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ABSTRACT

Sentiment classification is a widely studied problem in natural language processing
(NLP) that focuses on identifying the sentiment expressed in text and categorizing it
into predefined classes, such as positive, negative, or neutral. As sentiment
classification solutions are increasingly integrated into real-world applications, such
as analyzing customer feedback in business reviews (e.g., hotel reviews) or
monitoring public sentiment on social media, the importance of both their accuracy
and explainability has become widely acknowledged. In the Turkish language, this
problem becomes more challenging due to the complex agglutinative structure of the
language. Many solutions have been proposed in the literature to solve this problem.
However, it is observed that the solutions are generally based on black-box models.
Therefore the explainability requirement of such artificial intelligence (AI) models
has become as important as the accuracy of the model. This has further increased the
importance of studies based on the explainability of the AI model’s decision.
Although most existing studies prefer to explain the model decision in terms of the
importance of a single feature/token, this does not provide full explainability due to
the complex lexical and semantic relations in the texts. To fill these gaps in the
Turkish NLP literature, in this article, we propose a graph-aware explainability
solution for Turkish sentiment analysis named TurkSentGraphExp. The solution
provides both classification and explainability for sentiment classification of Turkish
texts by considering the semantic structure of suffixes, accommodating the
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agglutinative nature of Turkish, and capturing complex relationships through graph
representations. Unlike traditional black-box learning models, this framework
leverages an inherent graph representation learning (GRL) model to introduce
rational phrase-level explainability. We conduct several experiments to quantify the
effectiveness of this framework. The experimental results indicate that the proposed
model achieves a 10 to 40% improvement in explainability compared to state-of-the-
art methods across varying sparsity levels, further highlighting its effectiveness and
robustness. Moreover, the experimental results, supported by a case study, reveal that
the semantic relationships arising from affixes in Turkish texts can be identified as
part of the model’s decision-making process, demonstrating the proposed solution’s
ability to effectively capture the agglutinative structure of Turkish.
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INTRODUCTION

Natural language processing (NLP) has become an integral part of modern technology,
powering a wide range of applications across various domains. From machine translation
(Bahdanau, 2014) and question answering (McCann et al., 2018) to text summarization
(Ramesh et al., 2016) and chatbot development (Csaky, 2019), NLP enables machines to
understand, interpret, and generate human language. Among these applications, sentiment
analysis stands out as one of the most popular and impactful tasks. It is widely used in
areas such as business intelligence (Pang ¢» Lee, 2008), where customer reviews and
feedback are analyzed to gauge satisfaction levels, and social media monitoring (Pak ¢
Paroubek, 2010), where public opinion on products, policies, or events is tracked in real
time. Additionally, sentiment analysis plays a crucial role in personalized marketing
(Vinodhini ¢» Chandrasekaran, 2012), financial market predictions (Bollen ¢» Mao, 2011),
and political campaign strategies (Tumasjan et al., 2010) by extracting valuable insights
from text data. Its widespread adoption reflects the growing need for systems that not only
process language but also interpret the emotions and intentions behind it.

Despite the advancements NLP, analyzing sentiments like Turkish language presents
unique challenges due to its agglutinative nature (Oflazer, 1994). In Turkish, words are
formed by appending multiple suffixes to a root word, often resulting in long and complex
word forms. This structure allows a single word to convey meanings that would require
entire phrases in other languages, complicating tasks such as tokenization, parsing, and
sentiment analysis (Yuret ¢ Tiire, 2006). Additionally, the extensive use of suffixes
significantly alters the semantic and syntactic roles of words, making it difficult for models
trained on non-agglutinative languages to perform effectively (Ersahin et al., 2019). The
variability introduced by free word order and the prevalence of compound words further
amplifies the complexity (Tohma & Kutlu, 2020). These linguistic features demand
specialized approaches in NLP, such as incorporating morphological analysis and
designing models that can account for the structural relationships within words.
Addressing these challenges is essential for building accurate and explainable sentiment
analysis for Turkish texts.

Although many studies achieving accurate results for sentiment analysis of Turkish
texts have been conducted (Coban, Ozel & Inan, 2021; Eryigit ¢ Oflazer, 2006; Kurt, Kisa
¢ Karagoz, 2019; Aydin, Giingor ¢ Erkan, 2019), almost all of these models rely on black-
box models, which provide limited explainability. Specifically, their explainability
approach typically focus on word-level importance, highlighting each word’s contribution
to model predictions through feature importance scores. While useful, this approach is
limited as it fails to capture the complex interactions and semantic relationships shaped by
the agglutinative structure of Turkish. Consequently, there is a growing need for advanced
explainability methods that go beyond word-level explanations to provide deeper insights
into phrase-level interactions and the linguistic complexities of Turkish.
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To analyze these research gaps in explainable Turkish sentiment analysis domain, we
list several key limitations in existing approaches. First, many methods analyze words
based solely on their roots, which fails to capture the unique agglutinative structure of
Turkish and its semantic richness. Second, traditional token-based tabular representations
of text are insufficient for generating phrase-level explainability, as they do not fully
account for the relationships between words and their suffixes. Third, most learning
models are presented as black-box systems without inherent explainability, limiting their
interpretability. These challenges highlight the need for methods that can transform text
into structured representations, process linguistic complexities effectively, and provide
explainability with high fidelity to the underlying model.

To fill the identified research gaps in explainable Turkish sentiment analysis literature,
we propose a novel framework named TurkSentGraphExp, which directly tackles the
limitations of existing approaches. First, to overcome the issue of analyzing words solely
based on their roots and neglecting the agglutinative structure of Turkish,
TurkSentGraphExp leverages a pre-trained language model to generate context-aware
embedding vectors that incorporate both root and suffix-level information. Second, to
address the inadequacy of token-based tabular text representations for capturing
relationships between words and suffixes, the framework employs graph-based text
representations, enabling a structured and relational understanding of linguistic
complexities. Third, to mitigate the lack of inherent explainability in traditional black-box
learning models, TurkSentGraphExp incorporates an explainable learning mechanism
capable of providing phrase-level sentiment insights.

As shown in Fig. 1, TurkSentGraphExp excels at identifying sentiments derived from
complex semantic relationships that existing methods fail to capture. For instance, in the
sentence “Ne (Neither) yemekleri (the food) giizeldi (was good), ne (nor) de (also) hizmeti
(the service),” traitional methods predict a positive sentiment by focusing on individual
words like giizel (“good”) and their associated weights. However, these methods neglect the
overall contextual relationship between the words, resulting in an inaccurate explanation,
as shown on the left side of Fig. 1. In contrast, TurkSentGraphExp effectively incorporates
graph-based text representation to model the intricate relationships between key terms,
such as ne (“neither”) and its connections to yemekler (“the food”) and hizmet (“the
service”). This graph-based approach enables the framework to correctly predict the
sentiment as negative and provide a more accurate and interpretable explanation, as
depicted on the right side of Fig. 1. By capturing these semantic relationships,
TurkSentGraphExp has capability to enhance sentiment analysis for Turkish texts.

With extensive experiments on three real-world Turkish sentiment datasets,
TurkSentGraphExp demonstrated superior explainability performance compared to state-
of-the-art methods. Leveraging graph attention networks (GAT) and GATv2 architectures,
it also achieved classification accuracy improvements, outperforming the second-best
architecture by 0.53 on these datasets. Furthermore TurkSentGraphExp provided phrase-
level explanations with fidelity improvements of up to 40% under varying sparsity
conditions. These results highlight its effectiveness in capturing agglutinative structures
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"Ne (Neither) yemekleri (the food) guzeldi (was good), ne (nor) de (also) hizmeti(the service).”

Existing Solutions Our Solution
Prediction: Positive Prediction: Negative
Explanation: Explanation:
gozel: 042
yemek: 0.1.
ne: 0.001.
Figure 1 A motivational example. Full-size K] DOT: 10.7717/peerj-cs.2729/fig-1

and complex semantic relationships, advancing both predictive performance and
explainability in Turkish sentiment analysis.
To summarize, our contributions are as follows:

e We propose TurkSentGraphExp, a novel framework for explainable Turkish sentiment
analysis that captures both root and suffix-level information using context-aware
embeddings from a pre-trained language model.

o TurkSentGraphExp constructs a novel graph representation using a pre-trained language
model, avoiding traditional token-based methods and enabling structured, relational text
representations.

* By leveraging attention based graph representation learning (GRL) architectures,
TurkSentGraphExp inherently provides phrase-level explainability, marking the first
study to achieve this for Turkish texts.

 Experiments on real-world datasets show TurkSentGraphExp outperforms state-of-the-
art methods, achieving up to 40% higher fidelity in explainability and improving
classification accuracy by margins of 0.53 over the second-best counterpart architectures.

LITERATURE REVIEW

The agglutinative nature of the Turkish language introduces unique challenges for
sentiment analysis and emotion recognition tasks in text, many of which remain

Kilic and Tulu (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2729 4/35


http://dx.doi.org/10.7717/peerj-cs.2729/fig-1
http://dx.doi.org/10.7717/peerj-cs.2729
https://peerj.com/computer-science/

PeerJ Computer Science

underexplored in existing studies (Demirci, Keskin ¢ Dogan, 2019; Eryigit ¢ Oflazer, 2006;
Coban, Ozel ¢ Inan, 2021). Unlike analytic languages like English, where grammatical
roles are predominantly indicated by word order and auxiliary words, Turkish relies
extensively on suffixation to encode syntactic, semantic, and emotional nuances (Oflazer,
1994). This reliance results in the formation of long and morphologically complex words,
where multiple grammatical features, such as tense, person, negation, and possession, are
embedded within a single token.

Transformer-based models, such as bidirectional encoder representations from
transformers (BERT) and its multilingual variants (Devlin et al., 2018; Lan et al., 2020),
excel at context-aware token understanding but often struggle to capture the complex
inter-morpheme and inter-word semantic relationships crucial for sentiment analysis in
Turkish (Dehkharghani, 2015). Turkish’s agglutinative structure encodes multiple layers of
grammatical, semantic, and emotional information within a single word, with meanings
shaped by interactions between morphemes and surrounding tokens. Sentiment
understanding also depends on broader semantic relationships between words, requiring
models that can represent higher-order linguistic relationships, such as dependency
graphs, to effectively address these challenges.

