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ABSTRACT

In this study, we focus on classifying sleep apnea syndrome by using the
spectrograms obtained from electroencephalogram (EEG) signals taken from
polysomnography (PSG) recordings and the You Only Look Once (YOLO) v8 deep
learning model. For this aim, the spectrograms of segments obtained from EEG
signals with different apnea-hypopnea values (AHI) using a 30-s window function
are obtained by short-time Fourier transform (STFT). The spectrograms are used as
inputs to the YOLOv8 model to classify sleep apnea syndrome as mild, moderate,
severe apnea, and healthy. For four-class classification models, the standard reference
level is 25%, assuming equal probabilities for all classes or an equal number of
samples in each class. In this context, this information is an important reference
point for the validity of our study. Deep learning methods are frequently used for the
classification of EEG signals. Although ResNet64 and YOLOV5 give effective results,
YOLOVS stands out with fast processing times and high accuracy. In the existing
literature, parameter reduction approaches in four-class EEG classification have not
been adequately addressed and there are limitations in this area. This study evaluates
the performance of parameter reduction methods in EEG classification using
YOLOVS, fills gaps in the existing literature for four-class classification, and reduces
the number of parameters of the used models. Studies in the literature have generally
classified sleep apnea syndrome as binary (apnea/healthy) and ignored distinctions
between apnea severity levels. Furthermore, most of the existing studies have used
models with a high number of parameters and have been computationally
demanding. In this study, on the other hand, the use of spectrograms is proposed to
obtain higher correct classification ratios by using more accurate and faster models.
The same classification experiments are reimplemented for widely used ResNet64
and YOLOV5 deep learning models to compare with the success of the proposed
model. In the implemented experiments, total correct classification (TCC) ratios are
93.7%, 93%, and 88.2% for YOLOVS, ResNet64, and YOLOVS5, respectively. These
experiments show that the YOLOv8 model reaches higher success ratios than the
ResNet64 and YOLOv5 models. Although the TCC ratios of the YOLOv8 and
ResNet64 models are comparable, the YOLOvV8 model uses fewer parameters and
layers than the others, providing a faster processing time and a higher TCC ratio. The
findings of the study make a significant contribution to the current state of the art. As
a result, this study gives rise to the idea that the YOLOV8 deep learning model can be
used as a new tool for classification of sleep apnea syndrome from EEG signals.
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INTRODUCTION

Sleep apnea syndrome is defined as the interruption of breathing during sleep and the
decrease in the amount of oxygen in the blood (Saha et al., 2016). There are three different
types of sleep apnea syndrome: mixed, central, and obstructive (Fan et al., 2015). Central
sleep apnea (CSA) is a type of apnea caused by central nervous system-related pauses in the
upper airway and lungs during sleep (Aksahin, Oltu & Karaca, 2018). Obstructive sleep
apnea (OSA), in which the air intake through the nose and mouth decreases and breathing
stops during sleep, is the most common type of sleep apnea. Mixed sleep apnea (MSA)
initially begins as CSA and later exhibits OSA-like behavior (Khandoker, Karmakar ¢
Palaniswami, 2011).

