
Data leakage detection in machine learning
code: transfer learning, active learning, or
low-shot prompting?
Nouf Alturayeif1,2 and Jameleddine Hassine1,3

1 Information and Computer Science Department, King Fahd University of Petroleum and
Minerals, Dhahran, Saudi Arabia

2 Computing Department, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
3 Interdisciplinary Research Center for Intelligent Secure Systems, King Fahd University of
Petroleum and Minerals, Dhahran, Saudi Arabia

ABSTRACT
With the increasing reliance on machine learning (ML) across diverse disciplines,
ML code has been subject to a number of issues that impact its quality, such as lack of
documentation, algorithmic biases, overfitting, lack of reproducibility, inadequate
data preprocessing, and potential for data leakage, all of which can significantly affect
the performance and reliability of ML models. Data leakage can affect the quality of
ML models where sensitive information from the test set inadvertently influences the
training process, leading to inflated performance metrics that do not generalize well
to new, unseen data. Data leakage can occur at either the dataset-level (i.e., during
dataset construction) or at the code-level. Existing studies introduced methods to
detect code-level data leakage using manual and code analysis approaches. However,
automated tools with advanced ML techniques are increasingly recognized as
essential for efficiently identifying quality issues in large and complex codebases,
enhancing the overall effectiveness of code review processes. In this article, we aim to
explore ML-based approaches for limited annotated datasets to detect code-level data
leakage in ML code. We proposed three approaches, namely, transfer learning, active
learning, and low-shot prompting. Additionally, we introduced an automated
approached to handle the imbalance issues of code data. Our results show that active
learning outperformed the other approaches with an F-2 score of 0.72 and reduced
the number of needed annotated samples from 1,523 to 698. We conclude that
existing ML-based approaches can effectively mitigate the challenges associated with
limited data availability.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Software Engineering, Neural
Networks
Keywords Data leakage, Code quality, Transfer learning, Active learning, Low-shot prompting

INTRODUCTION
With the advent of digital transformation, the integration of machine learning (ML) code
has become widely used across a wide range of disciplines. From biology to finance,
engineering to art, practitioners from every discipline are using ML to get new insights,
automate complex processes, and innovate. As experts and novices both engage in this
complex area, the absence of standardized practices and the complexity of machine
learning, often lead to the creation of low-quality code, such as the lack of documentation

How to cite this article Alturayeif N, Hassine J. 2025. Data leakage detection in machine learning code: transfer learning, active learning, or
low-shot prompting?. PeerJ Comput. Sci. 11:e2730 DOI 10.7717/peerj-cs.2730

Submitted 18 September 2024
Accepted 5 February 2025
Published 5 March 2025

Corresponding author
Nouf Alturayeif,
g201901790@kfupm.edu.sa

Academic editor
Bilal Alatas

Additional Information and
Declarations can be found on
page 26

DOI 10.7717/peerj-cs.2730

Copyright
2025 Alturayeif and Hassine

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.2730
mailto:g201901790@�kfupm.�edu.�sa
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2730
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

(Yang et al., 2021) and irreproducible code (Wang et al., 2020a). Furthermore, researchers
from different disciplines write machine learning code that violates best practices, that is
continually copied and cloned (Koenzen, Ernst & Storey, 2020; Chattopadhyay et al., 2020;
Yang et al., 2021; Pimentel et al., 2019). In addition, adversarial attacks pose a unique
challenge by exploiting vulnerabilities in ML models through precise and deliberate
manipulations of input data, potentially causing the models to make incorrect predictions
or behave unpredictably (Goodfellow, Shlens & Szegedy, 2015; Ren et al., 2020). Several
studies proposed methods to improve the quality of ML code, such as generating
documentation for data wrangling code (Yang et al., 2021), enhancing the reproducibility
of Jupyter notebooks (Wang et al., 2020a), assessing the best practices of collaborative
notebooks (Quaranta, Calefato & Lanubile, 2022), and adversarial defenses (Xie et al.,
2019). Low-quality ML code can lead to a cascade of issues, including increased
maintenance costs, decreased system reliability, hindered innovation, and poor quality of
the model’s predictions.

The accuracy of an ML model in production is considered a common quality metric
(Nahar et al., 2022), providing a real-world measure of the model’s performance and its
ability to make accurate predictions on new and unseen data under operational conditions.
At times, an ML model exhibits satisfactory performance on test data but experiences a
significant decline in effectiveness when deployed in a production environment. One
potential factor contributing to this scenario is the incorporation of test data (leaked)
during the training process, causing the model to overfit to the test set. This results in
overly optimistic accuracy estimates (Yang et al., 2022) that may not generalize well to new,
unseen data. This phenomenon is commonly referred to as data leakage (Burkov, 2020;
Kaufman et al., 2012).

While data leakage represents an unintentional issue originating from poor data
handling practices, it is useful to contrast this with adversarial attacks, which exploit ML
models in a different way. Unlike data leakage, which inflates model performance during
training and validation due to unintentional biases, adversarial attacks directly target the
model during deployment by intentional manipulation of input data, potentially
compromising its robustness and security (Goodfellow, Shlens & Szegedy, 2015). Although
adversarial attacks and data leakage affect ML systems differently, both highlight the need
for robust practices and detection/defense mechanisms to ensure the quality and reliability
of ML models across their lifecycle.

Few studies proposed methods to detect data leakage in ML code (Kaufman et al., 2012;
Yang et al., 2022; Chorev et al., 2022). However, those studies employed manual detection
and code analysis methods. Manual approaches are prone to human error and are time-
consuming. In addition, despite the effectiveness of code analysis approaches, they are
laborious, as each type of data leakage necessitates a tailored code analysis approach,
requires specialized expertise, and may prove challenging (or impossible) to implement for
more complex data leaks. Although ML techniques have considerably improved in recent
years (e.g., Bidirectional Encoder Representations from Transformers (BERT) (Devlin
et al., 2019) and Generative Pre-training Transformer (GPT) (OpenAI, 2023)), to the best

Alturayeif and Hassine (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2730 2/29

http://dx.doi.org/10.7717/peerj-cs.2730
https://peerj.com/computer-science/

of our knowledge, the application of ML has not yet been attempted to detect data leakage
in ML pipelines.

Nevertheless, training ML models often demands large amounts of annotated data,
which is a resource-intensive process that can be a bottleneck in many applications. The
conventional paradigm relies on large, annotated datasets, which may not always be
available, posing a challenge for certain domains or applications where acquiring extensive
labeled data is resource-intensive or impractical. However, recent approaches have
emerged to address this challenge. Transfer learning is one approach that leverages pre-
trained models on large datasets for related tasks, allowing the model to transfer its
knowledge to the target task with limited labeled data (Zhuang et al., 2020). In addition,
Active learning optimizes the labeling process by selectively choosing the most informative
instances for annotation, leading to maximizing the utility of each labeled sample (Settles,
2009). Lastly, low-shot prompting is a technique that involves providing explicit examples
to guide the model’s learning process with minimal labeled data (Wang et al., 2020b).
These are different strategies that aim to overcome the labeled data availability issue,
enhancing the efficiency and effectiveness of training ML.

In this work, we aim to explore the three different approaches to build ML models for
data leakage detection in ML code using limited annotated datasets. These models will be
trained on code snippets labeled as: (1) have a data leakage, or (2) does not have a data
leakage.

In this article, we make the following contributions:

1. Build and annotate a dataset for leakage detection in Python ML code that consists of
1,904 samples.

2. Introduce an automated approach for code augmentation to address the imbalance
issue.

3. Investigate the effectiveness of three different ML approaches for limited annotated
datasets to detect data leakage in ML code. The three approaches are transfer
learning, active learning, and low-shot prompting.

4. Publicly release the dataset and source code.

RESEARCH BACKGROUND
In this section, we provide an overview of the background related to data leakage, followed
by a brief introduction to machine learning approaches tailored for limited annotated
datasets.

Data leakage
Data leakage occurs when testing data are leaked (directly or indirectly, deliberately or
unintentionally) to the training process, leading to unrealistically optimistic performance.
It can occur because of three common sources: overlap leakage, multi-test leakage,
preprocessing leakage (Burkov, 2020; Subotić, Milikić & Stojić, 2022). In what follows, we
briefly describe each type with an illustrative example:

Alturayeif and Hassine (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2730 3/29

http://dx.doi.org/10.7717/peerj-cs.2730
https://peerj.com/computer-science/

. Overlap leakage: Occurs when test data is directly used for training or hyperparameter
tuning. In some cases, test data is mistakenly used in creating the training data, such as in
augmentation methods. For instance, in the example shown in Fig. 1A, SMOTE
oversampling (smote.fit_resample) is applied to the entire dataset (X_resampled,
y_resampled) before splitting into training and testing sets (line 6). This leads to overlap
leakage, as oversampled data in the training set may include information derived from
the testing set, compromising the evaluation process.

