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ABSTRACT

Plant miRNA encoded peptides (miPEPs), which are short peptides derived from
small open reading frames within primary miRNAs, play a crucial role in regulating
diverse plant traits. Plant miPEPs identification is challenging due to limitations in
the available number of known miPEPs for training. Existing prediction methods rely
on manually encoded features, including miPEPPred-FRL, to infer plant miPEPs.
Recent advances in deep learning modeling of protein sequences provide an
opportunity to improve the representation of key features, leveraging large datasets of
protein sequences. In this study, we propose an accurate prediction model, called
pLM4PEP, which integrates ESM2 peptide embedding with machine learning
methods. Our model not only demonstrates precise identification capabilities for
plant miPEPs, but also achieves remarkable results across diverse datasets that
include other bioactive peptides. The source codes, datasets of pPLM4PEP are
available at https://github.com/xialab-ahu/pLM4PEP.

Subjects Bioinformatics, Computational Biology, Data Mining and Machine Learning, Databases
Keywords Protein language model, miPEPs, Machine learning

INTRODUCTION

MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene expression through
a negative regulatory mechanism. They possess the ability to either induce mRNA
degradation or inhibit protein synthesis in both plant and animal systems, thus exerting a
significant regulatory influence over gene expression (Carrington ¢ Ambros, 2003;
Khraiwesh et al., 20105 Sun, Lin ¢ Sui, 2019). A substantial body of research has established
the multifaceted roles of miRNAs in a wide array of cellular processes, including those
integral to plant growth, development, and stress responses (Voinnet, 2009; Chen, 2009;
Tang & Chu, 2017; Zhang et al., 2020). The investigation of plant miRNAs is of paramount
importance for a comprehensive understanding of the gene regulatory networks
functioning in the plants.

Historically, miRNAs were widely regarded as non-coding and thus not translated into
peptides. However, recent studies have shed light on their ability to be transcribed by RNA
polymerase II into larger primary transcripts known as pri-miRNAs. These plant pri-
miRNAs often contain short open reading frame that can encode regulatory peptides,
termed miPEPs (Lauressergues et al., 2015, 2022). Interestingly, these miPEPs have been
shown to enhance the transcription of the pri-miRNA from which they are derived, in a
selective manner. The majority of miRNAs do not function in isolation; instead, they
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actively engage in intricate regulatory networks to harmonize a variety of developmental
processes and stress responses (Tang ¢ Chu, 2017). The discovery of miPEPs has opened
new avenues for research, offering a novel tool to investigate the specific contributions of
individual miRNA families members in the field of plant biology (Couzigou et al., 2015).

Bioactive peptides are protein fragments that exhibit positive biological effects and can
be produced through enzymatic hydrolysis or fermentation from sustainable food protein
sources (Du et al., 2023). These bioactive peptides are capable of regulating various
physiological functions, leading to the commercial application of certain peptides in
pharmaceuticals, nutraceuticals, and cosmetics (Daliri, Lee ¢» Oh, 2018; Du ¢ Li, 2022;
Fang et al., 2024; Tan et al., 2024). A substantial amount of research has been conducted on
a wide range of bioactive peptides, with an increasing volume of experimental data
becoming available (Wei et al., 2019; Zhang & Zou, 2020). However, the ability to identify
peptide functionality through experimental methods alone is no longer sufficient to meet
current demands. In this context, employing computational methods to guide researchers
in the pre-screening of peptide functions has become particularly important (Chen et al,
2024; Goles et al., 2024; Fang et al., 2024). The current research on plant miPEPs is
relatively limited, and there is a notable scarcity of computational tools tailored for miPEP
identification. This implies that the field of plant miPEPs is still in the early stages and
require further exploration. In order to efficiently recognize miPEP, the miPEPPred-FRL
(Li et al., 2023) predictor has been developed, which employs an advanced feature
representation learning framework consisting of feature transformation modules and a
cascade architecture. The introduction of miPEPPred-FRL marks a significant step
forward, providing a new, less laborious approach for miPEP identification compared with
traditional biological experiments. While miPEPPred-FRL demonstrates relatively high
accuracy in miPEP identification, there are still challenges that need to be addressed. The
current model is constrained by a limited training dataset and a narrow diversity of sample
types, which may affect its adaptability to a broader range of plant species and miPEP
types, thereby impacting its generalization capabilities. For instance, while miPEPPred-
FRL achieves a commendable 90.6% accuracy on independent test sets of Arabidopsis, its
performance on legumes and hybrid species is less significant, indicating the need for
improvement. In this work, we are dedicated to refining the model to enhance its
robustness and generalization, enabling it to perform effectively across diverse datasets.
This will facilitate a deeper exploration of miPEPs functionality and mechanisms,
providing vital insights to support further research in this field.

