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ABSTRACT
Natural language processing (NLP) augments text data to overcome sample size
constraints. Scarce and low-quality data present particular challenges when learning
from these domains. Increasing the sample size is a natural and widely used strategy
for alleviating these challenges. Moreover, data-augmentation techniques are
commonly used in languages with rich data resources to address problems such as
exposure bias. In this study, we chose Arabic to increase the sample size and correct
grammatical errors. Arabic is considered one of the languages with limited resources
for grammatical error correction (GEC) despite being one of the most popular
among Arabs and non-Arabs because of its close connection to Islam. Therefore, this
study aims to develop an Arabic corpus called “Tibyan” for grammatical error
correction using ChatGPT. ChatGPT is used as a data augmenter tool based on a pair
of Arabic sentences containing grammatical errors matched with a sentence free of
errors extracted from Arabic books, called guide sentences. Multiple steps were
involved in establishing our corpus, including collecting and pre-processing a pair of
Arabic texts from various sources, such as books and open-access corpora. We then
used ChatGPT to generate a parallel corpus based on the text collected previously, as
a guide for generating sentences with multiple types of errors. By engaging linguistic
experts to review and validate the automatically generated sentences, we ensured they
were correct and error-free. The corpus was validated and refined iteratively based on
feedback provided by linguistic experts to improve its accuracy. Finally, we used the
Arabic Error Type Annotation tool (ARETA) to analyze the types of errors in the
Tibyan corpus. Our corpus contained 49% of errors, including seven types:
orthography, morphology, syntax, semantics, punctuation, merge, and split. The
Tibyan corpus contains approximately 600 K tokens.

Subjects Artificial Intelligence, Databases, Natural Language and Speech, Text Mining, Neural
Networks
Keywords Arabic grammatical error correction, GEC, Corpus, ChatGPT, NLP, AraGEC

INTRODUCTION
The Arabic language has a great deal of influence worldwide. It is an ancient language with
deep roots in human history. The Holy Qur’an’s language is Arabic, which has a special
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religious status among Muslims worldwide. Many of the most significant literary and
philosophical works in human history have been written in Arabic, making it a
sophisticated literary and poetic language (Bakalla, 2023). In addition to being an
important scientific and intellectual language, Arabic has contributed greatly to the
transfer of knowledge and culture to Europe and other countries as it was the language of
scholars and philosophers during the Middle Ages (Chejne, 1968).

One of the most important and famous features of Arabic is that it consists of three
main versions: classical Arabic, Modern Standard Arabic (MSA), and regional dialects
(Ferguson, 1959). Classical Arabic was used in the Holy Quran and ancient literary texts
between the 7th and 9th centuries (Holes, 2004). Non-native Arabic speakers may find it
difficult to learn classical Arabic or Quranic Arabic because of the special symbols
(Tanween) that indicate proper pronunciation. MSA is the official language used primarily
in newspapers, television broadcasts, and films. As it is not commonly spoken as a first
language, it is a language without native speakers. There are currently 274 million speakers
worldwide (https://www.statista.com/statistics/266808/the-most-spoken-languages-
worldwide/). MSA is a formal language that is not used in daily life. Arabic is a vast
language with a variety of dialects, and all Arabic speakers learn a local dialect, such as
Mesopotamian Arabic and Egyptian Arabic. Meanwhile, dialectal Arabic is used by Arabs
as a daily language of conversation. Although Arabic dialects are fundamentally related,
they cannot be understood by one another because Arab countries speak different dialects
(Holes, 2004).

Because MSA is rarely used in daily life, it is sometimes mixed with local dialects.
Moreover, because of the rich and intricate nature of Arabic, ambiguity can lead to
incomprehensible and inaccurate text. In addition, Arabic grammar presents several
semantic, syntactic, and morphological challenges owing to its flexible word order,
diacritic, and agglutination properties. Furthermore, considerable deficiencies at the
Arabic morphological level have hampered extensive research in this area. At higher
research levels, semantics and syntax did not significantly advance. Therefore, GEC is
becoming increasingly important for native and non-native speakers.

GEC automatically detects and corrects grammatical errors in a text (Bryant et al.,
2023). Recent approaches to grammatical error correction, such as the seq2seq model,
require large, high-quality parallel datasets. However, many languages do not contain such
data, making it difficult to train these models. Other languages contain only a limited
number of examples, making it difficult to build models that can correct all types of
linguistic errors. Moreover, the creation of such datasets can be time-consuming and
expensive. Therefore, most researchers use data augmentation techniques to increase the
size of GEC parallel data. Data augmentation techniques generate more diverse training
examples, which enhances the model’s ability to generalize to unknown errors. Various
error types and contexts can be introduced using data augmentation to balance the dataset.
Consequently, GEC systems have become more robust and accurate.

The Arabic language has limited resources. Only two parallel corpora are available for
GEC research: QALB-14 (Mohit et al., 2014) and QALB-15 (Rozovskaya et al., 2015). The
QALB-14 and QALB-15 are part of the Qatar Arabic Language Bank (QALB) project.
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QALB aims to create a large corpus of Arabic texts that have been manually corrected, such
as user comments on news sites, essays written by native and non-native speakers, and
machine translation text. A specialized annotation interface was developed for this project,
along with comprehensive annotation guidelines (Jeblee et al., 2014; Obeid et al., 2013). A
total of 20,430 and 1,542 samples were available from the two training corpora, (QALB-14)
and (QALB-15). Despite the researchers’ complete reliance on these data, they have some
shortcomings, including inadequate coverage of Arabic language defects, inconsistent
punctuation correction, and small size compared with other datasets in other languages.