In the next parts of this section, we review the relevant literature by categorizing the
studies into two groups: Explainability Approaches for Sentiment Classification in the
Turkish NLP Domain and Graph-based Explainability Approaches in the NLP Domain.
The first category focuses on methods specifically developed for explaining sentiment
classification tasks in Turkish, addressing the unique linguistic challenges posed by its
agglutinative structure. The second category reviews graph-based approaches for
explainability in NLP more broadly, emphasizing techniques that leverage graph
representations to capture complex relationships between words and phrases, which are
essential for understanding semantic interactions in text.

Explainability approaches for sentiment classification task in Turkish
NLP domain

In the field of natural language processing in Turkish, various studies have been conducted
regarding the classification of sentiments expressed in texts (Koksal ¢» Ozgur, 2021; Ozcelik
et al., 2021; Yildirim et al., 2015; Dehkharghani, 2015). When the presented solutions are
examined, it is observed that they roughly fall into three distinct categories. The first
category involves studies that consider the structure and features of the language, perform
syntactic and morphological analyses, and synthesize word stems extracted with the help
of a sentiment lexicon or a lexical semantic network (WordNet; Ehsani, Solak ¢ Yildiz,
2018) for emotion analysis. The second category comprises machine learning and deep
learning-based models that rely on labeled data and are trained on a large number of
manually labeled Turkish texts. Solutions created by fine-tuning pre-trained language
models with a small amount of labeled data can also be included in this category. Finally,
we can list solutions that represent texts on a graph network, trained using GRL where
related words are interconnected, as solutions dependent on labeled data.
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In studies belonging to the first category, the distinctiveness of the Turkish language
both morphologically and syntactically from other languages is highlighted, and the
importance of suffixes to the semantic meaning of the words is emphasized. Yildirim et al.
(2015) have studied the impact of preprocessing steps (tokenization, normalization,
morphological analysis, and disambiguation) on classification accuracy for Turkish texts.
The study was conducted on a Turkish social media dataset, and it was observed that
normalization and morphological analysis in preprocessing increased sentiment accuracy
by more than 5%. Support vector machines (SVM) was used as the classification model in
this study. On the other hand, Eryigit ¢ Oflazer (2006) conducted a sentiment analysis
study for Turkish texts using both dictionary and machine learning approaches (naive
Bayes, support vector machines, and J48). Despite the complex morphological structure of
Turkish, the use of a dictionary improved classification accuracy by 7%. Furthermore, in
the studies Dehkharghani (2015) and Ozcelik et al. (2021), they developed Turkish
sentiment lexicons for use in sentiment analysis of Turkish texts. In the SentiTurkNet by
Dehkharghani (2015), a sentiment lexicon was created by manually annotating Turkish
words found in the BalkaNet (Bilgin, Cetinoglu ¢ Oflazer, 2004) the Turkish WordNet as
positive, negative, or neutral. This lexicon allowed sentiment analysis at the text level by
combining sentiment labels from words in Turkish texts using the lexicon. Due to the
limited number of conceptual expressions in SentiTurkNet and the abundance of out-of-
lexicon words, methods using this lexicon gained lower performance. A more
comprehensive sentiment lexicon network called HisNet (Ozcelik et al., 2021) was
developed by labeling the sentiment polarities of 76,000 words from another Turkish
WordNet called KeNet (Ehsani, Solak ¢ Yildiz, 2018). While dictionary-based methods
have the advantage of being more expressive compared to machine learning-based
methods, the building and maintenance of a sentiment lexicon, the inclusion of new
concepts, and the exclusion of out-of-lexicon words have led to lower preference for them
compared to modern sentiment analysis approaches.

In the study by Guven (2023), Turkish sentiment analysis was rigorously evaluated using
a novel text-filtering method in conjunction with pre-trained language models. This
innovative text filtering approach involves the exclusion of words within labeled texts that
exhibit sentiments contrary to the assigned label. Pre-trained language models such as
BERT (Devlin et al., 2018), A Lite BERT (ALBERT) (Lan et al., 2020), Efficiently Learning
an Encoder that Classifies Token Replacements Accurately (ELECTRA) (Clark et al.,
2020), and DistilBERT (Sanh et al., 2020) were fine-tuned and assessed on Turkish hotel
and movie datasets. Notably, it was observed that when combined with the ELECTRA
language model, the innovative text filtering method achieved state-of-the-art (SOTA)
performance in Turkish sentiment analysis. On the other hand, Kilic & Buyukeke (2021)
conducted a study on sentiment analysis of Turkish texts using an expressive approach
known as Text-graph convolutional networks (GCN) (Yao, Mao ¢ Luo, 2019), which is
based on graph representation learning. To the best of our knowledge, there have been no
prior instances in the literature of employing GRL for Turkish natural language processing
tasks, especially in the context of sentiment analysis.
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As it is evident, sentiment analysis studies conducted in Turkish language so far have
predominantly relied on approaches that use word representations obtained
independently from the context, disregarding the impact of compound words, phrases,
affixes, and conjunctions on meaning. These approaches have been dependent on either a
sentiment lexicon, a pre-trained language model, or an excessive amount of training data.
In this research, we introduce a sentiment analysis framework tailored for the Turkish
language. Our approach is rooted in natural language understanding and explainability. It
takes into account context-sensitive words, phrases, and even linguistic affixes, considering
the agglutinative nature of Turkish as a language. As a result, this framework allows for a
profoundly interpretable sentiment analysis of Turkish texts.

Graph-based explainability approaches in NLP domain

Explainability in AI (XAI) powered systems and methods is crucial for transparency,
fairness, trustworthiness, and improving overall reliability and usability. It plays a pivotal
role in addressing ethical, regulatory, and practical challenges associated with the
deployment of deep learning (DL) models. XAI employs specific techniques and methods
to enable the traceability and explainability of each decision made during the machine
learning (ML) process. On the other hand, AI often reaches a conclusion using a ML
algorithm, but the developers of these systems cannot fully explain how the algorithm
arrived at this conclusion. This complicates accuracy, limits transparency, and hinders
accountability. XAI techniques consist of three main methods: consistency in predictions,
traceability, and comprehensibility of the decisions made.

In particular, explainability presents a challenge in methods used for solving NLP
problems. A three-step approach for XAI in NLP models is presented (Mishra, 2022).
These steps involve word embeddings (input level), the inner workings of NLP models
(processing level), and the models’ decisions (output level). One of the initial tasks at the
word embedding level is to transform and visualize large-dimensional representation
vectors into two or three dimensions. In this way, it becomes possible to observe how
semantically related words cluster together. From this perspective, visualization at the
representation level is seen as an effective XAI technique. An online approach to deriving
an interpretable word embedding model (OIWE) (Luo et al., 2020) is one of the techniques
developed in this direction. Furthermore, some approaches use external resources as XAl
techniques at the embedding level. In these methods, representation vectors are created
through a dictionary or a semantic lexical network, allowing semantically related words to
cluster together (Faruqui et al., 2015; Orhan & Tulu, 2021).

At the processing level of XAl there are two approaches: Post hoc interpretation and
inherent interpretation. In the first approach, post hoc interpretation, efforts are made to
dissect the hidden information in deep neural networks trained to solve an NLP problem
syntactically and semantically. This allows us to observe the contributions of each input to
both meaning and syntax. Techniques such as heatmap and t-SNE visualization can be
used to visualize different semantic relationships between words in this context. On the
other hand, inherently interpretable deep neural networks, such as recurrent neural
networks (RNN) and long short term memories (LSTM), are trained in an explainable
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manner by adding transparency constraints and discovering tree and graph-like structures.
Among the highly explainable inherently interpretable methods are the Sequential
Iterative Soft-Thresholding Algorithm and deep unfolding (Hershey, Roux & Weninger,
2014; Wisdom et al., 2016) methods. In the case of the new-generation LLMs, transformers
are used, and various studies have been conducted to understand the internal dynamics of
transformers and visualize attention weights (Lee, Shin ¢ Kim, 2017; Liu et al., 2018).
ExBERT (Hoover, Strobelt ¢ Gehrmann, 2019) is a visual tool designed specifically for the
explainability of the BERT model. It creates explainability in the form of attention,
compilation, and summary of text representations learned depending on the content by
providing masking and proximity analysis. In the study by Wang et al. (2020), which
focused on the GPT-2 model, a transformer-based large language model, they examined
the relationship between syntactic dependency and attention weights and investigated
tokens, Part of Speech (POS) tags, and head counts. They found that attention heads in the
early layers focused on determiners, while in deeper layers, they focused on nouns. In the
middle layers, attention was concentrated on dependency relations. As a result, they
determined that heads in the early layers were more focused on position than content,
while attention heads in the deeper layers were more focused on specific structures.
Therefore, they concluded that long-distance relationships were captured through heads in
the deeper layers. The general limitation of this approach is that attention does not have a
unified definition of explainability. At the prediction level of models, approaches involving
both post hoc and inherently interpretive methods have been adopted to enhance
explainability. Post hoc interpretation approaches analyze the decisions made by a pre-
trained model for a given input text. If the model’s architecture is not transparent, this
approach is known as model-agnostic, while for models with transparent architectures, it is
referred to as model-specific. In the study by Ribeiro, Singh ¢ Guestrin (2016), a method
called Local Interpretable Model-Agnostic Explanations (LIME) was proposed, which can
be applied to the prediction layer of any machine learning model. Additionally, for NLP
models at the prediction layer, XAI methods, such as perturbation and layer propagation,
are also used (Samek et al., 2019). These methods are computationally costly since they do
not require manual expert evaluation.

In the field of XAI, ongoing research explores various approaches, though standardized
methods remain underdeveloped in ML, DL, and transfer learning. GRL has fewer XAI
methods due to its novelty. Yuan et al. (2022) categorized graph neural networks (GNN)
based XAI methods into two groups: instance-level (Funke, Khosla & Anand, 2020; Luo
et al., 2020; Schlichtkrull, De Cao ¢ Titov, 2020; Ying et al., 2019), which explain individual
examples, and model-level (Yuan et al., 2020), which provide high-level insights. Their
study applied these methods to sentiment analysis, constructing dependency-parsing-
based graphs with words as nodes and relationships as edges. Node representations were
initialized using BERT-generated vectors. GCN, graph attention networks (GAT), and
graph isomorphism network (GIN) models were used for predictions, while words
emphasizing sentiment were visualized for explainability. To evaluate explainability, the
study used fidelity (masking key features to measure impact on accuracy), sparsity
(highlighting influential features), stability (measuring accuracy consistency under small
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changes), and accuracy (comparing results with synthetic data). These metrics assessed the
effectiveness of graph-based XAI methods for sentiment analysis in text data.