. Multi-test leakage: Occurs when test data is used repeatedly for evaluating the model
and making decisions such as: algorithm selection, model selection, and hyperparameter
tuning. Instead, validation data should be used. Fig. 1B demonstrates this type of leakage,
where cross-validation (cv=RepeatedKFold) is performed on the entire dataset (line 2)
during hyperparameter tuning with GridSearchCV (line 11). This setup includes the test
set in determining the optimal hyperparameters, indirectly introducing information
from the test data into the model tuning process and resulting in multi-test leakage.

. Pre-processing leakage: Occurs when test data is merged with the training data for pre-
processing. For example, feature selection, normalization, and projection with principal
component analysis (PCA). An example is shown in Fig. 1C, where the MinMaxScaler is
applied to the entire dataset (line 6) before the data is split into training and testing sets
(line 9). This results in preprocessing leakage, as the scaling operation allows
information from the test set to influence the training process, leading to overly
optimistic performance estimates.

Machine learning approaches for limited data
As discussed in the introduction, collecting large labeled datasets for machine learning
poses significant challenges, impacting various domains and applications. One major
obstacle lies in the resource-intensive nature of the process, requiring substantial time,
human effort, and financial investment. The need for domain-specific expertise to
accurately label data adds another layer of complexity, particularly in specialized fields
where domain knowledge is crucial. Additionally, data availability may be limited,
restricting the creation of extensive labeled datasets and hindering the development of
robust machine learning models. Consequently, addressing these challenges is paramount
for advancing the field and fostering the development of more accurate and ethical
machine learning applications. In this research, we explore three different approaches,
namely, transfer learning, active learning, and low-shot prompting.

Transfer learning
Transfer learning is an ML paradigm that involves training a model on one task and then
transferring its learned knowledge to a different, but related, task. With transfer learning,
the model is initialized using the pre-trained weights, and these weights are updated based
on the new task-specific small dataset with task-specific objective function, usually with a
smaller learning rate (Liu et al., 2023).

Alturayeif and Hassine (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2730 4/29

http://dx.doi.org/10.7717/peerj-cs.2730
https://peerj.com/computer-science/

Figure 1 Data leakage examples. (A) Overlap leakage, (B) multi-test leakage, (C) pre-processing leakage.
Full-size DOI: 10.7717/peerj-cs.2730/fig-1

Alturayeif and Hassine (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2730 5/29

http://dx.doi.org/10.7717/peerj-cs.2730/fig-1
http://dx.doi.org/10.7717/peerj-cs.2730
https://peerj.com/computer-science/

Transfer learning can be categorized into three main types (Pan & Yang, 2009; Zhuang
et al., 2020):

. Inductive transfer learning: It involves transferring knowledge from one task to another,
even when the domains are different. This approach requires labeled data in the target
domain to train a predictive model for that specific task. For example, a model trained to
classify animals could be fine-tuned with labeled car images to perform vehicle
classification.

. Transductive transfer learning: It applies when the tasks are the same, but the domains
differ. In this scenario, a large amount of labeled data is available in the source domain,
but none in the target domain. For instance, a spam email classifier trained on English
emails can be adapted to classify spam in French emails.

. Unsupervised transfer learning: It focuses on unsupervised tasks like clustering or
dimensionality reduction, where the target task is related to but distinct from the source
task. Unlike inductive learning, neither the source nor target domains have labeled data.
An example could be using a model pre-trained on a large dataset of generic product
reviews (source domain) to cluster customer feedback about a new software product
(target domain) into groups even though no labeled data is available in either domain.

Transfer learning has proven to be highly useful and powerful, particularly in deep
learning applications, and it has been widely adopted across various domains and tasks
(Zhuang et al., 2020). In addition, it has been successfully applied across different data
types, such as using BERT for text (Devlin et al., 2019), ResNet for images (He et al., 2016),
and Wav2Vec for speech (Schneider et al., 2019). Its ability to leverage pre-trained models
reduces the need for large labeled datasets in the target domain, making it especially
powerful for resource-constrained tasks. For a comprehensive overview, readers are
referred to Zhuang et al. (2020) and Pan & Yang (2009).

Active learning
Active learning is a sub-field of ML that produces models of high performance while
reducing manual labeling efforts (Settles, 2009). A key objective of active learning is to
select the most informative data for labeling, with the notion that if the model selects its
own data, it will perform better with less training (Settles, 2009). It involves an iterative
process where the model is trained on a small initial dataset, and then the most informative
samples are selected to be labeled. It relies on a query function that calculates scores for
each data point that needs to be labeled (Settles, 2009).

Several strategies for selecting the most informative samples have been proposed
(Settles, 2009):

. Uncertainty sampling: The model selects instances for which it has the least confidence
in predictions. For example, in a binary classification task, this could mean selecting data
points where the predicted probability is closest to 0.5.

Alturayeif and Hassine (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2730 6/29

http://dx.doi.org/10.7717/peerj-cs.2730
https://peerj.com/computer-science/

. Query by committee (QBC): A committee of models with diverse hypotheses selects
samples based on the level of disagreement among their predictions (Seung, Opper &
Sompolinsky, 1992).

. Diversity-based sampling: Ensures the selected samples represent a wide range of the
input space, reducing the risk of redundant or overly similar samples being labeled.

Active learning has been applied successfully across various domains. For instance, in
medical imaging, models can select ambiguous X-rays for expert annotation, minimizing
the workload for radiologists while maintaining diagnostic accuracy. In natural language
processing (NLP), active learning helps text classification by identifying and labeling the
most uncertain sentences. Similarly, in autonomous driving, it selects edge cases like
unusual objects or weather conditions for manual annotation, ensuring robust
performance in diverse scenarios.

For readers seeking to explore active learning in depth, comprehensive surveys are
available. Settles’ foundational survey (Settles, 2009) provides an excellent starting point,
covering core strategies, theoretical foundations, and practical applications. More recent
reviews, such as those by Ren et al. (2021), focus on integrating active learning with deep
learning, tackling challenges like scalability and handling high-dimensional data. Domain-
specific reviews, such as those in NLP (Olsson, 2009), computer vision (Cohn, Ghahramani
& Jordan, 1996), and medical imaging (Smailagic et al., 2018), further highlight its
versatility and impact across fields.

Low-shot prompting

Low-shot prompting refers to another ML paradigm where a model is trained given only a
few labeled examples of each class (Wang et al., 2020b). Instead of fine-tuning on a task-
specific dataset, low-shot prompting relies on providing prompts (or examples) during the
inference phase. This approach is particularly useful when only a small number of
examples are available for each class, and the model needs to adapt quickly to new tasks.
There are typically three low-shot prompting scenarios that describe the amount of
examples provided to the model:

. Zero-shot: The model is required to perform the task without being provided any task-
specific examples. Instead, the model relies on general knowledge learned from pre-
training or other tasks to make predictions.

. One-shot: The model is provided with only one example per class. The goal is to enable
the model to generalize from this single example and make predictions for new
instances.

. Few-shot: The model is provided with a small number of examples per class. The number
of examples is higher than one but still limited, allowing the model to learn from a small
amount of task-specific data.

Alturayeif and Hassine (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2730 7/29

http://dx.doi.org/10.7717/peerj-cs.2730
https://peerj.com/computer-science/

LITERATURE REVIEW
In this section, we present the state-of-the-art studies on data leakage detection and
avoidance in machine learning code, respectively.

Few studies proposed manual approaches for data leakage detection and avoidance
(Kaufman et al., 2012; Kohavi & Parekh, 2003), such as exploratory data analysis (EDA)
(Tukey, 1977). EDA is an approach to data analysis in which data is explored using a
variety of statistical and visual techniques, such as histograms and correlation analysis, in
order to gain insight into the structure and relationships of the data (Tukey, 1977). One can
use EDA to detect surprising cases such as unexpected behavior of a feature in a fitted
model or surprising model performance. However, there is no doubt that the
implementation and execution of manual approaches present greater challenges compared
to their automated counterparts. Automated approaches, such as ML-based systems, can
exhibit a high level of efficacy in detecting data leakage, making them a better alternative
for detecting and avoiding data leakage. Furthermore, automated approaches are also more
cost-effective and easier to maintain than manual approaches.

