki, 2016) shows that the
topic length of a MQTT message could significantly impact network latency and therefore
suggested a solution for topic compression. An analysis on message loss and delay in
MQTT (Lee et al., 2013) shows that message loss under various payloads is correlated with
end-to-end delay. To better handle heterogeneous data size, a solution is to use both
MQTT and FTP (Ohno et al., 2022), where MQTT handles small data and FTP handles
large data. A more recent work (Li, Chiang & Wang, 2024) compares broker-based and
broker-less data deliveries, and an adaptive scheme is introduced for switching traffic
between the two for better video streaming quality.

Many studies have recognized the challenges posed by placing MQTT brokers in the
cloud, and some resorted to the idea of deploying brokers at the edge to share the load of

Tseng et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2741 3/20

https://mosquitto.org/
https://github.com/wangc86/Adaptive-MQTT-Transmit-Policy
http://dx.doi.org/10.7717/peerj-cs.2741
https://peerj.com/computer-science/

PeerJ Computer Science

the cloud broker (Banno et al., 2017). In the work LA-MQTT (Montori et al., 2022), an
approach leverages collaboration among multiple brokers and use geographical hints to
find the nearest broker for data transmission. As deploying brokers at the edge could lead
to challenges in managing a large number of brokers, researchers (Park, Kim ¢ Kim, 2018)
proposed to use software-defined networking (SDN) with MQTT brokers to set up better
data delivery paths. In the case of a pool of subscribers, A related study (Matic et al., 2020)
described a method to assess the load of each subscriber and accordingly determine which
subscriber to send the data to. The work EMMA (Rausch, Nastic ¢» Dustdar, 2018)
proposed to use network latency to infer the distance between clients and brokers and
redirect clients to their closest broker. A more recent work, MQTT-SD (Kamoun et al.,
2024), proposed to use data fusion and aggregation to reduce the volume of data flow to
subscribers, and the approach can be integrated into existing MQTT infrastructure.

SYSTEM MODEL AND PROBLEM ANALYSIS

In MQTT, data communication takes place in terms of messaging between publishers and
subscribers. A messaging broker matches publishers and subscribers if they share the same
message topic. To meet the requirement of different applications, MQTT defines three
Quality of Service (QoS) levels for message delivery: QoS 0 (at most once delivery), QoS 1
(at least once delivery), and QoS 2 (exactly once delivery). QoS 2 is rarely used; hence, this
study focuses on QoS 0 and QoS 1. If there are multiple subscribers subscribing to the same
topic, the broker would make individual delivery attempt for each subscriber.

Figure 1 illustrates a generic MQTT messaging scenario that span across the network
cloud and multiple local networks at the edge of the cloud. If both that the subscribers are
many and that each message is large (e.g., the yellow message flow), then the broker could
add much traffic load to the downstream network. Now, if the downstream network is
temporarily congested (red areas in Fig. 1), then packets could be dropped and future
delivery attempts may further congest that part of the network and affect the other message
flows (e.g., the green message flow in edge network 3). Furthermore, under such condition
the broker will have to keep messages for future delivery attempts, and this could quickly
consume the memory in the broker. The following two experiments demonstrate the
problem.

In the first experiment, a Mosquitto MQTT broker (Light, 2017) (version 2.0.12) ran in
a VM in Amazon EC2 us-east region, and 10 publishers and 100 subscribers ran on local
PCs in Taiwan. The broker VM had 1 GB memory. The detail configurations are listed in
Tables 1 and 2. Figure 2 shows the results of latency from publisher to subscriber. As
Fig. 2A illustrates, the latency is not much influenced by the QoS level as is by the message
size, possibly because the PUBACK control packet for QoS 1 messaging acknowledgment
is small packet (https://mqtt.org/mqtt-specification/). Furthermore, large-size messages
are more sensitive to changing network condition (Fig. 2B), as further latency breakdown
shows that the average message processing time in the broker is less than 1% of the overall
end-to-end latency, whereas the time of publisher-to-broker is about 46.6%, and the time
of broker-to-subscriber is about 52.4%.

Tseng et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2741 4/20

https://mqtt.org/mqtt-specification/
http://dx.doi.org/10.7717/peerj-cs.2741
https://peerj.com/computer-science/

PeerJ Computer Science

% :example message flows

il - transient network congestion

o

~

.- ==
i

Sem——~o

Edge network 1

=

S —_—
~~ ~ Cloud network --——----

" Edge network 4

l CEE)
7\ 1 , ', (Data storage

Edge network 2

Edge network 3

Application
onitor

Administrator

\
N
~
Sem
~
~
~.

Figure 1 Generic cloud-edge MQTT messaging scenario.
Full-size K&l DOT: 10.7717/peerj-cs.2741/fig-1

Table 1 Publishers setting of benchmark experiment.