PROBLEM STATEMENT

In this section, we describe an explainable sentiment analysis problem in the Turkish
domain. As reviewed in “Explainability Approaches for Sentiment Classification Task in
Turkish NLP Domain”, there are numerous studies focus on sentiment analysis for
Turkish texts. These studies predominantly offer explainability based on individual word
contribution or importance. However, as illustrated in the motivational example in Fig. 1,
such explanation models may fail to accurately analyze the sentiment of certain texts.
Furthermore, accounting for the agglutinative structure of the Turkish language is
critically important for effectively identifying the sentiment of a text.

In this study, we aim to effectively address these challenges by formulating the problem
as a graph representation-based learning model, overcoming the limitations of single-word
importance-based explainability.

Formally, each review is represented as a graph denoted as G(V, E), where V represents
the set of nodes and E represents the set of edges. Here, V consists of individual words or
tokens within the review, while E comprises the connections between these words based on
their semantic and syntactic relationships. Each review is associated with a sentiment class
label denoted as ¢ € C, indicating whether the sentiment expressed in the review is
positive, negative, or neutral. To achieve explainability, related subgraphs from G that
provide insights into the sentiment classification process. These subgraphs highlight key
features and relationships within the review that contribute to the sentiment prediction.

The task is to assign a sentiment label to each of the # texts from c possible classes, using
an inductive approach based on graph classification. To do this, we can use Eq. (1):

Gi € {G,Ga,...,Gyu} (1)

wherei=1,2,...,n. Each G; has a sentiment label y;, where y; € {1,2, ..., c}. The goal is
to learn a function f(G;) — y; that maps the graph representation G; to its sentiment
class y;. This can be done by using a graph-based ML model which can extract both the
contextual and structural information from the graphs to perform sentiment classification
in an inductive way. In short, the inductive approach for the task consists of creating a
graph for each text and learning a function to classify these graphs into ¢ sentiment classes,
enabling sentiment analysis on new texts by using graph-based models.

To ensure the model’s decisions are interpretable, it is necessary to infer the importance
of edges e € E(G;) in the graph G, enabling explanations at the phrase level. Let E(G;)
denote the set of edges in the graph representation G;. Each edge e € E(G;) is assigned an
importance score w(e), which is learned during the model training process. This allows the
model to highlight the most critical edges that contribute to the sentiment classification
decision. The refined goal is to learn a function in Eq. (2):

f(Gi,w(E(G)))) — yi 2)

where G; is the graph representation of a text, w(E(G;)) represents the importance scores
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of the edges in G;, and y; € {1,2,...,c} is the sentiment label assigned to G;. This
approach enhances explainability by identifying and leveraging the most significant
phrases (represented by connected nodes and their associated edges) in the sentiment
classification process.

PROPOSED APPROACH

In this section, we introduce TurkSentGraphExp as a solution explainable sentiment
analysis problem of Turkish texts described in “Problem Statement”. This solution aims to
handle the agglutinative structure of the Turkish language by creating graph
representations through a pretrained language model, thereby establishing an inherent
learning model that provides phrase-level explanations to end users.

Figure 2 illustrates the complete end-to-end workflow of the proposed model. First, the
raw Turkish texts are transformed into graph representations using a pre-trained language
model, as illustrated in “Graph Construction Module” and depicted in the “Graph
Representation” stage of the figure. Next, as outlined in “Attentive Classification Module”,
these graph representations are used to train an attention-based GNN learning model
under inductive settings, as shown in the “Training GNN under Inductive Settings” step in
the figure. Finally, the trained GNN model is applied to predict the test data, enabling
model diagnostics. Using the inherently computed attention scores, phrase-level
explainability is generated, as described in “Explainability Module” and visualized in the
“Attention Weights” and “Prediction” stages of the figure.

Graph construction module

Instead of representing review documents in the typical sequential manner, we model
them in graph form. There are two primary reasons for this preference. Firstly, in the case
of sequential dependencies between words in comments, long-range semantic
relationships may be neglected. Using such graph representation, such long-range
semantic relationships are preserved. Secondly, the preference arises from the realism of
explanation being based on patterns of relationships between words rather than solely on
the importance of individual words.

Constructing a Turkish text graph representation involves navigating several intricate
challenges, particularly concerning the generation of context-aware token embeddings,
handling of suffixes, and modeling dependency edges. Firstly, creating context-aware
token embeddings demands a nuanced understanding of Turkish morphology and syntax
to capture the rich contextual information embedded within the language. Given the
agglutinative nature of Turkish, where suffixes can significantly alter the meaning of a
word, accurately representing token embeddings requires careful consideration of the
surrounding context. Additionally, effectively handling suffixes poses a considerable
challenge, as they play a crucial role in Turkish word formation and can vary in form and
function depending on the context. Managing these suffixes while maintaining the
integrity of token representations is essential for constructing an accurate graph
representation. Furthermore, modeling dependency edges to capture the relationships
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between words in Turkish text requires addressing the complexities of Turkish syntax,
including flexible word order and complex syntactic structures.

The construction of a text representation graph requires addressing several challenges,
including generating context-aware token embeddings, handling suffix variations, and
modeling dependency edges in Turkish text. Leveraging a pre-trained language model
provides an effective solution to these challenges due to its robust capability to capture rich
contextual information and manage the complex morphological structure of Turkish. Pre-
trained models are specifically advantageous because they are trained on vast amounts of
diverse text data, enabling them to generalize effectively and encode linguistic nuances
such as suffix-driven semantic changes and intricate syntactic dependencies. This makes
them particularly well-suited for representing the agglutinative nature and linguistic
complexity of Turkish text in graph-based formats.

Moreover, the bidirectional nature and fine-tuning capability of transformer-based
language models enhance their ability to capture complex linguistic relationships, such as
intricate semantic interactions and suffix-driven variations in Turkish text. This enables
the effective representation of Turkish text in graph structures, preserving long-range
dependencies and uncovering nuanced word relationships essential for accurate and
explainable sentiment analysis (Dehkharghani, 2015; Htut et al., 2019; Limisiewicz, Rosa ¢
Marecek, 2020).
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The inference of context-aware word embeddings using a transformer-based pre-
trained language model is outlined in “Context-Aware Word Embeddings”. The use of
these vector values to address suffixes is described in “Handling of suffixes”, while “Edge
Construction” explains the process of defining inter-word relationships and determining
their weights.

Context-aware word embeddings

The calculation of context-aware word embeddings from a pre-trained BERTurk model
involves several key steps. Technically, the pre-trained BERTurk model processes text
sequences by first tokenizing the input text into subword units using a tokenizer function
Tokenize (input), which converts the text into a sequence of tokens (CLS, t;, £, . .., t,).
These tokens are then embedded into vector representations using an embedding function;
Embedding (;); resulting in token embeddings Embedding (CLS), Embedding (#,), . . .,
Embedding (t,).

To compute the output vectors, BERT employs a self-attention mechanism through
multi-head attention layers. Given the token embeddings, BERT constructs attention
matrices Attention(#,), ..., Attention(t,) for each token. The attention matrix
Attention(t;) for token t; measures the attention values between ¢; and all other tokens in
the sequence.

The calculation of attention values involves computing compatibility scores between
query representations g; of the current token ¢; and key representations k; of all other
tokens ¢;. This is achieved through the dot product softmax(g; - ij), where softmax
normalizes the scores to obtain attention weights. The resulting attention weights are used
to compute weighted sums of the token embeddings, yielding the final output vectors
[Output(CLS), Output(t;), . .., Output(t,)].

In summary, the model processes text sequences by tokenization, embedding, and
attention mechanisms, utilizing self-attention to capture contextual dependencies and
generate output vectors that encode semantic information in the text.

To adapt the inference mechanism for Turkish texts, given its agglutinative nature
where word meanings rely heavily on stems and suffixes, we modify the attention
mechanism. Specifically, we suggest that the attention matrix should focus solely on the left
context, reflecting the structure of Turkish. This means that for the i-th word, only the
relation with words from 1 to i should be considered. This can be achieved by zeroing out
the lower triangular part of the attention matrix, i.e., setting A;; = 0 if j > i. Consequently,
the model learns from the left context while disregarding the right words.

To address the another challenge posed by the agglutinative nature of Turkish, where
suffixes are inherently related to their root words, the attention mechanism is adapted to
eliminate redundant attention weight learning between roots and their suffixes.
Specifically, an attention masking mechanism is implemented to ensure the model focuses
on meaningful inter-word relationships. During inference, this mechanism applies an
attention mask, denoted as M € 0, 1"*", where M;; = 0 if the j-th word is a suffix of the
i-th word, and M;; = 1 otherwise. The attention matrix A is then updated element-wise as

A = A © M, effectively ignoring attention between root words and their corresponding
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suffixes. By focusing the attention mechanism solely on root words, the framework
efficiently capture meaningful inter-world relationships for graph representational
purposes.

Handling of suffixes

The handling of suffixes in the Turkish language plays a crucial role in conveying semantic
and grammatical information. Stems carry core semantic meanings, while suffixes indicate
grammatical features like number, case, and tense. In our research domain, especially for
explainability tasks, representing words as a single vector that encapsulates both stem and
suffix meanings can enhance the model’s ability to capture semantic relations.

To achieve this, we propose using an AGGREGATE function that combines the vectors
of word stems and suffixes into a unified representation. This AGGREGATE function can
take various forms, such as sum, average, or concatenation, depending on the desired word
representation strategy. Formally, let s be the vector of the word stem, ey, e,, . . . , e be the
vectors of the word suffixes, and w be the resulting vector of the whole word. The
formulation of this aggregation process is given in Eq. (3)

w = AGGREGATE(s, e, e, . .., ). (3)

Let us analyze the sentiment of the sentence “Bu filmden hoslanmadim!” (I didn’t like
this movie!) in a sentiment analysis context. This sentence is straightforward and expresses
a negative sentiment towards the movie. The presence of the negation suffix “-madim”
(didn’t) clearly indicates the negation of liking, contributing to the overall negative
sentiment conveyed. This example showcases how negation suffixes play a crucial role in
sentiment analysis by altering the sentiment polarity of a sentence.

