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ABSTRACT

Adversarial Optimization provides a reliable, practical way to match two implicitly
defined distributions, one of which is typically represented by a sample of real data, and
the other is represented by a parameterized generator. Matching of the distributions is
achieved by minimizing a divergence between these distribution, and estimation of the
divergence involves a secondary optimization task, which, typically, requires training a
model to discriminate between these distributions. The choice of the model has its trade-
off: high-capacity models provide good estimations of the divergence, but, generally,
require large sample sizes to be properly trained. In contrast, low-capacity models tend
to require fewer samples for training; however, they might provide biased estimations.
Computational costs of Adversarial Optimization becomes significant when sampling
from the generator is expensive. One of the practical examples of such settings is fine-
tuning parameters of complex computer simulations. In this work, we introduce a
novel family of divergences that enables faster optimization convergence measured by
the number of samples drawn from the generator. The variation of the underlying
discriminator model capacity during optimization leads to a significant speed-up. The
proposed divergence family suggests using low-capacity models to compare distant
distributions (typically, at early optimization steps), and the capacity gradually grows
as the distributions become closer to each other. Thus, it allows for a significant
acceleration of the initial stages of optimization. This acceleration was demonstrated
on two fine-tuning problems involving Pythia event generator and two of the most
popular black-box optimization algorithms: Bayesian Optimization and Variational
Optimization. Experiments show that, given the same budget, adaptive divergences
yield results up to an order of magnitude closer to the optimum than Jensen-Shannon
divergence. While we consider physics-related simulations, adaptive divergences can
be applied to any stochastic simulation.

Subjects Data Mining and Machine Learning, Optimization Theory and Computation, Scientific
Computing and Simulation
Keywords Adversarial optimization, Black-box optimization, Computer simulations

INTRODUCTION

Adversarial Optimization (AO), introduced in Generative Adversarial Networks (Good-
fellow et al., 2014), became popular in many areas of machine learning and beyond with
applications ranging from generative (Radford, Metz ¢ Chintala, 2015) and inference
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IFor instance, compare training times,
network capacities and computational
resources reported by Simonyan &
Zisserman (2014) and Choi et al. (2018).

2There are ways to estimate gradients of
such programs, for example, see (Baydin et
al., 2019). However, all methods known to
the authors require training a surrogate,
which encounters the problem of the
expensive sampling procedures mentioned
above.

tasks (Dumoulin et al., 2016), improving image quality (Isola et al., 2017) to tuning
stochastic computer simulations (Louppe, Hermans ¢ Cranmer, 2017).

AO provides a reliable, practical way to match two implicitly defined distributions, one
of which is typically represented by a sample of real data, and the other is represented
by a parameterized generator. Matching of the distributions is achieved by minimizing
a divergence between these distribution, and estimation of the divergence involves a
secondary optimization task, which, typically, requires training a model to discriminate
between these distributions. The model is referred to as discriminator or critic (for
simplicity, we use term discriminator everywhere below).

Training a high-capacity model, however, is computationally expensive (Metz et al.,
2016) as each step of divergence minimization is accompanied by fitting the discriminator;
therefore, adversarial training often requires significantly more computational resources
than, for example, a classification model with a comparable architecture of the networks.'
Nevertheless, in conventional settings like GAN, this problem is not pronounced for at
least two reasons. Firstly, the generator is usually represented by a deep neural network,
and sampling is computationally cheap; thus, for properly training the discriminator,

a sample of a sufficient size can be quickly drawn. Secondly, GAN training procedures
are often regarded not as minimization of a divergence, but as game-like dynamics (Li et
al., 2017; Mescheder, Geiger ¢ Nowozin, 2018); such dynamics typically employ gradient
optimization with small incremental steps, which involve relatively small sample sizes for
adapting the previous discriminator to an updated generator configuration.

Computational costs of AO become significant when sampling from the generator is
computationally expensive, or optimization procedure does not operate by performing
small incremental steps (Metz et al., 2016). One of the practical examples of such settings
is fine-tuning parameters of complex computer simulations. Such simulators are usually
based on physics laws expressed in computational mathematical forms like differential or
stochastic equations. Those equations relate input or initial conditions to the observable
quantities under conditions of parameters that define physics laws, geometry, or other
valuable property of the simulation; these parameters do not depend on inputs or initial
conditions. It is not uncommon that such simulations have very high computational
complexity. For example, the simulation of a single proton collision event in the CERN
ATLAS detector takes several minutes on a single core CPU (The ATLAS Collaboration,
2010). Due to typically high dimensionality, it takes a considerable amount of samples for
fine-tuning, which in turn increases the computational burden.

Another essential property of such computer simulations is the lack of gradient
information over the simulation parameters. Computations are represented by
sophisticated computer programs, which are challenging to differentiate.” Thus, global
black-box optimization methods are often employed; Bayesian Optimization is one of the
most popular approaches.

In this work, we introduce a novel family of divergences that enables faster optimization
convergence measured by the number of samples drawn from the generator. The variation
of the underlying discriminator model capacity during optimization leads to a significant
speed-up. The proposed divergence family suggests using low-capacity models to compare
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distant distributions (typically, at early optimization steps), and the capacity gradually
grows as the distributions become closer to each other. Thus, it allows for a significant
acceleration of the initial stages of optimization. Additionally, the proposed family of
divergences is broad, which offers a wide range of opportunities for further research.

We demonstrate the basic idea with some toy examples, and with a realistic challenge of
tuning Pythia event generator (Sjostrand, Mrenna & Skands, 2006; Sjostrand et al., 2015)
following Louppe, Hermans & Cranmer (2017) and Ilten, Williams & Yang (2017). We
consider physics-related simulations; nevertheless, all proposed methods are simulation-
agnostic.