Many studies in the literature have shown that the use of EEG signals provides high
correct classification ratios in the detection and classification of sleep apnea. Alvarez et al.
(2009), used the entropy of the power spectral density of the EEG signals and oximetric
features in the detection of sleep apnea. They achieved a sensitivity of 91%, a specificity of
83.3%, and an accuracy of 88.5% in the detection of sleep apnea. See ¢» Liang (2011),
performed sleep apnea diagnosis from EEG signals using a support vector machine (SVM)
and achieved an accuracy of 96.2%. Hsu ¢ Shih (2011), used the change of Hilbert
spectrum frequency to detect the duration of OSA. In real-time, this system can detect the
onset and ending times of sleep respiratory disturbances. Tagluk ¢ Sezgin (2011),
calculated quadratic phase coupling (QPC) in frequency subbands by considering the
bispectral properties of the EEG signal for the detection of OSA patients and achieved an
accuracy of 96.15%. Aboalayon ¢ Faezipour (2014), performed sleep apnea detection with
the SVM method by calculating features such as energy, entropy, and standard deviation
from the frequency subbands of the EEG signal and achieved an accuracy of 92%. Schuluter
¢ Conrad (2012), proposed an approach for sleep stage scoring and apnea detection using
discrete Fourier transform (DFT) and discrete wavelet transform (DWT) with
electroencephalogram (EEG), electrocardiography (ECG), electrooculography (EOG) and
electromyography (EMG) signals. Success ratios of 95.2% for the sleep apnea scoring and
95.4% for the classification of apnea-hypogene were achieved. Zhou, Wu ¢ Zeng (2015),
calculated EEG scaling coefficients using detrended fluctuation analysis (DFA) for sleep
apnea diagnosis and achieved the accuracy of 95.1% using SVM. In another study,
Almuhammadi, Aboalayon ¢ Faezipour (2015), obtained frequency subbands and used
energy and entropy values instead of using the entire EEG signals and achieved a success
ratio of 97.14%. Khalighi et al. (2016), developed an automatic sleep stage classification
model, and four signal channels (two EEG and two EOG) were selected according to their
proximity to the electrode locations of the new model tested in the used dataset. The
signals were converted into spectrogram images and classified by using a convolutional
neural network (CNN) model, supporting not only its performance on a standard PSG
dataset but also the transferability of the model to a dataset measured with the new system.
Chaw, Kamolphiwong & Wongsritrang (2019), achieved an accuracy of 91.3085% in sleep
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apnea detection using a deep convolutional neural network model based on SPO2 sensor.
Hamnvik, Bernabé & Sen (2020), used the You Only Look Once (YOLO) v4 model to
diagnose sleep apnea from recordings obtained at a sampling rate of 10 Hz and achieved
71% success. In 2020, Korkalainen et al. (2020) performed the classification of sleep stages
using a deep learning model. In the three-stage model, 80.1% epoch-epoch accuracy was
achieved. In 2021, Gurrala, Yarlagadda & Koppireddi (2021) study aims to detect sleep
disorders by classifying sleep stages. Using a single EEG channel, the Single Channel Sleep
Stage Classification (SS-SSC) method achieved 97.4% accuracy on the Sleep-EDF database.
This method, which takes into account both time and frequency features, was tested with
an SVM classifier and outperformed previous methods. This approach, which provides
high accuracy with single-channel EEG data, makes a unique contribution to the literature.
In another study, Hamnvik (2021), used the YOLOv4 model to detect OSA of different
lengths and intensities and achieved 87% correct prediction. He et al. (2022), detected sleep
apnea using a craniofacial image-based deep learning method. They also reported
sensitivity, specificity, and AUC values at various AHI thresholds. Song et al. (2023),
developed an OSA screening system based on snoring sound. For this purpose, they
developed three models, namely sound features fused with XGBoost, spectrograms fused
with CNN model, and spectrograms fused with ResNet, and used them hybridly. They
achieved 83.44% accuracy and 85.27% recall. To detect wake states, Foroughi et al. (2023),
used ResNet and SVM architectures to reduce computational complexity and simplify
feature extraction, achieving an accuracy of 93.82%. Jo et al. (2023), developed models for
apnea and sleep stage classification using deep learning methods. Wang, Koprinska ¢
Jeffries (2023), proposed four different deep-learning models to predict the next apnea
events in a 30-s segment. Previous studies on the use of time-frequency spectrograms in
sleep stage classification have demonstrated the effectiveness of deep learning approaches.
In particular, the Time-Frequency Spectra Convolution Neural Network (TFSCNN)
proposed by Jadhav & Mukhopadhyay (2022) shows promising results in automatic sleep
stage scoring. Similarly, Li et al. (2022) developed EEGSNet, a deep learning model based
on EEG spectrograms. The model was tested on four different data sets: Sleep-EDFX-8,
Sleep-EDFX-20, Sleep-EDFX-78 and SHHS.The deep learning method they developed
based on EEG spectrograms achieved high accuracy rates in sleep stage classification,
reinforcing the effectiveness of such approaches (Li et al., 2022).