Edge construction
Various graph/edge construction approaches have been proposed in the literature (Wu
et al, 2021; Hu et al., 2021; Franciscus, Ren & Stantic, 2019). Among these solutions, the
most realistic solution for representing texts in a graph format is the dependency graph
(Barbero ¢ Lombardo, 1995). Since it represents the syntactic dependency of words in a
text document, it is a more realistic approach than heuristic methods in order to capture
the meaning of the whole text document. This approach is employed to capture the
syntactic relationships between words and phrases within texts. The graph creates a
graphical structure where each single word in the text is represented as a node, and the
dependencies between these nodes are depicted using arrows as edges. This approach
allows us to better understand the relationships between words and sentence structure in
natural language. By enabling a more profound and meaningful analysis of texts, the
effectiveness of dependency graphs is demonstrated on NLP tasks (Durandin ¢» Malafeev,
2019; Hu et al., 2021). Consequently, for representing texts in a graph format, the
Dependency graph method stands as a suitable solution, preserving syntactic structures
and aiding in a better comprehension of text semantics.

Please notice that directly constructing a dependency graph from a given text is a
challenging task. This task is especially challenging for Turkish documents because
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Turkish is an agglutinative language with complex morphology and word order. To
construct a dependency graph from Turkish text, we need an extra model that can handle
the morphological and syntactic variations of Turkish words.

Using a pre-trained language model like BERT simplifies handling complexity and
enhances semantic quality compared to directly constructing dependency graphs. BERT’s
extensive training captures nuanced semantics and linguistic patterns, reducing the need
for manual feature engineering and ensuring accurate representation of syntax, word
order, and contextual relationships. Leveraging pre-trained models streamlines natural
language processing tasks, particularly in complex language scenarios such as Turkish,
where constructing dependency graphs requires addressing morphological and syntactic
variations effectively.

In this study, to perform dependency graph edges, we propose using of a pre-trained
BERT-based language model. We formulize the construction process of dependency graph
as shown in Algorithm 1.

The pseudocode outlines a method for constructing a word dependency graph using a
Pre-trained BERT model and a review document. It begins by initializing the necessary
input parameters, including the Pre-trained model, the review document, and the number
of top attended words to consider. The algorithm then initializes an empty set for vertices
and edges of the graph. It iterates through each token in the attention matrix derived from
the Pre-trained BERTurk model, finding the top-k tokens with the highest attention values
to each token. For tokens with a sufficient number of top attended words, it adds vertices to
represent the tokens and edges to represent the dependencies between tokens. The
resulting word dependency graph captures the semantic relationships between words
based on their attention patterns in the review document, providing a structured
representation of textual dependencies.

Attentive classification module
In this module, a sentiment classification model for Turkish reviews is constructed based
on the generated representation graphs.

This classification model is built using the GAT (Velickovic et al., 2017; Brody, Alon &
Yahav, 2021) architecture, which is a attention-based GRL model. The primary reason for
this choice is the interpretability of the model’s decisions based on inherently learned
attention values. In other words, it can be directly interpreted without constructing any
ad-hoc model.

GAT uses attention to focus on informative neighboring nodes when updating a node’s
embedding. However, a key limitation of GAT is its “static attention”: the importance of
neighbors is determined solely by their features, independent of the specific node we are
considering. GATv2 addresses this by modifying the computation order. This allows each
node to attend to its neighbors dynamically, leading to a more expressive model capable of
capturing complex graph structures compared to the original GAT.

From a technical standpoint, the solution to using this model needs to be formulated as
transductive or inductive. The rationale behind this choice and the notational formulation
are detailed in “Formulation of Problem: Inductive vs Transductive”. Then, in “Attention-
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Algorithm 1 Proposed graph construction through a pre-trained LLM.

1: Input: My: Pre-trained language model, R: Review document, k: Number of highest attended words to
consider

: Output: Word Dependency graph G = (V, E)
: Initialize: Retrieve attention matrix A from Mggrr for review document R

: Initialize a set V for review words and their embeddings

2

3

4

5: Initialize empty set E for edges
6: for each token i in attention matrix A do

7 Find the top-k tokens list J; with the highest attention values to token i
8 if J; is not empty and |J;| > k then

9

for eachtokenjin]; do

10: Add edge (v;,v;) to E
11: end for

12: end if

13: end for

14: return G = (V,E)

based GNN Design for Sentiment Classification”, the construction of GAT model based on
this formulation is introduced.

Formulation of problem: inductive vs transductive

In the inductive setting, the GNNs learn to generalize from a training graph to unseen
nodes or graphs in the test phase. This means that the GNNs have to capture the
underlying patterns and rules that govern the graph structure and node labels. In the
transductive setting, the GNNs have access to the features of all nodes in the graph,
including the test nodes, but not their labels. This means that the GNNs can exploit the
local neighborhood information of the test nodes to make predictions, without learning to
generalize to new nodes or graphs.

A fundamental advantage of the inductive setting is that it allows GNNs to handle
dynamic graphs, where new nodes or edges can be added over time. This is useful for
applications where the graph structure is not fixed or known in advance.

Note that the inductive setting fits our task of sentiment classification, described in
“Problem Statement”, perfectly. Therefore, the proposed model is built under the inductive
setting.

Formally, the task involves classifying each of the n texts, composed of ¢ sentiment
classes, using a graph-based inductive formulation for graph classification.

Let G; represent the graph representation of the i-th text document, where i ranges from
1 to n.

Each graph G; consists of nodes and edges, capturing the structural and semantic
information within the text as detailed in “Layer-Wise Embedding Evaluation”.
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We aim to classify each G; into one of the sentiment classes C. Mathematically, we can
represent this task in Eq. (4):

G € {G1,Gy,...,Gu} = yi (4)

where i = 1,2,...,n. Each G; is associated with a sentiment label y;, where y; € C.

The objective is to learn a function f(G;) — y; that maps the graph representation G; to
its corresponding sentiment class y;. This is achieved through a GAT-based learning model
as detailed in “Attention-based GNN Design for Sentiment Classification”, which can
capture both the structural and contextual information encoded in the graphs to perform
sentiment classification inductively.

Attention-based GNN design for sentiment classification
After formulating the learning approach via graph construction, the edge-level attention-
based GAT model is designed as presented in Algorithm 2.

ej = a’ - LeakyReLU(W - [hmh]l]) ®

exXpl e;i
;= p(e;j) 6)
Zke./v”(i) exp(eik)

W, = 6(2;‘6%(:‘) s - hj) (7)

hy = Pooling(h,, ..., H,). (8)

Algorithm 2 presents an inductive model training approach using the GAT architecture
for sentiment analysis. The algorithm takes as input a dataset & containing text graphs G;
and their corresponding sentiment labels Y;, where i ranges from 1 to N. The goal is to
train the model parameters 0 to optimize sentiment classification.

To begin training, the algorithm initializes the model parameters 0, including the
learning rate 7, optimizer (/, and loss function £, Additionally, the number of epochs T
and batch size B are set.

The dataset & is then split into training (Ztrain) and validation (Zval) sets. The
algorithm iterates through epochs, where each epoch involves shuffling the training data
and processing it in batches of size B.

In each batch iteration, the algorithm employs an advanced attention mechanism
process the graphs or documents. This mechanism enhances the model’s ability to capture
intricate relationships and dependencies within the data. Initially, the algorithm initializes
the word embeddings H and gathers edge information E. The attention coefficients e;;,
crucial for identifying relevant features, are computed using a refined formulation inspired
by GATV2’s attention mechanism, as illustrated in Eq. (5). Notably, GATv2 incorporates
learned attention weights a to fine-tune the attention coefficients, thereby improving the
model’s discriminative power. Subsequently, these coefficients are transformed into
attention weights o; through a softmax operation based on Eq. (6). This transformation
ensures that the most salient features contribute significantly to the overall graph
representation. The updated embeddings H! are then derived using GATv2’s advanced
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Algorithm 2 Inductive model training using GAT architecture.
1: Input: 7 = (G, Y1), (Ga, Y2),. .., (Gn, Yn): Text Graphs and Sentiment Labels
2: Output: 0: Trained Model Parameters
3: Initialize 6 (e.g., learning rate 1), optimizer ¢, loss function %
4: Set epochs T, batch size B
5: Split & into Ytrain and Yval

6:for t—1toT do > Epochs
7 Shuffle train

8: for i+ 1to [|Ztrain|/B] do > Batches
9 batch < Next batch of size B from Ztrain

10: for (G;,Y;) € batch do > Graphs/documents
11: H«— G.V > Initial word embeddings
12: E «— G.E > Edges for word dependencies
13: Compute attention coefficients e using Eq. (5)

14: Compute attention weights o using Eq. (6)

15: Compute updated embeddings H;/ using Eq. (7)

16: Pooling on H;/ for graph-level representation (See Eq. (8))

17: z; « FC(H]), zi — ReLU(z;), y; < Softmax(z;)

18: Compute loss L; = f(y;, Y;)

19: VOL; — %

20: Accumulate gradients VyL; for batch

21: end for

22: 0 «— updateRule(0),Vy)

23: VoL; — 0 > Reset gradients
24: end for

25:end for

26: Validate on Zval

27: Compute evaluation metrics on Zval return 0

attention mechanism, described in Eq. (7). This mechanism refines the attention process
by incorporating learned attention weights and leveraging contextual information,
resulting in more informative and context-aware embeddings. Finally, the attentive
pooling operation, as depicted in Eq. (8), amalgamates these refined embeddings to
construct a comprehensive graph-level representation hy. Overall, GATv2’s attention
mechanism enhances the model’s interpretability, discriminative power, and ability to
capture nuanced relationships, making it a valuable tool for complex data analysis tasks
like sentiment analysis. Subsequently, the updated embeddings are passed through fully
connected layers (FC), ReLU activation, and softmax to obtain the predicted sentiment
probabilities y;. The loss L; is computed using the loss function f%%.
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Gradients are accumulated and used to update the model parameters 0 using the
specified update rule. After completing all epochs, the model is validated on the validation
set Yy,1, and evaluation metrics are computed.