This study aims to contribute to the development of an Arabic corpus for grammatical
error correction by employing ChatGPT to generate paired sentences based on common
errors found in Arabic books. First, we collected a diverse range of pair Arabic sentences;
one containing common grammatical errors made by native speakers and other corrected
versions of the sentence. The sentences collected from the three Arabic books were short,
ranging from one to seven words. These sentences were extracted from three Arabic books
namely “A Dictionary of Common Grammatical, morphological, and Linguistic Errors”
(https://archive.org/details/20210306_20210306_1934/mode/2up), “Common linguistic
errors in cultural circles” (Alrehili & Alhothali, 2024), “Common linguistic errors” (https://
www.alukah.net/books/files/book_5755/bookfile/akhtaa.pdf). Moreover, we used the A7’ta
corpus (Madi & Al-Khalifa, 2019) which is composed of 466 short sentence pairs taken
from a book called Linguistic Error Detector (Saudi Press). Second, we instructed the
ChatGPT model to generate full sentence pairs using our collected short sentence pairs,
one containing the error and the other free from errors. Additionally, the corrected
versions of the corpus were annotated and all grammatical errors were corrected by
experts, creating a valuable resource for training and evaluating the performance of the
Arabic GEC. Finally, we analyzed the types of errors generated in our corpus using the
ARETA tool (Belkebir & Habash, 2021). We make our corpus publicly available. The
contributions of this study are as follows.

. Collect and organize short Arabic sentences, including common grammatical errors,
from various Arabic books as a guide.

. Using ChatGPT as a data augmenter, a full, long, and error-free Arabic corpus can be
generated from the guiding sentences, resulting in an error-prone Arabic corpus.

. Assuring that annotated errors are accurate and relevant by engaging linguistic experts
to review and validate them manually.

. The corpus was validated and refined iteratively based on the feedback provided by
linguistic experts. Understanding the distribution and characteristics of errors in
different contexts by analyzing the linguistic properties of the corpus.

The remainder of this artcile is organized as follows: first, we discuss the available Arabic
corpora and studies that used ChatGPT as a data aggregator. Next, we describe the
methodology used to build the GEC corpus. Then, we describe our experimental setup.
Subsequently, we analyze the type and percentage of errors in our corpus. Next, we
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describe the application implications and limitations of our corpus. Finally, we summarize
our contributions and outline future directions for Arabic GEC research.1

RELATED WORK
This section discusses the Arabic corpus available for GEC and recent research using
ChatGPT as a data augmentation for GEC.

Arabic corpus
Five Arabic GEC datasets are publicly available for grammatical error correction. The first
two are derived from the shared QALB-14 (Mohit et al., 2014) and QALB-15 (Rozovskaya
et al., 2015) tasks. In addition to these, there are the A7’ta corpus (Madi & Al-Khalifa,
2019), the ZAEBUC dataset (Habash & Palfreyman, 2022) and Lang-8 corpus (Mizumoto
et al., 2011). None of them were manually annotated for a specific type of error. An
overview of the dataset statistics is presented in Table 1.

The QALB corpus is one of the components of the QALB project and was created as
part of it. In the QALB project, large manual correction corpora for a variety of Arabic
texts were developed, including texts written by native and non-native authors and
machine translation outputs.

The QALB-14 (Mohit et al., 2014) is a compilation of MSA comments written by native
speakers on the Al Jazeera News website. Both native and non-native Arabic speakers were
addressed in QALB-15. Learners of Arabic as a second language (L2) contributed texts to
the QALB-15 (Rozovskaya et al., 2015), extracted from two learner corpora: the Arabic
Learner Corpus (ALC) (Alfaifi & Atwell, 2012) and the Arabic Learners Written Corpus
(ALWC) (Farwaneh & Tamimi, 2012). The annotation process was divided into three
phases: automatic preprocessing, automatic spelling corrections, and manual annotation
by humans (annotators). They used morphological analysis (Habash & Rambow, 2005)
and the disambiguation system MADA (version 3.2) (Habash, Rambow & Roth, 2009) to
automate spelling corrections. Annotators were required to correct spelling, punctuation,
word choice, morphology, syntax, and dialect errors. There were 21,396 sentences in the
QALB-14 Corpus and 1,533 sentences in the QALB-15 corpus, divided into training,
development, and test sentences.

The QALB corpus contains valuable Arabic data but not all types of errors, such as
lengthening short vowels, Nun dan Tanwin confusion, and shortening long vowels
(Belkebir & Habash, 2021). The datasets contained inconsistent manual annotations of
punctuation corrections; for example, there was a space between the full stop and the word.

A7’ta (Madi & Al-Khalifa, 2019) is a parallel monolingual corpus that presents Arabic
texts in parallel. A total of 470 erroneous sentences and 470 correct sentences were found.
Sentences were collected manually from a book called the Linguistic Error Detector (Saudi
Press), which was designed to guide writers and readers in correct Arabic grammar usage.
In this corpus, there are only 3,532 tokens, the majority of which are incomplete sentences,
which cannot be used alone for deep learning.

ZAEBUC (Habash & Palfreyman, 2022) is a bilingual corpus annotated in Arabic and
English by first-year university students at Zayed University. Designed to represent

1 Portions of this text were previously
published as part of a preprint (Alrehili &
Alhothali, 2024).
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bilingual writers, one writing in their native language and one writing in their second
language, the corpus contained short essay bilingual corpora matched to writers. The
corpus creation process involved four steps. The first step was to obtain approval from
ZU’s IRB board and then contact the faculty teaching the targeted courses. Written consent
was obtained from all participating students. In parallel to the second step, manual text
correction and CEFR annotation were performed independently. Morphological
annotation followed text correction depending on the results. Finally, the semi-automatic
annotations were manually corrected. There were 214 sentences in total, which was a
relatively small corpus.

The Lang-8 corpus (Mizumoto et al., 2011) ranks as one of the largest corpora for
training grammatical error correction systems based on machine translation. Furthermore,
it contains nearly 80 languages of learners and corrected sentences based on Lang-8’s
(https://lang-8.com/) revision logs. There are approximately 737 sentence pairs in Arabic,
which is one of the top 20 languages. However, the Lang-8 corpus is not suitable for
evaluation because annotators do more than correct a learner’s sentence; it also provides
feedback. Learners can benefit from these comments. However, the comments were merely
noise in an evaluation dataset. Moreover, it is possible to find Arabic texts mixed with the
learners’ language.