Code analysis (Yang et al., 2022; Drobnjakovic, Subotic & Urban, 2024; Cousot &
Cousot, 1977; Subotić, Milikić & Stojić, 2022; Chorev et al., 2022) is one of the most
commonly used approaches for data leakage detection. Yang et al. (2022) developed a static
data-flow analysis to detect three types of data leakage in ML code: overlap, multi-test, and
preprocessing leakage. Their approach tracks the flow of data and detects common
patterns that can result in data leakage. For example, multi-test leakage will be reported
when only validation data is detected and no testing data is present. On the other hand,
overlap leakage will be detected when the model’s testing/validation data overlaps with the
training data. Lastly, preprocessing leakage will be reported when the training data
includes reduced information from the testing/validation data. They found that their
analysis accurately detects data leakage with an accuracy of 92.9%. In addition, they found
that there is a significant amount of leakage (30%) among over 100,000 public notebooks.
Drobnjakovic, Subotic & Urban (2024) proposed static code analysis based on abstract
interpretation (Cousot & Cousot, 1977) that derives an abstract data leakage semantics
systematically and rigorously. As an example, when a variable is passed to a function that
trains or tests a model, the variable is asserted to be disjoint and untainted. They evaluated
their approach in terms of performance and accuracy on 2,088 real-world notebooks. The
results show that the approach detects 30 real data leakages with a precision of 94%, while
scaling to the performance constraints of interactive notebook environments. Subotić,
Milikić & Stojić (2022) introduced a static code analysis framework that is specific to
notebooks and based on what-if analysis on notebook actions, such as cell executions,
creation, and deletion. For example, the framework will warn the user that if a specific cell
A is executed, data leakage can occur once cells B and C are executed. On the other hand,
the framework can recommend to the user to execute cell C then cell B in order to avoid
data leakage. Chorev et al. (2022) employed dynamic code analysis to develop Deepchecks,
a Python library to validate different aspects of machine learning models, including
overlap data leakage. Nevertheless, their work does not reveal any technical information

Alturayeif and Hassine (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2730 8/29

http://dx.doi.org/10.7717/peerj-cs.2730
https://peerj.com/computer-science/

about their approach that supports scientific research, instead, it shows information about
the tool’s capabilities and usage.

While code analysis methods have proven effective for detecting predefined patterns of
data leakage, they often struggle with scalability and adapting to complex or novel
scenarios in evolving codebases (Pujar et al., 2024). In contrast, ML models, such as
CodeBERT and GPT, can scale efficiently to large codebases and adapt to diverse coding
practices that rule-based methods may miss (Pujar et al., 2024; Zhuang et al., 2020).
Additionally, techniques like transfer learning and active learning further enhance ML-
based methods by reducing training overhead and minimizing data annotation
requirements (Pan & Yang, 2009; Settles, 2009), making them a promising alternative for
data leakage detection in dynamic software environments.

Few studies proposed approaches to avoid data leakage. Kaufman et al. (2012) analyzed
data-level leakage in terms of the relationship between inputs (x) and target (y) samples.
They introduced a prevention approach, called learn-predict separation, based on
analyzing two sources of leakage: features and training samples. The approach consists of
two stages: (1) tagging every sample by “is x legitimate for inferring y”, and (2) only
including the features that are purely legitimate for predicting y and only include the
inputs that are purely legitimate with all targets as training samples. Lyu et al. (2021)
studied the data leakage challenges in the context of AIOps (Artificial Intelligence for IT
Operations). They found that a time-based splitting of the dataset can significantly reduce
the possibility of having data leakage.

Several studies have explored approaches for assisting data scientists in developing ML
code that is of higher quality, such as developing frameworks for ML pipelines. Few of
these studies can be utilized as a means to detect/avoid data leakage in ML models. For
example, Biswas, Wardat & Rajan (2022) performed a comprehensive study to understand
the nature of data science pipelines in order to facilitate research and practice on the
pipelines. Using data science pipelines containing stages of sourcing, cleaning, splitting,
normalization, and training can eliminate the need to perform a normalization step before
splitting (a type of data leakage). Namaki et al. (2020) introduced the ML provenance
tracking problem, which identifies the columns in a dataset that have been used to train a
given ML model. When combined with dependency graphs, data provenance techniques
can be used to detect data leakage. The effectiveness of these approaches, however, has not
yet been assessed on data leakage detection/avoidance.

Based on the conducted literature review, we identified a gap in applying ML for data
leakage detection. In this work, we will fill this gap by proposing ML-based approaches that
are generic, scalable, and can be easily extended to any type of data leakage. Additionally,
automated ML approaches do not require the same level of manual labor or expertise,
making them more accessible and easier to maintain. Exploring ML-based approaches for
automation is becoming increasingly popular, as it has the potential to provide more
accurate results efficiently and effectively, especially with the breakthroughs in ML-based
approaches. Unfortunately, the surveyed approaches did not offer replication packages
preventing us from thoroughly evaluating them.

Alturayeif and Hassine (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2730 9/29

http://dx.doi.org/10.7717/peerj-cs.2730
https://peerj.com/computer-science/

PROPOSED DATA LEAKAGE DETECTION MODELS
In this research, we examine transfer learning (Zhuang et al., 2020), active learning (Settles,
2009), and low-shot prompting (Wang et al., 2020b) paradigms for data leakage detection
as solutions for limited annotated datasets. We utilize CodeBERT (Feng et al., 2020) for
transfer learning and active learning and GPT (OpenAI, 2023) for prompting. We evaluate
the effectiveness of the three approaches in terms of recall, precision, and F2-score.

To address the objectives of our study, we aim to answer the following research
questions:

. RQ1: How effectively can transfer learning identify data leakage in ML code?

. RQ2: How does active learning affect transfer learning performance when using a
smaller number of training examples?

. RQ3: Can low-shot prompting outperform transfer learning in zero-shot, one-shot, and
few-shot learning scenarios?

Data leakage dataset
In this research, we created a dataset that consists of 1,904 labeled samples for data leakage
detection. The positive samples (i.e., contain data leakage) constitute 6% of the dataset with
115 samples, whereas the negative samples (i.e., do not contain data leakage) constitute
94% of the dataset with 1,789 samples.

The core of our dataset is Code4ML (Drozdova et al., 2023) which contains 7,944
Python code snippets that are publicly available in Kaggle (http://kaggle.com); a platform
that is widely recognized as a prominent host for data science competitions. Python was
selected as it is one of the most widely used programming languages in machine learning
and data science, making it highly relevant for data leakage use cases. Code4ML is
manually annotated with the main phases of ML pipelines based on a Machine Learning
Taxonomy Tree (Drozdova et al., 2023). The taxonomy has two levels, where the high level
consists of nine main phases: data export, data extraction, data transformation, debug,
environment, exploratory data analysis, hyper-parameters tuning, model evaluation,
model interpretation, model training, and visualization. Each high-level phase consists of
many low-level phases, resulting in � 80 low-level categories.

The dataset was created in four stages as visualized in Fig. 2.

Identify data leakage types
As a first step, we surveyed the literature to identify the common types of data leakage. As a
result, we found that data leakage can occur because of three common sources: overlap
leakage, multi-test leakage, and preprocessing leakage (Burkov, 2020; Subotić, Milikić &
Stojić, 2022).

Mapping
In this step, we mapped each data leakage type with the main high-level phases from the
taxonomy in which each data leakage may occur. The mapping process is formalized by

Alturayeif and Hassine (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2730 10/29

http://kaggle.com
http://dx.doi.org/10.7717/peerj-cs.2730
https://peerj.com/computer-science/

associating each data leakage type L with the corresponding ML pipeline phases P where
the leakage could occur. This can be expressed mathematically as:

M ¼ fðLi; PjÞjPj 2 Phases; Li 2 Leakage Types; fðPj; LiÞ ¼ Trueg
where f ðPj; LiÞ is a mapping function that evaluates whether a phase Pj is associated with a
leakage type Li based on domain knowledge or observed practices. The mapping results are
presented in Table 1.

Filtering unrelated code
In this step, we used the mapping table to filter Code4ML to include only the code snippets
that are associated with a phase that has the potential to introduce data leakage. This step
was performed to mitigate the imbalance issue caused by the high volume of unrelated

Identify Data
Leakage Types

Mapping
Filtering Unrelated

Code
Manual Annotation

Data
Leakage
Types

Mapping
Table

ML
Taxonomy

Tree

Unlabeled
Dataset

Labeled
Dataset

Figure 2 Dataset construction process. Full-size DOI: 10.7717/peerj-cs.2730/fig-2

Table 1 Mapping between data leakage types and ML pipeline phases.

ML pipeline phase Leakage types

Overlap Multi-test Pre-processing

Data export

Data extraction

Data transformation X X

Debug

Environment

Exploratory data analysis

Hyper-parameters tuning X X

Model evaluation

Model interpretation X

Model training X X

Visualization

Alturayeif and Hassine (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2730 11/29

http://dx.doi.org/10.7717/peerj-cs.2730/fig-2
http://dx.doi.org/10.7717/peerj-cs.2730
https://peerj.com/computer-science/

code. We define “unrelated code” as a code snippet that poses no risk of causing data
leakage, such as visualization code. The filtering process can be represented as:

Cfiltered ¼ fc 2 Cj9Limapped to the phase of cg
where Cfiltered represents the subset of code snippets relevant to data leakage, C is the
original set of code snippets, and Li refers to the identified leakage types. Only snippets
associated with phases mapped to at least one leakage type were retained, significantly
reducing the dataset size and mitigating the imbalance caused by unrelated code.

Although the unrelated code snippets have been filtered out, the dataset is still
imbalanced, with only 4% of the dataset contain code snippets with data leakage. Handling
the imbalance issue is discussed in “Data Imbalance” section.