This study focuses on whether the sleep apnea syndrome is mild, moderate, severe
apnea, or a healthy individual by using different apnea-hypopnea index (AHI) values not
the detection of the types of sleep apnea syndrome. EEG signal classification is typically
performed using raw EEG signals, wavelet transformations, or time-frequency
representations. However, EEG spectrograms provide a richer representation by
combining both time and frequency information.

This study focuses on a four-class classification problem to demonstrate that
spectrogram transformation serves as an effective input for deep learning models. Instead
of comparing different transformations, our goal is to evaluate the performance of various
architectures in spectrogram-based classification. Therefore, rather than focusing on
detailed STFT parameters, we highlight the general effectiveness of spectrograms and the
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impact of architectural differences on classification performance. The classification of sleep
apnea syndrome from PSG recordings is a time-consuming process due to the overnight
recording of patients in sleep laboratories. Classification of sleep apnea syndrome from
PSG recordings is time-consuming due to manual analysis of long recordings, often
covering the whole night. In our study, we aimed to speed up the analysis process rather
than the data collection time. We reduced data complexity and size by converting EEG
signals into spectrograms, making the process faster and more efficient. This method
minimizes manual steps and provides the time-frequency features of EEG as a single input,
making the classification process more efficient. Therefore, in this study, models that
classify sleep apnea at different severity levels (mild, moderate, severe, and healthy) using
EEG signals are compared. In the literature, there are no studies on the classification of
severity levels of sleep apnea syndrome and spectrogram-based classification. This article
aims to provide a perspective in this specific area. Metrics such as precision, recall, F1-
score, and accuracy are used to comprehensively evaluate the model performance. The
YOLOvV8 model is analyzed in comparison with ResNet64 and YOLOV5. The analysis
shows that YOLOV8 can be more useful in clinical applications with its high success rate
and speed advantage. EEG signals providing high classification success ratios are used as
the input of ResNet64, YOLOv5, and YOLOv8 models for the classification of sleep apnea
syndrome. The research question posed by this study is to what extent the spectrogram of
EEG data transformation and subsequent classification is more effective than existing
methods. This study aims to compare the performance of different deep learning
architectures using the time-frequency features obtained from the spectrogram
transformation of EEG signals. It highlights that spectrograms enhance classification
accuracy by clearly revealing frequency changes in EEG data over time. The research
focuses on identifying the most suitable deep learning architecture for a specific
transformation rather than comparing various transformations. Figure 1 shows the
schematic illustration of the proposed model.

As shown in Fig. 1, EEG signals from PSG recordings were separated into 30 s segments,
which are commonly used in the literature for size equalization, and spectrograms were
obtained (Chaw, Kamolphiwong & Wongsritrang, 2019). The whole data was divided into
training, testing, and validation and first applied as input to the developed ResNet64
model. The same spectrograms were also classified using YOLOv5 and YOLOv8 models
respectively and their performance metrics were compared. All experiments were realized
on an online cloud-based platform known as Google Colab, which supports the running of
codes in Python. The tensor processing unit (TPU) has 35 GB of random-access memory
(RAM) and 107.77 GB of storage for data calculations. The rest of the article presents in
detail the dataset, materials, and methods used, details of the architecture of the models,
performance metrics, experimental results, discussion, and conclusion.