ChatGPT for data augmentation
ChatGPT has recently demonstrated effective GEC performance using zero-shot and few-
shot prompts (Wu et al., 2023; Fang et al., 2023; Loem et al., 2023). ChatGPT is used in
GEC in various ways. For example, Zhang et al. (2023) evaluated the effectiveness of
ChatGPT as a corrector for GEC by using a prompt-based approach. In-structured
ChatGPT to correct sentences for grammatical errors. In this study, perturbations
unrelated to errors were introduced into ChatGPT to evaluate the context robustness.

Moreover, ChatGPT used as a data augmenter, such as in Fan et al. (2023), introduced
GrammarGPT, an open-source Large Language Model (LLM) that is designed to correct
native Chinese grammar errors. Fan et al. (2023) studied ChatGPT-generated and

Table 1 Available Arabic parallel corpus.

Corpus Split Line Words Level Domain

QALB-14 Train 19.4 K 1 M L1 Comments

Dev 1 K 54 K L1 Comments

Test 948 51 K L1 Comments

QALB-15 Train 310 43.3K L2 Essays

Dev 154 24.7 K L2 Essays

Test-L1 158 22.8 K L2 Essays

Test-L2 940 48.5 K L2 Comments

ZAEBUC No spilt 214 33,376 L1 Essays

A7’ta No spilt 466 – L1 Sentences

lang-8 No spilt 737 – L2 Comments
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human-annotated datasets in conjunction with an error-invariant augmentation method
to achieve better accuracy when correcting native Chinese grammatical errors. They
guided ChatGPT in generating ungrammatical sentences by providing clues and manually
correcting sentences collected from websites without clues. The model was enhanced to
correct native Chinese grammatical errors using an error-invariant augmentation method.
A hybrid dataset of ChatGPT-generated and human-annotated data was used to fine-tune
open-source LLMs with instruction tuning. Native Chinese grammatical error correction
using open-source LLMs was demonstrated using this approach. In addition, it can be used
to introduce natural language explanations for correction reasons. Kaneko & Okazaki
(2023) introduced a method called Controlled Generation with Prompt Insertion (PI) that
allows LLMs to explain the reasons for corrections in natural language in the context of
GEC. The GEC explanations were improved using Chat-GPT. LLMs are used to explain
the correction reasons in natural language using ChatGPT in a technique called controlled
generation with PI. The LLMs produced better correction reasons by inserting edit
prompts during generation and explicitly engaging them in providing explanations for all
edits. According to the study, PI led to enhanced performance when describing the
correction reasons for all correction points compared to using the original prompts for
generation.

The only Arabic study that has used ChatGPT to augment data is that of Kwon et al.
(2023), who used ChatGPT to inject grammatical errors into Arabic text. They created a
parallel dataset using ChatGPT by selecting and corrupting 10,000 correct sentences from
an original training set. Therefore, note that our approach to increasing the amount of data
using ChatGPT is unique.

To the best of our knowledge, this is the first study to augment data by extracting
sentence fragments from books (guide sentences) and instructing ChatGPT to generate
two sentences using guide sentences, one correct and one with errors. According to an
extensive review, there is a lack of research utilizing similar techniques for data
augmentation. A novel avenue for expanding datasets was created by leveraging ChatGPT,
which holds considerable promise across several fields. In addition to enriching the
available data, this innovative method illustrates the versatility and adaptability of
ChatGPT. Exploring and validating this approach can significantly advance this field and
open doors for new possibilities and insights.

APPROACH
Figure 1 shows the proposed approach. We began by collecting pairs of sentences from
Arabic books, one of which was correct and the other contained grammatical errors. This
is called a guide sentence. There is also an Arabic corpus called a7’ta that contains
sentences extracted from Arabic books. Guide sentences are usually short with limited
tokens and incomplete sentences. ChatGPT was then instructed to construct two useful
sentences based on the guide sentences: one with correct guide sentences and the other
with grammatical errors based on incorrect guide sentences. In addition, the data were
reviewed by a human annotator to ensure that they were accurate and did not contain
grammatical errors.
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Data collection
Owing to the lack of parallel Arabic corpora, we initially collected pairs of correct and
incorrect sentences. Various sources including books and available corpus were used
during this phase. The following are the descriptions of the three Arabic books used:

. A Dictionary of Common Grammatical, morphological, and Linguistic Errors:
Several common linguistic errors are highlighted in this dictionary book to alert Arabic
language students. Four main types of errors are discussed in “A Dictionary of Common
Grammatical, morphological, and Linguistic Errors”: Syntactic errors, errors in transitive
verbs with prepositions, errors in grammar, morphology, and sentence structure, and
errors in correctness and semantics.

. Common linguistic errors in cultural circles: It contains six types of errors, which
include errors in syntax, nouns, verbs, linguistic structures, masculine and feminine, and
phonetics.

. Common linguistic errors: This dataset contains approximately 83 sentence pairs with
the most common linguistic errors in Arabic.

Table 2 lists the number of sentences and types of errors included in each book. The
total number of sentences was 3,166. In addition, there is an available corpus called A7’ta
(Madi & Al-Khalifa, 2019), which contains 466 sentence pairs extracted from a linguistic
error detector (Saudi Press). It contains eight types of errors: syntactic, morphological,
semantic, linguistic, stylistic, spelling, punctuation, and the use of informal and borrowed
words (Madi & Al-Khalifa, 2019).

Data pre-processing
Preprocessing was performed once valuable linguistic sources were gathered. We manually
extracted sentences from these sources from the hand sides of the books. As shown in
Fig. 2, the books contained correct and incorrect sentences along with explanations and
clarifications. A separate file was created for each correct and incorrect sentence pair. One
file contained the correct sentences, and the other contained incorrect sentences. Several
obstacles were encountered, including the existence of correct sentences without incorrect
sentences. In this case, we repeated the correct sentence in the files of correct sentences and

Figure 1 Process of creating the Tibyan corpus. Full-size DOI: 10.7717/peerj-cs.2724/fig-1
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incorrect sentences to increase the sample size and avoid ignoring any errors. In some
cases, there was more than one correct sentence equivalent to one incorrect sentence;
therefore, all correct sentences were placed in separate lines, and incorrect sentences were
repeated for each correct sentence.

