Submitted 30 April 2024
Accepted 29 January 2025
Published 21 February 2025

Corresponding author
Cristian B. Jetomo,
cbjetomo@up.edu.ph

Academic editor
Bilal Alatas

Additional Information and
Declarations can be found on
page 20

DOI 10.7717/peerj-cs.2720

() Copyright
2025 Jetomo and De Lara

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Filipino sign language alphabet recognition
using Persistent Homology Classification
algorithm

Cristian B. Jetomo and Mark Lexter D. De Lara

Institute of Mathematical Sciences, College of Arts and Sciences, University of the Philippines
Los Bafios, Los Bafos, Laguna, Philippines

ABSTRACT

Increasing number of deaf or hard-of-hearing individuals is a crucial problem since
communication among and within the deaf population proves to be a challenge.
Despite sign languages developing in various countries, there is still lack of formal
implementation of programs supporting its needs, especially for the Filipino sign
language (FSL). Recently, studies on FSL recognition explored deep networks.
Current findings are promising but drawbacks on using deep networks still prevail.
This includes low transparency, interpretability, need for big data, and high
computational requirements. Hence, this article explores topological data analysis
(TDA), an emerging field of study that harnesses techniques from computational
topology, for this task. Specifically, we evaluate a TDA-inspired classifier called
Persistent Homology Classification algorithm (PHCA) to classify static alphabet
signed using FSL and compare its result with classical classifiers. Experiment is
implemented on balanced and imbalanced datasets with multiple trials, and
hyperparameters are tuned for a comprehensive comparison. Results show that
PHCA and support vector machine (SVM) performed better than the other
classifiers, having mean Accuracy of 99.45% and 99.31%, respectively. Further
analysis shows that PHCA’s performance is not significantly different from SVM,
indicating that PHCA performed at par with the best performing classifier.
Misclassification analysis shows that PHCA struggles to classify signs with similar
gestures, common to FSL recognition. Regardless, outcomes provide evidence on the
robustness and stability of PHCA against perturbations to data and noise. It can be
concluded that PHCA can serve as an alternative for FSL recognition, offering
opportunities for further research.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Mining and Machine
Learning

Keywords Filipino sign language, Persistent homology, Sign language recognition, Classification
algorithm, Topological data analysis

INTRODUCTION

One of the top causes of disability in the global scale is hearing loss. There are 466 million
people estimated to have this disability according to the World Health Organization (Davis
¢ Hoffman, 2019). It is projected that by 2050, nearly 2.5 billion people will have some

degree of hearing loss and at least 700 million people will require hearing rehabilitation.

How to cite this article Jetomo CB, De Lara MLD. 2025. Filipino sign language alphabet recognition using Persistent Homology
Classification algorithm. Peer] Comput. Sci. 11:¢2720 DOI 10.7717/peerj-cs.2720

http://dx.doi.org/10.7717/peerj-cs.2720
mailto:cbjetomo@�up.�edu.�ph
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2720
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

PeerJ Computer Science

Communication is an essential component to human existence, but is largely
inaccessible to the deaf community. In turn, hard-of-hearing individuals struggle in a lot of
crucial aspects such as education (Most, 2004), employment (Cruz & Calimpusan, 2018),
access to healthcare (Souza et al., 2017), limited social interactions especially during the
COVID-19 pandemic (Singh et al., 2021), and more.

To cope with this, sign languages have emerged across different countries. These
languages are performed through manual signals (e.g., hand gestures, dynamic
movements) and non-manual signals (e.g., facial expressions, body motions, and palm
orientations) to properly portray the corresponding meaning of the signed gesture (Rivera
¢ Ong, 2018). Sign languages have been effective for this purpose, and hence, have been the
primary means of communication for the deaf community. In the Philippine context,
Filipino sign language (FSL) has been declared as its national sign language and is
mandated to be recognized, promoted, and supported in all transactions. Numerous public
and private programs are being conducted to increase the number of individuals that are
proficient in FSL, and in general, sign language interpretation. However, there is still a lack
of formal implementation of the programs, furthering the gap between the normal hearing
and hard-of-hearing population of the country. With this, a better solution is needed.

Currently, researchers leveraged the use of machine learning to automate the
interpretation process of signed gestures. Adeyanju, Bello & Adegboye (2021) provided a
comprehensive review of methods applied to sign language recognition and an overview of
feature extraction and preprocessing techniques. The authors highlighted that the trend in
publication of sign language recognition articles is consistent with the increase in people
having hearing disability. In Jain et al. (2021), support vector machines and convolutional
neural networks were utilized to recognize the American sign language alphabet. Samaan
et al. (2022) used three recurrent neural networks to recognize 10 dynamic sign languages
where features are extracted using MediaPipe. In Buttar et al. (2023), two deep networks,
YOLOV6 and long-short term memory, were explored to develop a hybrid algorithm that
can classify both static and dynamic signs. Martinez-Hinarejos ¢ Parcheta (2017) used
continuous density hidden Markov model to recognize basic sentences using the Spanish
sign language instead of isolated words or phrases. These articles give insight as to how vast
areas of mathematics (e.g., statistics, linear algebra, and calculus) are being explored to
solve sign language problems. This raises a question whether other fields such as
computational topology can also contribute to solve the problem, specifically for FSL. We
attempt to answer this question in this article.

Topological data analysis (TDA) is a newly emerging field that harnesses techniques
from computational topology to analyze data. It makes use of these concepts to extract
shape or topological features, usually via Persistent Homology, which is important for
machine learning problems. TDA is favored by researchers since it is easy to scale for larger
datasets due to the stability of Persistent Homology under perturbations and noise (Hensel,
Moor & Rieck, 2021; Mishra ¢ Motta, 2023). The field is beginning to get attention for
different applications such as rhythm detection (Ness-Cohn ¢» Braun, 2021), biomedicine
(Skaf & Laubenbacher, 2022), financial market analysis (Basu ¢» Li, 2019), aviation (L7,
Ryerson ¢ Balakrishnan, 2019), and more. It is also starting to be explored for sign

Jetomo and De Lara (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2720 2/23

http://dx.doi.org/10.7717/peerj-cs.2720
https://peerj.com/computer-science/

PeerJ Computer Science

language recognition. In Mirehi, Tahmasbi ¢» Targhi (2019), graph structures are
constructed from the hand and meaningful shape features are extracted from topological
properties of the graph. This makes the features stable against different deformations,
scale, and noise. Ozdemir, Baytas ¢ Akarun (2024) investigates the optimal choices for
hand graph topology by adopting the spatio-temporal graph convolutional networks.
However, it can be noted that articles that directly implement TDA for this problem
remains limited.

TDA can be applied for machine learning problems in many approaches. A survey is
conducted by Hensel, Moor ¢ Rieck (2021) to review and synthesize the current state of the
fuse of the two areas. The authors divided some of these applications into two parts:
extrinsic and intrinsic approach. Extrinsic topological approach utilizes persistent
homology to obtain a representation of data in the form of persistence diagrams. These
diagrams are converted into features, using either vector-based or kernel-based
representations, which are then fed into standard machine learning models. On the other
hand, intrinsic topological approach incorporates TDA in the machine learning model
itself. This approach either includes topological information into the design of the model
or harness topological methods to study and improve the model. One example of the latter
approach is the novel classifier called Persistent Homology Classification algorithm
(PHCA) (De Lara, 2023).

PHCA has been applied on different variants of datasets and have shown to perform at
par if not better than the majority of classical classifiers including support vector machines
(SVM), random forest (RF), K-nearest neighbors (KNN), linear discriminant analysis
(LDA), and classification and regression trees (CART) (De Lara, 2023). The Iris Plant,
Wheat Seed, Social network ads, MNIST handwritten digits, and synthetic datasets are
used to evaluate PHCA in comparison with these classical classifiers. Results show that the
performance of PHCA is not significantly different from that of the other classifiers, even
exceeding a few of them in some datasets.