MATERIALS AND METHODS

Dataset
The dataset used in this study is C3-A2 channel EEG signals from PSG recordings in the
Physionet database (PhysioBank ATM (physionet.org)). These recordings have different
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Figure 1 Schematic illustration of the proposed model. EEG signals from PSG recordings were separated into 30 s segments and the size was
equalized after obtaining the spectrograms. The whole data was divided into training, testing, and validation and first applied as input to the
developed ResNet64 model. The same spectrograms were also classified using YOLOv5 and YOLOv8 models respectively and their performance
metrics were compared. Full-size K&l DOT: 10.7717/peerj-cs.2718/fig-1

AHI values and sleep durations. AHI values are continuous variables measuring the
severity of sleep apnea and were used to make the classification more precise. AHI values
have been clarified as follows: AHI < 5 (normal), 5 < AHI < 15 (mild), 15 < AHI < 30
(moderate), and AHI > 30 (severe). Although the classification is categorical, AHI values
indicate the severity of apnea in each category, which allows for a more detailed analysis of
the relationship between EEG signals and sleep apnea severity. The EEG signals used for
analysis in this study were selected from patients with different AHI scores and sleep
durations, and this information is given in Table 1.

As seen in Table 1, a high AHI value means that the severity of sleep apnea is also high.
A value greater than five indicates the severity of sleep apnea syndrome. Sleep apnea
syndrome is the breathing disruption for at least 10 s during sleep. EEG signals are divided
into 30-s segments covering pre-apnea, apnea, and after-apnea and grouped into four
classes: mild, moderate, severe, and healthy (Tanci ¢ Hekim, 2023). The night-long data
enables a more comprehensive analysis of apnea severity in different sleep stages for the
classification of sleep apnea syndrome. This is particularly useful for assessing the
variability in the severity and frequency of apnea attacks throughout the night. The
difference in sleep durations caused a variance in the number of segments of the signal, so
size equalization was performed after obtaining the spectrograms. These spectrograms,
which were applied as input to deep learning models, were randomly divided into 70%
training, 15% testing, and 15% validation groups. Each spectrogram was generated using
30 s of EEG signal data. In total, 24,000 spectrograms were produced for the analysis. The
dataset was divided into 16,800 spectrograms for training and 3,600 spectrograms for
testing, with an additional 3,600 spectrograms used for validation. In this study, short-time
Fourier transform (STFT) is used to generate spectra from EEG data. Although classical
CNN models perform well in classification tasks, they suffer from the vanishing gradient
problem. Deep learning models such as Resnet eliminate this problem with its skip
connection structure, allowing the model to learn more complex patterns, thus improving
classification performance. The ability of the YOLO model to perform inference with a
single forward pass allows the model to work quickly and efficiently. Therefore, YOLO has
significant advantages, especially in real-time applications and systems requiring low
delays. The YOLOvV8 model, which we used in this study, contains fewer parameters with
its optimized architecture, which reduces the training time of the model and speeds up the
inference process. In addition, its lighter weight reduces hardware requirements.
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Table 1 Class, AHI value and sleep durations of selected EEG signals. A high AHI value means that
the severity of sleep apnea is also high. A value greater than five indicates the severity of sleep apnea
syndrome. These EEG signals of approximately 6-7 h were segmented into 30 s segments, which is the
length frequently used in the literature, and grouped into four classes: mild, moderate, severe.

Class AHI value Sleep duration (h)

Healthy 2 6.8

Mild 5 6.4

Moderate 25 7.2

Severe 91 5.9
Spectrogram

The spectrogram means the frequencies where the energy of the signal is maximum. The
waveform of the EEG signals is two-dimensional while obtaining the spectrogram by
adding the frequency content means moving it to three dimensions. In other words, a
spectrogram shows the energy change of a signal over time (Coskun ¢ Istanbullu, 2012).
The spectrogram of a signal is defined as the power distribution of the STFT (Koseoglu ¢
Uyanik, 2023). For the STFT application, the moving window function g(t — 7) is applied
to the signal x(¢) at time 7. Each window is moved by 7 in the time domain and these
changes in the time interval are displayed in the windows. STFT is defined as shown in Eq.
(1) (Foroughi et al., 2023).