Manual annotation
In this step, we manually annotated the resulting dataset for data leakage detection. Each
code snippet was labeled with either a positive class (contains data leakage) or a negative
class (does not contain data leakage). The labeling process was conducted by one author
and subsequently validated by an expert in machine learning with a Ph.D. in Computer
Science.

Data imbalance
Data imbalance is characterized by a disproportionate distribution of samples across
classes, resulting in biased models that favor the majority class while neglecting the
minority class. Training a model on an imbalanced dataset will likely result in suboptimal
performance, especially for instances belonging to the minority class. For example, in our
study, the minority class comprises only 5% of the dataset (91 samples). When training a
model without addressing this imbalance, we observed a high accuracy of 92%, but both
precision and recall for the minority class were 0. This indicates that the model predicted
all samples as belonging to the majority class, failing to learn patterns from the minority
class.

In order to handle data imbalance, oversampling techniques can be used, such as
synthetic minority oversampling technique (SMOTE) (Chawla et al., 2002) or
undersampling techniques, such as random undersampling. These techniques help to
mitigate the imbalance of classes, resulting in more accurate models. However, in this
study, undersampling was not considered viable because it would have reduced the
majority class to match the minority class, resulting in an extremely small training set with
only 182 samples in total. Such a reduction would hinder the model’s ability to generalize
effectively.

As a result, we considered oversampling techniques to address the imbalance, by
allowing the model to better learn patterns from the minority class and improving its
overall performance.

SMOTE oversamples the minority class by generating synthetic examples using the K
nearest neighbors in the feature space, as represented by the equation:

xnew ¼ x þ k � ðxnearest � xÞ

Alturayeif and Hassine (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2730 12/29

http://dx.doi.org/10.7717/peerj-cs.2730
https://peerj.com/computer-science/

where xnearest is a randomly selected nearest neighbor of x in the feature space, and k is a
random value between 0 and 1.

LLMs, such as BERT and GPT, are embedding-based models that learn contextual
dense vector representations of words, while SMOTE operates in the input feature space
and may not be directly applicable to the embeddings learned by LLMs. However, there are
alternative techniques to address class imbalance in NLP tasks for embedding-based
models, including data augmentation. One of the most common methods of augmentation
of code snippets is code refactoring (Fowler & Beck, 1997; Tsantalis et al., 2018).
Refactoring is the process of restructuring code to improve its readability, maintainability,
and performance without affecting its external behavior (Fowler & Beck, 1997). It can
involve renaming variables and functions, moving classes and methods, and restructuring
classes.

In this research, we utilized GPT model (OpenAI, 2023) to automatically augment the
dataset (i.e., generate refactored code snippets from each training sample). We followed
OpenAI’s prompt engineering guide and best practices (https://platform.openai.com/docs/
guides/prompt-engineering) to design the prompt. A prompt consists of three roles:
System, User, and Assistant (optionally). The System role is used to give instructions to the
model, such as asking the model to adopt a persona and use a specific output format. A
User represents the entity that interacts with GPT and asks questions. The Assistant is the
large language model (i.e., GPT) and can be optionally used in the prompt, such as in the
case of few-shot prompting.

While GPT-based refactoring techniques are effective for generating augmented
datasets, challenges such as generating semantically incorrect or syntactically invalid code
can arise, particularly in complex code snippets. To address these issues, we instructed
GPT to perform specific refactoring techniques considered simple and less error-prone,
such as renaming variables, functions, or methods. These transformations are inherently
less likely to introduce errors and are well-suited for automated augmentation. We
instructed GPT to randomly use a combination of a selected set of techniques from the
catalog of refactoring techniques (Fowler & Beck, 1997). Among the refactoring
techniques, we excluded those specific to Object-Oriented Programming (OOP) (e.g.,
extract classes) as ML code typically emphasizes functional and modular programming
over class-based hierarchies. While OOP is integral to ML frameworks like scikit-learn and
TensorFlow, pipeline scripts and experimentation often follow a procedural or functional
style, focusing on modular, stateless functions. Applying OOP-specific refactoring would
risk introducing incorrect refactoring, as these transformations might not align with the
functional and modular characteristics of ML code. In order to verify GPT’s understanding
of the refactoring techniques, we asked GPT to define each one and verified that the answer
was accurate. Following is a list of the considered factoring techniques, along with a
description of each one:

. Rename variable: changes the name of a variable and all references to it.

. Extract variable: declares a new variable and assigns the selected expression to it.

Alturayeif and Hassine (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2730 13/29

https://platform.openai.com/docs/guides/prompt-engineering
https://platform.openai.com/docs/guides/prompt-engineering
http://dx.doi.org/10.7717/peerj-cs.2730
https://peerj.com/computer-science/

. Change function declaration: includes renaming the function, adding a parameter,
removing a parameter, and changing the signature.

. Inline function: replaces the usage of a method with its body, as well as removing the
original declaration of the method.

. Introduce special case: adds code to handle special cases, such as Null objects.

Figure 3 shows examples of refactored code snippets generated by GPT. Additionally,
Fig. 4 shows an example of the prompt used to generate the refactored code in order to
create the augmented dataset.

While our study focused on effective and reliable techniques for addressing class
imbalance, such as code refactoring, we acknowledge the importance of systematically
comparing various methods, including different oversampling and augmentation
approaches. Conducting a detailed comparison to evaluate the impact of these methods on
performance remains a valuable direction for future work.

Transfer learning
As discussed previously, transfer learning is an effective approach to use knowledge from
one task to help learning model for another related task (Zhuang et al., 2020). Models-like
BERT (Devlin et al., 2019)-are pre-trained on large language corpora and can be fine-tuned
for specific tasks such as sentiment analysis or text summarization. RoBERTa (Robustly
optimized BERT approach) (Liu et al., 2019) is a pre-trained model that builds upon the
foundation of BERT to address some limitations of the original BERT model.

Code has specific structure and semantics that are specific to programming languages,
making RoBERTa less suitable for direct application to code-related tasks. As a result,
CodeBERT (Feng et al., 2020) was introduced in 2022 as a pre-trained model for
programming languages (Python, Java, JavaScript, PHP, Ruby, Go) to handle code-related
tasks. CodeBERT, like its base RoBERTa architecture, consists of multiple layers of
transformer units (Vaswani et al., 2017), which are particularly effective for sequence-
based tasks. CodeBERT achieved state-of-the-art performance on different code tasks,
such as code completion and summarization (Feng et al., 2020).

Transfer learning primarily involves two phases:

. Pre-training: The primary goal of pre-training is to enable the model to learn
generalized representations of the input data. In the case of CodeBERT, this involves
exposing the model to a large dataset of source code and training it to understand the
context and relationships between different code tokens.

. Fine-tuning: The fine-tuning phase aims to adapt the pre-trained model to a specific
downstream task. In the case of CodeBERT, this could include tasks like code
completion, code summarization, or code search.

In this research, we fine-tuned CodeBERT for data leakage detection task. The input of
the fine-tuning process is a code snippet, whereas the output is whether it contains a data
leakage or not. To load and fine-tune CodeBERT, we used the Hugging Face library
(https://huggingface.co). Specifically, we passed the microsoft/codebert-base model to

Alturayeif and Hassine (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2730 14/29

https://huggingface.co
http://dx.doi.org/10.7717/peerj-cs.2730
https://peerj.com/computer-science/

RobertaForSequenceClassification API, which provides a linear layer on top of model
output in order to fine-tune it on the downstream task.

To prepare the dataset for CodeBERT, few pre-processing steps are required, which are:

1. Split each code block into tokens.

2. Add the special token [CLS] to the beginning of the tokenized input. The [CLS] token is
used to represent the entire sequence for the top linear layer.

3. Pad/truncate the input based on the maximum length allowed by the model (512
tokens).

Figure 3 Refactoring examples using GPT. (A) Original code, (B) refactoring using: Rename Variable, (C) refactoring using: Change Function
Declaration, (D) refactoring using: Inline Function, (E) refactoring using: Introduce Special Case. Full-size DOI: 10.7717/peerj-cs.2730/fig-3

Alturayeif and Hassine (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2730 15/29

http://dx.doi.org/10.7717/peerj-cs.2730/fig-3
http://dx.doi.org/10.7717/peerj-cs.2730
https://peerj.com/computer-science/

4. Replace the tokens with their IDs according to the CodeBERT token indices.

5. Create the Attention Mask array to indicate the padding tokens.

Active learning
As discusses previously, the active learning algorithm relies on a query strategy to select the
most informative samples to be labeled (Settles, 2009). In this research, we will employ the
least confidence (LC) query strategy, as it is a powerful strategy for binary classification
(Settles, 2009). LC is particularly effective for binary classification tasks, as uncertainty is
directly captured by the posterior probabilities of the two classes Settles (2009). This
simplicity makes LC both computationally efficient and well-suited for identifying
uncertain samples in binary classification. Alternative strategies, such as margin of
confidence and entropy-based sampling, provide more comprehensive measures of
uncertainty by incorporating additional information about the label distribution. However,
in binary classification, these strategies often give results similar to LC since uncertainty is
inherently represented by the two-class probabilities. LC strategy selects the samples that
are least certain as to how they should be labeled, as shown in Eq. (1), where ŷ is the label
with the highest posterior probability for the model h.

x�LC ¼ argmax
x

ð1� PhðŷjjxÞÞ (1)

Huang (2021) provided an open-source implementation of active learning for image
classification tasks. We employed their implementation and modified it for parsing, pre-
processing, and training code. Additionally, we implemented the augmentation process
and integrated it with the active learning implementation. The modified active learning

Figure 4 An example of the prompt used to generate the refactored code.
Full-size DOI: 10.7717/peerj-cs.2730/fig-4

Alturayeif and Hassine (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2730 16/29

http://dx.doi.org/10.7717/peerj-cs.2730/fig-4
http://dx.doi.org/10.7717/peerj-cs.2730
https://peerj.com/computer-science/

steps are illustrated in Algorithm 1. The active learning algorithm will initialize the
training with N selected samples from the unlabeled pool, update the labeled training
dataset with the selected samples, augment the dataset, and train the model. The loop will
run until there is no improvement of F2-score. For more generalization and robustness, we
have added a patience technique, where the loop will break if the F2-score does not
improve for k iterations. We experimented with a number of N, and K values and
concluded that the values (N ¼ 50) and (K ¼ 5) was the most adequate.