In summary, Algorithm 2 outlines a comprehensive approach for training an inductive
sentiment classification model using the GAT architecture, incorporating attention
mechanisms and graph-based representations to achieve effective sentiment analysis on
text graphs.

Explainability module

In this module, classification decisions are explained based on the attention values of the
learned model. It essentially consists of two steps: in the first step, a weighted graph is
constructed from the learned attention values, and then adaptive filtering is applied to
these attention values to obtain a subgraph pattern as explainable purposes. This module is
depicted on the right bottom side of Fig. 2.

Although GNN models have various approaches for explanation, they generally rely on
ad-hoc proxy models, which can increase complexity and lead to information loss due to
indirect explanations (Pope et al., 2019). To address this issue, in this module, we develop
two different inherent explanation models based on the learned attention values from the
last layer of the previous learning module. These models provide explanations at both the
edge level and the subgraph level, aiming to overcome the complexity and information loss
associated with ad-hoc proxy model approaches like GNNExplainer (Ying et al., 2019).

As described in “Attention-based GNN Design for Sentiment Classification”, the
learning module’s last layer contains learned attention values for each edge based on the
model’s decision. These values are used to create a weighted graph, with node values
(words) included in the graph for consistency with the learning module. This graph is
represented as G (V, E).

This module explains the decision-making process of the model, which is based on the
attention values learned in the Attentive Classification module in “Attention-based GNN
Design for Sentiment Classification”. This process develops an algorithm inspired by a
adaptive background filtering method (Ostu, 1979), which is widely used in image
processing problems.

This naive approach is to adaptively filter and rank the learned attention values. This
solution algorithm is given in Algorithm 3.

The algorithm takes as input the trained model parameters/weights 0 and the text
representation graph G(V, E), and it outputs the filtered explainability subgraph Ge,. The
algorithm begins by computing edge attention weights G,(V, E) using the model
parameters 0 and the input graph G(V, E). It then proceeds to compute a histogram and a
cumulative distribution function (CDF) from these attention weights to determine an
adaptive threshold for filtering edges. The threshold is chosen based on maximizing the
inter-class variance between two classes defined by the CDF. Finally, the algorithm filters
the edges of the input graph G based on the computed threshold, resulting in the filtered
explainability subgraph Gy, This algorithm offers a systematic approach to extract
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Algorithm 3 Proposed adaptive filtering based explainability generation.

1: Input: 0: GNN trained model parameters/weights, G(V, E): Text representation graph
: Output: Filtered explainability subgraph Gey,

: Initialize Gfiered s an empty graph

: Gu(V, E) « Compute edge attention weights using 6 and G

2

3

4

5: Initialize histogram H with N bins

6: Initialize cumulative distribution function (CDF) C with N bins
7: Compute histogram H from edge attention weights Gy

8: Compute CDF C from histogram H

9: Compute total sum S of all edge attention weights in G,

10: Initialize maximum inter-class variance maxVar to 0

11: Initialize adaptive threshold T to 0

12:for t—1toN—-1 do > Iterate through possible thresholds
13: Compute class probabilities Py and P; using CDF C and threshold ¢

14: Compute mean values my and m; of class 0 and class 1

15: Compute inter-class variance var using Py, Py, mq, m;, and S

16: if var > maxVar then > Update maximum inter-class variance and threshold
17: maxVar < var

18: T —t

19: end if

20: end for

21:for eachedgeein G do

22: if attention weight of e in G, passes T then
23: Add e to Gexp

24: end if

25: end for

26: return Gey,

informative edges from a graph, enhancing the interpretability and explainability of GNN
models in text analysis tasks.

The time complexity of the proposed algorithm can be analyzed as follows. First,
computing edge attention weights G (V, E) takes O(E) time, where E is the number of
edges in the input graph. Next, initializing and computing the histogram H and cumulative
distribution function (CDF) C from the edge attention weights takes O(E) time as well.
The loop iterating through possible thresholds runs for N — 1 iterations, where N is the
number of bins in the histogram. Inside this loop, computing class probabilities, mean
values, and inter-class variance for each threshold takes O(1) time per iteration. Therefore,
the total time complexity of the algorithm is O(E + N), where E is the number of edges and
N is the number of bins in the histogram.
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As for space complexity, the algorithm requires space to store the input graph G(V, E),
the model parameters/weights 0, the edge attention weights G, (V, E), the histogram H
and cumulative distribution function (CDF) C, and variables for computations such as
mean values, class probabilities, and thresholds. The space complexity is dominated by the
input graph and the edge attention weights, resulting in a space complexity of O(E) for the
input graph and O(E) for the edge attention weights, leading to a total space complexity of
O(E) for the algorithm.

EXPERIMENTAL STUDIES

This section presents experimental studies to address the following research questions:

e RQI: What is the capacity of a pre-trained language model to generate embedding
vectors at a layer-by-layer level, and which layers exhibit higher levels of semantic
discrimination?

e RQ2: What is the dependency coverage rate for graph representation in Turkish texts
using attention weights of a pre-trained language model, specifically targeting the
challenges highlighted in “Handling of suffixes”?

» RQ3: How does the representation model derived from the language model affect
classification performance, and what are the performance disparities between attention-
based and non-attention-based GNN models?

» RQ4: To what extent is the most successful model explainable, considering both
qualitative and quantitative aspects of its explainabilities?

We conducted the following experiments using Turkish sentiment classification
benchmark datasets, respectively:

e (i) Layer-wise embedding evaluation: This experiment involved visualizing the
embedding vectors generated at a layer-by-layer level by a pre-trained Turkish language
model. It aimed to investigate the capacity of the model to capture semantic information
across different layers, in line with RQ1.

e (ii) Dependency graph accuracy: We measured the accuracy of dependency
relationships using labeled data, as mentioned in RQ2. The goal was to assess how well
the model can identify and represent dependencies within the text.

o (iii) Classification performance comparison: This experiment focused on comparing
the performance of common graph-based learning models using graph representations
derived from Turkish sentiment benchmark datasets. It aimed to address RQ3 by
evaluating the effectiveness of attention mechanisms in improving classification
performance.

e (iv) Evaluation of explainability: In response to RQ4, we evaluate the explainability of
the model using two common metrics as known as fidelity and sparsity. The objective is
to assess how well the model’s predictions could be interpreted and explained in both
qualitative and quantitative terms.
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These experiments were carefully designed to provide a detailed understanding of the
limitations and capabilities of our framework using performance metrics, and provide
valuable insights into the nuances of language modelling and graph representation in
Turkish sentiment analysis.

Benchmark datasets
The experiments have been performed on three real-world Turkish sentiment datasets
with varying sizes. These are briefly described as follows:

e TripAdvisor: The dataset comprises 42,000 hotel reviews from the TripAdvisor web
page (Biiyiikeke, Sokmen ¢ Gencer, 2020), with sentiment labels in three categories.
However, it is an unbalanced dataset, with 80% of the reviews being positive. To address
this issue, we randomly selected 1,250 samples with an equal number of reviews in each
class for this study.

o ImdbFilmReview: Film reviews from IMDB (Amasyal: et al., 2012), which contain three
traditional sentiment categories: positive, negative and neutral.

* BlogPosts: Users’ sentiments from blog pages (Amasyali et al., 2012).

The basic statistics of these datasets are listed in Table 1. Please note that the volume of
TripAdvisor dataset is much larger than the others. For this reason, this dataset was taken
as a reference in some outputs given for demonstration purposes.

Furthermore, it is important to note that the BlogPosts dataset contains a higher
number of classes due to its mood-based labeling approach, which differs from the
traditional positive, negative, and neutral labels found in datasets like IMDB and
TripAdvisor. The inclusion of this dataset is intended to evaluate the adaptability and
robustness of the proposed solution in scenarios involving more nuanced label
distributions. Specifically, the goal is to observe the performance of the GAT architecture,
used as the backbone, compared to other architectures under default configurations across
diverse class distributions. This allows for a comprehensive assessment of the model’s
ability to handle complex or unconventional classification tasks, such as mood-based
labeling.

Comparison models

As stated in “Graph Construction Module”, the framework proposes solutions for
constructing graphs from Turkish texts, constructing an attentive model from these
graphs, and explaining predictions. The main task is to build a successful model based on
the graph representation. To evaluate the performance of the model, the two popular
no-attention based GNN models were used:

* GCN: In GCNs (Kipf e Welling, 2016), a specialized model architecture is employed for
tasks involving graph data, such as node classification and graph-level prediction. Unlike
traditional neural networks, GCNs operate directly on graph structures, leveraging node
features and their relationships. This approach allows GCNs to capture complex
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Table 1 Dataset statistics.

Dataset Num of classes Train size Test size
TripAdvisor' 3 1,000 250
ImdbFilmReview” 3 100 20
BlogPosts’ 4 35 5

Notes:

" https://github.com/ahmeteke/turkish-tourist-reviews-data-.
> https://doi.org/10.5281/zenodo.14823173.
? https://doi.org/10.5281/zenodo.14823096.

dependencies and patterns within graphs, making them effective for tasks like social
network analysis, molecular structure prediction, and recommendation systems.

o GIN: Unlike GCNs that operate on fixed graph structures, GINs (Xu et al., 2018)
dynamically consider different graph isomorphisms, enabling a more nuanced analysis
of graph properties. This dynamic approach allows GINs to excel in tasks requiring
precise graph matching and classification, such as molecular structure comparison,
subgraph detection, and graph similarity assessment.

Please note that all of these models aim to learn graph representations and do not use
the attention mechanism.

Evaluation metrics

For attentive classification module, macro F1-score (Hand ¢ Christen, 2018) is preferred as
evaluation metric due to several reasons. First, it addresses the challenge of class imbalance
commonly observed in real-world graphs. Since some classes may have significantly more
instances than others, the macro F1-score treats each class equally, preventing dominance
by the majority class. Second, GNNs operate on local structural information within graphs,
but global graph structure also matters. By encouraging a balanced consideration of all
classes, macro F1-score promotes learning from both local and global contexts, improving
model generalizability.