Now, this study aims to extend the capability of the computational topology-based
classifier for FSL recognition. Specifically, it aims to utilize PHCA to classify images of
hands signing the FSL alphabet and compare its result with classical classifiers.
Additionally, PHCA and the classical classifiers are tested on balanced and imbalanced
datasets. Results show that PHCA is one of the best performing classifier for this task,
obtaining a mean accuracy of up to 99.31%. This provides insights to the potential of TDA
as an alternative method for sign language recognition.

RELATED WORKS

In the previous section, we introduced some articles on sign language recognition. Now, we
discuss the current state of FSL recognition and highlight the development of solutions for
the problem.

One of the earliest accounted articles that dealt with FSL recognition is by Sandjaja ¢
Marcos (2009). The authors used color-coded gloves to efficiently extract the position of
the fingers using a multi-color tracking algorithm. From this, features are extracted and the
data is recognized using Hidden Markov Model. Of the 5,000 FSL number videos, they

Jetomo and De Lara (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2720 3/23

http://dx.doi.org/10.7717/peerj-cs.2720
https://peerj.com/computer-science/

PeerJ Computer Science

were able to obtain a highest accuracy of 85.52%. This is an excellent first step for FSL
recognition but is inefficient since a color-coded glove is needed. Following this, Cabalfin
et al. (2012) utilized a manifold projection approach in classifying 72 common FSL signs.
From the training set, reference manifolds are created using the Isomap algorithm. Then,
signs are transformed into trajectories using these manifolds. These trajectories are then
compared by selecting the closest reference trajectory using dynamic time warping and
longest common subsequence. The authors achieved 89% as their highest accuracy. The
authors’ contribution is on the exploration of manifold learning for recognizing FSL.
However, results show that their method has trouble differentiating signs with similar
movements and is inefficient for a general recognition system.

A different approach is implemented by Oliva et al. (2018) to classify 10 basic Filipino
words. The authors used a Kinect sensor which captures the location, movement, and
audio of a person. Some joints of interests are considered in the article to eliminate
redundancy in the features. The features are projected onto the Cartesian and Spherical
coordinate system and classified using dynamic time warping and support vector
machines. The article obtained a peak accuracy of 95%, recall of 95%, and precision of
95.89%. The authors highlight that the use of Spherical coordinates showed consistency in
performance regardless of size and location of the signer and have also noted tendency to
misclassify similar signs. Rivera ¢ Ong (2018) used the same sensor to extract data but
explored the importance of non-manual signals for FSL recognition. They focus on face
orientations, shape units, and animation units as features and captured the movement of
the eyes, eyebrows, mouth, nose, and head. Classification is performed using support
vector machine and artificial neural networks, obtaining the highest accuracy of 87% on
the emotion class. These articles are promising but is non-conventional since a specific
sensor is required for recognition.

As machine learning progressed and data became easily available, so are the methods for
FSL recognition. Deep networks are now being used for the task. In Montefalcon, Padilla ¢
Llabanes Rodriguez (2021), two residual networks, ResNet-18 and ResNet-50, are explored
to classify 10,000 image-formatted FSL numbers. The images were preprocessed with and
without Gaussian Blur. Outcomes show that using this technique improves the result. They
concluded that ResNet-18 leads to over-fitting, having excellent results on the training but
not on the validation set. The best obtained accuracy in the article is 92% and 86.7% on the
train and validation set, respectively, using their fine-tuned ResNet-50 model. The authors
extended this research by developing a continuous recognition model (Montefalcon,
Padilla & Rodriguez, 2023). Features of 15 Filipino phrases were extracted using MediaPipe
and classification is performed using long-short term memory and residual network. Initial
result shows that the long-short term memory outperformed the ResNet-34 model,
achieving 94% accuracy. Facial feature importance analysis is also explored by the authors.
They’ve shown that excluding features from eyebrows, mouth, and eyes significantly
reduced the performance of the model. This provides evidence that non-manual signals are
important features for recognition. It is noted, however, that despite excellent performance
of these deep networks, computational resources are not always available and an efficient,
cost-effective approach is needed (Wang et al., 2023). As a solution to this, lightweight

Jetomo and De Lara (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2720 4/23

http://dx.doi.org/10.7717/peerj-cs.2720
https://peerj.com/computer-science/

PeerJ Computer Science

conversion methods are explored by Cayme et al. (2024) for their convolutional and long-
short term memory networks for FSL recognition. Memory utilization and model size has
been significantly reduced while having minimal reduction in performance metrics.
Deep networks are now advanced but still suffer from major drawbacks such as

interpretability, transparency, and need for large amounts of data. In this article, we
explore another promising field, specifically TDA, for FSL recognition. So far, no work has
been developed that used TDA for this problem. Moreover, no article has been observed to
have used the dataset in this article, giving this study novelty in the field.

PERSISTENT HOMOLOGY CLASSIFICATION ALGORITHM
(DE LARA, 2023)

Persistent homology

Persistent homology (PH) is a method widely used in topological data analysis (TDA). It
can be used for determining invariant features or topological properties of a space of points
that persist across multiple resolutions (Carlsson, 2009; Edelsbrunner ¢ Harer, 2008).
These invariant features capture the qualitative properties of data due to their sensitivity to
small changes in the input parameters, making PH favored by researchers. PH application
extends to different data types such as point clouds, images, time series, etc. In this article,
we focus on the computation of PH on point clouds.

A point cloud (X, d) represents a finite set of points X together with a distance function
d. The usual assumption is that X is sampled from an underlying topological space S.
However, describing the topology of S based on sample points of X is not easy. This is
where PH can be used.

In computing PH, a filtration is constructed using X, converting the point cloud into a
nested sequence of simplicial complexes. A visual description of this process is presented in
Fig. 1. This is done by defining a non-negative real number ¢ that serves as a parameter to
thicken X. We denote the thickened point cloud corresponding to the parameter ¢ as X;. As
the value of ¢ increases, simplices are added to the complexes, and a sequence of nested
simplicial complexes is formed.

Adding new simplices to the complexes can be done using a variety of ways. In this
article, Vietoris-Rips (VR) complex is used. In VR complex, two points x; and x;, each of
which are initially 0-simplex, are connected when the distance d(x;, xj) < 2¢. This forms a
1-simplex or a line segment. Adding another point x; that satisfies d(x;, x¢) < 2¢& and
d(xj, xx) < 2¢ forms a 2-simplex or a triangle. Adding another point x; that satisfies
d(xa,x1) < 2¢ for a = i,j, k forms a 3-simplex or a tetrahedron, and so on. It is worth
noting that the parameter ¢ is the only parameter changing in this filtration process. The
addition of simplices depends on this ¢ value and the distances of 0-simplices from
one another.

In each filtration step, the homology groups are extracted. These are invariant features of
a topological space that provide important information and can be computed algebraically.
The homology of the underlying topological space S can be approximated by the
homology of the simplicial complexes derived from X.

Jetomo and De Lara (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2720 5/23

http://dx.doi.org/10.7717/peerj-cs.2720
https://peerj.com/computer-science/

PeerJ Computer Science

Ky K; K3 K, Ks

Figure 1 Illustration of a filtration of a point cloud into a nested sequence of simplicial complexes with K; C K, C ... C K.
Full-size K&l DOT: 10.7717/peerj-cs.2720/fig-1

For this, suppose K is a finite simplicial complexand K; CK, C ... C K, =K isa
finite sequence of nested subcomplexes of K. Here, K is called a filtered simplicial complex
and the sequence {Kj, K;, ...} is the filtration of K. The homology of each of the
subcomplex can be computed as follows. For each k, the inclusion maps K; — K; induce
FF,-linear maps f/ : Hy(K;) — Hi(K;) forall i,j € 1,2,...,r with i <. It follows from
functoriality that f/ o f! = f/ for all i < 1 <.