BACKGROUND

Adversarial Optimization, initially introduced for Generative Adversarial Networks
(GAN) (Goodfellow et al., 2014), offers a general strategy for matching two distributions.
Consider feature space X', ground-truth distribution P, and parametrized family of
distributions Qy, implicitly defined by a generator with parameters v. Formally, we wish
to find such ¥, that P = Qy+ almost everywhere. AO achieves that by minimizing a
divergence or a distance between P and Qy with respect to 1. One of the most popular
divergences is Jensen—Shannon divergence:
JSD(P,Qy) = %[KL<P||M¢)+KL(Q¢, 1My)]

= ! E log Pl) +l E log Q)
2x~P Mw (X) 2x~Qy M¢ (x)

; (1)

where: KL —Kullback—Leibler divergence, My (x) = %(P(x) +Qy (x)). The main insight
of Goodfellow et al. (2014) is that JSD can be estimated by training a discriminator f to
distinguish between P and Qy:

logZ—?éiJIElL(f,P,Qw)=
: 1 1
1 * 1 * _
log2+{5xINEP10g(f (x))—l—zx%wlog(l —f (x))} =
1og2+{1E1 Pe) 1 g g Q‘”—(’C)}:

2x~P OgQ,/,(x)—i—P(x) 220y gQw(x)+P(X)

! E logﬂ ! E log& =JSD(P,Qy); (2)
2x~P MI// (X) 2x~Qy MI// (x)
where: L —cross-entropy loss function, F = {f : X — [0, 1]} is the set of all possible
discriminators, and f * is the optimal discriminator. Similar formulations also exist for other
divergences such as Wasserstein (Arjovsky, Chintala ¢» Bottou, 2017) and Cramer (Bellemare
et al., 2017) distances.
In classical GAN, both generator and discriminator are represented by differentiable

neural networks. Hence, a subgradient of JSD(P, Qy,) can be easily computed (Goodfellow
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et al., 2014). The minimization of the divergence can be performed by a gradient method,
and the optimization procedure goes iteratively following those steps:

e using parameters of the discriminator from the previous iteration as an initial guess,
adjust f by performing several steps of the gradient descent to minimize L(f,P,Qy );

e considering f as a constant, compute the gradient of L(f,P,Qy) w.r.t. ¥, perform one
step of the gradient ascent.

For computationally heavy generators, gradients are usually practically unfeasible;
therefore, we consider black-box optimization methods. One of the most promising
methods for black-box AO is Adversarial Variational Optimization (Louppe, Hermans
& Cranmer, 2017), which combines AO with Variational Optimization (Wierstra et al.,
2014). This method improves upon conventional Variational Optimization (VO) over
Jensen—Shannon divergence by training a single discriminator to distinguish samples from
ground-truth distribution and samples from a mixture of generators, where the mixture is
defined by the search distribution of VO. This eliminates the need to train a classifier for
each individual set of parameters drawn from the search distribution.

Bayesian Optimization (BO) (Mockus, 2012) is another commonly used black-box
optimization method, with applications including tuning of complex simulations (Ilten,
Williams ¢ Yang, 2017). As we demonstrate in ‘Experiments, BO can be successfully applied

for Adversarial Optimization.

ADAPTIVE DIVERGENCE

Notice, that in equation Eq. (2) minimization is carried over the set of all possible
discriminators F = {f : X — [0,1]}. In practice, this is intractable and set F is
approximated by a model such as Deep Neural Networks. Everywhere below, we use
terms ‘low-capacity’ and ‘high-capacity’ to describe the set of feasible discriminator
functions: low-capacity models are either represent a narrow set of functions (e.g., logistic
regression, shallow decision trees) or are heavily regularized (see ‘Implementation’ for
more examples of capacity regulation); high-capacity models are sufficient for estimating
JSD for an Adversarial Optimization problem under consideration.

In conventional GAN settings, the generator is represented by a neural network, sampling
is computationally cheap, and usage of high-capacity discriminators is satisfactory. In our
case, as was discussed above, simulations tend to be computationally heavy, which,
combined with a typically slow convergence of black-box optimization algorithms, might
make AO with a high-capacity model practically intractable.

The choice of the model has its trade-oft: high-capacity models provide good estimations
of JSD, but, generally, require large sample sizes to be properly trained. In contrast, low-
capacity models tend to require fewer samples for training; however, they might provide
biased estimations. For example, if the classifier is represented by a narrow set of functions
M C F, then quantity:
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might no longer be a divergence, so we refer to it as pseudo-divergence.
Definition 1 A function D : T1(X) x [1(X) — R is a pseudo-divergence, if :

(P1) VP,QeIl(X):D(P,Q) > 0;

(P2) VP,Q e II(X) : (P = Q) = D(P,Q) = 0; where ITI(X) —set of all probability
distributions on space X.

It is tempting to use a pseudo-divergence Dys produced by a low-capacity model M
for Adversarial Optimization, however, a pseudo-divergence might not guarantee proper
convergence as there might exist such ¥ € ¥, that JSD(P, Qy,) > 0, while D(P, Q) =0.
For example, naive Bayes classifier is unable to distinguish between P and Q that have
the same marginal distributions. Nevertheless, if model M is capable of distinguishing
between P and some Qy,, Dy still provides information about the position of the optimal
parameters in the configuration space ¥* by narrowing search volume, Ilten, Williams ¢
Yang (2017) offers a good demonstration of this statement.

The core idea of this work is to replace Jensen—Shannon divergence with a so-called
adaptive divergence that gradually adjusts model capacity depending on the ‘difficulty’ of
the classification problem with the most ‘difficult’ problem being distinguishing between
two equal distributions. Formally, this gradual increase in model complexity can be
captured by the following definitions.

Definition 2 A family of pseudo-divergences D = {D,, : I1(X) x [1(X) — R|a € [0, 1]} is
ordered and complete with respect to Jensen—Shannon divergence if :

(DO) Dy, is a pseudo-divergence for all « € [0,1];

(D1) VP,QeTI(X): Y0 <a; <ay <1:Dg (P,Q) <Dy, (P,Q);

(D2) VP,QeII(X) : D1(P,Q) =]JSD(P, Q).

There are numerous ways to construct a complete and ordered w.r.t. JSD family
of pseudo-divergences. In the context of Adversarial Optimization, we consider the
following three methods. The simplest one is to define a nested family of models
M={M, C F|a €][0,1]}, (e.g., by changing number of hidden units of a neural network),
then use pseudo-divergence Eq. (3) to form a desired family.