Technically, the F1-score combines precision and recall, providing a balanced measure
for binary classification. For multi-class problems, we use variants like micro F1-score and
macro Fl-score. Here’s how they are defined:

Precision measures how many of the “positive” predictions made by the model were
correct:

True Positives (TP)
TP + False Positive (FP)

(9)

Precision =

Recall measures how many of the positive class samples present in the dataset were
correctly identified by the model:

TP
Recall = , ) (10)
TP + False Negatives (FN)
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The F1-score is the harmonic mean of precision and recall:

Precision - Recall
F1 =2

. . 11
Precision + Recall (1)
For multi-class problems, we compute the macro-averaged F1 score by taking a simple
average of the class-wise F1 scores:

1 n
MacroF1 — score = — E F1,. (12)
n4
i=1

where 7 is the number of classes.

On the other hand, to empirically evaluate Explainability module, two commonly used
metric is used. These are the fidelity and sparsity (Pope et al., 2019) metrics.

Fidelity and sparsity are two common metrics for evaluating the explainability of GNN.
Fidelity measures how well the explanation preserves the prediction of the original model,
while sparsity measures how concise the explanation is.

Formally, let G = (V, E) be the original graph, and G’ = (V’, E’) be the subgraph
generated by the explanation method. Let f(G) be the prediction of the GNN model on G,
and f(G') be the prediction of the same model on G'.

Here, two different fidelity calculation approaches (Amara et al., 2022) are referred as
follows and their harmonic mean is calculated as the fidelity value as shown in Eq. (15),
where wy and w_ are the weights for Fid, and Fid_, respectively.

Fid, = f(G) — f(G— G (13)
Fid_ = f(G) — f(G) (14)
Fidelity = e tw) (15)

Wi w_ ’
(Fid+ + 1—Fid,)

On the other hand, the calculation of the sparsity values of the generated explanations is
calculated as in Eq. (16)

IG.V| - |G.V]

Sparsity = GV

(16)

This metric also ranges from 0 to 1, where a higher value means a higher sparsity.

Implementation details

Our experimentation was conducted using the Python programming language, primarily
selected for its open-source nature, robust community support, and extensive resource
availability. Specifically, we leveraged the transformer library for experiments involving
pre-trained language models and employed the pytorch-geometric library for experiments
concerning GNN models. Additionally, authors developed their custom Python code to
implement technical contributions such as Turkish text suffix normalization, graph
construction, and adaptive attention filtering, as detailed in “Problem Statement”.
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For our runtime environment, we utilized the Google Colab+ machine, which offers a
Tesla K80 GPU, 12 GB of RAM, and an Intel Xeon CPU clocked at 2.20 GHz.

In our study, we utilized BERTurk as a pre-trained language model specifically tailored
for Turkish text. This choice was motivated by its status as the most comprehensive
transformer-based language model trained on Turkish data, providing a robust foundation
for our experiments.

Results

Layer-wise embedding evaluation

As stated in “Graph Construction Module”, the graph construction process mainly rely on
a pre-trained language model. To evaluate the quality of the vectors generated by the
language model, as a response to RQ1, we conducted a visualization-based experiment on
TripAdvisor dataset, the largest benchmark dataset. This experiment aims to demonstrate
how the pre-trained language model embeddings capture semantic relationships without
additional fine-tuning. Rather than training the language model on the dataset, this
approach evaluates its effectiveness in inference mechanism, as described in “Context-
Aware Word Embeddings”, showcasing its capability to capture semantic discrimination
in sentiment analysis.

For the sake of simplicity, the document vectors are averaged naively over the word
vectors and this process is done separately for each layer to obtain document embedding
vectors.

Since the embedding vectors in the 12 layers of the model are 768-dimensional, we use
T-SNE (Van der Maaten ¢ Hinton, 2008) method to visualize them in two-dimensional
space. Figure 3 depicts how the different sentiment classes are positioned in space for each
layer. It is clearly observed that the documents are grouped more accurately as we move
towards the higher layers. This confirms that the embedding vectors from the final layers
provide the highest levels of semantic discrimination. These findings align with
observations from previous studies conducted in other languages (Htut et al., 2019
Limisiewicz, Rosa & Marecek, 2020), validating that semantic discrimination in higher
layers is also applicable to Turkish sentiment data, as outlined in RQ1.

Dependency graph accuracy

Unlike embedding vectors, attention matrices are located in each layer and in the heads of
these layers. In order to evaluate these attention matrices, an accuracy metric is performed
for each layer/head selection based on a labeled Dependency Graph dataset in the literature
(Marsan et al., 2022). Experimental results are shown in Fig. 4. When we look at these
results in general, it is observed that the accuracy values in the early layers are higher, that
is, the syntactic relations are better modeled. This is in parallel with the experimental
results of studies on other languages in the literature (Htut et al., 2019; Limisiewicz, Rosa ¢
Marecek, 2020). In other words, this is the first time that the results of this experiment have
been shown in the Turkish language. It is also observed that the selection of a single
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Figure 3 Visualization of the generated embedding vectors in layer wise.
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Figure 4 Dependency graph accuracy wrt varying head/layer in the pre-trained BERT model.
Full-size K&l DOT: 10.7717/peerj-cs.2729/fig-4

layer/head achieves max 0.2 success. This situation shows that more than one setting
selection should be ensemble.

Please note that the search space for the optimal layer/head combination grows
exponentially with the number of layers and heads as 2#/@es*#heads Tq avoid increasing

computational complexity, we conduct experiments using overall average attention values.

Classification performance comparison
As explained in “Attentive Classification Module”, the Classification module mainly relies
on an attention based GNN model. To determine the most successful GNN model, a set of
experiments are conducted over three real-world Turkish sentiment datasets. Additionally,
a comparative analysis is carried out, considering the size of the data sets. The data sets are
divided into those that use attention-based techniques and those that do not, in order to
observe any differences in performance.

As detailed in “Proposed Approach”, TurkSentGraphExp, which integrates a graph-
based learning mechanism to model inter-word relationships in sentiment analysis,
underscores the importance of this structure for explainable sentiment analysis in Turkish
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texts. In this context, four existing graph-based models (GCN, GCI, GAT, GATv2) capable
of learning from graph input representations were compared in terms of sentiment
recognition, as shown in Table 2. Notably, the GAT variants (Velickovic et al., 2017)
GATV2 (Brody, Alon & Yahav, 2021), utilized as the backbone of TurkSentGraphExp,
outperformed the other models with margins of 0.1, 0.8, and 0.53, respectively. These
results highlight the effectiveness of attention-based GRL models in recognizing sentiment.

Additionally, it is observed that even the most successful model on ImdbFilmReview and
BlogPosts data, where the number of documents is low, remains at 40-50% levels.
However, when the size of the dataset in TripAdvisor data is large, it is observed that the
success of the model is quite high. This observation indicates that the size of the training
set may affect the performance of the model.

Finally, in order to ascertain whether the learning process of the model is exhibiting
signs of overfitting, the loss values are presented in Fig. 5. Upon examination of these
values, it becomes evident that there is no discernible difference in loss between the
training and validation data. This observation indicates that the learning model is not
exhibiting a tendency towards overfitting.

Evaluation of explainability

To answer RQ4, the explainability of the proposed model is evaluated in qualitatively and
quantitatively. For the qualitative evaluation, observations are made through some specific
extreme case studies, while for the quantitative evaluation the metrics described in
“Evaluation Metrics” are used. Specifically, for the qualitative evaluation, we focused on
situations with different emotional expressions such as neutral or mixed sentiment
reviews. This is because traditional approaches modelled without the use of graphs/
dependencies fail to classify texts in this form (Demirci, Keskin ¢» Dogan, 2019; Yildirim
et al., 2015). For example, let’s consider the following comments containing three neutral
or mixed emotions for demo purposes:

e Otel (The hotel) konforlu (comfortable), ancak (but) hizmet (service) yetersiz
(insufficient).

e Oda (The room) genis (spacious), fakat (yet) temizlik (cleanliness) sorunlu
(problematic).

e Personel (Staff) yardimsever (helpful), lakin (however) yemekler (meals) lezzetsiz
(tasteless).

The explanations of these three interpretations derived from the sentiment classification
predictions are shown in Figs. 6-8. It is observed that the sentiment phrases are detected
with high weights by the proposed framework, while the overall discriminability of the
explanations produced by the GNNExplainer model is low.

From a quantitative perspective, two common approaches are used in the literature to
measure the explanation quality of models: fidelity and sparsity. By applying these
approaches as formulated in “Evaluation Metrics”, the explanation quality of the proposed
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Table 2 Model comparison with macro-F1 scores on benchmark datasets.

Attn Model TrpAdvisor Imdb BlgPost
No GCN 0.11 0.50 0.30
No GIN 0.21 0.16 0.31
Yes Ours/wGAT 0.74 0.48 0.32
Yes Ours/wGATv2 0.70 0.58 0.32
Note:
Values in bold denote that the GAT variants outperformed the other models with margins of 0.1, 0.8, and 0.53,
respectively.
0.95 —— Train Loss
‘ll —— Validation Loss
0.90
0.85 \\
v \
0
o |
—
0.80
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0 20 40 60 80 100
Epoch
Figure 5 Train vs validation loss curves. Full-size K&l DOT: 10.7717/peerj-cs.2729/fig-5
TurkSentGraphEXP GNNEXxplainer
konforlu, / nforlu,

ancak ‘ hizme

Otel Otel

hizme\ -

yetersiz. yetersiz.

Figure 6 Explaining sentiment classification of “Otel (The hotel) konforlu (comfortable), ancak
(but) hizmet (service)”. Full-size &) DOTI: 10.7717/peerj-cs.2729/fig-6
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Figure 7 Explaining sentiment classification of “Oda (The room) genis (spacious), fakat (yet)

temizlik (cleanliness) sorunlu (problematic)”. Full-size 4] DOTI: 10.7717/peerj-cs.2729/fig-7
TurkSentGraphEXP GNNExplainer
lezzetsiz. yardimsever,
rardimsever, lakin
Personel rsonel
lakin lezzetsiz.
yemekler yemekler

Figure 8 Explaining sentiment classification of “Personel (Staff) yardimsever (helpful), lakin
(however) yemekler (meals) lezzetsiz (tasteless)”. Full-size k4] DOT: 10.7717/peerj-cs.2729/fig-8

model is observed in Fig. 9. With this observation, the results are compared with a popular
GNN explainability model called GNNExplainer. According to these results, the higher
fidelity value of the proposed framework according to the changing sparsity rate indicates
that more faithful explanations are produced in terms of the quantity of explanations. On
the other hand, since the proposed model works inherently, there is no need for an ad-hoc
model, it is obvious that the model produces faster results with less complexity. Such
quantitative observations show that the proposed model is effective.
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Figure 9 Quantitative explainability score comparison. Full-size K] DOI: 10.7717/peerj-cs.2729/fig-9

CONCLUSION

In this study, we propose an inherent graph-aware explainability framework for Turkish
Sentiment Analysis tasks, named TurkSentGraphExp, which applies attention-based GNN
models to explain predictions inherently in graph-aware.