X(t,f) = / x(t)g(t — t)e 2Mdt (1)

x(t): Analized signal

g(t — 1): Windowing function

v Time-shifting parameter

f: Frequency parameter

e 2™: The complex exponential function used in the Fourier transform.

This integral allows the signal to be analyzed over a given time interval (7) and at a given
frequency (f). These analysis methods are used to study the frequency components of the
signal as a function of time. When g(¢ — 1) is considered a windowing function, Eq. (2) is
the definition of the STFT. STFT analyzes both the time and frequency information of a
signal simultaneously. An example of EEG signals and their spectrograms for the four
classes used in the study is given in Fig. 2.

The four spectrograms presented in Fig. 2 were selected to compare and analyze visually
different examples of each class in the study. These spectrograms are from 30-s time slices
containing representative samples from each class. In this way, the differences and patterns
between the classes can be examined more clearly as visual representations.
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Figure 2 EEG signals and spectrogram examples (A) mild (B) moderate (C) severe (D) healthy. Full-size kal DOI: 10.7717/peerj-cs.2718/fig-2

Residual neural networks architecture
The residual neural networks (ResNet) architecture is based on the layer-by-layer
combination of residual blocks and enables the training of deeper architectures. In this
architecture, blocks with multiple layers are used to reduce the training error, and residual
values are added to subsequent layers to learn the difference between input and output. In
this case, this prevents lost gradients and makes the network deeper (Song et al., 2023).
ResNet uses identity mapping to increase the learning capacity and prevent overlearning
despite the deepening of the network. The main feature of residual blocks is to equalize the
input and output dimensions, thus making it easier for the network to learn. A basic
ResNet architecture includes a residual block, two convolutional (Conv) layers, Batch
normalization and ReLU activation after each convolution layer, a Residual connection
where the input is directly added to the output, and the identity mapping layer where the
input and output dimensions are mapped. ResNet models are often referred to by the
number of layers. Each additional layer allows the model to learn more complex features.
The ResNet model developed in this study is called ResNet64 since it initially contains 64
filters, and the properties of the layers are given in Table 2.

ResNet models have advantages in deep networks such as training simplicity, network
augmentation, transfer learning capability, and backward adaptability.
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Table 2 Layers and properties of ResNet64 architecture. ResNet models have advantages in deep
networks such as training simplicity, network augmentation, transfer learning capability, and backward

adaptability.
Layer Output size Filters Activation Params
Conv2d-1 [batch_size, 64, 112, 112] 64 - 9,408
BatchNorm2d-2 [batch_size, 64, 112, 112] 64 - 128
ReLU-3 [batch_size, 64, 112, 112] - ReLU (inplace=True) 0
MaxPool2d-4 [batch_size, 64, 56, 56] - - 0
Conv2d-5 [batch_size, 64, 56, 56] 64 - 4,096
BatchNorm2d-6 [batch_size, 64, 56, 56] 64 - 128
ReLU-7 [batch_size, 64, 56, 56] - ReLU 0
Conv2d-8 [batch_size, 64, 56, 56] 64 - 36,864
BatchNorm2d-9 [batch_size, 64, 56, 56] 64 - 128
ReLU-10 [batch_size, 64, 56, 56] - ReLU 0
Conv2d-11 [batch_size, 256, 56, 56] 256 - 16,384
BatchNorm2d-12 [batch_size, 256, 56, 56] 256 - 512
Conv2d-13 [batch_size, 256, 56, 56] 256 - 16,384
BatchNorm2d-14 [batch_size, 256, 56, 56] 256 - 512
ReLU-15 [batch_size, 256, 56, 56] - ReLU 0
Bottleneck-16 [batch_size, 256, 56, 56] - - 0
Conv2d-17 [batch_size, 64, 56, 56] 64 - 16,384
BatchNorm2d-18 [batch_size, 64, 56, 56] 64 - 128
ReLU-19 [batch_size, 64, 56, 56] - ReLU 0
AdaptiveAvgPool2d-173 [batch_size, 2048, 1, 1] - - 0
Linear-174 [batch_size, 4] 4 - Varies
ResNet-175 [batch_size, 4] - - 0