Alternatively, for a parameterized model M = {f(9,-)|0 € ®}, one can use a
regularization R(8) to control ‘capacity’ of the model:

Dy (P,Q) =log2 —L(f(0*,-),P,Q); (4)
o* = arg min, o L(f(0,-),P,Q)+c(1—a)-R(0);

where ¢ :[0,1] — [0,+00) is a strictly increasing function and ¢(0) = 0.
The third, boosting-based method is applicable for a discrete approximation:

D (P,Q) =log2—L(F;,P,Q); (5)
F; =Fi_1+p-arg min; g L(Fi-1 +f,P,Q);
F _L

0 =3

where: p —learning rate, B —base estimator, ¢ : Z4 — [0, 1] —a strictly increasing
function for mapping ensemble size onto « € [0, 1].
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Although Definition 2 is quite general, in this paper, we focus on families of pseudo-
divergence produced in a manner similar to the examples above. All these examples
introduce a classification algorithm parameterized by «, then define pseudo-divergences
D,, by substituting the optimal discriminator in Equation Eq. (2) with the discriminator
trained in accordance with this classification algorithm with the parameter «. Of course,
one has to make sure that the resulting family of pseudo-divergences is ordered and
complete w.r.t. Jensen—Shannon divergence. appendix provides formal definitions and
proofs for the examples above.

With this class of pseudo-divergences in mind, we refer to « as capacity of the pseudo-
divergence Dy, € D relative to the family D, or simply as capacity if the family D is clear
from the context. In the examples above, capacity of pseudo-divergence is directly linked
to the capacity of underlying discriminator models: to the size of the model in equation
Eq. (3), to the strength of the regularization in equation Eq. (4) (which, similar to the
previous case, effectively restricts the size of the set of feasible models) or to the size of the
ensemble for a boosting-based family of divergences in equation Eq. (5).

Finally, we introduce a function that combines a family of pseudo-divergences into a
single divergence.

Definition 3 If a family of pseudo-divergences D = {Dg | € [0, 1]} is ordered and complete
with respect to Jensen—Shannon divergence, then adaptive divergence ADp produced by D is
defined as:

ADp(P,Q) =inf{Dy(P,Q)|Dy(P,Q) > (1 —a)log2}. (6)

We omit index in ADp when the family D is clear from the context or is not important.
A linear ‘threshold’ function (o) = 1 — « is used in the definition, however, it can be
replaced by any strictly decreasing t : [0, 1] — [0, 1], such that 7(0) =1 and (1) =0:

ADp(P,Q) =inf{Dy(P,Q)|Du(P,Q) > t(a)log2}, (7)

but, since one can redefine the family D as D' = {D(q)|a € [0, 1]}, this effectively leads to
the same definition. Nevertheless, it might be convenient in practice to use t other than
7(a) =1 — o as most model families have a natural ordering, e.g., regularization strength.

The coefficient log2 naturally arises as the maximal value of Jensen—Shannon divergence
as well as an upper bound of any pseudo-divergence based on equation Eq. (3) if the
function fy(x) = 1/2 is included in the underlying classification model M. Since almost
all popular models are capable of learning constant estimators, log2 is included in the
definition. Nevertheless, to adopt Definition 3 for exotic models or divergences other than
Jensen—Shannon (e.g., Wasserstein distance), this coefficient (and, possibly, the ‘threshold’
function) should be reconsidered.

Note, that due to property (D1), Dy (P, Q) is a non-decreasing function of «, while
(I —)log2 is a strictly decreasing one. Hence, if family D is such that for any two
distributions P and Q D, (P, Q) is continuous w.r.t. &, equation Eq. (6) can be simplified:

ADp(P,Q) =Dg+(P,Q), (8)
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Algorithm 1 General procedure for computing an adaptive divergence by grid search

Require: D = {D, |« € [0, 1]} — ordered and complete w.r.t. Jensen-Shannon divergence
family of pseudo-divergences; € — tolerance; P, Q — input distributions
o < 0;
while D, (P,Q) < (1 —«a)log2 do
o <—a+e
end while
return D, (P, Q)

where a* is the root of the following equation:
Dy(P,Q) = (1—a)log2. 9)

A general procedure for computing ADp for this case is outlined in Algorithm 1.

Intuitively, an adaptive divergence ADp switches between members of D depending
on the ‘difficulty’ of separating P and Q. For example, consider family D produced by
equation Eq. (4) with a high-capacity neural network as model M and /, regularization R
on its weights. For a pair of distant P and Q, even a highly regularized network is capable of
achieving low cross-entropy loss and, therefore, ADp takes values of the pseudo-divergence
based on such network. As distribution Q moves close to P, ADp lowers the regularization
coefficient, effectively increasing the capacity of the underlying model.

The idea behind adaptive divergences can be viewed from a different angle. Given two
distributions P and Q, it scans the producing family of pseudo-divergences, starting from
a = 0 (the least powerful pseudo-divergence), and if some pseudo-divergence reports high
enough value, it serves as a ‘proof’ of differences between P and Q. If all pseudo-divergences
from the family D report 0, then P and Q are equal almost everywhere as the family always
includes JSD as a member. Formally, this intuition can be expressed with the following
theorem.

Theorem 1 If ADp is an adaptive divergence produced by an ordered and complete with
respect to Jensen—Shannon divergence family of pseudo-divergences D, then for any two
distributions P and Q: JSD(P,Q) =0 if and only if AD(P,Q)=0.

A formal proof of Theorem 1 can be found in Appendix A2. Combined with the
observation that AD(P, Q) > 0 regardless of P and Q, the theorem states that AD is a
divergence in the same sense as JSD. This, in turn, allows to use adaptive divergences as a
replacement for Jensen—Shannon divergence in Adversarial Optimization.

As can be seen from the definition, adaptive divergences are designed to utilize low-
capacity pseudo-divergences (with underlying low-capacity models) whenever it is possible:
for a pair of distant P and Q one needs to train only a low-capacity model to estimate AD,
using the most powerful model only to prove equality of distributions. As low-capacity
models generally require fewer samples for training, AD allows an optimization algorithm
to run for more iterations within the same time restrictions.