Now suppose K is a subcomplex in the filtration or a filtered complex at time s. We
define the k-th cycle group of K; as Z; = Kerd; and the boundary group of K; as
By = Im0O;_,. Then, the k-th homology group of K; is given by

s Z; B Kero;

¢ _B_f(_lmaiﬂ'

(1)

Consequently, for p € {0,1,2,...}, the p-th persistent k-th homology group of K given
a subcomplex K; is

Z; Kerd}
H?(K,K) = H (K) = —i— = £ (2)
¢ (KK) = HAK) BP Nz Imd N Kerd;

and the p-th persistent k-th Betti number B,” of K; is the rank of H,”.

Simply, for each nonnegative integer k, there exists a k-th homology group Hy(X;)
representing X,. The 0-th dimensional, 1-dimensional, and 2-dimensional homology
groups gives the connected components, holes or tunnels, and voids, respectively. These
algebraic structures are homotopy invariant, meaning they do not change when the space
undergoes bending, stretching, or other deformations, making them ideal as
representation of data.

Persistence diagram and barcode

The result of obtaining the homology of the filtered complexes can be represented using a
persistence diagram or persistence barcode. Example of some filtration process and their
corresponding diagrams and barcodes are shown in Fig. 2. These representations show the

Jetomo and De Lara (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2720 6/23

http://dx.doi.org/10.7717/peerj-cs.2720/fig-1
http://dx.doi.org/10.7717/peerj-cs.2720
https://peerj.com/computer-science/

PeerJ Computer Science

Sphere Point Cloud

98 1.0

V 0.5

P .a 0.0
.'.. X "‘; -05

0.5 -1.0

Persistence Diagram Persistence Barcode
1.2 -——-————————————————————————————,‘,—
d
7’
4
. 4
1.0 4 <
,/
4
o,/
4
0.8 ,,’ Ho
d
= '0///
X 0.6 - R ;
foo 0 8
Bl
0.4
o
% ——-
0.2 °
v e Ho Hy
4
/’ . H1
004 - —
- o H> Ha
00 02 04 06 08 1.0 12 0.0 0.2 0.4 0.6 0.8 1.0
Birth €
Persistence Diagram Persistence Barcode
7’
8 B i Dttt ,-} L —|
4
4
. 4
4
7’
4
6 - ya
7’
v Ho
4
4
,/
S /
© 4 ° 4
8) 4
. 7’
* .
24
—
- " =
’ . 0 ‘
l /, H -
’ L4 1
Ha %
01, e H :
4
0 2 4 6 8 0 1 2 3 4 5 6 7
Birth €

Figure 2 Sphere and Torus point clouds and their corresponding persistent diagrams and barcodes obtained using persistent homology with
Vietoris Rips filtration. A persistent 2-dimensional hole (void) can be observed from the diagram and barcode of the sphere point cloud.
Meanwhile, there is a persistent 1-dimensional hole (tunnel) that can be observed for the torus point cloud.

Full-size K&l DOT: 10.7717/peerj-cs.2720/fig-2

appearance (birth) and disappearance (death) of intrinsic topological features, such as
homology groups and Betti numbers. In other words, these birth and death values
represent the filtration index (or the parameter ¢) at which the topological feature appear
or disappear, respectively. The lifespan or duration of these topological properties are
essential for the qualitative analysis of the topology of the data. Shorter lifespan are often
associated with noise while longer ones are the important topological features. This
lifespan parameter will be essential for the development of the topology-based classifier
PHCA. For a more comprehensive discussion of the computation of PH, the reader is
referred to Edelsbrunner ¢ Harer (2008).

Alternatively, the persistence diagram and barcode obtained from the point cloud X can
also be represented as an n X 3 matrix, denoted as the persistence 2(X). The number of
rows n represents the number of topological features or the total number of 0-dimensional
holes, 1-dimensional holes, 2-dimensional holes, and so on, depending on the defined

Jetomo and De Lara (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2720 7/23

http://dx.doi.org/10.7717/peerj-cs.2720/fig-2
http://dx.doi.org/10.7717/peerj-cs.2720
https://peerj.com/computer-science/

PeerJ Computer Science

maximum dimensions that can be detected during the filtration. Meanwhile, the first,
second, and third column entries of the g-th row of #(X) represents the dimension, birth,
and death times of the g-th topological feature in the filtration of X, respectively.

Now, since that the filtration process cannot be performed in an infinite duration of
time, a maximum scale maxsc must be defined. Scale in this context represents the ¢ value
or the distance threshold. In practice,

maxsc = %max{d(x,y)} (3)
xy

is used where d(x, y) is the distance of any two points x, y with x # y of the point cloud.

Training and classification using PHCA

Suppose X is the training dataset consisting of m-dimensional data points categorized into
k distinct classes. More specifically, suppose that X = X; U X, U ... U Xj where each X; is
the set of data points in class i for i = 1,2, ..., k. We note that X; N X; for i # j implying
that no two classes contains the same data point. Introduced with a new data point o, we
want to determine which class does this point belong to.

The training process of PHCA involves computing for the persistence of each class,
P(X;) fori=1,2,..., k. Then, the model measures the topological effect of introducing o
to each of these classes. For this, the model defines Y; = X; U {a} and compute for 2(Y;)
fori=1,2,...,k. This process records the changes in PH between X; and Y; for
i=1,2,...,k The new data point is classified to the class which results in the minimum
change in PH. This change is measured using the score function discussed in the
next section.

Score function for PHCA

After training the PHCA model, scoring each of the classes is necessary to choose which
class does the new data point o belongs. For this, the model computes for Score(X;) for
i=1,2,...,k and compare their results. Recall that the PH of a point cloud can be
represented as an # X 3 matrix where n represents the number of topological features and
the three columns represent the dimension, birth, and death of each topological feature,
respectively. From here, we define the lifespan of the g-th topological feature as

lg = dq — by where b, and d, are the birth and death times of the g-th topological feature,

respectively. Then, we can define the score function as
Score(X;) = Z Iy — Z Iy (4)
q€2(Y;) 92 (X;)

or the absolute difference of the total sum of lifespan of 2(Y;) and the total sum of lifespan
of 2(X;). The new data point « is then classified into the class which satisfies

arg min{Score(X;) } (5)

Jetomo and De Lara (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2720 8/23

http://dx.doi.org/10.7717/peerj-cs.2720
https://peerj.com/computer-science/

PeerJ Computer Science

METHODS

In this section, we elaborate on the methodology used in this article which includes the
description of the dataset and the overall classification scheme.

Data description

The dataset used in this article is published by Porton (2023) in Kaggle. It consists of 11,700
images of hands that corresponds to FSL signs of a letter in the alphabet. This article only
focuses on the static signs. Hence, we omit the images from the letters J and Z.

Each of the 10,800 images considered in this article has dimension 300 pixels x 300
pixels x 3 channels (RGB). There are 450 images for each class or letter of the alphabet,
except for] and Z. The images are obtained using a camera that captures a video feed. For
each class, the signer performs a sign and a video is captured. Then, frames from the
captured feed are extracted as images which forms this dataset. Various lighting and
background conditions can be observed in the images, increasing variability in
classification.

Classification scheme

We discuss here the classification scheme implemented in this article. Figure 3 shows the
summary of this classification scheme. The main stages are Feature Extraction, Data
Splitting, Feature Scaling, Hyperparameter Tuning, and Classification. This scheme is
implemented for each trial, totaling up to 10 trials in this article.

Feature extraction

The feature extraction process mainly utilized the MediaPipe Hands pipeline (Zhang et al.,
2020) illustrated in Fig. 3A. The structure of the pipeline involves a palm detection model
and a hand landmarker model. The palm detection model reduces the complexity of the
task by first estimating a bounding box on the palm. Precise keypoint localization is then
implemented using the hand landmarker model to extract the 21 three-dimensional hand-
knuckle coordinates. Each landmark consists of x and y coordinates and the z-value
represents the depth with respect to the camera. Figure 4 presents all hand landmarks
detected by the pipeline. For each image in the dataset, 63 keypoints are extracted which
will serve as raw features of the image.