In the field of bioinformatics, deep learning-based language models has been
increasingly utilized for embedding protein sequence. These models are trained on vast
datasets encompassing billions of protein sequences. Protein language models (pLMs)
have shown great promise in generating informative protein representations from protein
sequence data alone. They offer faster processing times and improved predictive
capabilities compared to traditional methods. The embeddings produced by these models
have been shown to be highly effective in various downstream tasks, such as prediction of
protein structure and function (Dallago et al., 2021). Evolutionary scale modeling (ESM2)
(Lin et al., 2023), released in 2022 by the Fundamental AI Research Protein Team at Meta,
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represents the cutting edge of language model for protein sequences. The pLM4ACE (Du
et al., 2024) is a pioneering model that utilizes ESM2 embeddings for peptide sequence
representation in the context of bioactive peptide prediction. The experimental results
demonstrate the superiority performance of ESM2 in peptide representation.

In this work, we present a novel bioinformatics tool designed for the accurate
identification of miPEPs. Our model was constructed using eight features, including two
scales of ESM2 embeddings and six manually encoded features. We evaluated eight
machine learning methods as potential classifiers. By comparing the performance of
models built with different features and machine learning algorithms, we ultimately
obtained the most effective framework. The main contributions of our work are as follows:

(1) Novel ESM2-based peptide classification model. We propose an innovative peptide
classification model based on the ESM2 framework. By employing transfer learning, we
harness the knowledge learned by the ESM2 model from extensive pre-training on protein
sequences and applied to the less explored domain of small-sample plant miPEPs. This
strategy significantly enhances the model’s recognition performance and generalization,
facilitating the accurate identification and classification of miPEPs.

(2) Comparison analysis of ESM2 with different machine learning Models. We conduct
an in-depth evaluation and comparison of ESM2’s performance when combined with
various machine learning models. This analysis provides valuable insights into the most
effective machine learning methods peptide embedding in collaboration with ESM2. Our
findings offer important guidance for future research aiming to apply ESM2 to peptide
feature embedding.

(3) Outstanding model performance across peptide datasets. We evaluate the
performance of our model on across a spectrum of bioactive peptide datasets, including
those for plant miPEP, neuropeptide, blood-brain barrier peptide, and anti-parasitic
peptide. The results demonstrate the superior performance of our model across the
evaluated datasets. This compelling evidence substantiates the reliability of our
classification model and underscores its potential as a robust and versatile peptide
prediction tool, harnessing the capabilities of the ESM2 protein language model.

MATERIALS AND METHODS

Datasets

Plant miPEPs dataset

We utilized the plant miPEPs dataset constructed by Li et al. (2023), which encompasses a
training dataset and three independent testing datasets. The training dataset and
independent testing dataset 1 are composed of samples from Arabidopsis thaliana plants,
independent testing dataset 2 focused on soybean plants, and independent testing dataset 3
includes hybrid varieties, such as Arabidopsis and cabbage. Table 1 provides the details of
these datasets.

Yue et al. (2025), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2733 317


http://dx.doi.org/10.7717/peerj-cs.2733
https://peerj.com/computer-science/

PeerJ Computer Science

Table 1 Details of the miPEPs dataset.

Dataset Positive Negative Total
Training dataset 250 250 500
Independent testing dataset 1 62 545 607
Independent testing dataset 2 71 541 612
Independent testing dataset 3 23 995 1,018

Other bioactive peptide datasets
In order to be able to better validate the generalization performance of the model, we
selected three other bioactive peptide datasets and keep the testing datasets, the details of
which are as follows.