Properties of ADp highly depend on the family D, and choice of the latter might
either negatively or positively impact convergence of a particular optimization algorithm.
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Figure 1 Synthetic examples. (A) and (D): ground-truth distributions and example configurations of
generators. Both generators are rotated versions of the corresponding ground-truth distributions. (B) and
(E): JSD—TJensen—Shannon divergences estimated by Gradient Boosted Decision Trees with 500 trees of
depth 3 (B), 100 trees of depth 3 (E); linear AD and logarithmic AD—adaptive divergences based on the
same models as JSD with linear and logarithmic capacity functions, dashed lines represent some pseudo-
divergences from the families producing adaptive divergences. (C) and (F): JSD —Jensen—Shannon di-
vergences estimated by fully-connected Neural Networks with one hidden layer with 64 units (C) and 32
units (F); AD, dropout and AD, ,—adaptive divergences based on the same architectures as the one for
JSD, with dropout and /, regularizations; dashed lines represent some of the pseudo-divergences from the
dropout-produced family. See ‘Implementation’ for the implementation details.

Full-size Gal DOI: 10.7717/peerjcs.274/fig-1

Figure 1 demonstrates both cases: here, we evaluate JSD and four variants of ADp on

two synthetic examples. In each example, the generator produces a rotated version of the

ground-truth distribution and is parameterized by the angle of rotation (ground-truth

distributions and examples of generator distributions are shown in Figs. 1A and 1D).
In Figs. 1B and 1C AD shows behavior similar to that of JSD (both being monotonous
and maintaining a significant slope in the respective ranges). In Fig. 1E, both variants

of AD introduce an additional local minimum: as the rotation angle approaches /2,

marginal feature distributions become identical, which interferes with decision-tree-based
algorithms (this is especially pronounced for AD with logarithmic capacity function as
it prioritizes low-capacity models). This behavior is expected to impact convergence of

gradient-based algorithms negatively.

In contrast, in Fig. 1F neural-network-based AD with [, regularization stays monotonous

in the range [0, /2] and keeps a noticeable positive slope, in contrast to saturated JSD.

The positive slope is expected to improve convergence of gradient-based algorithms and,

possibly, some variants of Bayesian Optimization. In contrast, neural-network-based
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3Technically, this function should be
extended on [0,+00) to be in agreement
with Definition 2.

4Note that introducing a continuous
approximation of the ensemble by, for
example, varying learning rate for the last
base estimator in the current ensemble
from 0 to p, eliminates discontinuity of
AD.

AD with dropout regularization behaves in a manner similar to adaptive divergences in
Fig. 1E. The most likely explanation is that [, regularization mostly changes magnitude of
the predictions without significantly affecting the decision surface and, therefore, largely
replicates behavior of JSD, while dropout effectively lowers the number of units in the
network, which biases the decision surface towards a straight line (i.e., towards logistic
regression).

IMPLEMENTATION

A general algorithm for computing an adaptive divergence is presented in Algorithm

1. This algorithm might be an expensive procedure as the algorithm probes multiple
pseudo-divergences, and for each of these probes, generally, a model needs to be trained
from scratch. However, two of the most commonly used machine learning models,
boosting-based methods (Friedman, 2001) and Neural Networks, allow for more efficient
estimation algorithms due to the iterative nature of training procedures for such models.

Gradient boosted decision trees
Gradient Boosted Decision Trees (Friedman, 2001) (GBDT) and, generally, boosting-
based methods, being ensemble methods, intrinsically produce an ordered and complete
with respect to Jensen—Shannon divergence family of pseudo-divergences in the manner
similar to equation Eq. (5). This allows for an efficient AD estimation procedure shown
by Algorithm 2. Here, the number of base estimators serves as capacity of pseudo-
divergences, and mapping to « € [0, 1] is defined through an increasing capacity function
¢:Z4—[0,1].

In our experiments, for ensembles of maximal size N, we use the following capacity

functions:
linear capacity: c(i)= COIL\T; (10)
log(i+1)

logarithmic capacity: c(i) =

log(N +1) (

Notice, however, that Equation Eq. (5) defines a discrete variant of AD, which most
certainly will result in a discontinuous function.” This effect can be seen on Fig. 1E.

Neural networks
There is a number of ways to regulate the capacity of a neural network. One of the simplest
options is to vary the total number of units in the network. This, however, would almost
certainly result in a discontinuous adaptive divergence, similarly to Gradient Boosted
Decision Trees (Fig. 1E), which is not ideal even for black-box optimization procedures.
In this work, we instead use well-established dropout regularization Srivastava et al.
(2014). Effects of dropout are somewhat similar to varying number of units in a network,
but at the same time dropout offers a continuous parametrization—it is clear that setting
dropout probability p to 0 results in an unregularized network, while p =1 effectively
restricts classifier to a constant output and intermediate values of p produce models in
between these extreme cases. To produce a family of pseudo-divergences we equip dropout
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Algorithm 2 Boosted adaptive divergence

Require: Xp, Xo — samples from distributions P and Q, B — base estimator training al-
gorithm, N — maximal size of the ensemble, ¢ : Z; — [0, 1] — capacity function; p —
learning rate;

Fo<«1/2
1<0
Ly < log2
fori=1,...,N do
if L; > c(i)log2 then
Fiy1 < Fi+p-B(F;,Xp,Xq)
Liy1 < L(Fi11,Xp, Xq)
1<—i+1
else
return log2 —L;
end if
end for
return log2 — Ly

regularization with a linear capacity function: c(a¢) =1 — o, where o corresponds to
dropout probability p.

Methods with explicit regularization terms can also be used to produce a family of
pseudo-divergences. In this work, we examine /, regularization on network weights as one
of the most widely used. In this case, a family of pseudo-divergences is defined by equation
Eq. (4) with a logarithmic capacity function: ¢(«) = —log(a).

Regularization methods mentioned above were selected primarily due to their simplicity
and popularity in the field. Our experiments indicate that these methods perform well.
Nevertheless, further studies are required to determine best-performing regularization
techniques.

In our experiments, we observe that unregularized networks require significantly more
samples to be properly trained than regularized ones. To reduce discriminator variance,
we suggest to use additional regularization r, strength of which is independent from the
capacity parameter «, e.g.:

Do(P,Q) =log2—L(f(6%,-),P,Q); (12)
o* =arg min,_oL(f(0,-),P,Q)+c(1—a)-R(6)+1r(0).