Particularly from a technical point of view, we first constructed graph representations of
the documents by utilizing a pre-trained language model in order to handle out of
vocabulary tokens that may occur due to the fact that the Turkish language is agglutinative.
Then, by modelling these representations with inductive setting, we built a GRL model
using an attention-based GNN model. Adaptive filtering over the inherent explainable
attention scores of the attention-based model is implemented by making an analogy with
the background filtering used in image processing applications.

For the first time in Turkish NLP domain, the experimental results show that the
attention-based models used in the proposed framework are not only inherently
explainable in Turkish sentiment datasets but also successful in terms of model
performance on three real-world sentiment datasets.

In our future work, we will analyze the outputs of the state-of-art models utilizing
explainability approaches and aim to build more accurate models by using prompt
engineering methods. Moreover, for the explainability side, we plan to make some
integrations in order to provide a high-level explainability at the phrase level.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

The authors received no funding for this work.

Kilic and Tulu (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2729 30/35


http://dx.doi.org/10.7717/peerj-cs.2729/fig-9
http://dx.doi.org/10.7717/peerj-cs.2729
https://peerj.com/computer-science/

PeerJ Computer Science

Competing Interests
The authors declare that they have no competing interests.

Author Contributions

* Yasir Kilic conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

o Cagatay Neftali Tulu conceived and designed the experiments, analyzed the data,

prepared figures and/or tables, authored or reviewed drafts of the article, and approved
the final draft.

Data Availability
The following information was supplied regarding data availability:

The third party datasets used are available at:

- TripAdvisor: https://github.com/ahmeteke/turkish-tourist-reviews-data-.

- ImdbFilmReview: Amasyali, F., & Kaya, A. A. (2025). Turkish Movie Reviews Dataset.
Zenodo. https://doi.org/10.5281/zenodo.14823173.

- BlogPosts: Amasyali, F. (2025). Bloggers Mood Dataset in Turkish. In EMO Bilimsel
Dergi (Vol. 2, Number 4, pp. 95-104). Zenodo. https://doi.org/10.5281/zenodo.14823096.

The source code of the project is available at Zenodo: KILIC, Y., & Tulu, C. N. (2025).
TurkSentGraphExp: An Inherent Graph Aware Explainability Framework From Pre-
trained LLM For Turkish Sentiment Analysis. Zenodo. https://doi.org/10.5281/zenodo.
14760110.

REFERENCES

Amara K, Ying R, Zhang Z, Han Z, Shan Y, Brandes U, Schemm S, Zhang C. 2022.
GraphFramEx: towards systematic evaluation of explainability methods for graph neural
networks. ArXiv preprint DOI 10.48550/arXiv.2206.09677.

Amasyal1 MF, Balci S, Emrah M, Varli E. 2012. Tiirk¢e metinlerin siniflandirilmasinda metin
temsil yontemlerinin performans karsilastirilmasi. EMO Bilimsel Dergi 2(4):95-104.

Aydin CR, Giingér T, Erkan A. 2019. Generating word and document embeddings for sentiment
analysis. In: International Conference on Computational Linguistics and Intelligent Text
Processing. Cham: Springer, 307-318.

Bahdanau D. 2014. Neural machine translation by jointly learning to align and translate. ArXiv
preprint DOI 10.48550/arXiv.1409.0473.

Barbero C, Lombardo V. 1995. Dependency graphs in natural language processing. In: Congress of
the Italian Association for Artificial Intelligence. Cham: Springer, 115-126.

Bilgin O, Cetinoglu z, Oflazer K. 2004. Building a wordnet for Turkish. Romanian Journal of
Information Science and Technology 7(1-2):163-172 Publisher: Romanian Academy.

Bollen J, Mao H. 2011. Twitter mood as a stock market predictor. Computer 44(10):91-94
DOI 10.1109/MC.2011.323.

Brody S, Alon U, Yahav E. 2021. How attentive are graph attention networks? ArXiv preprint
DOI 10.48550/arXiv.2105.14491.

Biiyiikeke A, Sokmen A, Gencer C. 2020. Metin madenciligi ve duygu analizi yontemleri ile sosyal
medya verilerinden rekabet¢i avantaj elde etme: turizm sektoriinde bir arastirma (gaining

Kilic and Tulu (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2729 31/35


https://github.com/ahmeteke/turkish-tourist-reviews-data-
https://doi.org/10.5281/zenodo.14823173
https://doi.org/10.5281/zenodo.14823096
https://doi.org/10.5281/zenodo.14760110
https://doi.org/10.5281/zenodo.14760110
http://dx.doi.org/10.48550/arXiv.2206.09677
http://dx.doi.org/10.48550/arXiv.1409.0473
http://dx.doi.org/10.1109/MC.2011.323
http://dx.doi.org/10.48550/arXiv.2105.14491
http://dx.doi.org/10.7717/peerj-cs.2729
https://peerj.com/computer-science/

PeerJ Computer Science

competitive advantage from social media data with text mining and sentiment analysis methods:
a research in tourism sector). Journal of Tourism & Gastronomy Studies 8(1):322-335.
Clark K, Luong M-T, Le QV, Manning CD. 2020. ELECTRA: pre-training text encoders as
discriminators rather than generators. arXiv DOI 10.48550/arXiv.2003.10555.
Coban O, Ozel SA, Inan A. 2021. Deep learning-based sentiment analysis of Facebook data: the
case of Turkish users. The Computer Journal 64(3):473-499 DOI 10.1093/comjnl/bxaal72.
Csaky R. 2019. Deep learning based chatbot models. ArXiv preprint
DOI 10.48550/arXiv.1908.08835.

Dehkharghani R. 2015. Sentiment analysis in Turkish: resources and techniques. PhD thesis.

Demirci GM, Keskin SR, Dogan G. 2019. Sentiment analysis in Turkish with deep learning. In:
2019 IEEE International Conference on Big Data (Big Data). Piscataway: IEEE, 2215-2221.

Devlin J, Chang M-W, Lee K, Toutanova K. 2018. Bert: pre-training of deep bidirectional
transformers for language understanding. ArXiv preprint DOI 10.48550/arXiv.1810.04805.

Durandin O, Malafeev A. 2019. Adapting the Graph2Vec approach to dependency trees for NLP
tasks. In: International Conference on Analysis of Images, Social Networks and Texts. Cham:
Springer, 120-131.

Ehsani R, Solak E, Yildiz OT. 2018. Constructing a WordNet for Turkish using manual and
automatic annotation. ACM Transactions on Asian and Low-Resource Language Information
Processing 17(3):1-15 DOI 10.1145/3185664.

Ersahin B, Aktas z, Kilinc D, Ersahin M. 2019. A hybrid sentiment analysis method for Turkish.
Turkish Journal of Electrical Engineering and Computer Sciences 27(3):1780-1793
DOI 10.3906/elk-1808-189.

Eryigit G, Oflazer K. 2006. Statistical dependency parsing of Turkish. Available at https://research.
sabanciuniv.edu/id/eprint/1211/.

Faruqui M, Dodge J, Jauhar SK, Dyer C, Hovy E, Smith NA. 2015. Retrofitting word vectors to
semantic lexicons. ArXiv preprint DOI 10.48550/arXiv.1411.4166.

Franciscus N, Ren X, Stantic B. 2019. Dependency graph for short text extraction and
summarization. Journal of Information and Telecommunication 3(4):413-429
DOI 10.1080/24751839.2019.1598771.

Funke T, Khosla M, Anand A. 2020. Hard masking for explaining graph neural networks.
Available at https://openreview.net/references/pdf¢id=BHe0XVqrr7.

Guven ZA. 2023. The comparison of language models with a novel text filtering approach for
Turkish sentiment analysis. ACM Transactions on Asian and Low-Resource Language
Information Processing 22(2):1-16 DOI 10.1145/3557892.

Hand D, Christen P. 2018. A note on using the F-measure for evaluating record linkage
algorithms. Statistics and Computing 28(3):539-547 DOI 10.1007/s11222-017-9746-6.

Hershey JR, Roux JL, Weninger F. 2014. Deep unfolding: model-based inspiration of novel deep
architectures. ArXiv preprint DOI 10.48550/arXiv.1409.2574.

Hoover B, Strobelt H, Gehrmann S. 2019. exBERT: a visual analysis tool to explore learned
representations in transformers models. ArXiv preprint DOI 10.48550/arXiv.1910.05276.

Htut PM, Phang J, Bordia S, Bowman SR. 2019. Do attention heads in bert track syntactic
dependencies? ArXiv preprint DOI 10.48550/arXiv.1911.12246.

Hu Y, Shen H, Liu W, Min F, Qiao X, Jin K. 2021. A graph convolutional network with multiple
dependency representations for relation extraction. IEEE Access 9:81575-81587
DOI 10.1109/ACCESS.2021.3086480.

Kilic and Tulu (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2729 32/35


http://dx.doi.org/10.48550/arXiv.2003.10555
http://dx.doi.org/10.1093/comjnl/bxaa172
http://dx.doi.org/10.48550/arXiv.1908.08835
http://dx.doi.org/10.48550/arXiv.1810.04805
http://dx.doi.org/10.1145/3185664
http://dx.doi.org/10.3906/elk-1808-189
https://research.sabanciuniv.edu/id/eprint/1211/
https://research.sabanciuniv.edu/id/eprint/1211/
http://dx.doi.org/10.48550/arXiv.1411.4166
http://dx.doi.org/10.1080/24751839.2019.1598771
https://openreview.net/references/pdf?id=BHe0XVqrr7
http://dx.doi.org/10.1145/3557892
http://dx.doi.org/10.1007/s11222-017-9746-6
http://dx.doi.org/10.48550/arXiv.1409.2574
http://dx.doi.org/10.48550/arXiv.1910.05276
http://dx.doi.org/10.48550/arXiv.1911.12246
http://dx.doi.org/10.1109/ACCESS.2021.3086480
http://dx.doi.org/10.7717/peerj-cs.2729
https://peerj.com/computer-science/

PeerJ Computer Science

Kilic Y, Buyukeke A. 2021. An exploratory case study for Turkish sentiment classification using
graph convolutional neural networks. In: 2021 6th International Conference on Computer
Science and Engineering (UBMK). Piscataway: IEEE, 587-591.