Publisher ID QoS Payload size Sending period Topic Subscribers
PUBI1 1 100 B 10s QoS1/10 B 46
PUBO1 0 100 B 10s QoS0/10 B 46
PUB2 1 1 KB 10s QoS1/1 KB 46
PUBO02 0 1 KB 10 s QoS0/1 KB 46
PUB3 1 10 KB 10 s QoS1/10 KB 46
PUBO03 0 10 KB 10s QoS0/10 KB 46
PUB4 1 100 KB 10s QoS1/100 KB 46
PUB04 0 100 KB 10s Qo0S0/100 KB 46
PUB5 1 1 MB 10s QoS1/1 MB 46
PUBO5 0 1 KB 10s QoS0/1 MB 46
Table 2 Subscribers setting of benchmark experiment.
Subscriber ID QoS Topic
SUB1 0 Q0S0/100 B
SUB2 0 QoS0/1 KB
SUB3 0 QoS0/10 KB
SUB4 0 Q0S0/100 KB
SUB5 0 QoS0/1 MB
SUB6 0 QoS1/100 B
SUB7 1 QoS1/1 KB
(Continued)
Tseng et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2741 | 5/20

http://dx.doi.org/10.7717/peerj-cs.2741/fig-1
http://dx.doi.org/10.7717/peerj-cs.2741
https://peerj.com/computer-science/

PeerJ Computer Science

Table 2 (continued)

Subscriber ID QoS Topic
SUB8 1 QoS1/10 KB
SUB9 1 QoS1/100 KB
SUB10 1 QoS1/1 MB
SUBL11 to SUB55 0 QoS0/#
SUB56 to SUB100 1 QoS1/#
1.0 - ippgr o SO
/ -
0.8
|
8 |
< 0.6 -
2 /
oy {
.-E
o044
o
> |
} —— 10B (QoS 1) 10 B (QoS 0)
0.2 1 ‘ , —— 1 KB (QoS 1) 1 KB (QoS 0)
‘ —— 10 KB (QoS 1) 10 KB (QoS 0)
—— 100 KB (QoS 1) 100 KB (QoS 0)
0.0 } —— 1MB(QoS1) 1 MB (QoS 0)
0 10 20 30 40 50
End to end latency (s)
(a) Cumulative distribution function.
50 A
« 10B(QoS1) 10 B (QoS 0)
«+ 1KB(QoS1) 1 KB (QoS 0)
« 10KB (QoS1) 10 KB (QoS 0) :
407 . 100KB (QoS 1) 100 KB (QoS 0) p
. « 1MB(QoS1) 1 MB (QoS 0) R
2] »
> . . 0 &
S 30 ~ et
g - ‘
© . X
© s °
o ; *
S 20 A o
5 .
C L] L] & .. L
LLJ L]
10 1 i QPR D
. L .“: °
2T e e) .‘ :
O o AR AT :._:,v.“-ﬁ.' W™ h’,J“'L S
0 250 500 750 1000 1250 1500 1750 2000
Time (s)

(b) Time series.

Figure 2 (A and B) End-to-end latency under different QoS.

Full-size Ka] DOT: 10.7717/peerj-cs.2741/fig-2

Tseng et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2741

6/20

http://dx.doi.org/10.7717/peerj-cs.2741/fig-2
http://dx.doi.org/10.7717/peerj-cs.2741
https://peerj.com/computer-science/

PeerJ Computer Science

140 100
- 10B(QoS 1) . 10B(QoS 0) .
1KB (QoS 1) 1 KB (QoS 0)
120 10 KB (QoS 1) . 10KB (QoS 0) e
- 100KB (Q0S1) - 100 KB (QoS 0)
‘U; 1004 « 1MB(QoS1) + 1MB(QoS0) s
2 .
§ F60
< 80 3
[~
8 >
2 £
_% 60 L 40 g
L
§ 901
o L
& 20
20
0 Fo

0 200 400 600 800 1000 1200 1400
Time (s)

Figure 3 Correlation between broker memory usage and broker-to-subscriber latency.
Full-size K&l DOT: 10.7717/peerj-cs.2741/fig-3

In the experiment, while about 25% of 1 MB of messages were affected by transient
network congestion and had much longer latency, about 10% of 100 KB messages were
affected, and still lower percentage of smaller messages were affected. This indicates that
the cause of additional latency for small-size messages is not the same as that for large-size
messages. It is conjectured that smaller messages were impacted more by larger messages
going to the same subscribing host than by the vanilla network condition with no
messaging.

The second experiment had the same configuration as the first, except that it was
conducted during a peak hour of campus network activities. Figure 3 shows the results.
Each point in the figure marks the latency of message delivery from the broker to a
subscriber, and the blue line shows the memory usage of the broker. The result shows a
correlation between messaging latency and the broker memory usage. In particular, when
handling the 1 MB packets with QoS 1, the latency rise was accompanied by a significant
increase in memory usage. Should the demand of QoS 1 large messages be many, the
broker could run out of memory.

Overall, there are four observations from the above two experiments:

1) Messaging latency is subject to both the message size and the network condition and is
less to do with the QoS level (either 0 or 1).

2) Large-size messages may suffer from much longer latency penalties under network
congestion.

3) Large-size messages may impact the latency of small-size messages should they go to the
same subscribing host.

4) Large-size not-yet-delivered message copies could run out of broker memory.

Tseng et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2741 7/20

http://dx.doi.org/10.7717/peerj-cs.2741/fig-3
http://dx.doi.org/10.7717/peerj-cs.2741
https://peerj.com/computer-science/

1

PeerJ Computer Science

s stands for size.