In this work, following Louppe, Hermans & Cranmer (2017), we use gradient
regularization r = Ry suggested by Mescheder, Geiger ¢ Nowozin (2018). Note, that such
family of pseudo-divergences is no longer complete w.r.t Jensen—Shannon divergence,
i.e., D1 #]JSD. Nevertheless, D is still a proper divergence (Mescheder, Geiger ¢ Nowozin,
2018) (which closely resembles JSD), and all results in this work hold with respect to
such divergences including main theorems and claims, i.e., the family defined above still
produces a (generalized) variant of adaptive divergence.
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The proposed procedures for estimating AD is outlined in Algorithms 3 and 4. As
chosen regularization methods result in families of pseudo-divergences continuous w.r.t
o, the proposed algorithm employs equation Eq. (8), i.e., it varies the strength of the
regularization depending on the current values of the cross-entropy. The values of the loss
function are estimated with an exponential moving average over losses on mini-batches
during iterations of Stochastic Gradient Descent, with the idea that, for slowly changing
loss estimations and small enough learning rate, network training should converge (Liu,
Simonyan ¢ Yang, 2018). We find that initializing exponential moving average with log2,
which corresponds to the absent regularization, works best.

Algorithm 3 Adaptive divergence estimation by a dropout-regularized neural network

Require: Xp, Xo — samples from distributions P and Q;
fo : X x R - R — neural network with parameters 6 € ®, the second argument repre-
sents dropout probability and is zero if unspecified; ¢ — capacity function;
o — exponential average coefficient;
B — coefficient for R regularization;
y — learning rate of SGD.

Lacc < log2
while not converged do
xp < sample(Xp)
xq < sample(Xq)
<c|l—- lLo%
80 < VoL (fo(-.¢),xp,xq)
81 < Vol Vafy (xp)|I?
Lacc —p 'Lacc+(1 _,0) 'L(anXvaQ)
0 < 0—y(g+Bg)
end while

return log2 — L(fy, Xp, Xq)

EXPERIMENTS

Adaptive divergence was designed to require fewer samples than its conventional
counterparts. However, for practical purposes, it is meaningless to consider this quantity
outside the context of optimization. To illustrate this claim, consider the following
divergence:
0, if P = Q almost everywhere;
ID(P,Q) = N il
1, otherwise.

Such divergence can be estimated in a manner similar to that of adaptive divergence:
starting with a low-capacity model, train the model to distinguish between P and Q, if
the model reports any differences between distributions, return 1, otherwise increase the
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>Code of the experiments is available at
https://github.com/HSE-LAMBDA /rapid-
ao/

®This procedure requires generating an
additional validation set of the size similar
to that of the training set, which might be
avoided by, e.g., using Bayesian inference,
or cross-validation estimates.

capacity of the model and repeat, until a sufficiently high capacity is reached, in which
case return 0. In terms of the number of samples, ID is expected to be more efficient than
AD; at the same time, ID is a textbook example of intrinsically hard optimization problem,
rendering it useless for Adversarial Optimization. Therefore, we judge the performance of
adaptive divergence only within an optimization procedure.

Note that adaptive divergence is not expected to improve the optimization surface;
nevertheless, as Fig. 1 demonstrates, the improvement is seemingly present in some
instances; however, our experiments show that it does not play any significant role (see
Appendix A3 for details). In the cases, when degradation of the optimization surface takes
place, global optimization procedures, such as Bayesian Optimization, are still expected to
benefit from the usage of AD by being able to perform more steps within the same budget

on the number of generator calls.
We compare adaptive divergence against JSD on three tasks,” each task is presented by

a parametrized generator, ‘real-world’ samples are drawn from the same generator with
some nominal parameters. Optimization algorithms are expected to converge to these
nominal parameters.

We evaluate the performance of adaptive divergences with two black-box optimization
algorithms, namely Bayesian Optimization and Adversarial Variational Optimization. As
computational resources spent by simulators are of our primary concern, we measure
convergence of Adversarial Optimization with respect to the number of samples generated
by the simulation, which is expected to be roughly proportional to the total time in case
of computationally heavy simulations. We chose to neglect the time spent on training
models as the proposed methods are intended for simulations that are significantly
more computationally intensive than training of any model with a reasonable capacity,
for example, running ATLAS simulation (The ATLAS Collaboration, 2010) for the same
number of times as budgets in our experiments would require several years on a single-core
CPU.

To measure the number of samples required to estimate a divergence, we search for the
minimal number of samples such that the difference between train and validation losses is
within 1072 for Gradient Boosted Decision Trees and 5-1072 for Neural Networks.® As a
significant number of samples is involved in loss estimation, for simplicity, we use point
estimations of losses. For GBDT, we utilize a bisection root-finding routine to reduce time
spent on retraining classifiers; however, for more computationally expensive simulators, it
is advised to gradually increase the size of the training set until the criterion is met.

For each experiment, we report convergence plots—Euclidean distance from the current
guess to the nominal parameters as a function of the number of examples generated by
the simulator. As the performance of Bayesian Optimization is influenced by choice of the
initial points (in our experiments, 5 points uniformly drawn from the search space), each
experiment involving Bayesian Optimization is repeated 100 times, and aggregated results
are reported. Similarly, experiments with Variational Optimization are repeated 20 times
each.’
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Algorithm 4 Adaptive divergence estimation by a regularized neural network

Require: Xp, Xo — samples from distributions P and Q;
fo : X = R — neural network with parameters 6 € ®;
R:® — R — regularization function; ¢ — capacity function;
p — exponential average coefficient;
B — coefficient for R regularization;
y — learning rate of SGD.

Lycc < log2
while not converged do
xp <—sample(Xp)
xq < sample(Xq)
¢ <c (1 — lLogZ)
80 < Vo [L(fo,xp,x0) + ¢ -R(fy)]
g1 < Vol Voo (xp)|1?
Lacc < p - Lacc+(1—p) 'L(fe,xP,XQ)
0 <6 —y(g0+Ba)
end while
return log2 — L(fy, Xp, XQ)

XOR-like synthetic data

This task repeats one of the synthetic examples presented in Fig. 1D: ground truth
distribution is an equal mixture of two Gaussian distributions, the generator produces

a rotated version of the ground-truth distribution with the angle of rotation being the
single parameter of the generator. The main goal of this example is to demonstrate that,
despite significant changes in the shape of the divergence, global optimization algorithms,
like Bayesian Optimization, can still benefit from the fast estimation procedures offered by
adaptive divergences.