A7’ta corpus has 300 folders. Each book’s eight main categories were further divided
into eight categories. For each subcategory within the main category, there are many
subfolders within the folder for each error type. Each error-type folder contains two files:
one for correctly written sentences (correctness) and another for erroneous sentences
(error). Sentence pairs were manually extracted from all folders. We then saved them in
two separate files: one containing errors, and the other containing correct sentences.

Data augmentation
The data collected in the previous stage consisted of sentences of one to eighteen words, as
shown in Fig. 3. The average word length was four words. At least one word differed
between the sentence pairs. Moreover, it can be expressed as part of a sentence or as an
incomplete sentence. These data are not valuable for many modern approaches such as
seq2seq (Sutskever, Vinyals & Le, 2014) and seq2edit (Stahlberg & Kumar, 2020), which
require large amounts of data. Therefore, we used ChatGPT to convert parts of the
sentences into full sentences. ChatGPT is a machine learning and artificial neural network-
based artificial intelligence language model. ChatGPT supports advanced natural-language
understanding and generation, making it useful for a wide range of applications. ChatGPT
was used for creative text synthesis, writing assistance, content generation, translation, and
natural interactions with users in chatbots. Several areas of artificial intelligence can benefit

Table 2 Arabic books used in the data collection phase.

Book # Sentence Errors type

A dictionary of common grammatical, morphological, and linguistic errors 2,241 Syntactic errors

Verbs with prepositions errors

Grammatical errors

Morphology

Sentence structure

Semantics errors

Common linguistic errors in cultural circles 842 Syntax errors

Nouns errors

Verbs errors

Linguistic structures errors

Masculine and feminine errors

Phonetic errors

Common linguistic errors 83 Syntactic errors

Grammatical errors

Morphological errors

Punctuation errors
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from the ChatGPT technology, which represents a qualitative leap in natural language
understanding.

In this study, we employ ChatGPT to augment parallel data for grammatical error
correction. By providing ChatGPT with the correct partial sentences obtained during data
collection, we instructed it to construct a complete and useful sentence. We then instructed
ChatGPT to replace the correct sentence fragment with an incorrect sentence fragment
and generate grammatical errors, resulting in parallel data. Data were stored in two
separate files. The first file contains a generated sentence containing the correct fragment,
whereas the second file contains the same sentence but with the correct fragment replaced
with an incorrect fragment, and contains grammatical errors. Using this innovative

Figure 2 Sample of data exist in books. Full-size DOI: 10.7717/peerj-cs.2724/fig-2

Figure 3 Sample of data after data collection phase. Full-size DOI: 10.7717/peerj-cs.2724/fig-3
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approach, we can enhance the ability of linguistic models to understand and generate texts
better and more accurately, which enhances the quality and diversity of data. The
flowchart in Fig. 4 shows a parallel corpus created by using ChatGPT as a data
augmentation tool.

Using ChatGPT, we improved data augmentation by combining manual and automated
approaches. The research employed two OpenAI models in this study: GPT-3.5 for
automated sentence generation and GPT-4 for a manual approach via the ChatGPT
interface.

In the manual approach, we manually provided ChatGPT-GUI (OpenAI, version GPT-
4) with correct partial sentences derived from the a7’ta corpus. At the time of this study,
the ChatGPT Interface only supported the GPT-4 model. ChatGPT was then instructed to
insert these sentences into the context of a useful sentence comprising five sentences and
200 words. Subsequently, we instructed ChatGPT to replace the correct partial with an
incorrect partial. We then used ChatGPT to insert common grammatical errors into the
incorrect sentences. For accuracy and relevance, we manually reviewed and validated the
generated sentences based on the following requirements: no errors, including correct and
incorrect parts in each generated sentence, and consistency with the correct part of the
given sentence. Moreover, we manually verified that the correct part has not been replaced
with another word that is compatible with the context or one that is synonymous with the
correct part. The generated sentences may be inaccurate and may not include all the
required information. In this case, we use ChatGPT to generate new sentences that are
compatible with the requirements. Although this method was time-consuming, it
guaranteed high-quality results. Figures 5–7 show an example of manual ChatGPT
sentence generation. Figure 7 illustrates examples of linguistic errors, which are
categorized as follows:

. Misspellings: An example would be “ ” (The second spring) instead of “ ”

(Another spring). The omission or replacement of diacritics and miswriting words are
common mistakes in typing or pronunciation. This example removes the definite article
“ ” and replaces “ ” with “ ”.

. Grammatical errors: For example, “ ” (Muslims are doing) rather than

(Muslims are doing.) “ ”. A violation of Arabic subject-verb agreement rules is

caused by ending “ ” “Muslims” in the incorrect case.

. Morphological errors: For instance, “ ” instead of “ ”. Derivation and
incorrect plural forms require better morphological analysis.

. Punctuation errors: “ ” “The Holy Quran” without quotation marks or commas.
Punctuation errors disrupt sentence flow.

. Semantic errors: For example, “ ” “political events unrelated
to religion” are inserted into religious contexts. Context-based meaning generation
models are challenged by semantic distortions.

. Word merging and splitting: For example, “ ” instead of “ ” This example
separates the conjunction letter “ ” from the word “ ”. It should be written without
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Figure 4 A flowchart that illustrates the process of generating sentences with ChatGPT.
Full-size DOI: 10.7717/peerj-cs.2724/fig-4
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any separation, “ ”. These errors are caused by casual mistakes made during writing

or typing.

Using this automated approach, we developed a Python script that uses the ChatGPT
API (OpenAI, version gpt-3.5-turbo-instruct). To increase the dataset, we launched
automated queries on ChatGPT to promote the creation of complete and correct sentences
containing the correct guide sentences. Then, we replaced the correct guide sentence with
an incorrect one and generated common grammatical errors, resulting in parallel data. For
automatic generation, we used all data generated from books and the a7’ta corpus as
inputs. It creates five sentences for each correct part of a sentence, which are between 150
and 200 words long. This method is characterized by speed, accuracy, and high-quality
data generation.