(1) Neuropeptides dataset

We utilized the neuropeptide dataset curated in our previous study (Bin et al., 2020),
which comprises an equal distribution of 2,425 samples in each positive and negative
sample set. The dataset was partitioned into training and test sets in a ratio of 80% and 20%
respectively. The final number of positive and negative samples was therefore 485.

(2) Blood-brain barrier peptides dataset

The blood-brain barrier peptide dataset constructed by Dai et al. (2021), with a total of
38 samples in the testing set, including 19 positive samples and 19 negative samples.

(3) Anti-parasitic peptides dataset

The antiparasitic peptide dataset was created by Zhang et al. (2022). The testing set
includes 46 positive samples and 46 negative samples. The composition of each bioactive
peptide dataset can be found in Table 2.

Peptide embeddings
Handcrafted feature encoding
(1) Composition-based feature

This type of feature comprises amino acid composition (AAC) and dipeptide
composition (DPC). The AAC is a 20-dimensional vector representing the proportion of
the 20 standard amino acids in a specified segment of the peptide sequence. The DPCis a
400-dimensional vector representing the percentage of each possible pair of adjacent
residues within the complete peptide sequence.

(2) Physicochemical property-based feature

This category comprises grouped amino acid composition (GAAC), grouped dipeptide
composition (GDPC), grouped tripeptide composition (GTPC), and composition,
transition, and distribution (CTD). The GAAC feature is a 15-dimensional vector that
categorizes the 20 amino acids into five distinct classes based on their physicochemical
properties. It quantifies the frequency of each amino acid group’s occurrence within the
full peptide sequence, the NT5 sequence, and the CT5 sequence. The GDPC is a 25-
dimensional vector that records the frequency of dipeptide compositions formed by the
five amino acid classes defined in the GAAC feature. The GTPC is a 125-dimensional
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Table 2 Details of the bioactive peptide datasets.

Dataset Positive Negative Total
Neuropeptides dataset 485 485 970
Blood-brain barrier peptides dataset 19 19 38
Anti-parasitic peptides dataset 46 46 92

vector representing the frequency of tripeptide compositions formed by the five amino
acid classes utilized in the GAAC feature. The CTD is a 147-dimensional vector that
describes the distribution patterns of amino acids with distinct physicochemical properties
within the peptide sequence. It is composed of three components: C (Composition), T
(Transition), and D (Distribution). C is represented by a 21-dimensional feature vector, T
by a 21-dimensional feature vector, and D by a 105-dimensional feature vector.

ESM2 feature embedding

ESM2 (Lin et al., 2023), a versatile protein language model, provides a broad range of
architecture configurations and parameter options to suit a variety of needs. It is designed
with flexibility, allowing it to be tailored to align with diverse requirements and
computational resources. The model can be configured to run efficiently with a minimal
setup of six layers and 8 million parameters, making it a choice for scenarios with
constrained computational power or smaller dataset volumes. On the other hand, it can
also be expanded to a robust 48 layers and 15 billion parameters, providing a higher
capacity to capture subtle patterns and dependencies within extensive and intricate
datasets. This scalability enables researchers and practitioners to choose an ESM2 variant
that meets their computational efficiency and model complexity needs, achieving an
optimal balance. ESM2 is trained on protein sequences derived from the UniRef protein
sequence database and has shown remarkable performance across various structure
prediction tasks, surpassing other contemporary protein language models (Lin et al., 2023).

Given the plant miPEPs dataset’s modest sample size and the potential challenge of high
dimensionality, our study focused on a comparative analysis of two selected protein
language models. The models under consideration are pLM (esm2_t6_8M_UR50D) with 8
million parameters and 320-dimensional output embeddings, and pLM
(esm2_t12_35M_UR50D) with 35 million parameters and 480-dimensional output
embeddings. After an extensive evaluation, the esm2_t12_35M_UR50D model is chosen
for peptide embedding extraction.