For this task, we use an adaptive divergence based on Gradient Boosted Decision Trees
(100 trees with the maximal depth of 3) with linear and logarithmic capacity functions
given by Egs. (10) and (11) and ¢y = 1/4. Gaussian Process Bayesian Optimization with
Matern kernel (v = 3/2 and scaling from [10~%,10°] automatically adjusted by Maximum
Likelihood fit) is employed as optimizer.

Convergence of the considered divergences is shown in Fig. 2. As can be seen from the
results, adaptive divergences tend to request fewer generator calls per estimation; and, given
the same budget, both variants of adaptive divergence converge on parameters around an
order of magnitude closer to the optimum than traditional JSD. Notice, that the initial
rapid progress slows as optimizer approaches the optimum, and the slope of the curves
becomes similar to that of JSD: this can be explained by AD approaching JSD as probed
distributions become less distinguishable from the ground-truth one.
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Note, that this task is rather a realistic
toy example—in practical settings, Pythia
event generator is followed by a much
more computationally expensive detector
simulation such as GEANT (Allison et al.,
2016), the latter translates outcomes of
an event generator, such as Pythia, into
observable values. For comparison, full
ATLAS simulation (event generator and
detector simulation) mentioned above
takes several minutes per sample, while
Pythia alone typically require less than
a second per event (milliseconds in our
settings).
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Figure 2 XOR-like synthetic example, Gradient Boosted Decision Trees. (A) Convergence of Bayesian
Optimization on: Jensen—Shannon divergence (marked as JSD), adaptive divergences with a linear capac-
ity function (marked as linear AD), and a logarithmic capacity function (logarithmic AD). Each experi-
ment was repeated 100 times; curves are interpolated, median curves are shown as solid lines, bands indi-
cate 25th and 75th percentiles. (B) Distribution of computational costs per single optimization step mea-
sured by the number of generator calls requested for divergence estimation; each optimization step re-
quires exactly one divergence estimation; note logarithmic scaling of the x-axis.

Full-size Gl DOI: 10.7717/peerjcs.274/fig-2

Pythia hyper-parameter tuning

This task is introduced by Ilten, Williams & Yang (2017) and involves tuning hyper-
parameters of the Pythia event generator, a high-energy particle collision simulation used
at CERN. For this task, electron-positron collisions are simulated at a center-of-mass energy
91.2 GeV. As initial electron and positron collide and annihilate, new particles are created,
some of which are unstable and might decay into more stable particles. A collision event
is described by the properties of the final (stable) products. This process is intrinsically
stochastic (due to the laws of physics) and covers a large space of possible outcomes,
moreover, even with relatively large changes in generator’s hyper-parameters, outcome
distributions overlap significantly, which makes it an excellent example for adversarial
optimization. The nominal parameters of the Pythia event generator are set to the values
of the Monash tune (Skands, Carrazza & Rojo, 2014).

In work by Ilten, Williams ¢ Yang (2017), various physics-motivated statistics of events
are used as observables,” with a total of more than 400 features. The same statistics were
originally used to obtain the Monash tune. For the purposes of the experiment, we consider
one hyper-parameter, namely alphaSValue, with the nominal value of 0.1365 and search
range [0.06,0.25].

We repeat settings of the experiment® described by Ilten, Williams ¢~ Yang (2017). We
employ Gradient Boosting over Oblivious Decision Trees (CatBoost implementation by
Prokhorenkova et al., 2018) with 100 trees of depth 3 and other parameters set to their default
values. We use Gaussian Process Bayesian Optimization with Matern kernel (v =3/2 and
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8Methods proposed by Ilten, Williams
& Yang (2017) compare a fixed set
of statistics computed over multiple
examples. As adversarial methods operate
with individual examples, we use the same
statistics computed for single events, i.e.,
original data can be recovered from ours
by simply averaging across events.

10° | A s |SD B
I linear AD
W logarithmic AD

0.25

10*1 4

10—2 4

Euclidean distance to the solution

— JSD
—— linear AD
logarithmic AD

fraction of the total number of steps

0 10000 20000 30000 40000 50000 60000 " 64 128 256 512 1024 2048 4096 8192 16384
number of generator calls generator calls per optimization step

Figure 3 Pythia hyper-parameter tuning, CatBoost. (A) Convergence of Bayesian Optimization
on: Jensen—Shannon divergence (marked as JSD), adaptive divergences with a linear capacity function
(marked as linear AD), and a logarithmic capacity function (logarithmic AD). Each experiment was
repeated 100 times, curves are interpolated, median curves are shown as solid lines, bands indicate 25th
and 75th percentiles. (B) Distribution of computational costs per single optimization step measured by the
number of generator calls requested for divergence estimation; each optimization step requires exactly one
divergence estimation; note logarithmic scaling of the x-axis.

Full-size Gl DOI: 10.7717/peerjcs.274/fig-3

scaling from [1073,10%] automatically adjusted by Maximum Likelihood fit) as optimizer.
Comparison of unmodified Jensen—Shannon divergence with adaptive divergences with
linear and logarithmic capacity functions (defined by Eqs. (10) and (11) and ¢y = 1/4)
presented onFig. 3.°

Results, shown in Fig. 3, indicate that, given the same budget, Bayesian Optimization over
adaptive divergences yields solutions about an order of magnitude closer to the nominal
value than Jensen—Shannon divergence. This acceleration can be attributed to the proposed
estimation procedures that require far fewer generator calls than JSD. Additionally, notice
that the slope of the convergence curves for AD gradually approaches that of AD as the

proposal distributions become closer to the ground-truth one.

Pythia alignment

In order to test the performance of adaptive divergences with Adversarial Variational
Optimization, we repeat the Pythia-alignment experiment suggested by Louppe, Hermans
& Cranmer (2017). The settings of this experiment are similar to the previous one. In
this experiment, however, instead of collecting physics-motivated statistics, we consider a
simplified detector simulation, represented by a 32 x 32 spherical grid with cells uniformly
distributed in pseudorapidity v € [—5,5] and azimuthal angle ¢ € [—m, 7] space. Each
cell of the detector records the energy of particles passing through it. The detector

has 3 parameters: x,y,z-offsets of the detector center relative to the collision point,
where z-axis is placed along the beam axis, the nominal offsets are zero, and the initial
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Figure 4 Illustration of the Pythia-alignment task. (A) Aggregated events for zero offset (the nomi-
nal configuration), 0.25 offset along x-axis (B), y-axis (C), and z-axis (D). (E-H) Single-event examples
from the corresponding configurations above—each activated pixel indicate a particle or multiple particles
passing trough the corresponding region of the detector.