Figure 5 An example of manual ChatGPT correct sentence generation. Full-size DOI: 10.7717/peerj-cs.2724/fig-5

Figure 6 An example of manual ChatGPT incorrect sentence generation. Full-size DOI: 10.7717/peerj-cs.2724/fig-6
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In conclusion, GPT-3.5 adequately performed the automated generation tasks in this
study. In addition, preliminary experiments have shown that GPT-3.5’s outputs are
sufficient for generating high-quality parallel sentences.

Human annotation
We engaged professional annotators to ensure that the data generated by ChatGPT is
correct and error-free. We only provide annotators with data generated by ChatGPT
assumed to be correct and part of a corrected sentence (guide sentences) extracted from
books, whereas incorrect data are kept without an audit. To ensure the reliability of the
human annotation, annotation was performed in two phases.

In the first phase, we instructed the annotator to follow the same guidelines and rules
developed by Zaghouani et al. (2014) to ensure the uniformity of human annotation and
compatibility with previous standards (QALB-14 and QALB-15). We also instructed
annotators to correct the morphology, punctuation, spelling, syntax, word choice, and
dialectal usage within a given sentence without affecting the wording. Annotators are only
required to specify the appropriate corrective action during annotation and not the type of
error. Moreover, it instructs annotators to keep the correct parts of sentences extracted
from books, without modifying their wording only adapting to the context if necessary. We
instructed the annotator to highlight any repeated sentence or word that needs to be
removed with a yellow marker instead of deleting it. As soon as we received annotated
correct data from the annotator, we manually removed any repeated words and sentences
in both the correct and incorrect files to ensure compatibility between parallel data and to
make sure all copies were consistent. After the first phase, the following comments were
received:

Figure 7 An example of manual ChatGPT generating grammatical errors in an incorrect sentence.
Full-size DOI: 10.7717/peerj-cs.2724/fig-7
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. Some words and phrases are repeated and they should be deleted from the sentences.

. A few words were inserted into sentences that were irrelevant to the context. This should
be replaced with a more appropriate word or deleted.

. Some phrases contain religious transgressions or defects from legal, historical, or even
realistic standpoints; therefore, they must be changed or deleted. Religious transgressions
include acts such as incorrectly attributing statements to the Prophet Muhammad, peace
and blessings be upon him. Historical defects such as falsely attributing untrue
characteristics to famous and prominent figures like Khalid ibn Al-Walid, such as
stinginess, frailty, or similar characteristics.

We then proceed to the second phase of annotation. A qualified linguistic annotator
experienced in Islamic history and jurisprudence reviews the text to ensure that sentences
are accurate and error-free and modify any questionable sentences. To ensure that a word
fits the context, we instructed the annotator to delete or modify the word to fit the context
without modifying sentence wording, remove duplicate words if separated by
conjunctions, and remove repetitive phrases. Furthermore, if they find a phrase that is not
related to context or contains transgressions, they request to change it by a token or phrase
related to context and highlight it for updating later in incorrect sentence pairs. This
process aimed to achieve high data accuracy and quality through the efforts of professional
annotators.

EXPERIMENT
Setting
We used gpt-3.5-turbo-instruct for the ChatGPT API. The maximum sequence length was
1,400, the target length was 200, the temperature was 0.8, and the number of sentences
generated was five. The prompt consisted of correctly guided sentences from books. The
total number of guide sentences was 3,627.

Implementation details
Implementation was carried out in Python using the OpenAI library and langid for
language identification. We first use the following promote “Create a useful sentence
consisting of target length words using the guide correct sentence without any changes in
the letters or semantic of the phrase: correct_guide” to generate a full corrected sentence.
The phrase in our previous promotion was a correct guide sentence, and we instructed the
ChatGPT API not to change any letters or semantics so that the phrase’s meaning would
remain the same, because in Arabic, changing one letter could alter the meaning of the
entire sentence. After executing the previous promotion, we obtained five sentences that all
included the correct guide sentence separated by a full stop in one line. The generated
sentence may not be complete and may end in an incomplete word. To ensure the
generation of complete sentences, we identified the maximum sequence length as 1,400;
therefore, the generated sentences were not all of the same length but varied from 200 to
1,400. We then applied post-processing to ensure proper formatting and punctuation of
the resulting sentences. After that, to construct an incorrect sentence, we only search for
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the correct guide in the correct sentence and replace it with the incorrect guide while
maintaining the sentence’s structure. Finally, we also promote ChatGPT to generate errors
in an incorrect sentence pair only by using the following prompt: “In the following
sentence, please add spelling, grammar, morphology, punctuation, semantic, and
morphology errors, as well as merging and separating words”. We used the previous
promotion to ensure that the erroneous sentences were diverse and contained a wide range
of errors in addition to those derived from books.

Evaluation metric
For text generation models such as ChatGPT, BERTScore is used to calculate the precision,
recall, and F1-scores by comparing the generated text to a target text. BERTScore (Zhang
et al., 2019) is a metric that measures the similarity between two pieces of text using
contextual embeddings from BERT (Bidirectional Encoder Representations from
Transformers). Precision measures the number of relevant (correct) words in the
generated text. The recall value is the percentage of relevant words in the text generated by
those in the reference text. In F1-scoring, precision and recall were balanced, providing a
balanced measure.

RESULTS
The corrected and uncorrected sentences generated by ChatGPT were compared with
sentences corrected by a human after annotation. We demonstrated the effectiveness of
ChatGPT in generating error-free human-like sentences. Compared to human-corrected
sentences, ChatGPT-generated corrected sentences resembled those produced by humans
after annotation, as listed in Table 3. The ChatGPT model constructs sentences that follow
a natural flow and coherence, similar to human speech. By rigorously analyzing ChatGPT’s
output, we demonstrated its remarkable ability to produce sentences with accuracy and
naturalness comparable to human corrections. A demonstration of ChatGPT’s ability to
seamlessly integrate linguistic nuances and grammatical rules, ultimately delivering
outputs indistinguishable from those produced by humans, serves as an advancement in
natural language processing.