The pLM4PEP framework

The comprehensive overview of pPLM4PEP is illustrated in Fig. 1. We leverage the power of
ESM2 for representing peptide sequence embeddings, complemented by traditional,
manually encoded features. The model is constructed by seamlessly integrating these
representations with machine learning methods to enhance its predictive capabilities.
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Performance metrics

Various metrics are employed to evaluate the predictive performance of different models,
encompassing widely used measures such as Accuracy (ACC), Matthews correlation
coefficient (MCC), and others. The definitions of these metrics are provided below:

TN

SP=——"— 1
TN + FP M
TP
PRE=— — )
TP + FP

TP + TN

ACC = 3

cc TP + TN + FP + FN 3

Pl 2TP @
- 2TP+ FP+ EN

MCC — (TP x TN) — (FP x EN) -
~ /(TP FP) x (TP + EN) x (IN + FP) x (IN + EN)

where TP, TN, FP, and FN represent the number of true positive samples, true negative
samples, false positive samples and false negative samples, respectively. In addition, the
area under the receiver operating characteristic curve (AUROC) and the area under the
precision recall curve (AUPRC) are also considered for model performance evaluation.

Implementation details

In this work, we use the PyTorch framework to build our prediction model. It is important
to note that we use grid search and fivefold cross-validation to optimize the
hyperparameters of the algorithms used. To improve the reproducibility and reliability of
our model, we have provided the ranges of hyperparameters for the machine learning
algorithms in Table SI.

RESULTS AND DISCUSSION

Peptide embedding analysis

We constructed predictive models by integrating two variants of ESM2, each with a
distinct scale, with six manually encoded feature descriptors. This integration was achieved
by employing a combination of eight prevalent machine learning methods: support vector
machine (SVM), logistic regression (LR), multilayer perceptron (MLP), Random Forest
(RF), K-nearest neighbors (KNN), extreme random trees (ERT), extreme gradient
boosting (XGBoost), and adaptive boosting (AdaBoost). The performance of each model
was evaluated using the AUROC metric, and the corresponding values obtained on the
training set are documented in Table 3. Our observations indicate that the models
leveraging ESM2 embeddings outperform those models based on manually encoded
features in terms of performance.

In the miPEPPred-FRL (Li et al., 2023) study, a comparison analysis was conducted to
evaluate the performance of models using two distinct types of features: those based on
protein sequences and those derived from protein language models and deep learning
models. In order to facilitate a comprehensive comparison, three protein language models,
namely ProteinBERT (Brandes et al., 2022), ProtBert (Elnaggar et al., 2022), and Bert-
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Figure 1 The framework of pLM4PEP. (I) We retrieved peptide sequences from the miPEPs datasets. (II) We extracted crucial features from the
peptide sequences, which include a blend of features derived from evolutionary scale modeling (ESM) and those based on handcrafted features. (III)
We combined the extracted features with ML algorithms to build models capable of recognizing the miPEPs. (IV) The final stage was dedicated to the
thorough evaluation of the constructed models to assess their performance and reliability. Full-size K] DOT: 10.7717/peerj-cs.2733/fig-1

Protein (Zhang et al., 2021), as well as three deep learning models, namely CNN, LSTM,
and CNN-LSTM, were selected. Their evaluation revealed that protein sequence-based
features consistently outperformed the other methods across all machine learning
classifiers. In contrast, features derived from protein language models and deep learning
models did not match the effectiveness of sequence-based features. One potential
explanation for this discrepancy is that features directly extracted from protein language
models may not adequately capture the unique characteristics of miPEPs. To demonstrate
the superiority of ESM2 and its effectiveness as a feature embedding method, we compared
the experimental results of ESM2 with the aforementioned features on four machine
learning classifiers. The comparative results are presented in Fig. 2. From Fig. 2, it can be
observed that both sizes of ESM2 significantly outperform the sequence-based and pLLM
and DLM-based feature extraction methods across various evaluation metrics on the

selected four machine learning classifiers.

Selection of the final classification model

We conducted experiments by combining two variants of ESM2, distinguished by their
parameter sizes of 8 million (esm2_t6_8M_UR50D) and 35 million
(esm2_t12_35M_URS50D), respectively, with eight machine learning methods to establish
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Table 3 Model performance of various peptide embedding approaches.