Full-size &l DOL: 10.7717/peerjcs.274/fig-4

guess is (0.75,0.75,0.75). Figure 4 shows averaged detector responses for the example
configurations and samples from each of these configurations.

For this task, a 1-hidden-layer Neural Network with 32 hidden units and ReLU activation
function is employed. R; regularization, proposed by Mescheder, Geiger ¢» Nowozin (2018),
with the coefficient 10, is used for the proposed divergences and the baseline. Adam
optimization algorithm (Kingma ¢ Ba, 2014) with learning rate 1072 is used to perform
updates of the search distribution. We compare the performance of two variants of adaptive
divergence (dropout and [, regularization) described in ‘Implementation’.

Results are shown in Fig. 5. Adaptive divergences require considerably fewer samples
for their estimation than the baseline divergence with only R; regularization, which, given
the same budget, allows both variants of adaptive divergence to accelerate Adversarial
Optimization significantly. Note that the acceleration is even more pronounced in
comparison to JSD estimated by an unregularized network: in our experiments, to achieve
the set level of agreement between train and test losses, the unregularized network often
requires more samples than the entire budget.

DISCUSSION

To the best knowledge of the authors, this work is the first one that explicitly addresses
computational costs of Adversarial Optimization for expensive generators. Interestingly,
several recent developments, like Progressive GAN (Karras et al., 2017) and ChainGAN
(Hossain et al., 2018), use multiple discriminators of increasing capacity; however, this is
done mainly to compensate for the growing capacity of the generators and, probably, not
for reducing computational costs.
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Figure 5 Pythia-alignment, neural networks. (A) Convergence of Adversarial Variational Optimization
on: adaptive divergence produced by I, regularization (AD, ,), dropout regularization (AD, dropout), and
the baseline divergence with constant R, regularization (marked as JSD). Each experiment was repeated 20
times, curves are interpolated, median curves are shown by solid lines, bands indicate 25th and 75th per-
centiles; steps-like patterns are interpolation artifacts. (B) Distribution of computational costs per single
optimization step measured by the number of generator calls requested for divergence estimation; each
optimization step requires exactly one divergence estimation; note logarithmic scaling of the x-axis.
Full-size & DOTI: 10.7717/peerjcs.274/fig-5

Several recent papers propose improving stability of Adversarial Optimization by
employing divergences other than Jensen—-Shannon (Gulrajani et al., 2017; Arjovsky,
Chintala & Bottou, 2017; Bellemare et al., 2017). Note that all results in this paper also
hold for any divergence that can be formulated as an optimization problem, including
Wasserstein (Arjovsky, Chintala ¢ Bottou, 2017) and Cramer (Bellemare et al., 2017)
distances. It can be demonstrated by adjusting Definition 2 and repeating the proof of
Theorem 4 for a new divergence; presented algorithms also require only minor adjustments.

Multiple works introduce regularization (Sonderby et al., 2016; Arjovsky, Chintala ¢
Bottou, 2017; Roth et al. 2017; Kodali et al., 2017; Mescheder, Geiger ¢ Nowozin, 2018) for
improving stability and convergence of Adversarial Optimization. Most of the standard
regularization methods can be used to regulate model capacity in adaptive divergences.
Also, one can use these regularization methods in addition to adaptive divergence as
any discriminator-based regularization effectively produces a new type of divergence.
Pythia-alignment experiment (‘Pythia alignment’) demonstrates it clearly, where we use
R regularization with constant coefficient in addition to varying-strength dropout and I,
regularization.

As we discussed in ‘Adaptive Divergence’, properties of adaptive divergences highly
depend on the underlying families of pseudo-divergences; the impact of various
regularization schemes is a subject of future research.
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CONCLUSION

In this work, we introduce adaptive divergences, a family of divergences meant as
an alternative to Jensen—Shannon divergence for Adversarial Optimization. Adaptive
divergences generally require smaller sample sizes for estimation, which allows for a
significant acceleration of Adversarial Optimization algorithms. These benefits were
demonstrated on two fine-tuning problems involving Pythia event generator and two of the
most popular black-box optimization algorithms: Bayesian Optimization and Variational
Optimization. Experiments show that, given the same budget, adaptive divergences
yield results up to an order of magnitude closer to the optimum than Jensen—Shannon
divergence. Note, that while we consider physics-related simulations, adaptive divergences
can be applied to any stochastic simulation.

Theoretical results presented in this work also hold for divergences other than Jensen—
Shannon divergence.
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APPENDIX A1: FORMAL DEFINITIONS AND PROOFS

Definition 4 A model family M ={M, C F|a € [0,1]} is complete and nested, if:
(NO) (x — 1/2) € My;

(Nl)] M; =]:;

(N2) Ver, B €[0,1]: (o < B) = (My C Mp).

Theorem 2 If a model family M ={M, C F|a € [0, 1]} is complete and nested, then the
family D ={D, : TI(X) x TI(X) — R|x € [0, 1]}, where:

Da(P,Q)=10g2_fi€1?\£L(faP»Q)’ (13)

is a complete and ordered with respect to Jensen—Shannon divergence family of pseudo-
divergences.

Proof Let’s introduce function fy(x) = 1/2. Now we prove the theorem by proving that
the family satisfies all properties from Definition 2.

Property (D0) Due to Properties (NO) and (N1), fy is a member of each set M. This
implies, that D, (P,Q) > 0 for all & € [0,1]. For P = Q, cross-entropy loss function
L(f,P, Q) achieves its minimum in f = fy, therefore, Dy (P,Q) =0if P =Qforall @ € [0,1].
Therefore, for each « € [0, 1] D, is a pseudo-divergence.