Low-shot prompting
As discussed in previously, low-shot prompting consists of three prompting scenarios:
zero-shot, one-shot, and few-shot. In this research, we explored all three scenarios by
leveraging the power of GPT (OpenAI, 2023), following the best practices to design the
prompt. We selected GPT due to its state-of-the-art performance in language
understanding and in-context learning across diverse domains, including software
engineering tasks, without requiring task-specific fine-tuning (Shin et al., 2023; Sridhara,
Ranjani &Mazumdar, 2023). We instructed GPT to act like anML expert, provided it with
a definition of data leakage in ML code, and asked it to decide if a specific code block
contains data leakage. Figure 5 shows the prompt used to classify the ML code for data
leakage detection.

EXPERIMENTAL EVALUATION
Our primary objective is to evaluate the performance and behavior of transfer learning,
active learning, as well as low-shot prompting. Due to the unavailability of the tools and
datasets used in existing approaches (Yang et al., 2022; Drobnjakovic, Subotic & Urban,
2024; Cousot & Cousot, 1977; Subotić, Milikić & Stojić, 2022; Chorev et al., 2022), we
encountered a significant limitation in our comparative analysis. Regrettably, this
prevented us from conducting a comprehensive assessment of the performance of our
proposed approach in relation to these existing methodologies.

Figure 6 illustrates the experiment process, where the arrow colors indicate the paths of
the three approaches (blue for transfer learning, red for active learning, and green for low-
shot prompting).

Experiments setup
The dataset was split with a ratio of 80:20, resulting in 1,523 training and 381 testing
samples. Additionally, we employed randomization and stratification during the splitting
to ensure that the distribution of labels in the training and testing sets remains
representative of the overall dataset. In order to ensure a fair comparison between the
models, we used the same training and testing sets. Furthermore, to increase the reliability
of our results, each experiment was repeated five times with different seed values. The
results reported in this article represent the average of five runs.

Although it is important that the proposed model detects data leakage effectively, it is
equally important to ensure that the model itself is leak-free. Specific precautions were
implemented in response to each of the data leakage types presented previously:

Alturayeif and Hassine (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2730 17/29

http://dx.doi.org/10.7717/peerj-cs.2730
https://peerj.com/computer-science/

. Overlap leakage: The data augmentation technique to handle the imbalanced data issues
is applied only to the training data.

. Multi-test leakage: Test set was not involved in model’s decision-making process.

. Pre-processing leakage: No processing of the data was done before splitting the dataset
into training and testing sets.

Evaluation metrics
In the case of imbalanced datasets, traditional metrics such as accuracy may be misleading
because a model can achieve high accuracy by simply predicting the majority class most of
the time. Therefore, it is essential to consider alternative evaluation metrics that provide a
more adequate understanding of the model’s performance. Recall, precision, and F-beta
score are appropriate metrics to evaluate binary classification problems for imbalanced

Algorithm 1 Active learning algorithm.

dataset ¼ DataðÞ
net ¼ NetðÞ
strategy ¼ Strategyðdataset; netÞ
while no improvements, with patience K do

query idxs ¼ strategy:queryðNÞ
strategy:updateðquery idxsÞ
strategy.augment()

strategy.train()

end while

Figure 5 The prompt used for data leakage detection. Full-size DOI: 10.7717/peerj-cs.2730/fig-5

Alturayeif and Hassine (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2730 18/29

http://dx.doi.org/10.7717/peerj-cs.2730/fig-5
http://dx.doi.org/10.7717/peerj-cs.2730
https://peerj.com/computer-science/

datasets due to their sensitivity to minority class identification. In what follows, we
describe each evaluation metric:

. Precision. Precision is used to measure how many of the detected data leakage samples
are correct, using true positives (TP) and false positives (FP) (as in Eq. (2)).

Precision ¼ TP
TP þ FP

(2)

. Recall: Recall is used to measure how many of the data leakage samples are detected
correctly, using TP and false negatives (FN) (as in Eq. (3)).

Recall ¼ TP
TP þ FN

(3)

. F-beta score. F-beta combines precision and recall into a single value to balance the
trade-off between these two metrics (as in Eq. (4)).

F-b score ¼ð1þb2Þ � Precision� Recall

ðb2 � PrecisionÞþRecall
(4)

where b is a parameter representing the weight assigned to precision compared to recall.
For example, when b ¼ 1, the F-1 score is calculated to provide an equal weight to
precision and recall. A b value higher than 1 gives more weight to recall, making it useful
in situations where recall is more important. Conversely, a b value smaller than 1 places
more emphasis on precision. In this research, we favor F-2 score (that makes recall twice
as important as precision) because recall reflects how many of the actual data leakage
samples are detected.

Figure 6 Experiments methodology. Full-size DOI: 10.7717/peerj-cs.2730/fig-6

Alturayeif and Hassine (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2730 19/29

http://dx.doi.org/10.7717/peerj-cs.2730/fig-6
http://dx.doi.org/10.7717/peerj-cs.2730
https://peerj.com/computer-science/

RESULTS AND DISCUSSION
In this section, we answer the research questions, followed by a discussion on the
integration and practicality of the proposed approach.

RQ1: How effectively can transfer learning identify data leakage in ML
code?
To answer this question, we fine-tuned CodeBERT, an LM pre-trained for code-related
tasks that is based on the BERT architecture. Additionally, we compared it to a model fine-
tuned on the original BERT, that is pre-trained for general NLP tasks. The results are
presented in Table 2, where we show recall (R), precision (P), and F-1 and F-2 scores of
each run, as well as the average and standard deviation. Our results are align with (Feng
et al., 2020), as CodeBERT clearly outperform BERT among all metrics.

RQ2: How does active learning affect the model performance when
using a smaller number of training examples?
To answer this question, we evaluated the active learning model (discussed in Algorithm 1)
on the testing set. The baseline is the outperforming model resulting from RQ1, which is
CodeBERT model fine-tuned on the full dataset (i.e., passive learning). The performance
results are shown in Table 3, as well as the number of needed labeled samples and the
number of training data (labeled samples + augmented samples). For example, the first run
of active learning in Table 3 shows that the model was able to achieve an F-2 score of 0.7
with only 710 labeled samples and a total of 1,219 training samples. It is interesting to note
that when comparing the average performance of active learning and passive learning,
active learning was able to outperform a model trained on the full dataset (1,523 samples)
with only 698 samples. This shows that active learning can lead to better generalization
with fewer labeled examples by effectively selecting diverse and informative examples. In
consequence, active learning reduces the cost of annotation and thus makes active learning
more cost-efficient.

RQ3: Can GPToutperform the fine-tuned BERT in zero-shot, one-shot,
and few-shot learning scenarios?
To answer this question, we performed low-shot prompting on GPT. We experimented
with zero-shot, one-shot, three-shot, and five-shot prompting.

The results from low-shot prompting show an increase in performance with additional
shots; however, improvement levels off after three-shots (as shown in Table 4). This
plateau is consistent with findings from prior studies on few-shot learning, particularly in
binary classification tasks. Research suggests that in binary classification, increasing the
number of shots often fails to yield further improvements in performance (Wang et al.,
2020b; Brown et al., 2020). This behavior can be attributed to two primary factors. First, in
binary classification, the model can often extract sufficient information from a small
number of examples due to the relatively simple decision boundary, compared to more
complex multi-class tasks (Wang et al., 2020b). Additional examples may provide
redundant information, limiting further improvements in performance. Second, the ability

Alturayeif and Hassine (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2730 20/29

http://dx.doi.org/10.7717/peerj-cs.2730
https://peerj.com/computer-science/

of LLMs to utilize additional examples is constrained by the context window and prompt
structure. As the number of examples increases, the signal-to-noise ratio may decline,
limiting the model’s capacity to extract meaningful patterns (Brown et al., 2020). Further
improvements might require techniques such as optimizing the selection and diversity of
examples or using task-specific fine-tuning to complement prompting approaches.