Kipf TN, Welling M. 2016. Semi-supervised classification with graph convolutional networks.
ArXiv preprint DOI 10.48550/arXiv.1609.02907.

Koksal A, Ozgur A. 2021. Twitter dataset and evaluation of transformers for Turkish sentiment
analysis. In: 2021 29th Signal Processing and Communications Applications Conference (SIU).
Piscataway: IEEE, 1-4.

Kurt F, Kisa D, Karagoz P. 2019. Investigating the effect of segmentation methods on neural
model based sentiment analysis on informal short texts in Turkish. ArXiv preprint
DOI 10.48550/arXiv.1902.06635.

Lan Z, Chen M, Goodman S, Gimpel K, Sharma P, Soricut R. 2020. ALBERT: a lite BERT for self-
supervised learning of language representations. ArXiv DOI 10.48550/arXiv.1909.11942.

Lee J, Shin J-H, Kim J-S. 2017. Interactive visualization and manipulation of attention-based
neural machine translation. In: Proceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations, 121-126.

Limisiewicz T, Rosa R, Marecek D. 2020. Universal dependencies according to BERT: both more
specific and more general. ArXiv preprint DOI 10.48550/arXiv.2004.14620.

Liu S, Li T, Li Z, Srikumar V, Pascucci V, Bremer P-T. 2018. Visual interrogation of attention-
based models for natural language inference and machine comprehension. Available at https://
www.osti.gov/serviets/purl/1477157.

Luo D, Cheng W, Xu D, Yu W, Zong B, Chen H, Zhang X. 2020. Parameterized explainer for
graph neural network. Advances in Neural Information Processing Systems 33:19620-19631.
Marsan B, Akkurt SF, Sen M, Giirbiiz M, Giingor O, Ozates S.B, Uskiidarh S, Ozgiir A, Giingor
T, Oztiirk B. 2022. Enhancements to the boun treebank reflecting the agglutinative nature of

turkish. ArXiv preprint DOI 10.48550/arXiv.2207.11782.

McCann B, Keskar NS, Xiong C, Socher R. 2018. The natural language decathlon: multitask
learning as question answering. ArXiv preprint DOI 10.48550/arXiv.1806.08730.

Mishra P. 2022. Explainability for NLP. In: Practical Explainable AI Using Python. Berkeley:
Apress, 193-227 DOI 10.1007/978-1-4842-7158-2_7.

Oflazer K. 1994. Two-level description of Turkish morphology. Literary and Linguistic Computing
9(2):137-148 DOI 10.1093/11¢/9.2.137.

Orhan U, Tulu CN. 2021. A novel embedding approach to learn word vectors by weighting
semantic relations: SemSpace. Expert Systems with Applications 180:115146 Publisher: Elsevier
DOI 10.1016/j.eswa.2021.115146.

Ostu N. 1979. A threshold selection method from gray-level histograms. IEEE Transactions on
Systems, Man, and Cybernetics 9:62 DOI 10.1109/TSMC.1979.4310076.

Ozcelik M, Arican BN, Bakay z, Sarmis E, Ergelen O, Bayazit NG, Taner OT. 2021. HisNet: a
polarity Lexicon based on WordNet for emotion analysis. In: Proceedings of the 11th Global
Wordnet Conference. Global WordNet Association.

Pak A, Paroubek P. 2010. Twitter as a corpus for sentiment analysis and opinion mining. LREc
10:1320-1326.

Pang B, Lee L. 2008. Opinion mining and sentiment analysis. Foundations and Trends® in
Information Retrieval 2(1-2):1-135 DOI 10.1561/1500000011.

Kilic and Tulu (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2729 33/35


http://dx.doi.org/10.48550/arXiv.1609.02907
http://dx.doi.org/10.48550/arXiv.1902.06635
http://dx.doi.org/10.48550/arXiv.1909.11942
http://dx.doi.org/10.48550/arXiv.2004.14620
https://www.osti.gov/servlets/purl/1477157
https://www.osti.gov/servlets/purl/1477157
http://dx.doi.org/10.48550/arXiv.2207.11782
http://dx.doi.org/10.48550/arXiv.1806.08730
http://dx.doi.org/10.1007/978-1-4842-7158-2_7
http://dx.doi.org/10.1093/llc/9.2.137
http://dx.doi.org/10.1016/j.eswa.2021.115146
http://dx.doi.org/10.1109/TSMC.1979.4310076
http://dx.doi.org/10.1561/1500000011
http://dx.doi.org/10.7717/peerj-cs.2729
https://peerj.com/computer-science/

PeerJ Computer Science

Pope PE, Kolouri S, Rostami M, Martin CE, Hoffmann H. 2019. Explainability methods for
graph convolutional neural networks. In: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). Piscataway: IEEE.

Ramesh N, Bowen Z, Cicero N, Caglar G, Bing X. 2016. Abstractive text summarization using
sequence-to-sequence RNNs and beyond. ArXiv preprint DOI 10.48550/arXiv.1602.06023.

Ribeiro MT, Singh S, Guestrin C. 2016. why should I Trust You?”: explaining the predictions of
any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. New York: ACM, 1135-1144.

Samek W, Montavon G, Vedaldi A, Hansen LK, Miiller K-R. 2019. Explainable AlI: interpreting,
explaining and visualizing deep learning. Vol. 11700. Cham: Springer Nature.

Sanh V, Debut L, Chaumond J, Wolf T. 2020. DistilBERT, a distilled version of BERT: smaller,
faster, cheaper and lighter. ArXiv DOI 10.48550/arXiv.1910.01108.

Schlichtkrull MS, De Cao N, Titov I. 2020. Interpreting graph neural networks for NLP with
differentiable edge masking. ArXiv preprint DOI 10.48550/arXiv.2010.00577.

Tohma K, Kutlu Y. 2020. Challenges encountered in Turkish natural language processing studies.
Natural and Engineering Sciences 5(3):204-211 DOI 10.28978/nesciences.833188.

Tumasjan A, Sprenger T, Sandner P, Welpe I. 2010. Predicting elections with Twitter: what 140
characters reveal about political sentiment. Proceedings of the International AAAI Conference on
Web and Social Media 4:178-185 DOI 10.1609/icwsm.v4i1.14009.

Van der Maaten L, Hinton G. 2008. Visualizing data using t-SNE. Journal of Machine Learning
Research 9(11).

Velic¢kovi¢ P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y. 2017. Graph attention
networks. ArXiv preprint DOI 10.48550/arXiv.1710.10903.

Vinodhini G, Chandrasekaran R. 2012. Sentiment analysis and opinion mining: a survey.
International Journal 2(6):282-292.

Wang C, Wu J, Liu L, Zhang Y. 2020. Commonsense knowledge graph reasoning by selection or
generation? Why? ArXiv preprint DOI 10.48550/arXiv.2008.05925.

Wisdom S, Powers T, Pitton J, Atlas L. 2016. Interpretable recurrent neural networks using
sequential sparse recovery. ArXiv preprint DOI 10.48550/arXiv.1611.07252.

Wu L, Chen Y, Ji H, Liu B. 2021. Deep learning on graphs for natural language processing. In:
Proceedings of the 44th International ACM SIGIR Conference on Research and Development in
Information Retrieval. New York: ACM, 2651-2653.

Xu K, Hu W, Leskovec J, Jegelka S. 2018. How powerful are graph neural networks? ArXiv
preprint DOI 10.48550/arXiv.1810.00826.

Yao L, Mao C, Luo Y. 2019. Graph convolutional networks for text classification. Proceedings of the
AAAI Conference on Artificial Intelligence 33:7370-7377 DOI 10.1609/aaai.v33101.33017370.
Yildirim E, Cetin FS, Eryigit G, Temel T. 2015. The impact of NLP on Trkish sentiment analysis.

Tiirkiye Bilisim Vakfi Bilgisayar Bilimleri ve Miihendisligi Dergisi 7(1):43-51.

Ying Z, Bourgeois D, You J, Zitnik M, Leskovec J. 2019. GNNExplainer: generating explanations
for graph neural networks. Advances in Neural Information Processing Systems 32:9244-9255.

Yuan H, Tang J, Hu X, Ji S. 2020. XGNN: towards model-level explanations of graph neural
networks. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. New York: ACM, 430-438.

Kilic and Tulu (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2729 34/35


http://dx.doi.org/10.48550/arXiv.1602.06023
http://dx.doi.org/10.48550/arXiv.1910.01108
http://dx.doi.org/10.48550/arXiv.2010.00577
http://dx.doi.org/10.28978/nesciences.833188
http://dx.doi.org/10.1609/icwsm.v4i1.14009
http://dx.doi.org/10.48550/arXiv.1710.10903
http://dx.doi.org/10.48550/arXiv.2008.05925
http://dx.doi.org/10.48550/arXiv.1611.07252
http://dx.doi.org/10.48550/arXiv.1810.00826
http://dx.doi.org/10.1609/aaai.v33i01.33017370
http://dx.doi.org/10.7717/peerj-cs.2729
https://peerj.com/computer-science/

PeerJ Computer Science

Yuan H, Yu H, Gui S, Ji S. 2022. Explainability in graph neural networks: a taxonomic survey.
IEEE Transactions on Pattern Analysis and Machine Intelligence 45(5):5782-5799
DOI 10.1109/TPAMI.2022.3204236.

Yuret D, Tiire F. 2006. Learning morphological disambiguation rules for Turkish. In: Proceedings
of the Human Language Technology Conference of the NAACL, Main Conference, 328-334.

Kilic and Tulu (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2729 35/35


http://dx.doi.org/10.1109/TPAMI.2022.3204236
http://dx.doi.org/10.7717/peerj-cs.2729
https://peerj.com/computer-science/

	TurkSentGraphExp: an inherent graph aware explainability framework from pre-trained LLM for Turkish sentiment analysis
	Introduction
	Literature review
	Problem statement
	Proposed approach
	Experimental studies
	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