Upon extracting the keypoints using MediaPipe, it is observed that not all images are
converted into landmarks. Figure 5 summarizes the number of images per class that are
converted and not converted by the pipeline. From this analysis, we divide the dataset into
two kinds: Balanced and Imbalanced.

For the Balanced dataset, only 313 images are obtained from each of the classes which
will be used for classification. Of the classes having more than 313 converted images, the
313 images used in the Balanced dataset are randomly selected. For the Imbalanced
dataset, we perform classification on all images converted into landmarks. The number of
images per class is observed in Fig. 5.

Jetomo and De Lara (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2720 9/23

http://dx.doi.org/10.7717/peerj-cs.2720
https://peerj.com/computer-science/

PeerJ Computer Science

Feature Extraction

Random Search Cross Validation

—

y

Image
(300x300X3)

Landmarks Features
(21x3 coordinates)

(5 folds, 20 iterations)

90%

Train] Train | Train

N

istaceuracy

2nd accuracy

Average accuracy

(63 keypoints)
sth accuracy

(@)

i

\ . J

N
istaceuracy

Data Splitting

Feature Scaling 2nd aceuracy|

soth
hyperparameter)

% s
20 :
“Train Validation] e
0% n
os
a0
05

hyperp
combination

combination

5th accuracy
J

o e 3
oS e Qm I\

K da
Classifiers

f, 5P Hyperparameter combination
with highest average accuracy

(b)

(©) ()

Figure 3 Framework of the classification scheme. In (A), 63 features are extracted for each image in the dataset using the MediaPipe Hands
pipeline. Then, data is split with stratification into 90-10 train/validation-test sets as shown in (B). Features are then scaled using Standard Scaler. In
(C), hyperparameter tuning is employed to ensure best performance for each model. Using the hyperparameter combination that resulted with the
best accuracy, the models are trained on the train/validation set and evaluated on the test set using five performance metrics. Comparison is

implemented from this result.

Full-size K&l DOT: 10.7717/peerj-cs.2720/fig-3

0 Wrist

1Thumb CMC

2 Thumb MCP

3 Thumb IP

4 Thumb TIP

5 Index Finger MCP
6 Index Finger PIP

7 Index Finger DIP

8 Index Finger TIP

9 Middle Finger MCP
10 Middle Finger PIP

11 Middle Finger DIP
12 Middle Filger TIP
13 Ring Finger MCP
14 Ring Finger PIP
15 Ring Finger DIP
16 Ring Finger TIP
17 Pinky MCP

18 Pinky PIP

19 Pinky DIP

20 Pinky TIP

Figure 4 Hand landmarks detected by the MediaPipe Hands pipeline.

Full-size K&l DOT: 10.7717/peerj-cs.2720/fig-4

Data splitting and feature scaling

Upon extraction, the Balanced and Imbalanced dataset are respectively split into 90-10
train/validation-test set with stratification. This ensures that the proportion of instances
for each class is maintained for the train/validation set and the test set. This is crucial
especially for the Imbalanced dataset which has different number of instances per class.

Jetomo and De Lara (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2720

[10/23

http://dx.doi.org/10.7717/peerj-cs.2720/fig-3
http://dx.doi.org/10.7717/peerj-cs.2720/fig-4
http://dx.doi.org/10.7717/peerj-cs.2720
https://peerj.com/computer-science/

PeerJ Computer Science

=3 converted
500 A I not converted

67 5 85 10 31 0 4 4 6 7 18 137112 134 41 137 11 131 7 O 36 11 31 8

400 1

w
o
o

Frequency

N
o
o

100 A

A B C D E F G H I K L M N OP Q R S T U V W X Y
Class

Figure 5 Frequency of images converted and not converted into landmarks by the MediaPipe pipeline. Class F and U are all converted into
landmarks while class M and Q had the least number of converted images. Full-size k] DOT: 10.7717/peerj-cs.2720/fig-5

From the split data, Standard Scaler is used to scale the data to unit variance and
transform the mean of the dataset to 0. The scaler is fit on the training data and same
transformation is applied to the test data. This step improves classification by ensuring that
the instances in the dataset are similar in scale.

Hyperparameter tuning

To guarantee an unbiased comparison of models, we implement hyperparameter tuning to
each of the models used (see Fig. 3C). In this stage, we utilized Random Search with
Stratified K-fold Cross Validation. We implement 20 iterations for the search and employ a
five-fold setup for the cross validation.

For each iteration, a combination of hyperparameters is generated randomly for the
model from a set of tuning parameters shown in Table 1. Then, the train/validation set is
split into five folds. For each cross validation, one of the folds is used for validation and the
others are for training. The model with the randomly generated hyperparameter
combination is trained using the training folds and evaluated using the validation fold.
This results with five accuracy values. The values are then averaged which will serve as the
“score” of the hyperparameter combination. In total, there are 20 iterations and
correspondingly, 20 average accuracies. The highest average accuracy is obtained and the
corresponding hyperparameter combination is used for the model in the classification
stage. Ten (10) trials is performed in this article, hence, 10 hyperparameter combinations
are obtained.

Classification

Equipped with the best hyperparameter combination for a given trial, the models are now
trained using the 90% train/validation set and evaluated on the 10% test set (see Fig. 3D).
The results of this evaluation are five performance metrics values: precision, recall,

Jetomo and De Lara (2025), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2720 I 00 [11/23

http://dx.doi.org/10.7717/peerj-cs.2720/fig-5
http://dx.doi.org/10.7717/peerj-cs.2720
https://peerj.com/computer-science/

PeerJ Computer Science

Table 1 Tuning parameters used for each model in implementing hyperparameter tuning. Some of
these tuning parameters are lifted from Nanda & Dutta (2023), Mantovani et al. (2015), Probst,
Boulesteix & Bischl (2019).

Classifiers Tuning Parameters

SVM C: uniform (273, 21%)
gamma: auto or scale
kernel: rbf

RF n_estimators: 1-350

max_depth: 1-5
min_samples_split: 1-10
KNN n_neighbors: 1-500
LDA solver: svd or Isqr or eigen
shrinkage: uniform (0, 1)
CART max_depth: 1-30
min_samples_leaf: 1-60
min_samples_split: 1-60

PHCA homology_dimension: Hy only, H; only, Hy and H,

F1-score, specificity, and accuracy. Further discussion on how these values are computed is
given in the following section. These values serve as main basis for comparison of the
models, including PHCA.

Performance evaluation and comparison
To evaluate the performance of the classifiers, five evaluation metrics are obtained, the
values of which depend on the confusion matrix corresponding to the predicted classes.

a. Confusion matrix
The confusion matrix is a square matrix A = [a;;] where each element a;; represents the
number of instances belonging to class i and predicted to be in class j. From this
confusion matrix, we can obtain the following values: True Positive (TP), True Negative
(TN), False Positive (FP), and False Negative (FN).
Aside from these values, the confusion matrix itself can be used for misclassification
analysis of a model. In this article, we investigate further the confusion matrix obtained
by PHCA to analyze how the model performed on our dataset.

b. Classification performance
From the TN, TP, FP, and FN values, we obtain five performance metrics which will
comprise the classification performance for each of the models. These are precision,
recall, F1-score, specificity, and accuracy. The first 4 is averaged across all classes while
the latter is obtained over the entire test set. The description of these metrics are
provided in the following:

i. Precision describes exactness.

TP

preczston = m

(6)

Jetomo and De Lara (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2720 12/23

http://dx.doi.org/10.7717/peerj-cs.2720
https://peerj.com/computer-science/

PeerJ Computer Science

ii. Recall describes completeness.

TP
N=—"" 7
et = P T FN @

iii. F1-score describes the combination of precision and recall, providing insights on the
balance of the two metrics.

2 X precision X recall
precision + recall

(8)

flscore =

iv. Specificity describes the ability of the classifier to predict instances not belonging to a
class.

s N
specificity = TN+ FP")

v. Accuracy describes the ratio between the number of correct predictions to the total
number of predictions made.