ANALYSIS
In this section, we highlight some of the statistics from our data. We then used the ARETA
tool (Belkebir & Habash, 2021) to analyze the types of errors when receiving two data files,
one with errors and the other without errors, and determine the type of error. ARETA is a
system for extracting and annotating Arabic error types. ARETA aims to address the
complex and unique challenges of Arabic while being inspired by ERRANT (Bryant, Felice
& Briscoe, 2017). Natural language processing (NLP) techniques and Arabic
morphological analyzers are used to analyze a comprehensive database of grammatical and
linguistic errors. The system runs unsupervised, meaning it does not require prior training
or ongoing human involvement. Also, it can be applied to a wide range of texts, such as the
QALB 2014 competition entries, for evaluating linguistic error correction models.
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The ARETA tool is based on Alfaifi & Atwell (2014) comprehensive error classification,
which classified 29 Arabic language error tags. The ARETA tool includes two
modifications to Afifi’s comprehensive error classification system. First, merging (MG)
and splitting (SP) errors were added to accommodate one-to-many corrections.
Furthermore, they removed all other error tags such as OO, MO, XO, SO, and PO,
representing orthographic, morphological, syntactic, semantic, and punctuation errors,
respectively. Therefore, there were seven classes and 26 error tags in the ARETA
taxonomy.

General statistics and observations
Table 4 summarizes the general statistics of the Tibyan Corpus . The total number of words
was 618,598 for correct data and 604,592 for incorrect data. The average sentence length
indicated the number of words in each sentence. In the correct data, there are
approximately 99.92 words, whereas in incorrect data, there are approximately 97.66
words. The “Average Token Length” shows the average number of characters in each
token. In the correct data, there are approximately 4.85 characters per word, whereas in the
incorrect data, there are approximately 4.88 characters per word. A “unique token” shows
several unique tokens (or words). The error-free data contained 71,976 unique tokens,
whereas the error-containing data contained 81,905 unique tokens.

Analysis of error type before data augmentation
In this section, we analyze the existing error types before data augmentation for both the
A7’ta corpus and our extracted data from the books described in the data collection
section, using the ARETA tool. The A7’ta corpus consists of 466 sentences and 2,208
tokens. According to the ARETA tool, 22 error types exist in the a7’ta corpus, as listed in
Table 5. The error rate is 33%. The corpus lacks four types of errors: lengthening short
vowels (OG), shortening long vowels (OS), merged words (MG), and words that are split

Table 3 The BERTScore of correct and incorrect in generating sentences.

Precision Recall F1

Correct generated sentences 0.97% 0.97% 0.97%

Incorrect generated sentences 0.88% 0.89% 0.88%

Table 4 General statistics for Tibyan corpus.

Correct data Incorrect data

Lines 6,191 6,191

Words 618, 598 604, 592

Average sentence length 99.91 97.65

Average token length 4.84 4.88

Unique tokens 71, 976 81, 905
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(SP). Owing to an insufficient number of words, a limited number of sentences, and the
lack of focus on these types of errors in the a7’ta corpus. Moreover, we observed that
lengthening short vowels (OG) error types appeared in combination with Additional Char
(OD) error types. Despite its low frequency, it appears only three times. Figure 8 shows the
types of combination errors and their frequencies. The ARETA tool generates these errors
automatically, and it is common for a single word in Arabic to contain multiple errors.

Our extracted data from the books described in “Data Collection” consists of 3,166
sentences and 12,407 tokens. According to the ARETA tool, 22 error types exist in our
data, as listed in Table 5. The error rate is 31%. The corpus lacks four types of error:
lengthening short vowels (OG), shortening long vowels (OS), confusion in Alif Fariqa
(OW), and words that are split (SP). Moreover, a token may contain more than one type of

Table 5 Analysis of error type before data augmentation.

Tag Error description A7’ta Our extracted data Both

Orthography OA Alif, Ya & Alif-Maqsura 4 0% 20 0% 24 0%

OC Char order 1 0% 12 0% 13 0%

OD Additional char 22 1% 176 1% 198 1%

OG Lengthening short vowels 0 0% 0 0% 0 0%

OH Hamza errors 69 4% 71 1% 140 1%

OM Missing char(s) 12 1% 90 1% 102 1%

ON Nun & Tanwin confusion 1 0% 12 0% 13 0%

OR Char replacement 19 1% 375 3% 394 3%

OS Shortening long vowels 0 0% 0 0% 0 0%

OT Ha/Ta/Ta-Marbuta confusion 3 0% 17 0% 20 0%

OW Confusion in Alif Fariqa 3 0% 0 0% 3 0%

Morphology MI Word inflection 40 2% 100 1% 140 1%

MT Verb tense 2 0% 18 0% 20 0%

Syntax XC Case 160 9% 872 7% 1,032 8%

XF Definiteness 20 1% 32 0% 52 0%

XG Gender 20 1% 156 1% 176 1%

XM Missing word 33 2% 226 2% 259 2%

XN Numbers in plural, dual, and singular 12 1% 51 0% 63 0%

XT Unnecessary word 69 4% 684 6% 753 6%

Semantics SF Conjunction error 9 1% 3 0% 12 0%

SW Word selection error 33 2% 681 6% 714 5%

Punctuation PC Punctuation confusion 6 0% 1 0% 7 0%

PM Missing punctuation 16 1% 11 0% 27 0%

PT Unnecessary punctuation 3 0% 25 0% 28 0%

Merge MG Words are merged 0 0% 4 0% 4 0%

Split SP Words are split 0 0% 0 0% 0 0%

Unknown UNK Unknown errors 14 1% 194 2% 208 2%

Comb. - Error combinations 49 3% 400 3% 449 3%

571 33% 3,831 31% 4,402 32%
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error. Figure 9 shows the types of combination errors and their frequencies. We found that
OD and OR error types usually existed together at 102 frequencies, followed by OH and
OM at 65 frequencies. Another error combination exists at frequencies less than 20.
Moreover, we observed that low-frequency error types appeared in combination with other
types, such as OD and OG.