CLOUD MQTT BROKER DESIGN

This section describes the proposed improvements to MQTT broker design. The
motivation is to reduce small-size message latency while bounding large-size message
latency. Following the observations from the micro-benchmark experiments (presented in
the previous section), the key design idea is to temporarily withhold transmission of large
messages until either the downstream network congestion has been improved or the
message has been withheld for too long. The key design challenge is to resume
transmission at some appropriate timing, so as to improve the overall messaging latency
performance while not running out of broker memory. This is achieved by some heuristics
taking into account network condition, design parameter, and the withhold duration so
far. Figure 4 illustrates the architecture of the corresponding broker design. Upon each
message arrival, the broker will label it as either large message or small message. Large
messages may be temporarily withheld from delivery. A latency detector fathoms the
downstream network latency.

There are four design elements in the proposed design: (A) message size classification,
(B) network latency monitoring, (C) large message scheduling, (D) lazy memory
allocation. The following subsections describe each design element.

Message size classification

Message classification is done by comparing the size of the arriving message with a
configurable threshold value, named threshold_s'. The value Threshold_s specifies
the size above which a message should be considered as a large message. The specific value
is determined according to the available network bandwidth in each environment of
service deployment. When the broker receives a PUBLISH control message from the
publisher, if the payload size of the control message is greater than threshold_s, the
message will be labeled as a large message, otherwise as a small message. The large message
will be kept in a temporary buffer and will be scheduled for transmission according to the
selected scheduling policy (“Large Message Scheduling”).

Network latency monitoring

The downstream network condition at each subscriber could be different and time-
varying. In the proposed design, the broker will monitor the downstream network
condition per message subscriber. The monitoring is carried out by having the broker
periodically send each message subscriber a query message using QoS 1. The broker then
measures the round-trip time (RTT) based on the PUBACK control packet sent back from
the subscriber. The RTT is used for estimating the latency a message might experience in
the near future, and the estimation is used for message-withholding decisions. To obtain a
better estimation, the query message size could be set to the actual message size for
application data delivery; alternatively, to reduce its consumption of the network
bandwidth, one could set the query message size to some smaller value and use
network profiling to infer the latency estimation for each message size (e.g., those results in
Figs. 2 and 3).

Tseng et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2741 8/20

http://dx.doi.org/10.7717/peerj-cs.2741
https://peerj.com/computer-science/

PeerJ Computer Science

2 [stands for latency.

\ PUBACK

(query message)

/Cloud Broker

- Latency [€ |~ -""""ccToooo
ey Detector | - {--------oo-
. PUBLISH
withhold (query message)
message?
large A
message Temporary
7 Buffer
N \4
Publisher > Classifier Message Subscriber
small Sender
\ message /
Figure 4 The proposed MQTT broker design. Full-size K&l DOT: 10.7717/peerj-cs.2741/fig-4

Large message scheduling

For a large message, the broker may choose to temporarily withhold its delivery, so that
(1) it will not bump into the temporarily-congested network and experience significant
latency, and (2) it will not further congest the network and delay small-size messages. The
broker makes withhold decisions based on a configurable, per-subscriber parameter
threshold_1”. The threshold_1 represents the RTT under a non-congested network,
and it can be either set up as a fixed value or determined at run-time using the moving
average of the recent RTTs.

The following notations are used for describing both our design of message scheduling
and the performance validation in “Analytical Performance of All Policies”. For each
message, its duration of withholding thus far is called the sojourn time of the message and
is denoted by Ag. A time length D is as the upper bound of withholding duration. The
scheduling decision is updated once Ag > D or once a new latency estimation is available.
Let Lo be the expected downstream one-way network latency, which is defined to be the
latency a message may experience should the broker schedule it now. L, is computed and
updated by the following equation:

Lnow — RTTlatest/zy (1)

where RT Tiaest is the latest RTT estimation obtained by network latency monitoring.
Finally, T, is denoted as the sending period of RTT query messages.
This article introduces the following three scheduling policies for large messages:

1. Conservative policy: Deliver a message if

Lpow < threshold_1/2 or Ag > D. (2)

Under this policy, put it in another way by plugging in Eq. (1), it says that if
RT Tipest > threshold 1, the broker would withhold the current delivery attempt unless
Ag > D (i.e., when the message has been withheld for too long). The choice of
threshold_1 value needs to be based on the target network environment.

2. Probabilistic policy: Deliver a message if

Tseng et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2741 9/20

http://dx.doi.org/10.7717/peerj-cs.2741/fig-4
http://dx.doi.org/10.7717/peerj-cs.2741
https://peerj.com/computer-science/

PeerJ Computer Science

Broker

v

DA
DA

Subscriber list S1 queue

ID: S1, Topic: t1, t2 | [payload|—>| |payload|
ID: S2, Topic: t1, t2

2
. S2 queue
ID: S3, T 2t2
e [[payioad] [[payioad|
S3 queue
©) A rSersvan]

> DA

.
wee .
wssssssssssEssEsEteaua,, .

Lass LT .

Subscriber list | 84 .aheue
ID: $1, Topic: t1, t2 CL 1=l 1]
ID: S2, Topfc: t1, t2 s2 q'Ueue
ID: S3, Topic: t2
S3 queue

©) By
Confirm 1 ¥ Packet
{} broker | sender
] ' Free
payload 1| packet

> DA

(b) Lazy memory allocation for messages.