TP+ TN

- . 10
AcUray = o Y TN + FP + FN (10)

. Comparison of classification performance

To compare the performance of PHCA with the performance of the other classifiers in
terms of the five evaluation metrics, Nemenyi test is implemented. It serves as a post-hoc
test for the implementation of Friedman test, a non-parametric equivalent of the
repeated-measures ANOVA (Demsar, 2006). The null hypothesis for the Friedman test
states that all classifiers are equivalent. If this is rejected, then pairwise comparison of
the classifiers is done using Nemenyi test. The performance of two classifiers is
significantly different if the corresponding average ranks differ by at least the critical
difference

k(k+1)

N (11)

CD =g,

where k is the number of classifiers, N is the number of datasets, and g, are based on the
Studentized range of statistic divided by v/2. The threshold value o used in this article
is 0.05.

RESULTS AND DISCUSSION

PHCA and five other classical classifiers (SVM, RF, KNN, LDA, CART) are evaluated on
an FSL alphabet image dataset (Balanced and Imbalanced) using five metrics: precision,
recall, F1-score, specificity, and accuracy. Ten (10) trials are implemented and for each
trial, the hyperparameters of the classical classifiers are tuned using random search with 20
iterations together with stratified five-fold cross validation. In all trials, PHCA with

Jetomo and De Lara (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2720 13/23

http://dx.doi.org/10.7717/peerj-cs.2720
https://peerj.com/computer-science/

PeerJ Computer Science

0.98 4

Average Precision
o
o
'y

1.000 4

0.999

Average Specificity

0.996 -

0.995 1

(a)

(b) (c)

0.998 A

0.997 A

o} 1.00 4 o 1.00 4 o}
= = — = —_ =
0.98 - 0.98
1]
T 5
©]
g 0.96 ° 2 0.96 °
4 —
[0} w
D 0.94 o 0.94
© i o i
@ o ® o
2 g
0.92 A O Z 0.92 (&}
8 0.90 ° 0.90 A o
o o o
svm knn Ida cart phca svm rf knn Ida cart phca svm rf knn Ida cart phca
Classifiers Classifiers Classifiers
(d) (e) ()
o) 1.00 A o
- = — = 1.0
0.98
a $ 0.8
© 0.96 S
3 ° ©
[v] > 0.6
S0 g
o o o o
9] o4 T
S 0.92 4 o x I precision
I recall
0.2 [fl-score
o 0.90 - (¢} specificity
o o [accuracy
T T T T T T T T T T T 0.0 - | mm———
svm knn Ida cart phca svm rf knn Ida cart phca svm rf knn Ida cart phca
Classifiers Classifiers Classifiers

Figure 6 Distribution of performance metrics obtained by PHCA and the classical classifiers for the Balanced dataset. Ten (10) trials are
implemented, each with a different train-test split. Shown are the box-and-whisker plots of the resulting average precision (A), recall (B), F1-score
(C), specificity (D), and overall accuracy (E). Shown also are the average metric values obtained by the classifiers across all 10 trials (F).

Full-size K&l DOT: 10.7717/peerj-cs.2720/fig-6

homology dimension 0 obtains the best validation accuracy and hence is used for
classifying the test set. We analyze the results below that show the potential of PHCA as an
alternative for FSL recognition.

Performance evaluation

Figures 6A-6E show the box-and-whisker plots of the distribution of performance metrics
obtained by the classifiers for the Balanced dataset. It can be observed that PHCA and
SVM performed better than the other classifiers across all metrics since the interquartile
ranges (IQRs) of the two classifiers lie significantly above than others. From Fig. 6F, it
shows that the overall accuracy values of SVM ranges from 99.34% to 99.87%, with a mean
of 99.45% across all trials. Meanwhile, PHCA’s overall accuracy ranges from 98.94% to
99.60%, with a mean of 99.31%. On the other hand, the maximum accuracy values of RF,
KNN, LDA, and CART across the trials are 95.62%, 98.14%, 93.75%, and 96.81%,
respectively. The same observations can be said for the other metrics as shown in Fig. 6A
for the precision, Fig. 6B for recall, and Fig. 6C for F1-score. For the average specificity, the
scale of difference in values among classifiers is smaller. SVM’s average specificity ranges
from 99.97% to 99.99% with a mean of 99.97% while that of PHCA ranges from 99.95% to

Jetomo and De Lara (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2720 14/23

http://dx.doi.org/10.7717/peerj-cs.2720/fig-6
http://dx.doi.org/10.7717/peerj-cs.2720
https://peerj.com/computer-science/

PeerJ Computer Science

99.98% with a mean of 99.97%. Compared to the average specificity values of RF, KNN,
LDA, and CART which are 99.72%, 99.77%, 99.65%, and 99.81%, respectively. This implies
that RF, KNN, LDA, and CART also performed well in terms of specificity. However, it can
be noted that the distribution for specificity values are similar with the other metrics as
observed from the box-and-whisker plots in Fig. 6D, which still indicates the superiority of
PHCA and SVM. Figure 6F shows the average metric values across the trials of all
classifiers. It provides additional evidence that SVM and PHCA performed better than the
other classifiers, hence, supporting our claim.

Now, we can also deduce from Figs. 6A-6E that the performance, in terms of all metrics,
of SVM and PHCA are not significantly different on the Balanced dataset. This is because
for each metric, the median line (50% quartile) of SVM falls within the IQR of PHCA. For
the precision values, the median of SVM is 99.48% and the IQR of PHCA is 99.22-99.49%.
For the Recall values, the median of SVM is 99.46% and the IQR of PHCA is 99.19-
99.47%. Similarly for the F1-score values, the median of SVM is 99.46% and the IQR of
PHCA is 99.19-99.46%. For the specificity and accuracy values, the median of SVM is
exactly the upper bound of the IQR of PHCA which are 99.97-99.98% and 99.20-99.47%,
respectively. We investigate this claim further in the following section.

The IQRs of PHCA in all metrics are small relative to RF, KNN, LDA, and CART but is
bigger than that of SVM. This implies that the dispersion of metric values is low, indicating
consistent performance across the trials. Comparing this with KNN which has the largest
IQR in each metric, implying higher dispersion in metric values. This suggests that the
performance of KNN is highly dependent on the dataset and consequently, on its
“n_neighbors” hyperparameter. The low dispersion of PHCA provides evidence to the
stability of the classifier under changes in the dataset.

Similarly, Figs. 7A-7E show the box-and-whisker plots of the distribution of
performance metrics obtained by the classifiers for the Imbalanced dataset. The superiority
of PHCA and SVM to the other four classifiers in all setups can still be observed from the
figure, based on the location of their IQRs. Figure 7E shows that the overall accuracy values
of SVM ranges from 99.39% to 99.80%, with a mean of 99.60% across all trials. Meanwhile,
PHCA'’s overall accuracy ranges from 98.87% to 99.80%, with a mean of 99.40%. To
compare, the maximum accuracy values of RF, KNN, LDA, and CART across the trials are
93.76%, 99.28%, 94.27%, and 97.24%, respectively. The scale of difference in the specificity
values for the imbalanced dataset is also smaller. SVM’s average specificity ranges from
99.97% to 99.99% with a mean of 99.98% while that of PHCA ranges from 99.95% to
99.99% with a mean of 99.97%. Compared to the average specificity values of RF, KNN,
LDA, and CART which are 99.73%, 99.97%, 99.75%, and 99.88%, respectively. Despite the
excellent performance of these four classifiers in terms of specificity, the box-and-whisker
plots in Fig. 7D still shows that PHCA and SVM performed better. The bar plots in Fig. 7F
shows also that overall, PHCA and SVM performed better than the other classifiers.

Now, notice in Figs. 7A-7E that the median of SVM in all metrics did not fall within the
IQRs of PHCA. This suggests that there is a significant difference between the two
classifiers in all metrics. We further investigate this claim in the following section by using
some statistical test.