YOLOV5 architecture

YOLOV5 is a model for object detection and classification and is mainly based on the
PyTorch library. It is an architecture consisting of three basic parts: spine, neck, and head
(Fang et al., 2021). The architecture of the YOLOvV5 model is given in Fig. 3.

As shown in Fig. 3, the input images are first transmitted to the backbone network. The
feature maps created in this section are combined with different maps. In YOLOVS5, Cross
Stage Partial Network (CSPNet) is integrated into Darknet and a structure called
CSPDarknet is created. CSPNet includes several conv layers, four CSPs with three
convolutions, and one spatial pyramid pooling (SPP). The SPP module eliminates the fixed
size limitation in the network, so there is no need to denoise, enlarge, and refract images.
CSP is a module that compiles features learned in the backbone, making the path between
the lower and upper layers shorter. The neck section is known as PANet and it takes all the
features extracted from the backbone, saves them, and sends them to the deep layer. These
saved features are used as classification labels in the head. In the head layer, convolutional
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Figure 3 YOLOV5 architecture. YOLOV5 architecture consists of backbone neck and head parts.
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operations are applied to generate class prediction values based on the target values
(Solawetz & Francesco, 2023).

YOLOVS architecture
YOLOVS is the latest version of the YOLO family of object detection and classification
models. YOLOVS is an improved version of YOLOV5, adding more advanced features and

optimizations to improve its performance. The YOLOV8 architecture has three main
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components: backbone, neck, and detection head (Lou et al., 2023). The YOLOVS
architecture structure is given in Fig. 4.

As can be seen in Fig. 4, this architecture is based on CSPDarknet53 and includes
innovations such as the C2f module, SPPF layer, group normalization, and SiLU
activation. There is also a head model that separately handles object presence,
classification, and regression functions (Sary, Andromeda ¢» Armin, 2023). YOLOV8
computes object detection and class probabilities using sigmoid and softmax functions in
the output layer. It uses CloU, DFL, and binary cross-entropy methods for bounding box
and classification losses to improve detection accuracy (Lou et al., 2023). The backbone is
used to extract features from the input image. CSPDarknet53 effectively reduces the
model’s parameter count compared to its predecessors, while simultaneously enhancing
information exchange between layers. Neck combines the features extracted by the
backbone and allows YOLOVS to detect objects at different scales and aspect ratios. The
detection head predicts the position and class of objects in the input image and affects the
model’s performance by assigning higher weights for hard-to-classify instances. In the
post-processing stage, the position and class of objects estimated by the detection head are
processed to eliminate low-reliability and overlapping detections. Moreover, data
augmentation methods, including random cropping, resizing, and projection, are
implemented to augment the variety within the training data, thereby enhancing the
model’s ability to generalize (Alsamurai, 2023).

Performance assessment metrics

In the study, assessment metrics such as accuracy (Acc), precision (P), recall (R), and F1
score were utilized to evaluate the performance of sleep apnea syndrome classification.
Accuracy represents the overall correct classification rate and indicates increasing success
as the value approaches 1. Precision (P) denotes the ratio of correctly predicted positive
observations to the total predicted positives, while recall (R) signifies the ratio of correctly
predicted positive observations to all actual positives. The F1 score is the harmonic mean
of sensitivity and precision (Cecen ¢» Ozer, 2023). During the calculation of these metrics,
the number of true and false predictions is determined using the confusion matrix. The
confusion matrix for classification is presented in Table 3.