Figure 5 (A and B) Broker memory allocation design. Full-size Kl DOI: 10.7717/peerj-cs.2741/fig-5

Lnow < TQ + Lnext or AS > D7 (3)

where L,y is the expected network latency should the broker send out the message at the
next time. The rationale in the probabilistic policy is that we compare the cost of sending
message right now vs the cost of sending message at the next decision time. The cost is in
terms of latency. The value of Ly is determined by the following equation:

Liext = (p)(Lnow) + (1 — p)(threshold.1/2). (4)

where p is the probability that the network congestion persists at the next decision time.
Assuming temporal locality of network congestion, p may be estimated by an exponential
distribution (Harchol-Balter, 2013):

Tseng et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2741 10/20

http://dx.doi.org/10.7717/peerj-cs.2741/fig-5
http://dx.doi.org/10.7717/peerj-cs.2741
https://peerj.com/computer-science/

PeerJ Computer Science

p = e_/lt’ (5)
where t = Ag + T and / is the inverse of average network congestion duration.

3. Historic policy: Deliver a message if

Lnow < TQ + Lnext + A57 (6)

and here for simplicity let L.,y = threshold-1/2. Comparing to Eq. (3), the historic
policy uses Ag the message sojourn time to cap the withhold time. Here a time limit D is
not needed, for the increasing Ag will quickly force the broker to send out the message.

Note that if the RTT query message is of the size different from that of the data message,
then both L, and threshold_1 need to scale accordingly (e.g., using latency profiling
results such as those in Fig. 3). Performance comparison and analysis of these policies will
be presented in “Analytical Performance of All Policies”.

Lazy memory allocation

As illustrated in Fig. 3, even if the broker does not proactively withhold large messages,
severe network congestion could still quickly consume the memory resource in the broker.
The cause of excessive memory consumption is due to that the broker maintains one
sending queue per subscriber and that it allocates memory for each message pushed in the
queue (Fig. 5A). This will be a problem for a cloud broker running in a VM with hard limit
on memory size when it is serving many subscribers with large messages.

A solution proposal is illustrated in Fig. 5B. Instead of allocating memory for each
message subscriber upon queuing operation, the broker pushes a reference to the message
kept in the database. The broker makes additional memory allocation only when it is
determined that the message can be sent out immediately. This solution de-couples the
memory usage and the total number of message subscribers, and therefore it scales well
with the increasing number of message subscribers.

IMPLEMENTATION AND PERFORMANCE VALIDATION

The proposed broker design has been implemented based on Mosquitto version 2.0.12.
The RTT measurement was implemented by having a co-host publisher publishing the
query messages. The fixed threshold_1 value was sent by each subscriber in the
CONNECT control message while it was establishing a connection to the broker. The rest
of this section presents both empirical and analytical performance validations: (1) A set of
empirical cloud experiments showing the latency performance of the conservative
scheduling policy and the memory usage reduction, and (2) a comprehensive analytical
results and analysis on the conservative policy, the probabilistic policy, and the historic
policy, against a baseline policy that does not withhold large messages, and a clairvoyant
policy that shows the theoretical performance upper bound.

Tseng et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2741 11/20

http://dx.doi.org/10.7717/peerj-cs.2741
https://peerj.com/computer-science/

PeerJ Computer Science

PUBLISHERS BROKER SUBSCRIBERS
10KB
Latency- |V|
| y- e > SUB1
. Broker pe
108> ¢ 1iiit. SUB2
PUB1 o i1l otherst
: HH T
: I I
1MB Y
lzl it ¥ others25
PUB2 ----- : "’
: “p others26
: ——1 AWS (us-east) B :

i C——= PC 1 (Taiwan) |
i PC 2 (Taiwan)

“..» others75

Figure 6 Experiment topology setup. Full-size k] DOT: 10.7717/peerj-cs.2741/fig-6

Empirical performance of the conservative policy
The experiment topology is shown in Fig. 6. There were three hosts, PC1 and PC2 in
Taiwan and a VM instance on the AWS EC2 us-east. The VM that ran the broker has 1 GB
memory. The setup simulates an application scenario where MQTT clients are
geographically distributed and connections to the broker traverse long-distance network
paths. The size threshold threshold_s was set to 10 KB, and the RTT query period T
was set to 5 s. The latency threshold threshold_1 was set to 0.5 s, as the empirical one-
way latency from edge to cloud was about 0.25 s. The client configuration is shown in
Table 3, with two publishers and 77 subscribers in total. SUB1 subscribed to the topic for
RTT query, which represents subscriber under the proposed scheduling policy. SUB2 was
treated by the default first-come-first-serve broker message forwarding policy, and the
remaining 75 subscribers were treated likewise. The Linux t ¢ command was set to control
the inbound traffic to PC1 to add 100 ms delay and 20% packet drops, to simulate the
network delay and packet losses found in overloaded/unstable network environments.
Figure 7 shows the empirical results of the experiment. Figure 7A shows the
measurement of RTT query messages, and Fig. 7B shows the time series of message arrivals
and their end-to-end latency at final delivery. The pink regions mark the intervals of large-
message withholding. Figure 7C shows the cumulative distribution function of the same
dataset. The result shows that 80% of small messages (100 B) experienced the same or
faster delivery if using the conservative policy, and in some cases the latency reduction
could be about 50%. This was because the small messages were not delayed by the large
messages (1 MB). The remaining 20% of small messages experienced longer delay, because
of the flushing of the withheld large messages. For the large messages, about 60% of them
experienced shorter latency, but the remaining 40% experienced much longer latency
(Fig. 7D) due to the 5-s RTT query period. Overall, the result shows a limited view of the

Tseng et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2741 12/20

http://dx.doi.org/10.7717/peerj-cs.2741/fig-6
http://dx.doi.org/10.7717/peerj-cs.2741
https://peerj.com/computer-science/

PeerJ Computer Science

Table 3 Experiment clients configuration.