Property (D1) From Properties (N2) follows, that forall 0 <a < g < 1:
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Property (D2) This property is directly follows from Property (N1) and Equation Eq. (13).
Definition 5 If M is a parameterized model family M = {f (0,-) : X — [0, 1]| 6 € ®}, then
a function R : ® — R is a proper regularizer for the family M if:

(R1) VO € ® : R(0) > 05

(R2) 39 € O: (f(6,-) =3) AR(H) =0).

Theorem 3 If M is a parameterized model family: M = {f(6,-)|0 € ®}and M = F,

R:© — Risa proper regularizer for M , and c:[0,1] — [0,+00) is a strictly increasing
function such, that ¢(0) =0, then the family D ={D,, : I1(X') x [1(X) - R|a € [0, 1]}:

D, (P =log2 — in L ).P,Q):
«(P,Q) og2— min (f@6,-),P,Q);

BOu(P,Q) =arg minee@Ls(G,P, Q);
is a complete and ordered with respect to Jensen—Shannon divergence family of pseudo-

divergences.

Proof We prove the theorem by showing that the family D satisfies all properties from
Definition 2.

Property (D0) Due to Properties (R2), there exists such 6y, that f (6, -) = 1/2 and R(6,) = 0.
Notice, that, forall P and Q, L (6, P, Q) =log2 and LX(9,P,Q) > L(f (6, ), P, Q), therefore,
Dy (P,Q) >0 forall P,QeII(X) and for all @ € [0, 1]. For the case P = Q, 0, also delivers
minimum to L(f (6o, -),P, Q) +c(1 —a)R(6y), thus, D, (P,Q) =0 if P = Q. This proves Dy
to be a pseudo-divergence for all @ € [0, 1].

Property (D1) Let’s assume that 0 <« < 8 <1, yet, for some P and Q, D,(P,Q) >
Dg(P, Q). The latter implies, that:

;reliEI;L(f(Q,'),P,Q) <gr€1i3r;L(f(9,-),P,Q); (14)
where: E, =0, (P,Q) and Eg = Og(P, Q). Let us pick some model parameters:

6, € Arg mingz L(f(6,-),P,Q);

0p € Arg mineeEﬁL(f(G, 9),P,Q).

Since 6g € Eg, then, by the definition of ®4(P,Q):

L (8p.P.Q) < L(6u. P, Q). (15)

From the latter and assumption (Eq. 14) follows, that R(6g) < R(6,). By the conditions of
the theorem, C =c¢(1 —a)—c(1—8) > 0 and:

C-R(6p) < C-R(6,). (16)
Adding inequality Eq. (15) to inequality Eq. (16):
Ly (0p.P.Q) < L;(0s.P. Q)

which contradicts the definition of 6,. This, in turn, implies that the assumption Eq. (14)
contradicts conditions of the theorem.
Property (D2) Since ¢(0) =0 and M = F, D; =]SD by the definition.
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APPENDIX A2. PROOF OF THEOREM 1

Theorem 4 If ADpis an adaptive divergence produced by a complete and ordered with
respect to Jensen—Shannon divergence family of pseudo-divergences D, then for any two
distributions P and Q: JSD(P,Q) =0 if and only if AD(P,Q)=0.

Proof For convenience, we repeat the definition of an adaptive divergence ADp here:
ADp(P,Q) =inf {Dy(P,Q)|Du(P,Q) > (1—a)log2}. (17)

Firstly, we prove that from JSD(P, Q) = 0 follows ADp(P,Q) = 0. Due to Property
(D2), D;(P,Q) =JSD(P, Q) =0, therefore, Vo € [0, 1] : D, (P, Q) =0 due to Properties
(D2) (pseudo-divergences form a non-decreasing sequence) and (P1) (non-negativity of
pseudo-divergences), which, in turn, implies that AD(P, Q) = inf{0} = 0.

Secondly, we prove that from ADp(P, Q) =0 follows JSD(P, Q) = 0. Let’s assume that,
for some P and Q, AD(P,Q) =0, but JSD(P,Q) = C > 0. Let us define the set of active
capacities Ap(P, Q) as follows:

Ap(P,Q) ={a[Dy(P,Q) > (1—a)log2}. (18)

Note, that for every proper family D and for every pair of P and Q: {1} € Ap(P,Q)
and, if @ € Ap(P,Q) then [«,1] S Ap(P, Q). The latter follows from Property (D1)
(pseudo-divergences form a non-decreasing sequence) and the fact, that (1 —«)log2 is a
strictly decreasing function.The previous statement implies that there are three possible
forms of Ap(P,Q):

1. asingle point: Ap(P,Q) ={1};

2. aninterval: Ap(P,Q)=[8,1];

3. ahalf-open interval: Ap(P,Q) = (8,1];

for some B € [0, 1). The first case would contradict our assumptions, since ADp(P,Q) =
inf{D1(P,Q)} = C > 0. To address the last two cases, note, that Voo € Ap(P,Q) :
Dy(P,Q) > (1 — B)log2 > 0 due to the definition of Ap(P, Q). However, this implies
that ADp (P, Q) =inf{Dy (P, Q)|x € Ap(P,Q)} = (1 — 8)log2 > 0, which contradicts our
assumptions.From the statements above, we can conclude that if ADp(P,Q) =0, then
JSD(P, Q) =0. Combined with the previouly proven (JSD(P,Q) =0) = (ADp(P,Q) =0),
this finishes the proof.

APPENDIX A3. SOURCE OF THE ACCELERATION

Figures 2, 3 and 5 demonstrate that usage of adaptive divergence allows to accelerate
Adversarial Optimization and lower requirements on the number of generator calls clearly
play a major role. Nevertheless, this acceleration can be potentially attributed to the
changes in the shape of the target function. Figure 6 shows convergence plots for the
experiments described above; however, the x-axis corresponds to the optimization step
rather than number of generator calls. These convergence plots demonstrate that changes
in shape either do not affect convergence speed (Figs. 6A and 6B) or have a negative impact
(Fig. 6C).
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Figure 6 Convergence plots as functions of optimization step: (A) XOR-like synthetic dataset, (B)
Pythia hyper-parameter tuning, (C) Pythia alignment. Curves are interpolated, median curves are shown
as solid lines, bars indicate 25th and 75th percentiles. For visual clarity curves are interpolated/extrapo-
lated up to the median total number of steps for the corresponding method.
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