Zero-shot showed very low performance with an F-2 score of 0.18. One-shot improved
the performance with an increase of 0.12 in F-2 score over the zero-shot, and three-shot

Table 2 Performance of fine-tuning BERT and CodeBERT on data leakage detection task. Bold
values indicate the best performance.

Model Run P R F-1 F-2

BERT 1 0.72 0.52 0.60 0.55

2 0.80 0.64 0.71 0.67

3 1.00 0.36 0.53 0.41

4 0.82 0.56 0.67 0.60

5 0.74 0.56 0.64 0.59

Avg. 0.82 0.53 0.63 0.56

Std. 0.11 0.10 0.07 0.09

CodeBERT 1 0.89 0.68 0.77 0.71

2 0.94 0.64 0.76 0.68

3 0.83 0.60 0.70 0.64

4 0.76 0.64 0.70 0.66

5 0.73 0.64 0.68 0.66

Avg. 0.83 0.64 0.72 0.67

Std. 0.09 0.03 0.04 0.03

Table 3 Performance of active learning approach against models trained on full dataset. Bold values
indicate the best performance.

Model Run P R F-1 F-2 # Labeled samples # Training samples

Passive learning 1 0.89 0.68 0.77 0.71 1,523 1,523

2 0.94 0.64 0.76 0.68 1,523 1,523

3 0.83 0.60 0.70 0.64 1,523 1,523

4 0.76 0.64 0.70 0.66 1,523 1,523

5 0.73 0.64 0.68 0.66 1,523 1,523

Avg. 0.83 0.64 0.72 0.67 1,523 1,523

Std. 0.09 0.03 0.04 0.03 0.00 0.00

Active learning 1 0.81 0.68 0.74 0.70 710 1,219

2 0.90 0.72 0.80 0.75 710 1,208

3 0.89 0.68 0.77 0.71 770 1,461

4 0.89 0.68 0.77 0.71 590 866

5 0.78 0.72 0.75 0.73 710 1,230

Avg. 0.86 0.70 0.77 0.72 698 1,197

Std. 0.06 0.02 0.02 0.02 65.73 212.69

Alturayeif and Hassine (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2730 21/29

http://dx.doi.org/10.7717/peerj-cs.2730
https://peerj.com/computer-science/

increased the F-2 score by 0.09 over the one-shot. On the other hand, the five-shot did not
improve the overall performance when compared to the three-shot. Figure 7 provides a
visual representation of the average performance of the four scenarios. When we increased
the shots from three to five, recall increased, but at the expense of precision, F-1 score, and
F-2 score. It might indicate that with an increase in the number of shots, the model
becomes more biased towards the positive samples (the minority class).

Lastly, we provide a summary of the outperforming models in each of the three
proposed approaches: transfer learning, active learning, and low-shot prompting. As
shown in Table 5, active learning was the outperforming model with an F-2 score of 0.72.
Although prompting requires much less labeled data (i.e., three samples per class), it
achieved a low F-2 score value of 0.39. Nevertheless, with active learning, we were able to
reduce the number of needed labeled data from 1,523 to 698, while improving performance
at the same time. In conclusion, active learning proved to be the most effective method for
data leakage detection.

Practical integration and scalability
Efficient integration of data leakage detection into real-world software engineering
workflows is crucial for ensuring continuous code quality and adaptability to dynamic
development practices.

Transfer learning utilizes pre-trained models, such as CodeBERT or GPT, which can be
fine-tuned on domain-specific datasets with accessible hardware like a single GPU (e.g.,
NVIDIA RTX 3090 or A100) or cloud services such as AWS EC2. Once fine-tuned, these
models are lightweight during inference and can run efficiently on low-cost CPUs. This
makes them well-suited for integration into continuous integration/continuous

Table 4 Performance of zero, one, and few-shot prompting. Bold values indicate the best performance.

Model Run P R F-1 F-2 Model Run P R F-1 F-2

0-shot 1 0.04 0.24 0.06 0.11 3-shot 1 0.19 0.52 0.27 0.38

2 0.08 0.52 0.14 0.25 2 0.16 0.40 0.23 0.31

3 0.06 0.40 0.10 0.18 3 0.21 0.60 0.31 0.44

4 0.06 0.40 0.11 0.19 4 0.21 0.60 0.32 0.44

5 0.06 0.36 0.10 0.17 5 0.18 0.48 0.26 0.36

Avg. 0.06 0.38 0.10 0.18 Avg. 0.19 0.52 0.28 0.39

Std. 0.02 0.10 0.03 0.05 Std. 0.02 0.08 0.04 0.06

1-shot 1 0.11 0.56 0.19 0.31 5-shot 1 0.11 0.72 0.19 0.33

2 0.12 0.56 0.20 0.33 2 0.10 0.64 0.17 0.30

3 0.09 0.44 0.15 0.25 3 0.09 0.48 0.14 0.25

4 0.12 0.56 0.19 0.32 4 0.11 0.72 0.19 0.34

5 0.10 0.52 0.16 0.28 5 0.11 0.76 0.20 0.36

Avg. 0.11 0.53 0.18 0.30 Avg. 0.10 0.66 0.18 0.31

Std. 0.01 0.05 0.02 0.03 Std. 0.01 0.11 0.02 0.04

Alturayeif and Hassine (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2730 22/29

http://dx.doi.org/10.7717/peerj-cs.2730
https://peerj.com/computer-science/

deployment (CI/CD) pipelines and code review tools, enabling automated detection of
data leakage as part of routine development workflows.

Active learning enhances model performance by focusing on the most informative
samples for annotation, reducing the overall labeling effort. This iterative approach allows
retraining on incrementally collected data, which can be computationally lightweight and
performed on local GPUs or cost-effective cloud infrastructure. By minimizing annotation
requirements and computational costs, active learning ensures scalability in rapidly
evolving environments. Importantly, even with larger datasets, the number of labeled
samples required does not necessarily increase linearly with repository size but is
influenced by the complexity and diversity of the codebase as well as the stopping criteria.
Future work could explore different sampling methods, such as automated code clustering
to group similar code blocks.

To address the iterative nature of code development, where new data leakage issues may
arise or previously resolved leaks may reoccur, our approach can be used by incorporating
regular model runs into the development cycle. This continuous analysis ensures every
code iteration is evaluated for potential leaks. Furthermore, periodic retraining of the
model can be incorporated to adapt to significant changes in the codebase, with training
efficiency maintained through transfer learning and active learning techniques that
minimize computational overhead and data labeling requirements.

Table 5 Performance comparison of transfer learning, active learning, and low-shot prompting.
Bold values indicate the best performance.

Model Precision Recall F-2 Score

Transfer learning 0.83 0.64 0.67

Active learning 0.86 0.70 0.72

Low-shot prompting 0.19 0.52 0.39

Figure 7 Average performance of low-shot prompting.
Full-size DOI: 10.7717/peerj-cs.2730/fig-7

Alturayeif and Hassine (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2730 23/29

http://dx.doi.org/10.7717/peerj-cs.2730/fig-7
http://dx.doi.org/10.7717/peerj-cs.2730
https://peerj.com/computer-science/

LIMITATIONS
While this research demonstrates promising results, certain limitations must be
acknowledged that influence the scope and generalizability of our approach.

First, this study focuses on demonstrating the potential of ML-based approaches for
detecting data leakage but does not include a direct comparison with existing state-of-the-
art methods, such as static and dynamic code analysis techniques. A comparison was not
conducted due to the lack of publicly available benchmarks that comprehensively evaluate
these approaches on the same dataset. Furthermore, the surveyed approaches did not
provide replication packages, which prevented a thorough evaluation under consistent
conditions. Future work should aim to address this limitation by establishing publicly
available benchmarks and replication packages to enable comprehensive evaluations of
ML-based approaches alongside traditional techniques in terms of accuracy, scalability,
and computational efficiency.

Second, the identified types of data leakage do not cover scenarios arising during the
data collection and preparation phase, such as when the target variable in a dataset is a
function of a feature. This study focuses exclusively on detecting data leakage within the
code itself. Additionally, the dataset used in this research is derived from the Code4ML
dataset, which consists of isolated code blocks. As a result, our approaches are limited to
detecting leakage within a single code block, and future work is required to address leakage
that occurs across multiple code blocks or modules.

Third, the study’s focus on Python code limits the generalizability of the proposed
approach to other programming languages. While Python’s prominence in machine
learning motivated this choice, further research could explore applying these techniques to
additional languages to assess their broader applicability.

Finally, while our transfer learning approach demonstrates the effectiveness of BERT-
based models, its generalization to other architectures requires caution. Similarly, the
results of low-shot prompting are specific to the GPT model and may not directly translate
to other LLMs. Future work could include comparative evaluations across diverse models
and architectures to validate these findings further.