Client ID Topic QoS Sending rate
Latency-sender Latency 1 10KB/5 s
PUBI Msg/Small 0 100 B/4 s
PUB2 Msg/Large 0 1 MB/4 s
SUBI1 Msg/#, Latency 1 X

SUB2 Msg/# 1 X

Others 1 to 75 Msg/# 1 X

latency performance. The next subsection will give a more comprehensive analytical result
and analysis.

Analytical performance of all policies

To investigate how the proposed scheduling policies could impact the latency of large
messages, we conducted analytical simulations with parameters chosen according to the
empirical observations in Fig. 3. In the following, the first simulation compares different
scheduling policies, and the second simulation compares different choices of RTT query
period.

The simulations were conducted in a discrete-time simulator written in Python, and it
took as input a time series of RTT measurements. Each latency-query message was 10 KB
and each large message was 1 MB. According to the benchmark result in Fig. 3, the RTT
measurement values were chosen to be randomly between 0.15 to 0.45 s, with 10%
probability to have an additional latency burst duration randomly between 10 to 25 s to
simulate transient network congestion. The latency burst followed an exponential
distribution with 4 = 0.3 to simulate the latency observed in Fig. 3. The downstream
network latency for large-message (1 MB) delivery was scaled up by ten from the RTT
measurements (10 KB). The end-to-end latency was the network latency plus the sojourn
time in the broker. Five threshold_1 values were simulated for comparison. The time
unit was assumed to be 1 s, and a large message arrived every five time units. The
simulation results spanned an interval of 5,000 time units.

Simulation 1: scheduling policy comparison
Figure 8 shows the simulation result of large-message latency. The RTT query period was
set to 1 s in this case. The starvation timer was set to 20 s. In the baseline policy for
comparison (labeled as without withholding), there was no message withholding and each
large message was sent out immediately. The gray shaded area surrounding the baseline
latency gives the 95% confidence interval. The optimal latency was also shown for
comparison (labeled as clairvoyant withholding), and the result was obtained by exhaustive
search along the progress of time. For the proposed scheduling policies, each line plot
shows the average latency and the 95% confidence interval at each threshold_1 value.
As shown in Fig. 8, the conservative policy may perform better than the baseline policy
if the threshold_1 value is larger, because the broker would withhold message only when

Tseng et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2741 13/20

http://dx.doi.org/10.7717/peerj-cs.2741
https://peerj.com/computer-science/

PeerJ Computer Science

3.0
.
2.5 A
. .
_ 204,
a .
>
2 1.5 . © <
g . .
© . *
~ 1.0 1 1
.
.
05 =TT s T "soe s T eee & see sses e seess|
cee o e coee .o .e
0.0 1 .
0 50 100 150 200 250 300 350
Time (s)

(a) Monitored RTT of the downstream network.

17.5 4 t . no withholding (small message)
+ no withholding (large message)
15.0 1 - conservative policy (small message)
@ 4+ + conservative policy (large message)
> 12.5
2
S + +
& 10.0 1
> +
5 75 *
£ o A
E s0q 4 +F e
+, + v ¥ +%
et g 2y +, e
245-"1:& T R kg :+++++tt¢ et 1
e o N .
0.0 4051 o SO HS F YL FHT A | .
0 50 100 150 200 250 300 350

Time (s)

(b) Message arrival time and its final end-to-end latency.

1.0 A
0.8
206
=
©
Q
£ 041
0.2
—— no withholding (small message)
00 == conservative policy (small message)
0.0 0.5 1.0 15 2.0
Latency (s)

(c) End-to-end message latency (small message).

2.5

g ———
——

1.0 1 -
// ——
; -
~
4 -
0.8 ,’f
14
206 - 5
2 I
a I
£ 044)
I
0.2 ¥
| == = conservative policy (large message)
0.0 | —== no withholding (large message)
0.0 2.5 5.0 75 10.0 125 15.0 17.5

Latency (s)

(d) End-to-end message latency (large message).

Figure 7 (A-D) Cloud experiment results.

Full-size K&] DOT: 10.7717/peerj-cs.2741/fig-7

14/20

Tseng et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2741

http://dx.doi.org/10.7717/peerj-cs.2741/fig-7
http://dx.doi.org/10.7717/peerj-cs.2741
https://peerj.com/computer-science/

PeerJ Computer Science

14

iR .

10 A

End-to-end Latency (s)

------ no withholding
clairvoyant withholding
conservative

2 | —%— probabilistic (good)

—>¢ probabilistic (bad)

—%¥— historic

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
Threshold_| value (s)

Figure 8 Large-message latency under different scheduling policies.
Full-size K&l DOTI: 10.7717/peerj-cs.2741/fig-8

needed. The conservative policy could cause excessive latency, however, if the
threshold_1 value is too small, because in which case the withhold decision may be too
sensitive to network latency fluctuations; nevertheless, the starvation timer would bound
the latency to the timer value plus the one-way downstream latency.