Jetomo and De Lara (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2720 15/23

http://dx.doi.org/10.7717/peerj-cs.2720
https://peerj.com/computer-science/

PeerJ Computer Science

(a) (b) (c)

1.00 1 1.00 A 1.00 A
= = = == = =
0.98 0.98 4 0.98 -
5 = o
2 E S
O @ 0.96 v 0.96 -
@ 0.96 &)
o o w
g g 2
o)]]
8 0.04 1 o 094 g 0.94
o z g
Z ° o < o
0.92 4 0.92 1
0.92 1
0.90 A 0.90 A
svm rf knn Ida cart phca svm rf knn Ida cart phca svm rf knn Ida cart phca
Classifiers Classifiers Classifiers
(d) (e) ()
1.000 4 1.00 A
= == = = 10
0.98 -
5. 0.999 1 08
-~ > .
o) v
= ©
& I S
o 5 0.96 =
2 0.998 o > 0.6 1
0 < (]
() = o
o © 0.94 ©
I o 9 0.4+
@ 0.997 1 (¢} > o z Bl precision
> @]
< 0.92 4 I recall
0.2 [fl-score
0.996 - specificity
0.90 A [accuracy
T T T T T T T T T T T T 0.0 -
svm rf knn Ida cart phca svm rf knn Ida cart phca svm rf knn Ida cart phca
Classifiers Classifiers Classifiers

Figure 7 Distribution of performance metrics obtained by PHCA and the classical classifiers for the Imbalanced dataset. Ten (10) trials are
implemented, each with a different train-test split. Shown are the box-and-whisker plots of the resulting average precision (A), recall (B), F1-score
(C), specificity (D), and overall accuracy (E). Shown also are the average metric values obtained by the classifiers across all 10 trials (F).

Full-size K&l DOT: 10.7717/peerj-cs.2720/fig-7

Compared to the Balanced dataset, the IQRs of each classifier in all metrics also
increased for the Imbalanced dataset. This means that the metric values of the classifiers
are more dispersed, which is reasonable considering the nature of the dataset which makes
classification more challenging. However, the IQRs of PHCA in all metrics are still smaller
relative to RF, KNN, LDA, and CART and slightly bigger than SVM. This means that the
dispersion of the metric values of PHCA is relatively low which indicates consistency in
performance across trials.

Comparison of classification performance
Now, we empirically compare the classifiers in terms of overall performance, i.e., in terms
of all metrics. For this, we state the null hypothesis that there is no significant difference in
overall performance and hypothesize that there is. We use Friedman Test to test our claim.
The p-value obtained from the Friedman Test is less than the threshold value « = 0.05
in all trials for both the Balanced and Imbalanced datasets. Hence, we implement a post-
hoc analysis using Nemenyi Test to pairwise compare the classifiers. The results are shown
in Tables 2 and 3 for the Balanced and Imbalanced datasets, respectively. We focus on
comparing PHCA with the other five classical classifiers.

Jetomo and De Lara (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2720 16/23

http://dx.doi.org/10.7717/peerj-cs.2720/fig-7
http://dx.doi.org/10.7717/peerj-cs.2720
https://peerj.com/computer-science/

PeerJ Computer Science

Table 2 Pairwise comparison result of the Nemenyi test on PHCA against SVM, RF, KNN, LDA, and
CART for the Balanced dataset. If the value is greater than the threshold value « = 0.05, then there is a
significant difference in terms of overall performance between the compared classifiers. Otherwise, there
is no significant difference in overall performance. The bold values indicate the significant performance

differences.

Trial PHCA-SVM PHCA-RF PHCA-KNN PHCA-LDA PHCA-CART
1 0.9000 0.0010 0.0010 0.0010 0.0010
2 0.9000 0.0010 0.0010 0.0010 0.0010
3 0.9000 0.0010 0.0010 0.0010 0.0010
4 0.9000 0.0010 0.0010 0.0010 0.0010
5 0.9000 0.0010 0.0193 0.0010 0.0010
6 0.8994 0.0010 0.0604 0.0010 0.0010
7 0.9000 0.0010 0.0010 0.0010 0.0010
8 0.9000 0.0010 0.0010 0.0010 0.0010
9 0.9000 0.0010 0.0022 0.0010 0.0010

10 0.9000 0.0010 0.0010 0.0010 0.0010

Table 3 Pairwise comparison result of the Nemenyi test on PHCA against SVM, RF, KNN, LDA, and
CART for the Imbalanced dataset. If the value is greater than the threshold value o = 0.05, then there is
a significant difference in terms of overall performance between the compared classifiers. Otherwise,
there is no significant difference in overall performance. The bold values indicate the significant per-

formance differences.

Trial PHCA-SVM PHCA-RF PHCA-KNN PHCA-LDA PHCA-CART
1 0.9000 0.0010 0.4162 0.0010 0.0010
2 0.9000 0.0010 0.0010 0.0010 0.0010
3 0.9000 0.0010 0.0293 0.0010 0.0010
4 0.9000 0.0010 0.0010 0.0010 0.0010
5 0.9000 0.0010 0.0193 0.0010 0.0010
6 0.9000 0.0010 0.0010 0.0010 0.0010
7 0.9000 0.0010 0.0010 0.0010 0.0010
8 0.5559 0.0010 0.9000 0.0010 0.0010
9 0.9000 0.0010 0.6335 0.0010 0.0010

10 0.8329 0.0010 0.4527 0.0010 0.0010

From the tables, the results show that there is no significant difference in terms of overall
performance between PHCA and SVM, but the performance of PHCA differs significantly
from the other classifiers, except for KNN on some trials. This is true for both the Balanced

and Imbalanced datasets. Our claim for the Balanced dataset in the previous section is

supported by this result but not for the Imbalanced dataset. However, we remark that the

claim in the previous section came from an educated guess based on the box-and-whisker

plots. Our results from Nemenyi Test provide empirical evidence against this guess.

In some trials, KNN performed well and has shown similar performance with PHCA
and SVM. But we note that the dispersion of metric values of KNN is high and this

Jetomo and De Lara (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2720

17/23

http://dx.doi.org/10.7717/peerj-cs.2720
https://peerj.com/computer-science/

PeerJ Computer Science

Balanced Imbalanced 450
A A
5 300 5
C C 400
D D
E E
250
F F 350
G G
H H 300
I 200 |
5 K 5 K
o L o L 250
g™ 5™
o N 150 g N 200
o] o]
= b = P
Q Q
R 100 R 150
S S
T T
100
U U
% 50 v
w w 50
X X
Y ‘ Y 4
ABCDEFGHIKLMNOPQRSTUVWXY 0 ABCDEFGHIKLMNOPQRSTUVWXY 0
Predicted Label Predicted Label

Figure 8 Confusion matrices associated with the predictions of PHCA for the Balanced and Imbalanced datasets. The given matrices are the
element-wise sum of the confusion matrix for each trial. Full-size K&l DOT: 10.7717/peerj-cs.2720/fig-8

similarity of performance is not consistent across all trials. Hence, from the results in Figs.
6 and 7 and the result of comparison in Tables 2 and 3, we can conclude that PHCA and
SVM performed best in all setups for both the Balanced and Imbalanced datasets and their
is no significant difference in terms of their performance. This highlights that PHCA
performance is at par with the best performing classifier for FSL recognition.

Misclassification analysis of PHCA

We further investigate the distribution of misclassified images by PHCA for the Balanced
and Imbalanced datasets. Figure 8 shows the cumulative confusion matrix associated with
the predictions obtained by PHCA.

PHCA made the most number of misclassifications on class M from the Balanced
dataset, having a total of 11. Of these, most are classified into class F (6 images) and S (2).
The second most misclassified by PHCA is class O which are incorrectly predicted to be in
class C (2) and R (4). For the Imbalanced dataset, PHCA misclassified class X the most.
Images from this class are often predicted to be in class T (4) and R (2). PHCA also
misclassified a few images under class C which are usually incorrectly predicted to be in
class O (3) and W (3). The classifier also mispredicted five images from class F to class B.