THREATS TO VALIDITY
In this section, we discuss the threats to validity of our study and the steps we took to
mitigate them.

One potential threat involves the created dataset, where annotation errors may arise due
to the intricate nature of the task or potential inaccuracies in the data entry process. The
complexity of data leakage scenarios increases the likelihood of such errors, potentially
impacting annotation accuracy. To address this, a rigorous validation process was
implemented, including thorough scrutiny by an ML expert.

In the transfer learning approach, we fine-tuned two pre-trained BERT-based models.
While our results are specific to these models, they may not generalize to alternative
architectures or other BERT-based models. To mitigate this, we selected CodeBERT, which
is pre-trained explicitly for code-related tasks, alongside a general BERT-based model,
ensuring some diversity in our evaluations.

Alturayeif and Hassine (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2730 24/29

http://dx.doi.org/10.7717/peerj-cs.2730
https://peerj.com/computer-science/

A potential threat related to the active learning approach is sensitivity to the initial N
value, as different values may yield varying results. Lower N values can lead to a cold start
problem, where the model struggles to learn due to the limited representation of positive
class samples. To mitigate this, we conducted a pilot study to experiment with different N
values and selected one that balanced learning performance effectively.

In the low-shot prompting approach, the results are sensitive to the chosen model and
prompt design. Different models or prompts might yield better (or worse) performance,
potentially affecting generalizability. To address this, we selected the GPT model due to its
strong performance in programming-related tasks (Chang et al., 2024) and followed
OpenAI’s best practices for prompt design.

CONCLUSIONS AND FUTURE WORK
This article highlighted the issue of data leakage in ML code, emphasizing its impact on
model performance in production. While existing studies have proposed manual and code
analysis approaches to detect data leakage in ML code, the application of ML techniques
remains unexplored. In this work, we proposed different ML-based solutions, using
transfer learning, active learning, and low-shot prompting, to build effective models for
data leakage detection in ML pipelines. These strategies, which mitigate the challenges
associated with limited annotated datasets, showed promise in enhancing the efficiency
and reliability of ML models. Our experiments showed that active learning outperformed
other methods and reduced the amount of labeled data required by half while improving
the performance of the model.

Building upon our current exploration of ML approaches for data leakage detection in
ML code, future work can be undertaken in many directions. For example, addressing a
broader range of data leakage scenarios that may arise in complex ML pipelines. Moreover,
it is essential to investigate the impact of code style standardization on model performance.
The pre-processing steps could reduce variability in the dataset, potentially improving the
model’s ability to detect leakage patterns. Additionally, future work could include a
comparative evaluation of other LLMs, such as T5 and BART, which support few-shot
learning. Additionally, exploring models explicitly fine-tuned on software engineering
tasks may provide better performance by capturing domain-specific terms and addressing
more complex patterns. Lastly, establishing publicly available benchmarks and replication
packages to facilitate the evaluation and comparison of ML-based approaches with state-
of-the-art methods. This would provide a deeper understanding of the relative strengths
and limitations of these techniques.

ACKNOWLEDGEMENTS
We used GPT to enhance the writing clarity and readability of the manuscript.

Alturayeif and Hassine (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2730 25/29

http://dx.doi.org/10.7717/peerj-cs.2730
https://peerj.com/computer-science/

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the Interdisciplinary Research Center for Intelligent Secure
Systems at KFUPM through project No. INSS2406. The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Interdisciplinary Research Center for Intelligent Secure Systems at KFUPM: INSS2406.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
. Nouf Alturayeif conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

. Jameleddine Hassine conceived and designed the experiments, analyzed the data,
authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The data that support the findings of this study are available at Figshare: Alturayeif,
Nouf; HASSINE, Jameleddine (2025). Dataset for Data Leakage Detection in Machine
Learning Code. figshare. Dataset. https://doi.org/10.6084/m9.figshare.24893799.v1.

The code is available at Figshare: Alturayeif, Nouf; HASSINE, Jameleddine (2025). Code
for Data Leakage Detection in Machine Learning Code. figshare. Software. https://doi.org/
10.6084/m9.figshare.24893832.v1.

The associated study is available at Drozdova A, Trofimova E, Guseva P, Scherbakova A,
Ustyuzhanin A. 2023. Code4ML: a large-scale dataset of annotated Machine Learning
code. PeerJ Computer Science 9:e1230 https://doi.org/10.7717/peerj-cs.1230.

The dataset repository is available at Zenodo: Anonymous. (2024). Code4ML 2.0: a
Large-scale Dataset of annotated Machine Learning Code (2.0) [Data set]. Zenodo. https://
doi.org/10.5281/zenodo.13918465

REFERENCES
Biswas S, Wardat M, Rajan H. 2022. The art and practice of data science pipelines: a

comprehensive study of data science pipelines in theory, in-the-small, and in-the-large. In:
Proceedings of the 44th International Conference on Software Engineering, 2091–2103.

Brown TB, Mann B, Ryder N, Subbiah M, Kaplan J, Dhariwal P, Neelakantan A, Shyam P,
Sastry G, Askell A, Agarwal S, Herbert-Voss A, Krueger G, Henighan T, Child R, Ramesh A,
Ziegler DM, Wu J, Winter C, Hesse C, Chen M, Sigler E, Litwin M, Gray S, Chess B, Clark J,
Berner C, McCandlish S, Radford A, Sutskever I, Amodei D. 2020. Language models are few-

Alturayeif and Hassine (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2730 26/29

https://doi.org/10.6084/m9.figshare.24893799.v1
https://doi.org/10.6084/m9.figshare.24893832.v1
https://doi.org/10.6084/m9.figshare.24893832.v1
https://doi.org/10.7717/peerj-cs.1230
https://doi.org/10.5281/zenodo.13918465
https://doi.org/10.5281/zenodo.13918465
http://dx.doi.org/10.7717/peerj-cs.2730
https://peerj.com/computer-science/

shot learners. In: Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS 2020, December 6–12, 2020, Virtual.
Vol. 33, Curran Associates, Inc., 1877–1901. Available at https://proceedings.neurips.cc/paper/
2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

Burkov A. 2020. Machine learning engineering. Vol. 1. QC, Canada: True Positive Incorporated
Montreal.

Chang Y, Wang X, Wang J, Wu Y, Yang L, Zhu K, Chen H, Yi X, Wang C, Wang Y, Ye W,
Zhang Y, Chang Y, Yu PS, Yang Q, Xie X. 2024. A survey on evaluation of large language
models. ACM Transactions on Intelligent Systems and Technology 15(3):1–45
DOI 10.1145/3641289.

Chattopadhyay S, Prasad I, Henley AZ, Sarma A, Barik T. 2020. What’s wrong with
computational notebooks? pain points, needs, and design opportunities. In: Proceedings of the
2020 CHI Conference on Human Factors in Computing Systems, 1–12.

Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. 2002. Smote: synthetic minority over-
sampling technique. Journal of Artificial Intelligence Research 16:321–357 DOI 10.1613/jair.953.

Chorev S, Tannor P, Israel DB, Bressler N, Gabbay I, Hutnik N, Liberman J, Perlmutter M,
Romanyshyn Y, Rokach L. 2022. Deepchecks: a library for testing and validating machine
learning models and data. The Journal of Machine Learning Research 23(1):12990–12995.

Cohn DA, Ghahramani Z, Jordan MI. 1996. Active learning with statistical models. Journal of
Artificial Intelligence Research 4:129–145 DOI 10.1613/jair.295.

Cousot P, Cousot R. 1977. Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: Proceedings of the 4th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages, 238–252.

Devlin J, Chang M, Lee K, Toutanova K. 2019. BERT: pre-training of deep bidirectional
transformers for language understanding. In: Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and
Short Papers), 4171–4186.

Drobnjakovic F, Subotic P, Urban C. 2024. An abstract interpretation-based data leakage static
analysis. In: Theoretical Aspects of Software Engineering—18th International Symposium, TASE
2024, Guiyang, China, July 29–August 1, 2024, Proceedings, 109–126.

Drozdova A, Trofimova E, Guseva P, Scherbakova A, Ustyuzhanin A. 2023. Code4ML: a large-
scale dataset of annotated machine learning code. PeerJ Computer Science 9(4):e1230
DOI 10.7717/peerj-cs.1230.

Feng Z, Guo D, Tang D, Duan N, Feng X, Gong M, Shou L, Qin B, Liu T, Jiang D, Zhou M.
2020. CodeBERT: A pre-trained model for programming and natural languages. In: Findings of
the Association for Computational Linguistics: EMNLP 2020. Pennsylvania: Association for
Computational Linguistics, 1536–1547.

Fowler M, Beck K. 1997. Refactoring: improving the design of existing code. In: 11th European
Conference. Jyväskylä, Finland.

Goodfellow IJ, Shlens J, Szegedy C. 2015. Explaining and harnessing adversarial examples. In: 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May
7–9, 2015, Conference Track Proceedings.