When the data were combined, the total error rate was 32%. There were 23 types of
errors and a lack of three types: lengthening short vowels (OG), shortening long vowels
(OS), and words that are split (SP). This is due to the lack of a sufficient number of words
and a limited number of sentences. As the tool did not accurately classify some semantic
errors, 449 unknown errors were found, such as when we replaced an MSA token with a
dialect or foreign word, using a word that differed from its meaning, or when more than
one error was present in a phrase. Figure 10 shows the top ten types of combination errors
and their frequencies. We observed that some error types usually exist together, such as
OD with OR and OH and OM error types.

Analysis of error type after data augmentation
In this section, we analyze the error type after data augmentation, and before and after
human annotation.

Analyze the error type before human annotation
The error rate increased by 7% for the a7’ta corpus (manual generation), 13% for our
extracted data, and 11% for all the data, as listed in Table 6. Our corpus contained 23 types

Figure 8 Types of combination errors and their frequencies in A7’ta corpus.
Full-size DOI: 10.7717/peerj-cs.2724/fig-8
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Figure 9 Types of combination errors and their frequencies in our extracted data. Full-size DOI: 10.7717/peerj-cs.2724/fig-9

Figure 10 Types of combination errors and their frequencies in A7’ta corpus. Full-size DOI: 10.7717/peerj-cs.2724/fig-10
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of errors. Three types of errors do not exist in the Tibyan corpus: OG, OS, and SP. Only
four instances of the ON error type were in the Tibyan corpus. Although some errors exist
at high frequencies such as OT, OH, PC, and OA, others exist at low frequencies such as
ON, MT, and SF. Figure 11 shows the error combinations of the top five low-frequency
classes. The types of errors that appear in small percentages appear in combination with
other types in varying percentages, as shown in Fig. 10. In conclusion, all types of errors
appeared in varying proportions, either alone or in combination. Figure 11 shows the error
combination for the top five low-frequency classes. The types of errors that appeared in
small percentages appear combined with other types in varying percentages, as shown in
Fig. 10. In conclusion, all types of errors appeared in varying proportions, either alone or in
combination.

Table 6 Analysis of error type after data augmentation before human annotation.

Tag Error description A7’ta corpus (Manual) Our data + A7’ta (Automatic) Tibyan corpus

Orthography OA Alif, Ya & Alif-Maqsura 1,615 3% 20,170 4% 21,785 4%

OC Char order 447 1% 197 0% 644 0%

OD Additional char 289 1% 354 0% 643 0%

OG Lengthening short vowels 0 0% 0 0% 0 0%

OH Hamza errors 3,881 8% 45,210 9% 49,091 9%

OM Missing char(s) 157 0% 4,333 1% 4,490 1%

ON Nun & Tanwin Confusion 0 0% 4 0% 4 0%

OR Char Replacement 2,446 5% 1,894 0% 4,340 1%

OS Shortening long vowels 0 0% 0 0% 0 0%

OT Ha/Ta/Ta-Marbuta Confusion 8,608 17% 56,273 12% 64,881 12%

OW Confusion in Alif Fariqa 10 0% 135 0% 145 0%

Morphology MI Word inflection 122 0% 328 0% 450 0%

MT Verb tense 1 0% 38 0% 39 0%

Syntax XC Case 284 1% 8,081 2% 8,365 2%

XF Definiteness 314 1% 1,193 0% 1,507 0%

XG Gender 18 1% 179 0% 197 0%

XM Missing word 18 0% 256 0% 274 0%

XN Numbers in plural, dual, and singular 26 0% 124 0% 150 0%

XT Unnecessary word 231 0% 602 0% 833 0%

Semantics SF Conjunction error 4 0% 71 0% 75 0%

SW Word selection error 292 1% 2,951 1% 3,243 1%

Punctuation PC Punctuation confusion 269 1% 31,822 7% 32,091 6%

PM Missing punctuation 307 1% 6 0% 313 0%

PT Unnecessary punctuation 12 1% 508 0% 520 0%

Merge MG Words are merged 78 0% 2,112 0% 2,190 0%

Split SP Words are split 0 0% 0 0% 0 0%

Unknown UNK Unknown errors 0 0% 0 0% 0 0%

Comb. - Error combinations 1,635 3% 36,940 8% 38,575 7%

20,559 40% 213,784 44% 235,055 43%
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Analyze the error type after human annotation
In comparison with analyzing the error type following data augmentation before human
annotation, we notice that a7’ta corpus (manual generation) has an error rate of 8%, our
extracted data has an error rate of 5%, and all our data has an error rate of 6%, as listed in
Table 7. Our corpus contained 26 types of errors. Furthermore, it contains two types of
errors: OG and OS. The ON error types in the corpus increased to 527 instances. Although
some errors exist at high frequencies such as OT, OH, PC, and OA, others exist at low
frequencies such as ON, MT, and SF. Figure 12 shows the error combinations of the top
five low-frequency classes. The types of errors that appeared in small percentages were
combined with other types of errors in varying percentages. In conclusion, all error types
appeared in varying proportions, either alone or in combination.

A strength of the Tibyan Corpus is that it includes common errors by native Arabic
speakers. There are several types of errors, including Alif, Ya, and Alif-Maqsura (OA),
Hamza errors (OH), Ha/Ta/Ta-Marbuta confusion (OT), and punctuation confusion
(PC). Despite the complexities of Arabic orthography and grammar, these errors are
challenging for native speakers.

Native speakers, however, are more likely to make errors, such as char order (OC),
additional char (OD), missing char (OM), char replacement (OR), nun and tanwin
confusion (ON), confusion in Alif Fariqa (OW), merge (MG), and split (PS). It is more
common for these errors to arise from typing than from a lack of language understanding.
Because these errors are usually straightforward and follow predictable patterns, modern
applications and spell checkers are generally effective at identifying and resolving them.