Feature LR AB XGB SVM RF ERT KNN MLP
AAC 0.578 0.482 0.461 0.598 0.482 0.506 0.566 0.603
DPC 0.633 0.529 0.480 0.607 0.555 0.592 0.545 0.639
CTD 0.596 0.411 0.436 0.585 0.433 0.433 0.508 0.579
GAAC 0.577 0.465 0.482 0.600 0.478 0.502 0.550 0.615
GDPC 0.629 0.535 0.498 0.606 0.510 0.577 0.546 0.626
GTPC 0.519 0.494 0.470 0.515 0.478 0.475 0.472 0.516
8M_ESM2 1.000 0.998 0.994 0.999 0.985 0.992 0.976 1.000
35M_ESM2 0.999 0.999 0.996 0.997 0.987 0.991 0.971 0.999
Note:

The highest values are highlighted in bold.

a plant miPEPs prediction model. To optimize the performance of each method, an
exhaustive hyperparameter search was performed to determine the most suitable
hyperparameters for each machine learning method. The results of these models on the
training set are presented in Table 4.

The three best performing models on both scales of ESM2 were LR, MLP and SVM, with
the model utilizing the 35M parameter scale of ESM2 (35M_ESM2) performing slightly
better than the 8M parameter scale model (8M_ESM2). We further evaluate their
performance on independent test sets. The AUROC of the model using 35M_ESM2 to
extract peptide embeddings, coupled with the aforementioned three ML methods as
classifiers, is shown in Fig. 3.

The models with LR and MLP as classifiers perform significantly better than the models
with SVM as classifier. Combined with the performance of the prediction models on the
training set, we select LR to construct the final prediction model.

Model performance comparison with state-of-the-art (SOTA) models
To assess the performance of our developed model pLM4PEP, we conducted a
comparative analysis with the miPEPPred-FRL model developed by Li et al. (2023). This
comparison was performed across three distinct independent test sets, each representing a
unique plant species. The evaluation metrics used in this assessment included AUROC and
AUPRGC, which are visually displayed in Table 5. Our model, pPLM4PEP, demonstrated a
marked advantage over the miPEPPred-FRL model across all three independent testing
sets. This significant outperformance underscores the potential of pLM4PEP as a robust
and reliable tool for plant miPEP prediction.

Model performance across various bioactive peptides datasets
To further validate the generalization ability of our model, we assessed its performance on
a diverse set of bioactive peptide datasets. Specifically, we selected three bioactive peptide
datasets: the neuropeptide dataset, the blood-brain barrier peptide dataset, and the anti-
parasitic peptide dataset.

PredNeuroP (Bin et al., 2020) is a neuropeptide prediction model based on a two-layer
stacking method. It utilizes a combination of nine feature descriptors and five machine
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Figure 2 (A-D) Comparison of four feature extraction methods. “sequence-based” means the conventional protein sequence feature descriptors,
“pLLM and DLM-based” means the protein large language model and deep learning model feature descriptors.
Full-size K&l DOT: 10.7717/peerj-cs.2733/fig-2

learning algorithms to generate 45 models as base learners. From these, eight base learners
are selected for the first-layer learning. The outputs of these eight base learners are then fed
into a logistic regression classifier to train the final model, and the output is the final
prediction result, which constitutes the second-layer learning. BBPpred (Dai et al., 2021) is
a blood-brain barrier peptide prediction model constructed based on a feature pool
consisting of 103 feature encoding symbols derived from 16 feature encoding strategies. A
three-step feature selection method is employed to select the optimal seven-dimensional
features. The logistic regression method is used as the classifier in BBPpred. PredAPP
(Zhang et al., 2022) is an anti-parasitic peptide prediction model. It generates 54 classifiers
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Table 4 Model performance of ESM2 at two scales combining different ML methods.

Method ESM2 Specificity ACC Precision F1 MCC AUROC
LR 8M 0.912 0.878 0.911 0.885 0.813 1.000
35M 0.918 0.878 0.915 0.871 0.802 0.999
MLP 8M 0.903 0.868 0.902 0.881 0.803 1.000
35M 0.910 0.874 0.908 0.872 0.798 0.999
SVM 8M 0.859 0.866 0.869 0.888 0.802 0.999
35M 0.883 0.884 0.889 0.898 0.820 0.997
AdaBoost 8M 0.899 0.870 0.899 0.880 0.795 0.998
35M 0.887 0.860 0.887 0.867 0.775 0.999
XGBoost 8M 0.884 0.864 0.886 0.873 0.780 0.994
35M 0.908 0.868 0.906 0.874 0.796 0.996
ERT 8M 0.875 0.858 0.878 0.869 0.772 0.992
35M 0.875 0.856 0.878 0.867 0.775 0.991
RF 8M 0.877 0.856 0.879 0.867 0.769 0.985
35M 0.880 0.848 0.880 0.856 0.760 0.987
KNN 8M 0.887 0.784 0.870 0.771 0.648 0.976
35M 0.858 0.824 0.858 0.835 0.718 0.971
Note:

The highest values are highlighted in bold.