The metrics to be used in evaluating the performance of the model are computed by
using the actual and predicted values of each class. In this study, true and false represent
the predictions of the model and their agreement with the actual situation. True positive
(TP) represents the correct classification of apnea cases as apnea and true negative (TN)
represents the correct prediction of non-apnea cases as non-apnea. In contrast, false
positive (FP) represents a non-apnea case being incorrectly classified as apnea and false
negative (FN) represents an apnea case being incorrectly predicted as non-apnea. The
expressions in the confusion matrix and the performance evaluation metrics are given in
Egs. (2)-(5) (Tanci & Hekim, 2023).

Tanci and Hekim (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2718 10/20


http://dx.doi.org/10.7717/peerj-cs.2718
https://peerj.com/computer-science/

PeerJ Computer Science

Backbone

[ Input H CBS ]—)[ CBS ]—)[ C2fx3 H CBS ]—)[ C2fx6 ]—)[ CBS ]—)[ C2fx6 ]—)[ CBS H C2fx3 ]—)[ SPPF ]

Neck

[ Concat ](—[ Unsample ](—[ C2fx3 ](—[ Concat ](—[ Unsample ]
[ C2fx3 ]—)[ CBS ]—)[ Concat ]—)[ C2fx3 ]—)[ CBS ]—)[ Concat ]—)[ C2fx3 ]

A 4

Output

(o o [ [ =]

SPPF
[ CBS J—)[ Maxpool2d ]—)[ Maxpool2d ]—)[ Maxpool2d ]—)[ Concat ]—)[ CBS ]

Figure 4 YOLOVS architecture. YOLOVS architecture is an improved version of the yolov5 model and consists of backbone neck and head parts.
Full-size K&] DOT: 10.7717/peerj-cs.2718/fig-4

e TPHIN o
“CTIPL{ENT+FP+ 1IN
TP

P=_—— 3)
TP + FP

R— TP @
~ TP+ FN

2% (P*R)
F18 = 5
core PIR (5)

TP: true positive, apnea correctly detected as apnea

TN: true negative, non-apnea correctly detected as non-apnea
FP: false positive, non-apnea incorrectly detected as apnea
FN: false negative, apnea incorrectly detected as non-apnea.

RESULTS AND DISCUSSION

In this study, spectrograms of EEG signals from PSG recordings were utilized as input for
sleep apnea classification in ResNet64, YOLOv5, and YOLOvV8 models. The input images
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Table 3 Confusion matrix for binary classification. During the calculation of the metrics, the actual
and estimated true/false numbers are determined using the confusion matrix.

Predicted:Mild  Predicted:Moderate  Predicted:Severe  Predicted:Healthy

Actual:Mild TP FN FN FN
Actual:Moderate ~ FP TP FN FN
Actual:Severe FP FP TP FN
Actual:Healthy FP FP FP TP

were resized to 224 x 224, and training was conducted for 20 epochs for maximum
accuracy. The training of the model was limited to only 20 epochs because observations
showed that the model performed well enough in the early stages and the risk of overfitting
increased as the training continued with more epochs. Therefore, it was decided to limit
the number of epochs instead of increasing the training data. Over-learning can negatively
impact classification performance on new and unprecedented data, reducing the ability to
generalize. In this context, keeping the training time at an optimal level is a critical step to
ensure the best validation accuracy. The training results are presented in Table 4.