The probabilistic policy may perform better than the conservative policy (red curve vs.
orange curve), primarily because it takes into account T, the waiting time before the next
scheduling decision. In this way, the broker may make the right choice and send out the
message right now even if L,y is higher than threshold_1/2, and thereby reducing the
overall latency. The latency performance of the probabilistic policy, however, depends on
the accuracy of Lyey, the expected network latency at the next scheduling decision.
Applying Eq. (5), the ‘good case’ in Fig. 8 (red curve) used 4 = 0.057, which is 1/17.5 and
17.5 s is the average congestion duration as set up in the generation of RTT time series. The
‘bad case’ in Fig. 8 (black curve) used 4 = 0.016, which erroneously supposed an average
congestion duration of 60 s.

In comparison, the historic policy (Eq. (6)) may provide consistent latency reduction to
large messages, and its performance gain does not require any predicting of the future
network condition. As shown in Fig. 8, the historic policy may save about 3.5 s in latency,
comparing with the baseline policy of no message withholding. By taking into account Ag
the message sojourn time, the historic policy has the following adaptive behavior: in the
beginning of the withhold period, the broker would act conservatively in releasing the
message, and thereby allowing a higher probability to pass the transient network
congestion; as the withholding time extends, the broker would act more aggressively in
releasing the message, unless the network congestion is very severe. Because of this, the
starvation timer is not needed, and yet the message will be released at a reasonable timing.

Tseng et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2741 15/20

http://dx.doi.org/10.7717/peerj-cs.2741/fig-8
http://dx.doi.org/10.7717/peerj-cs.2741
https://peerj.com/computer-science/

PeerJ Computer Science

o
204 4
’.
a ®. °
~ 15 4 Ye, .9
> ., .
[} ..
5 -4
@
= *a, o T *- E)
L S YEETITT * " DL OO 3
he] " e R b3
c L T T s s ' CEEE R
o 10 L. +
e 3 —7
e 1
w
C [— no withholding === historic (1 s) < - conservative (3 s)
--—- clairvoyant ¢ conservative (5 s) = %= conservative (2 s)
—%— historic (5 s) ~~4-- conservative (4 s) = & + conservative (1 s)
—4— historic (3 s)
0

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
Threshold_| value (s)

Figure 9 Large-message latency vs RTT query period (Tg).
Full-size K&l DOT: 10.7717/peerj-cs.2741/fig-9

300
—— Without lazy memory allocation

250 4 === With lazy memory allocation

L

Memory usage (MB)
[[N
o wm o
o o o

w1
o
1

0 100 200 300 400 500
Time (s)

Figure 10 Empirical memory usage in a cloud broker VM.
Full-size K&] DOT: 10.7717/peerj-cs.2741/fig-10

Simulation 2: impact of RTT query period

Finally, Fig. 9 shows the impact of different RTT query period (T). In general, a shorter
scheduling period could produce better latency performance, because L, will be based on
a more recent RTT measurement. Still, there could be exceptions, for the network
condition is changing along with time. For the conservative policy, with T set to 5 s, its
latency performance was no better than the baseline policy of no withholding, and this
confirms the results observed in “Empirical Performance of the Conservative Policy”; in
general, with a longer T, and a shorter threshold_1, the latency could approach to the
starvation timer value plus the one-way downstream latency. The performance of the

Tseng et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2741 16/20

http://dx.doi.org/10.7717/peerj-cs.2741/fig-10
http://dx.doi.org/10.7717/peerj-cs.2741/fig-9
http://dx.doi.org/10.7717/peerj-cs.2741
https://peerj.com/computer-science/

PeerJ Computer Science

historic policy could be consistently better, because the threshold_1 value is negligible
and the message sojourn time dominates Eq. (6).

Empirical performance of broker memory footprint

Figure 10 shows the experiment result for lazy memory allocation. The experiment setup
was identical to the previous one, with an addition of tc command applied to the
outbound traffic of the broker at 250 s to simulate downstream network congestion. The
result in Fig. 10 shows that the memory usage without lazy allocation then ran up to about
200 MB, which was about 20% of the total memory in the VM. This was because the
queued messages accumulated and their memory allocations were not freed until final
delivery. The proposed lazy memory allocation helped mitigate the problem and saved
about 75% of memory usage (200 to 50 MB).

DISCUSSION

Based on the results of performance validation, the following is a list of summary and
configuration recommendations for the proposed scheduling policies:

1) The threshold_1 value shall be large enough to reduce unnecessary message
withholding.

2) The historic policy in general performs better than others, thanks to its adaption to the
message sojourn time and its independence to network latency prediction.

3) Using the historic policy, the RTT query period may be set to some higher value if the
monitoring overhead is of some concern.

4) With an accurate prediction or profiling of the average length of network congestion
duration 4 (Eq. (5)), the probabilistic policy may perform the best among the
introduced policies.

In the empirical experiments presented in “Empirical Performance of the Conservative
Policy”, the RTT query period T = 5 s was chosen so that the query traffic would have a
sending rate no higher than the rate of data traffic, which was 4 s (Table 3), in the hope that
the RTT queries will not add too much overhead to the network environment. But as the
analytical result in Fig. 9 suggests, if using the conservative policy, a reduction of T, by
seconds would reduce the end-to-end latency by the same order. Clearly, there is a trade-
off, for to have a system respond quicker, the system would have to check the situation
more often.

The size threshold threshold_s in the presented experiments was set to 10 KB because
it is above most sensor data size and below most video frame size. The threshold value to be
used for field applications shall be determined based on the actual size of application data.
With a too-large threshold_s, most messages will be treated as small messages and the
proposed design will not kick in; with a too-small threshold_s, most messages will be
treated as large messages and the proposed withholding strategies might unnecessarily
delay message forwarding. In either case, the lazy memory allocation still provide benefit in
bounding the broker run-time memory footprint.