He K, Zhang X, Ren S, Sun J. 2016. Deep residual learning for image recognition. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 770–778.

Huang K. 2021. DeepAL: deep active learning in python. ArXiv preprint
DOI 10.48550/arXiv.2111.15258.

Alturayeif and Hassine (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2730 27/29

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
http://dx.doi.org/10.1145/3641289
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1613/jair.295
http://dx.doi.org/10.7717/peerj-cs.1230
http://dx.doi.org/10.48550/arXiv.2111.15258
http://dx.doi.org/10.7717/peerj-cs.2730
https://peerj.com/computer-science/

Kaufman S, Rosset S, Perlich C, Stitelman O. 2012. Leakage in data mining: formulation,
detection, and avoidance. ACM Transactions on Knowledge Discovery from Data (TKDD)
6(4):1–21 DOI 10.1145/2382577.2382579.

Koenzen AP, Ernst NA, Storey M-AD. 2020. Code duplication and reuse in jupyter notebooks. In:
2020 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC).
Piscataway: IEEE, 1–9.

Kohavi R, Parekh R. 2003. Ten supplementary analyses to improve e-commerce web sites. In:
Proceedings of the Fifth WEBKDD Workshop.

Liu Y, Ott M, Goyal N, Du J, Joshi M, Chen D, Levy O, Lewis M, Zettlemoyer L, Stoyanov V.
2019. RoBERTa: a robustly optimized BERT pretraining approach. ArXiv preprint
DOI 10.48550/arXiv.1907.11692.

Liu P, Yuan W, Fu J, Jiang Z, Hayashi H, Neubig G. 2023. Pre-train, prompt, and predict: a
systematic survey of prompting methods in natural language processing. ACM Computing
Surveys 55(9):1–35 DOI 10.1145/3560815.

Lyu Y, Li H, Sayagh M, Jiang ZM, Hassan AE. 2021. An empirical study of the impact of data
splitting decisions on the performance of aiops solutions. ACM Transactions on Software
Engineering and Methodology (TOSEM) 30(4):1–38 DOI 10.1145/3447876.

Nahar N, Zhou S, Lewis G, Kästner C. 2022. Collaboration challenges in building ML-enabled
systems: communication, documentation, engineering, and process. In: Proceedings of the 44th
International Conference on Software Engineering, 413–425.

Namaki MH, Floratou A, Psallidas F, Krishnan S, Agrawal A, Wu Y, Zhu Y, Weimer M. 2020.
Vamsa: automated provenance tracking in data science scripts. In: Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, 1542–1551.

Olsson F. 2009. A literature survey of active machine learning in the context of natural language
processing. Swedish Institute of Computer Science. Available at https://urn.kb.se/resolve?
urn=urn:nbn:se:ri:diva-23510.

OpenAI. 2023. GPT-4 technical report.

Pan SJ, Yang Q. 2009. A survey on transfer learning. IEEE Transactions on Knowledge and Data
Engineering 22(10):1345–1359 DOI 10.1109/TKDE.2009.191.

Pimentel JF, Murta L, Braganholo V, Freire J. 2019. A large-scale study about quality and
reproducibility of jupyter notebooks. In: 2019 IEEE/ACM 16th International Conference on
Mining Software Repositories (MSR). Piscataway: IEEE, 507–517.

Pujar S, Zheng Y, Buratti L, Lewis B, Chen Y, Laredo J, Morari A, Epstein E, Lin T, Yang B, Su
Z. 2024. Analyzing source code vulnerabilities in the D2A dataset with ML ensembles and C-
BERT. Empirical Software Engineering 29(2):48 DOI 10.1007/s10664-023-10405-9.

Quaranta L, Calefato F, Lanubile F. 2022. Eliciting best practices for collaboration with
computational notebooks. Proceedings of the ACM on Human-Computer Interaction
6(CSCW1):1–41 DOI 10.1145/3512934.

Ren P, Xiao Y, Chang X, Huang P-Y, Li Z, Gupta BB, Chen X, Wang X. 2021. A survey of deep
active learning. ACM Computing Surveys (CSUR) 54(9):1–40 DOI 10.1145/3472291.

Ren K, Zheng T, Qin Z, Liu X. 2020. Adversarial attacks and defenses in deep learning.
Engineering 6(3):346–360 DOI 10.1016/j.eng.2019.12.012.

Schneider S, Baevski A, Collobert R, Auli M. 2019. Unsupervised pre-training for speech
recognition. In: 20th Annual Conference of the International Speech Communication Association,
Interspeech 2019, Graz, Austria, September 15-19, 2019, 3465–3469.

Settles B. 2009. Active learning literature survey.

Alturayeif and Hassine (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2730 28/29

http://dx.doi.org/10.1145/2382577.2382579
http://dx.doi.org/10.48550/arXiv.1907.11692
http://dx.doi.org/10.1145/3560815
http://dx.doi.org/10.1145/3447876
https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-23510
https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-23510
http://dx.doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.1007/s10664-023-10405-9
http://dx.doi.org/10.1145/3512934
http://dx.doi.org/10.1145/3472291
http://dx.doi.org/10.1016/j.eng.2019.12.012
http://dx.doi.org/10.7717/peerj-cs.2730
https://peerj.com/computer-science/

Seung H, Opper M, Sompolinsky H. 1992. Query by committee. In: Proceedings of the Fifth
Annual ACM Workshop on Computational Learning Theory, Proceedings of the Fifth Annual
ACM Workshop on Computational Learning Theory. New York: ACM, 287–294.

Shin J, Tang C, Mohati T, Nayebi M, Wang S, Hemmati H. 2023. Prompt engineering or fine
tuning: An empirical assessment of large language models in automated software engineering
tasks. ArXiv preprint DOI 10.48550/arXiv.2310.10508.

Smailagic A, Noh HY, Costa P, Walawalkar D, Khandelwal K, Mirshekari M, Fagert J, Galdran
A, Xu S. 2018.Medal: Deep active learning sampling method for medical image analysis. ArXiv
preprint DOI 10.48550/arXiv.1809.09287.

Sridhara G, Ranjani HG, Mazumdar S. 2023. ChatGPT: a study on its utility for ubiquitous
software engineering tasks. ArXiv Preprint DOI 10.48550/arXiv.2305.16837.

Subotić P, Milikić L, Stojić M. 2022. A static analysis framework for data science notebooks. In:
Proceedings of the 44th International Conference on Software Engineering: Software Engineering
in Practice, 13–22.

Tsantalis N, Mansouri M, Eshkevari LM, Mazinanian D, Dig D. 2018. Accurate and efficient
refactoring detection in commit history. In: Proceedings of the 40th International Conference on
Software Engineering, 483–494.

Tukey JW. 1977. Exploratory data analysis addision-wesley. Reading, Ma 688:581–582.

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I.
2017. Attention is all you need. Advances in Neural Information Processing Systems
30:5998–6008.

Wang J, Kuo T-Y, Li L, Zeller A. 2020a. Assessing and restoring reproducibility of jupyter
notebooks. In: Proceedings of the 35th IEEE/ACM International Conference on Automated
Software Engineering. Piscataway: IEEE, 138–149.

Wang Y, Yao Q, Kwok JT, Ni LM. 2020b. Generalizing from a few examples: a survey on few-shot
learning. ACM Computing Surveys (CSUR) 53(3):1–34 DOI 10.1145/3386252.

Xie C, Wu Y, Maaten L, Yuille AL, He K. 2019. Feature denoising for improving adversarial
robustness. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. Piscataway: IEEE, 501–509.

Yang C, Brower-Sinning RA, Lewis G, Kästner C. 2022. Data leakage in notebooks: static
detection and better processes. In: Proceedings of the 37th IEEE/ACM International Conference
on Automated Software Engineering. Piscataway: IEEE, 1–12.

Yang C, Zhou S, Guo JL, Kästner C. 2021. Subtle bugs everywhere: generating documentation for
data wrangling code. In: 2021 36th IEEE/ACM International Conference on Automated Software
Engineering (ASE). Piscataway: IEEE, 304–316.

Zhuang F, Qi Z, Duan K, Xi D, Zhu Y, Zhu H, Xiong H, He Q. 2020. A comprehensive survey on
transfer learning. Proceedings of the IEEE 109(1):43–76 DOI 10.1109/JPROC.2020.3004555.

Alturayeif and Hassine (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2730 29/29

http://dx.doi.org/10.48550/arXiv.2310.10508
http://dx.doi.org/10.48550/arXiv.1809.09287
http://dx.doi.org/10.48550/arXiv.2305.16837
http://dx.doi.org/10.1145/3386252
http://dx.doi.org/10.1109/JPROC.2020.3004555
http://dx.doi.org/10.7717/peerj-cs.2730
https://peerj.com/computer-science/

	Data leakage detection in machine learning code: transfer learning, active learning, or low-shot prompting?
	Introduction
	Research background
	Literature review
	Proposed data leakage detection models
	Experimental evaluation
	Results and discussion
	Limitations
	Threats to validity
	Conclusions and future work
	flink10
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