R
MLP
SWM

1.04 0.990 0.989 0.976 0.977 0.984 0.984
0. 957 0.937 0. 953
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Figure 3 Model performance of 35M_ESM2 on the independent testing datasets. Full-size 4] DOT: 10.7717/peerj-cs.2733/fig-3
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Table 5 Performance comparison with the original model on the independent testing datasets.

Method miPEPPred-FRL pLM4PEP

AUROC AUPRC AUROC AUPRC
Independent testing dataset 1 0.898 0.466 0.990 0.925
Independent testing dataset 2 0.813 0.357 0.976 0.867
Independent testing dataset 3 0.811 0.173 0.984 0.613

based on nine feature sets and six machine learning algorithms, resulting in 54 feature
representations. Within each feature set, the best-performing feature representation is
selected, and these selected feature representations are integrated using the logistic

regression algorithm to construct the final model for anti-parasitic peptide prediction.

In the field of peptide prediction, feature selection plays a crucial role as it facilitates the
identification of the most informative features associated with bioactive peptides from a
large feature pool. These feature descriptors, including sequence, structure, and function
features, encompassing crucial information from multiple aspects of bioactive peptides.
The process of constructing these prediction models takes into consideration feature
selection and algorithmic combinations from multiple perspectives, with the goal of
enhancing prediction performance and improving generalization capability. By integrating
multiple feature descriptors and employing machine learning algorithms, these models are
able to capture the key features of a wide range of bioactive peptides from different angles,
thus leading to improved accuracy and reliability in predictions.

It is noteworthy that in current research, the improvement of model prediction
performance often relies on increasing the complexity of model development, involving
intricate feature selection methods and modeling strategies. However, the use of ESM2
streamlines this process by eliminating the need for additional prepossessing steps prior to
modeling, thus simplifying model development (Du et al., 2024).

UniDL4BioPep (Du et al., 2023) is a versatile deep learning architecture designed for
binary classification of peptide bioactivity. It is built upon the ESM2 peptide embedding
and CNN model. It has shown excellent performance on multiple bioactive peptide
datasets. We compared our model pLM4PEP, with UniDL4BioPep, and those constructed
in the original literature on three selected bioactive peptide datasets. The performance
results of these models on the testing set are presented in Table 6 and Table S2.

It can be observed that pPLM4PEP achieve superior results across all three bioactive
peptide datasets when compared to the original models. Notably, our models exhibit
particularly impressive performance on the neuropeptide and antiparasitic peptide
datasets, surpassing the outcomes of UniDL4BioPep. However, it is observed that our
models record a slight decrease in performance on the blood-brain barrier peptide dataset
relative to UniDL4BioPep. Overall, our pLM4PEP model presents outstanding
performance, reinforcing its effectiveness as a robust predictive tool. Both pLM4PEP and
UniDL4BioPep utilize ESM2 to extract peptide feature embeddings. The primary reason
for the performance variation between the models may be the disparities in classifier
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Table 6 Performance comparison with SOTA models on bioactive peptides datasets.

Dataset Model AUROC
Neuropeptides dataset PredNeuroP 0.954
UniDL4BioPep 0.953
pLM4PEP 0.993
Blood-brain barrier peptides dataset BBPpred 0.928
UniDL4BioPep 0.992
pLM4PEP 0.981
Anti-parasitic peptides dataset PredAPP 0.922
UniDL4BioPep 0.940
pLM4PEP 0.994
Note:

The highest values are highlighted in bold.

selection. Multiple studies have already showcased the effectiveness and compatibility of
LR in conjunction with ESM2 (Chandra et al., 2023; Du et al., 2024). Moreover, CNN
necessitates a substantial volume of data to mitigate overfitting. Due to the limited size of
the dataset for bioactive peptides, LR is likely to exhibit better performance. Furthermore,
CNN demonstrates spatial translation invariance, thereby failing to leverage the potential
positional information within the input sequences. Thus, despite CNN’s notable
accomplishments in image data and other domains, its performance in sequence modeling
is comparatively less successful (Chandra et al., 2023). These results also underscore the
advantages of employing ESM2 for feature embedding, showcasing its capability to capture
the nuances of bioactive peptides for enhanced predictive accuracy.