Figure 11 Distribution for class combinations with OS, OG, ON, MG, and SP. Full-size DOI: 10.7717/peerj-cs.2724/fig-11
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Furthermore, some errors appear less frequently because they are uncommon among
native speakers and are more likely to be made by second-language learners. For example,
lengthening short vowels (OG), shortening long vowels (OS), and gender (XG). Native
language writers usually use correct words and avoid grammatical mistakes. Language
processing tools can be developed more efficiently by distinguishing between errors typical
of native speakers and those typical of second-language learners.

APPLICATIONS AND IMPLICATIONS
In the technology and artificial intelligence world, the Tibyan corpus represents an
advanced step toward enhancing Arabic language processing capabilities. Tibyan corpus
holds great promise in a variety of fields that could be instrumental in improving our daily
lives and preparing us for the future.

Table 7 Analyze the error type after human annotation.

Tag Error description A7’ta Corpus (Manual) Our data + A7’ta (Automatic) Tibyan Corpus

Orthography OA Alif, Ya & Alif-Maqsura 1,428 3% 19,543 4% 20,971 4%

OC Char Order 432 0% 181 0% 613 0%

OD Additional Char 236 1% 605 0% 841 0%

OG Lengthening short vowels 94 0% 426 0% 520 0%

OH Hamza errors 3,623 7% 44,387 10% 48,010 9%

OM Missing char(s) 129 0% 4,463 1% 4,592 1%

ON Nun & Tanwin Confusion 10 0% 517 0% 527 0%

OR Char Replacement 2,318 5% 2,298 1% 4,616 1%

OS Shortening long vowels 105 0% 55 0% 160 0%

OT Ha/Ta/Ta-Marbuta Confusion 8,069 16% 53,119 12% 61,188 12%

OW Confusion in Alif Fariqa 9 0% 112 0% 121 0%

Morphology MI Word inflection 276 1% 1,318 0% 1,594 0%

MT Verb tense 14 0% 95 0% 109 0%

Syntax XC Case 639 1% 11,372 2% 12,011 2%

XF Definiteness 378 1% 1,615 0% 1,993 0%

XG Gender 81 0% 709 0% 790 0%

XM Missing word 185 0% 1,713 3% 1,898 0%

XN Numbers in plural, dual, and singular 61 0% 391 0% 452 0%

XT Unnecessary word 1,011 2% 3,666 1% 4,677 1%

Semantic SF Conjunction error 94 0% 112 0% 206 0%

SW Word selection error 1,527 3% 4,430 1% 5,957 1%

Punctuation PC Punctuation confusion 497 1% 18,731 4% 19,228 4%

PM Missing punctuation 435 1% 3,641 1% 4,076 1%

PT Unnecessary punctuation 16 0% 1,251 0% 1,267 0%

Merge MG Words are merged 77 0% 0 0% 1,420 0%

Split SP Words are split 5 0% 102 0% 107 0%

Unknown UNK Unknown Errors 0 0% 0 0% 0 0%

Comb. - Error Combinations 2,663 5% 54,998 12% 57,413 11%

23,305 48% 224,737 49% 308,408 49%
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Self-Learning and Education. This corpus can be used by Arabic language students to
develop intelligent educational systems that provide automatic feedback and corrections.
Learners could acquire writing skills accurately and seamlessly with an educational
platform that understands and corrects grammatical errors in an interactive and
personalized way.

Development of advanced artificial intelligence systems. It facilitates the development
of advanced language models that can understand human errors and produce accurate and
high-quality texts. A variety of artificial intelligence systems can be trained to work in areas
such as text proofreading, creative writing, and writing assistance in the workplace.

Enhancing natural language processing research. The Arabic corpus provides a strong
benchmark for comparing different models’ performance in correcting grammatical
errors. Natural language processing research can benefit from it since it can help
researchers develop more efficient and better models for analyzing Arabic text.

Offers content and media services. The corpus can be used in text editing applications
and improve the quality of media content in the digital age. With this corpus, grammar
correction systems can improve text accuracy and reduce errors in any type of text, from
blogs to academic articles.

The promotion of Arabic’s universal use. As a result of this work, the Arabic language
can be better understood and corrected by technology, enhancing its global status in fields
such as education, business, and technological development.

It enables the development of the Arabic language in the digital age by bridging current
challenges and future opportunities.

LIMITATION
ARETA is the only tool that classifies Arabic grammatical errors accurately at the time of
this research. However, the ARETA tool is not always accurate in determining Arabic

Figure 12 Distribution for class combinations with OS, OG, and SP. Full-size DOI: 10.7717/peerj-cs.2724/fig-12
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errors. ARETA tool sometimes fails to classify words with more than two errors and mark
them with X or UNKs, even though the tool already recognizes the various errors present
in that word. For example, if a punctuation mark separates two words, and if the first and
second words contain errors and there is no space between the punctuation mark and
words, it is classified as UNK or X. In addition, we observed that it did not correctly classify
words that have split (SP) errors. If the first letter of a word is separated from the rest, it is
treated as one word, classified as an unnecessary word “XT” and another word is classified
as a missing letter “OM”, and they will not be considered one word. Furthermore, merge
errors containing n more than one error type were incorrectly classified. To ensure the
correct classification of error types, we manually classified the X and UNK errors.

CONCLUSION
In conclusion, this study aimed to create an Arabic corpus called Tibyan for Grammatical
Error Correction. We use a diverse range of Arabic text extracted from books and the a7’ta
corpus containing common grammatical errors. The ChatGPT model is then used to
generate parallel sentences containing quoted sentences extracted from Arabic books, one
with grammatical errors and the other with correct sentences. By engaging linguistic
experts and iteratively refining the corpus based on their feedback, we ensured that it
represented the real world and was reliable. Ultimately, the Tibyan corpus will enable the
development of an accurate and powerful grammatical error correction tool tailored
specifically for the Arabic language. Two key aims are addressed by the corpus : error-type
coverage and unbalanced error-type classification. The Tibyan corpus contains all types of
errors in Arabic, as the sentences were extracted from books, representing a diverse and
rich source of errors. Moreover, it achieves a balance between types of errors. All the types
of errors appeared in proportion to each other. We will use our corpus to construct a
robust Arabic grammatical error correction model in the future. In addition, the number of
sentences and tokens can be increased using modern techniques.
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