Tseng et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2741 17/20

http://dx.doi.org/10.7717/peerj-cs.2741
https://peerj.com/computer-science/

PeerJ Computer Science

In the probabilistic policy, its performance depends on an estimation of the network
congestion duration A (see Eq. (5), the good/bad cases in Fig. 8, and the presentation in
“Simulation 1: Scheduling Policy Comparison”). In the case where no reliable network
statistics is available, it is better to use the historic policy instead, for the latter one in
making scheduling decision does not depends on A. Further investigation could be
conducted on the performance of the historic policy under different 4 values.

Finally, while the implementation in this work was based on Eclipse Mosquitto, it is
noted that the proposed design may be generalized to other broker-based systems. Like
what was implemented in this work, the latency detector in the proposed design (Fig. 4)
can be implemented by using a publisher that is co-host with the broker. By publishing to
each subscriber a designate topic known by the broker (latency in our experiment; see
Table 3), a slightly-modified broker could perform the RTT computation upon receiving
the PUBACK from each subscriber and make withholding decision.

CONCLUDING REMARKS

This article presented a study on cloud-edge messaging and proposed improvements on
the cloud MQTT broker design. By strategically withholding large-sized messages for a
limited interval, the proposed solution could reduce the small-size message latency while
bounding the large-size message latency. The use of lazy memory allocation effectively
reduces the run-time memory footprint of the broker. The performance of the solution has
been validated both empirically and analytically, and a prototype system implementation is
available as an open source software (https://github.com/wangc86/Adaptive-MQTT-
Transmit-Policy). In hindsight, the proposed message withhold policies seem to be general
enough to be applicable to other broker-based messaging services, too. Further
investigations will help to validate the feasibility.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This research was funded by MOST grant number 109-2222-E-003-001-MY?3. The funders
had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
MOST: 109-2222-E-003-001-MY3.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions

* Yi-Hsuan Tseng conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

Tseng et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2741 18/20

https://github.com/wangc86/Adaptive-MQTT-Transmit-Policy
https://github.com/wangc86/Adaptive-MQTT-Transmit-Policy
http://dx.doi.org/10.7717/peerj-cs.2741
https://peerj.com/computer-science/

PeerJ Computer Science

» Chao Wang conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

 Yu-Tse Wei conceived and designed the experiments, performed the experiments,
performed the computation work, prepared figures and/or tables, and approved the final
draft.

* Yu-Ting Chiang analyzed the data, authored or reviewed drafts of the article, and
approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The raw data and code are available at Zenodo: maggie62755, & Chao Wang. (2025).
wangc86/Adaptive-MQTT-Transmit-Policy: Version fo Peer] CS article (PeerJSubmit).
Zenodo. https://doi.org/10.5281/zenodo.14816709.

REFERENCES

Allen RM, Melgar D. 2019. Earthquake early warning: advances, scientific challenges, and societal
needs. Annual Review of Earth and Planetary Sciences 47(1):361-388
DOI 10.1146/annurev-earth-053018-060457.

Anjum A, Agbaje P, Mitra A, Oseghale E, Nwafor E, Olufowobi H. 2024. Towards named data
networking technology: emerging applications, use cases, and challenges for secure data
communication. Future Generation Computer Systems 151(3):12-31
DOI 10.1016/j.future.2023.09.031.

Banks A, Briggs E, Borgendale K, Gupta R. 2019. MQTT version 5.0. Available at https://docs.
oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html.

Banno R, Sun J, Fujita M, Takeuchi S, Shudo K. 2017. Dissemination of edge-heavy data on
heterogeneous MQTT brokers. In: 2017 IEEE 6th International Conference on Cloud Networking
(CloudNet). Piscataway: IEEE, 1-7.

Bellini P, Nesi P, Pantaleo G. 2022. IoT-enabled smart cities: a review of concepts, frameworks
and key technologies. Applied Sciences 12(3):1607 DOI 10.3390/app12031607.

Bertsekas D, Gallager R. 1992. Data networks. Second Edition. Hoboken: Prentice Hall.

Gharaibeh A, Salahuddin MA, Hussini SJ, Khreishah A, Khalil I, Guizani M, Al-Fuqaha A.

2017. Smart cities: a survey on data management, security, and enabling technologies. IEEE
Communications Surveys & Tutorials 19(4):2456-2501 DOI 10.1109/COMST.2017.2736886.

Harchol-Balter M. 2013. Performance modeling and design of computer systems: queueing theory in
action. Cambridge: Cambridge University Press.

Kamoun K, Hmissi F, Ouni S, Ouni S. 2024. Improvement of MQTT semantic to minimize data
flow in IoT platforms based on distributed brokers. Transactions on Emerging
Telecommunications Technologies 35(2):e4945 DOI 10.1002/ett.4945.

Lee S, Kim H, Hong D-K, Ju H. 2013. Correlation analysis of MQTT loss and delay according to
QoS level. In: The International Conference on Information Networking 2013 (ICOIN).
Piscataway: IEEE, 714-717.

Li G-H, Chiang Y-T, Wang C. 2024. Traffic-aware video streaming topology reconfiguration for
smart city applications. In: 2024 13th Mediterranean Conference on Embedded Computing
(MECO), 1-4.