Furthermore, we selected additional plant peptide datasets for experimentation.
PTPAMP (Jaiswal, Singh ¢ Kumar, 2023) is a prediction tool for plant-derived peptides
and includes four types of peptide datasets: Antimicrobial, Antibacterial, Antifungal, and
Antiviral. We conducted experiments on these four types of plant-derived peptide datasets,
and the results are presented in Table S3. The results indicate that while our model
demonstrates a certain degree of generalization capability, further research is needed in the
future to enhance the model’s applicability to a wider range of plant species peptides.

Case study
To further verify the effectiveness of our method, pLM4PEP for identifying miPEPs, we
performed a case study. We randomly selected three peptides for this purpose. The first
example is an miPEP with experimental validation (Su ef al., 2021), while the latter two are
derived from non-miPEP sequences. Specifically, they were pseudo-peptide sequences
translated from small nucleolar RNA (Li ef al., 2023) in Oryza sativa and Solanum
lycopersicum using small open reading frames. This selection enabled us to assess the
method’s discriminatory capacity between miPEPs and non-miPEP counterparts. The
detailed prediction results are presented in Table 7.

In our analysis, the first peptide sample, an established miPEP, was correctly identified
by our model with a prediction probability of 1.000, whereas the traditional manual
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Table 7 Detailed prediction results of miPEPPred-FRL and pLM4PEP on the three case study

peptides.
Peptide type Sequence miPEPPred-FRL pLM4PEP
miPEP MVYIFQLVLISRLGL 0.379 1.000
non-miPEP MMNNSSQISFMDLESE 0.736 0.075
non-miPEP MKMMNIRRNDDQFLFK 0.828 0.026

feature-based model, miPEPPred-FRL, assigned a significantly lower probability of 0.379,
incorrectly classifying the sequence as non-miPEP. For the subsequent non-miPEP
samples, our model predicts them as miPEP with much lower probabilities of 0.075 and
0.026, respectively, thereby correctly categorizing them as non-miPEP. Conversely,
miPEPPred-FRL predicts these samples with probabilities of 0.736 and 0.828, respectively,
and thus incorrectly suggesting these sequences as miPEPs This comparison underscores
the superior discriminative ability of our model in classifying miPEPs.

CONCLUSIONS

In this study, we developed a predictive model named pLM4PEP, which integrates ESM2
peptide embedding and machine learning techniques. Experimental results indicate that
the pPLM4PEP model excels in performance across four distinct datasets: plant miPEPs,
neuropeptides, blood-brain barrier peptides, and anti-parasitic peptides. This suggests that
pLMA4PEP has the potential to be a universally applicable method for peptide prediction,
capable of addressing various challenges in peptide identification across different
biological contexts. However, it is important to note that despite these promising results,
we have not yet undertaken biological experiments to validate our predictive findings. The
lack of empirical validation represents a gap that needs to be addressed. Rigorous
experimental validation will strengthen the reliability and practicality of our predictions in
real-world scenarios. In addition to evaluating the model’s performance, we also provided
an in-depth examination of critical factors that influence the construction of an effective
predictive model. We explored how different features and machine learning algorithms
impact the model’s performance, enabling a thorough comparative analyses. This research
also highlights the outstanding performance of ESM2 as a feature embedding method,
which can greatly improve the accuracy and efficacy of miPEP identification. We
anticipate that this study will not only accelerate the discovery and research of plant
miPEPs but also provide support for the identification and functional analysis of a wide
range of other bioactive peptides. In the future, we will continue to enhance the
applicability of the model to a broader range of plant species and miPEP types, as well as to
improve its generalization performance for other bioactive peptides, thereby making
contributions to the field of peptide research.
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