Shown in Fig. 9 are the images from the stated classes where PHCA had the most
misclassifications. We can observe that the hand shape in class M are very similar to that of
class S. Similarity in hand structure can be observed from class O and C; so are for class X
and T. We also observe similar hand patterns from images under class B and F. These
similarities in hand shape and structure show evidence for the misclassifications on the

Jetomo and De Lara (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2720 18/23

http://dx.doi.org/10.7717/peerj-cs.2720/fig-8
http://dx.doi.org/10.7717/peerj-cs.2720
https://peerj.com/computer-science/

PeerJ Computer Science

Figure 9 Sample images with landmarks that are often misclassified by PHCA. Full-size k&l DOT: 10.7717/peerj-cs.2720/fig-9

predictions of PHCA. Similar structures imply similar 3D coordinates corresponding to
the landmarks obtained by MediaPipe, hence, resulting in the confusion of the classifier.

However, there are hand structures that are different but are still misclassified, such as
for class M and F, class O and R, class X and R, and class C and W. These misclassifications
may be due to the nature of the features obtained from the images.

Recall that MediaPipe extracts the 3D coordinates of the landmarks from the hand.
However, not all images from the same class are consistent in terms of orientation, structure,
and proximity with respect to the camera. This variability may have caused dissimilar hand
structures to have similar coordinates. This result is also observed from Oliva et al. (2018).
Their analysis shows that by using Cartesian coordinates, misclassification can occur only
when the gesture is similar or there is a difference in position.

Additionally, PHCA performed at par, and sometimes better, than SVM in classifying
images from particular classes. For classes C, F, H, I, M, R, and T, PHCA and SVM had the
same number of misclassifications for the Balanced dataset. The two models also have the
same number of misclassified images under class A, H, T, and W for the Imbalanced
dataset. Meanwhile, PHCA had less number of misclassifications on class A, O, and X for
the Balanced dataset. This provides evidence that on some cases, PHCA can perform better
than SVM.

CONCLUSION

In this study, a novel topology-based classifier called PHCA is utilized to classify images of
FSL alphabet. The authors focused on static signs, considering only 24 letters of the
alphabet, excluding J and Z. The performance of PHCA and classical classifiers, such as

Jetomo and De Lara (2025), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2720 I 19/23

http://dx.doi.org/10.7717/peerj-cs.2720/fig-9
http://dx.doi.org/10.7717/peerj-cs.2720
https://peerj.com/computer-science/

PeerJ Computer Science

SVM, RF, KNN, LDA, and CART, are compared using precision, recall, F1-score,
specificity, and accuracy. The hyperparemeters of the classical classifiers are tuned to
ensure the best performance. It is also obtained that PHCA best performed with 0-
dimensional homology groups only as its parameter, providing computational evidence to
the procedure in Theorems 2 and 3 of De Lara (2023). The experiment is implemented
with 10 trials on balanced and imbalanced datasets for a comprehensive comparison.

Results show that PHCA, together with SVM, performed better than the other classifiers
in all trials, both for the Balanced and Imbalanced datasets. SVM achieved a mean
Accuracy of 99.45% across 10 trials, while PHCA achieved 99.31%. The interquartile
ranges of the box-and-whisker plots corresponding to PHCA and SVM are also small in all
trials, implying that the dispersion in metric values of the two classifiers are low which
indicates consistency in performance across the trials. This validates the stability of
Persistent Homology, the main method used in PHCA, under perturbations in the
input data.

Statistical analysis shows that there is no significant difference in the overall
performance of PHCA and SVM in all trials. Meanwhile, there is a significant difference in
the overall performance of PHCA against the other classifiers. This implies that PHCA
performed at par with an excellent performing classifier and better than the others used in
this article. This is true for both balanced and imbalanced datasets which shows also the
robustness of PHCA against the distribution of instances of a dataset.

PHCA misclassified signs that are similar in hand structure. This is reasonable since
similar structure corresponds to similar features. However, the use of Cartesian
coordinates of landmarks as features can be improved since such features are not position
invariant, requiring additional normalization process before classification. Using Spherical
coordinates or computing for angles between hand landmarks as features can be explored
which may address this problem.

Overall, PHCA is a potential alternative for FSL recognition. Further exploration of
TDA methods can be done for classifying dynamic gestures to include letters] and Z, and
words or phrases in FSL. In Human Activity Recognition, a similar field with FSL,
Persistence Diagrams are being used to extract topological properties from temporal
teatures of an action (Yang et al., 2023). This technique can also be explored for FSL
recognition. In this article, although FSL alphabet is used as dataset which does not
constitute direct application, results show that TDA-inspired methods such as PHCA can
serve as an opportunity for further research, showing insights to its usefulness and
practical applications.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work has been supported by the University of the Philippines System-wide
Computational Research Laboratory Grant. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Jetomo and De Lara (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2720 20/23

http://dx.doi.org/10.7717/peerj-cs.2720
https://peerj.com/computer-science/

PeerJ Computer Science

Grant Disclosures
The following grant information was disclosed by the authors:
University of the Philippines System-Wide Computational Research Laboratory Grant.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions

e Cristian B. Jetomo conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

e Mark Lexter D. De Lara analyzed the data, authored or reviewed drafts of the article, and
approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The FSLAlphabetRecognition-PHCA Repository is available at GitHub and Zenodo:

- https://github.com/ji-chani/FSLAlphabetRecognition-PHCA.

- Jetomo, C. (2025). FSLAlphabetRecognition-PHCA. Zenodo. https://doi.org/10.5281/
zenodo.14637416.

The FSL Dataset is available at Kaggle: https://www.kaggle.com/datasets/japorton/fsl-
dataset?resource=download.

REFERENCES

Adeyanju I, Bello O, Adegboye M. 2021. Machine learning methods for sign language recognition:
a critical review and analysis. Intelligent Systems with Applications 12(2):200056
DOI 10.1016/j.iswa.2021.200056.

Basu D, Li T. 2019. A machine-learning-based early warning system boosted by topological data
analysis. SSRN Electronic Journal 17:235 DOI 10.2139/ssrn.3394704.

Buttar AM, Ahmad U, Gumaei AH, Assiri A, Akbar MA, Alkhamees BF. 2023. Deep learning in
sign language recognition: a hybrid approach for the recognition of static and dynamic signs.
Mathematics 11(17):3729 DOI 10.3390/math11173729.

Cabalfin EP, Martinez LB, Guevara RCL, Naval PC. 2012. Filipino sign language recognition
using manifold projection learning. In: TENCON, 2012 IEEE Region 10 Conference. Piscataway:
IEEE, 1-5.

Carlsson G. 2009. Topology and data. Bulletin of the American Mathematical Society 46(2):255-
308 DOI 10.1090/50273-0979-09-01249-X.

Cayme K], Retutal VA, Salubre ME, Astillo PV, Caiiete LG, Choudhary G. 2024. Gesture
recognition of filipino sign language using convolutional and long short-term memory deep
neural networks. Knowledge 4(3):358-381 DOI 10.3390/knowledge4030020.

Cruz F, Calimpusan E. 2018. Status and challenges of the deaf in one city in the philippines:
towards the development of support systems and socio-economic opportunities. Asia Pacific
Journal of Multidisciplinary Research 6(2):33-47.

Davis AC, Hoffman HJ. 2019. Hearing loss: rising prevalence and impact. Bulletin of the World
Health Organization 97(10):646-646A DOI 10.2471/BLT.19.224683.