Tseng et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2741 19/20

https://doi.org/10.5281/zenodo.14816709
http://dx.doi.org/10.1146/annurev-earth-053018-060457
http://dx.doi.org/10.1016/j.future.2023.09.031
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
http://dx.doi.org/10.3390/app12031607
http://dx.doi.org/10.1109/COMST.2017.2736886
http://dx.doi.org/10.1002/ett.4945
http://dx.doi.org/10.7717/peerj-cs.2741
https://peerj.com/computer-science/

PeerJ Computer Science

Light RA. 2017. Mosquitto: server and client implementation of the MQTT protocol. Journal of
Open Source Software 2(13):265 DOI 10.21105/j0ss.00265.

Mati¢ M, Anti¢ M, Ivanovi¢ S, Pap 1. 2020. Scheduling messages within MQTT shared
subscription group in the clustered cloud architecture. In: 2020 28th Telecommunications Forum
(TELFOR). Piscataway: IEEE, 1-4.

Montori F, Gigli L, Sciullo L, Felice MD. 2022. LA-MQTT: location-aware publish-subscribe
communications for the Internet of Things. ACM Transactions on Internet of Things 3(3):1-28
DOI 10.1145/3529978.

Naik N. 2017. Choice of effective messaging protocols for IoT systems: MQTT, COAP, AMQP and
HTTP. In: 2017 IEEE International Systems Engineering Symposium (ISSE). Piscataway: IEEE,
1-7.

Ohno S, Terada K, Yokotani T, Ishibashi K. 2022. The control mechanism of distributed MQTT
brokers for large volume data transfer and its prototype system. IEICE Communications Express
11(3):160-164 DOI 10.1587/comex.2021XBL0196.

Park J-H, Kim H-S, Kim W-T. 2018. DM-MQTT: an efficient MQTT based on SDN multicast for
massive IoT communications. Sensors 18(9):3071 DOI 10.3390/s18093071.

Pathak N, Biswal G, Goushal M, Mistry V, Shah P, Li F, Gao J. 2024. Smart city community
watch—camera-based community watch for traffic and illegal dumping. Smart Cities 7(4):2232-
2257 DOI 10.3390/smartcities7040088.

Promwongsa N, Ebrahimzadeh A, Naboulsi D, Kianpisheh S, Belqasmi F, Glitho R, Crespi N,
Alfandi O. 2020. A comprehensive survey of the tactile internet: state-of-the-art and research
directions. IEEE Communications Surveys ¢ Tutorials 23(1):472-523
DOI 10.1109/COMST.2020.3025995.

Rausch T, Nastic S, Dustdar S. 2018. EMMA: distributed QoS-aware MQTT middleware for edge
computing applications. In: 2018 IEEE International Conference on Cloud Engineering (IC2E).
Piscataway: IEEE, 191-197.

Rodriguez Garzon S, Deva B. 2014. Geofencing 2.0: taking location-based notifications to the next
level. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and
Ubiquitous Computing, UbiComp ’14. New York, NY, USA: Association for Computing
Machinery, 921-932.

Shakarami A, Shakarami H, Ghobaei-Arani M, Nikougoftar E, Faraji-Mehmandar M. 2022.
Resource provisioning in edge/fog computing: a comprehensive and systematic review. Journal
of Systems Architecture 122(1):102362 DOI 10.1016/j.sysarc.2021.102362.

Tian L, Wang H, Zhou Y, Peng C. 2018. Video big data in smart city: background construction
and optimization for surveillance video processing. Future Generation Computer Systems
86(3):1371-1382 DOI 10.1016/j.future.2017.12.065.

Ullah N, Siddique MF, Ullah S, Ahmad Z, Kim J-M. 2024. Pipeline leak detection system for a
smart city: leveraging acoustic emission sensing and sequential deep learning. Smart Cities
7(4):2318-2338 DOI 10.3390/smartcities7040091.

Yokotani T, Sasaki Y. 2016. Comparison with HTTP and MQTT on required network resources
for I0T. In: 2016 International Conference on Control, Electronics, Renewable Energy and
Communications (ICCEREC). Piscataway: IEEE, 1-6.

Zolfaghari B, Srivastava G, Roy S, Nemati HR, Afghah F, Koshiba T, Razi A, Bibak K, Mitra P,
Rai BK. 2020. Content delivery networks: state of the art, trends, and future roadmap. ACM
Computing Surveys (CSUR) 53(2):1-34 DOI 10.1145/3380613.

Tseng et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2741 20/20

http://dx.doi.org/10.21105/joss.00265
http://dx.doi.org/10.1145/3529978
http://dx.doi.org/10.1587/comex.2021XBL0196
http://dx.doi.org/10.3390/s18093071
http://dx.doi.org/10.3390/smartcities7040088
http://dx.doi.org/10.1109/COMST.2020.3025995
http://dx.doi.org/10.1016/j.sysarc.2021.102362
http://dx.doi.org/10.1016/j.future.2017.12.065
http://dx.doi.org/10.3390/smartcities7040091
http://dx.doi.org/10.1145/3380613
http://dx.doi.org/10.7717/peerj-cs.2741
https://peerj.com/computer-science/

	Cloud-edge MQTT messaging for latency mitigation and broker memory footprint reduction
	Introduction
	Related work
	System model and problem analysis
	Cloud mqtt broker design
	Implementation and performance validation
	Discussion
	Concluding remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