Jetomo and De Lara (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2720 21/23

https://github.com/ji-chani/FSLAlphabetRecognition-PHCA
https://doi.org/10.5281/zenodo.14637416
https://doi.org/10.5281/zenodo.14637416
https://www.kaggle.com/datasets/japorton/fsl-dataset?resource=download
https://www.kaggle.com/datasets/japorton/fsl-dataset?resource=download
http://dx.doi.org/10.1016/j.iswa.2021.200056
http://dx.doi.org/10.2139/ssrn.3394704
http://dx.doi.org/10.3390/math11173729
http://dx.doi.org/10.1090/S0273-0979-09-01249-X
http://dx.doi.org/10.3390/knowledge4030020
http://dx.doi.org/10.2471/BLT.19.224683
http://dx.doi.org/10.7717/peerj-cs.2720
https://peerj.com/computer-science/

PeerJ Computer Science

De Lara MLD. 2023. Persistent homology classification algorithm. Peer] Computer Science 9(11):
€1195 DOI 10.7717/peerj-cs.1195.

Deméar J. 2006. Statistical comparisons of classifiers over multiple data sets. Journal of Machine
Learning Research 7:1-30.

Edelsbrunner H, Harer J. 2008. Persistent homology—a survey. In: Discrete and Computational
Geometry-DCG, 453.

Hensel F, Moor M, Rieck B. 2021. A survey of topological machine learning methods. Frontiers in
Artificial Intelligence 4:1 DOI 10.3389/frai.2021.681108.

Jain V, Jain A, Chauhan A, Kotla SS, Gautam A. 2021. American sign language recognition using
support vector machine and convolutional neural network. International Journal of Information
Technology 13(3):1193-1200 DOI 10.1007/s41870-021-00617-x.

Li MZ, Ryerson MS, Balakrishnan H. 2019. Topological data analysis for aviation applications.
Transportation Research Part E: Logistics and Transportation Review 128(3):149-174
DOI 10.1016/j.tre.2019.05.017.

Mantovani RG, Rossi ALD, Vanschoren J, Bischl B, de Carvalho ACPLF. 2015. Effectiveness of
random search in SVM hyper-parameter tuning. In: 2015 International Joint Conference on
Neural Networks (IJCNN), 1-8.

Martinez-Hinarejos CD, Parcheta Z. 2017. Spanish sign language recognition with different
topology hidden markov models. In: Interspeech.

Mirehi N, Tahmasbi M, Targhi AT. 2019. Hand gesture recognition using topological features.
Multimedia Tools and Applications 78(10):13361-13386 DOI 10.1007/s11042-019-7269-1.
Mishra A, Motta FC. 2023. Stability and machine learning applications of persistent homology
using the Delaunay-Rips complex. Frontiers in Applied Mathematics and Statistics 9:20589

DOI 10.3389/fams.2023.1179301.

Montefalcon MD, Padilla JR, Llabanes Rodriguez R. 2021. Filipino sign language recognition
using deep learning. In: 2021 5th International Conference on E-Society, E-Education and E-
Technology, ICSET 2021. New York, NY, USA: Association for Computing Machinery, 219-225.

Montefalcon MD, Padilla J, Rodriguez R. 2023. Filipino sign language recognition using long
short-term memory and residual network architecture. In: Proceedings of Seventh International
Congress on Information and Communication Technology, 489-497.

Most T. 2004. The effects of degree and type of hearing loss on children’s performance in class.
Deafness and Education International 6(3):154-166 DOI 10.1179/146431504790560528.

Nanda S, Dutta SK. 2023. Assessing human activity recognition performances of different
machine learning algorithms using sensor data. In: 2023 IEEE Silchar Subsection Conference
(SILCON). Piscataway: IEEE, 1-6.

Ness-Cohn E, Braun R. 2021. Timecycle: topology inspired method for the detection of cycling
transcripts in circadian time-series data. Bioinformatics 37(23):4405-4413
DOI 10.1093/bioinformatics/btab476.

Oliva KE, Ortaliz LL, Tobias MA, Vea L. 2018. Filipino sign language recognition for beginners
using kinect. In: 2018 IEEE 10th International Conference on Humanoid, Nanotechnology,
Information Technology, Communication and Control, Environment and Management
(HNICEM). Piscataway: IEEE, 1-6.

Ozdemir O, Baytas n M, Akarun L. 2024. Hand graph topology selection for skeleton-based sign
language recognition. In: 2024 IEEE 18th International Conference on Automatic Face and
Gesture Recognition (FG). Piscataway: IEEE, 1-5.

Porton JG. 2023. FSL dataset. Available at https://www.kaggle.com/datasets/japorton/fsl-dataset.

Jetomo and De Lara (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2720 22/23

http://dx.doi.org/10.7717/peerj-cs.1195
http://dx.doi.org/10.3389/frai.2021.681108
http://dx.doi.org/10.1007/s41870-021-00617-x
http://dx.doi.org/10.1016/j.tre.2019.05.017
http://dx.doi.org/10.1007/s11042-019-7269-1
http://dx.doi.org/10.3389/fams.2023.1179301
http://dx.doi.org/10.1179/146431504790560528
http://dx.doi.org/10.1093/bioinformatics/btab476
https://www.kaggle.com/datasets/japorton/fsl-dataset
http://dx.doi.org/10.7717/peerj-cs.2720
https://peerj.com/computer-science/

PeerJ Computer Science

Probst P, Boulesteix A-L, Bischl B. 2019. Tunability: importance of hyperparameters of machine
learning algorithms. Journal of Machine Learning Research 20(53):1-32.

Rivera JP, Ong C. 2018. Recognizing non-manual signals in filipino sign language. In: Proceedings
Eleventh International Conference on Language Resources and Evaluation (LREC 2018), 1-8.

Samaan GH, Wadie AR, Attia AK, Asaad AM, Kamel AE, Slim SO, Abdallah MS, Cho Y-I.
2022. Mediapipe’s landmarks with RNN for dynamic sign language recognition. Electronics
11(19):3228 DOI 10.3390/electronics11193228.

Sandjaja I, Marcos N. 2009. Sign language number recognition. In: 2009 Fifth International Joint
Conference on INC, IMS and IDC, 1503-1508.

Singh M, Garg S, Deshmukh C, Borle A, Wilson B. 2021. Challenges of the deaf and hearing
impaired in the masked world of COVID-19. Indian Journal of Community Medicine 46(1):11
DOI 10.4103/ijem.IJCM_581_20.

Skaf Y, Laubenbacher R. 2022. Topological data analysis in biomedicine: a review. Journal of
Biomedical Informatics 130:104082 DOI 10.1016/j.jb1.2022.104082.

Souza MFNS, Aratjo AMB, Sandes LFF, Freitas DA, Soares WD, Vianna RSdM, Sousa A ADd.
2017. Principais dificuldades e obstdculos enfrentados pela comunidade surda no acesso a saude:
uma revisio integrativa de literatura. Revista CEFAC 19(3):395-405
DOI 10.1590/1982-0216201719317116.

Wang Y, Han Y, Wang C, Song S, Tian Q, Huang G. 2023. Computation-efficient deep learning
for computer vision: a survey. Cybernetics and Intelligence abs/2308.13998:1-24.

Yang H, Sun D, Cai Y-J, Yang J, Si X-Y, Zhou S-M, Yan Y. 2023. Learning topological
representation of 3d skeleton dynamics with persistent homology for human activity
recognition. In: 2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM).
Piscataway: IEEE, 2709-2716.

Zhang F, Bazarevsky V, Vakunov A, Tkachenka A, Sung G, Chang C-L, Grundmann M. 2020.
Mediapipe hands: on-device real-time hand tracking. Available at https://doi.org/10.48550/
arXiv.2006.10214.

Jetomo and De Lara (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2720 23/23

http://dx.doi.org/10.3390/electronics11193228
http://dx.doi.org/10.4103/ijcm.IJCM_581_20
http://dx.doi.org/10.1016/j.jbi.2022.104082
http://dx.doi.org/10.1590/1982-0216201719317116
https://doi.org/10.48550/arXiv.2006.10214
https://doi.org/10.48550/arXiv.2006.10214
http://dx.doi.org/10.7717/peerj-cs.2720
https://peerj.com/computer-science/

	Filipino sign language alphabet recognition using Persistent Homology Classification algorithm
	Introduction
	Related works
	Persistent homology classification algorithm (de lara, 2023)
	Methods
	Results and discussion
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