As seen in Table 4, the number of layers, number of parameters, computational load
(GFLOPs), accuracy rate (Topl), and training times of ResNet64, YOLOvS5, and YOLOv8
models are compared. GFLOPs are usually short for “Giga Floating Point Operations Per
Second” and are used to measure the processing load or computational complexity of a
model. That is the intensity of the operations the model performs during training or when
making a prediction. Top1 refers to the model’s accuracy rate and indicates the proportion
of the model’s predictions that fall into the correct class with the highest probability. These
values are important metrics for evaluating the performance and computational
requirements of a model. The number of layers in the YOLOv8 model is 99, while
ResNet64 has 175 layers and YOLOVS has 214 layers. This shows that the number of layers
has been reduced by 56% in the YOLOv8 model. In terms of the number of parameters,
YOLOVS has 2,719,288 parameters, while ResNet64 has 25,557,032 and YOLOV5 has
7,030,417 parameters. Comparisons based on these values show that the number of
parameters has been reduced by approximately 10.65%. In terms of computational load
(GFLOPs), the YOLOvV8 model has a value of 4.4 GFLOPs, while the other models have
much higher values of 51.1 GFLOPs and 16.0 GFLOPs, respectively. This shows that the
YOLOV8 model runs with much less computational power. In terms of accuracy, the
YOLOvV8 model shows the best performance with an accuracy of 93.7%. In terms of
training time, the YOLOv8 model completed the training in the shortest time with 0.139 h
and provided an advantage in terms of training. These results show that the YOLOv8
model is both computationally more efficient and an effective option in terms of training
time and accuracy. These reductions were made to make the model run faster, less
complex, and with less computational effort. Figure 5 illustrates the training and test losses
for all three models.
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Table 4 Training results. The YOLOv5 model has the highest number of layers, whereas the ResNet64
model contains the most parameters.

Model Layer Parameters GFLOPs Topl Time (h)
ResNet64 175 25,557,032 0.0511 0.930 0.174
YOLOV5 214 7,030,417 16.0 0.882 0.304
YOLOvV8 99 27,192,88 4.4 0.937 0.139
ResNet64 Train Results Yolov5 Train Results
2 3
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Figure 5 Test/loss and train/loss results (A) ResNet64 (B) YOLOvV5 (C) YOLOVS. The training loss of
the YOLOv5 model shows an upward graph, while this loss gradually approaches 0 in the ResNet64 and
YOLOV8 models. This metric measures how far the predictions are from the actual values.

Full-size K&l DOT: 10.7717/peerj-cs.2718/fig-5

As can be seen in Fig. 5, the training loss of the YOLOv5 model shows an upward graph,
while this loss gradually approaches 0 in the ResNet64 and YOLOv8 models. This metric
measures how far the predictions are from the actual values. A decreasing train/loss value
indicates that the model learns better. As for test/loss, the YOLOvV5 model is close to the
steady state, while the ResNet64 and YOLOv8 models show a decreasing trend.
Furthermore, the performance evaluation metrics of these models are presented in Fig. 6.

As seen in Fig. 6, the lowest recall values for each model were obtained in the healthy
class, while the highest recall value in all three models belongs to the severe class. Although
the YOLOvV8 model achieved the highest value in the mild and moderate classes, both
ResNet64 and YOLOV8 models demonstrated equal values in the severe and healthy
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Figure 6 Acc, recall, precision and F1 scores of three models. (A) Accuracy (B) recall (C) precision (D)
F1 score. The lowest recall values for each model were obtained in the healthy class, while the highest
recall value in all three models belongs to the severe class.  Full-size Kl DOT: 10.7717/peerj-cs.2718/fig-6

classes and outperformed the YOLOvV5 model. The precision value is highest in the severe
class, with the YOLOv8 model attaining the highest value in the mild and severe classes,
and the YOLOvV5 model reaching the highest value in the moderate class. In the healthy
class, both the YOLOvV5 and YOLOvV8 models exhibited equal values, which were higher
than those of the ResNet64 model.

The F1 score value is consistent with recall and precision values. The YOLOvV8 model
had the highest value in the mild, moderate, and healthy classes, while in the severe class,
both the ResNet64 and YOLOv8 models surpassed the YOLOv5 model. The confusion
matrices obtained from the test results for these four groups classified in the study are
presented in Table 5.

As seen in Table 5, the highest correct classification rate in all three models belongs to
the severe class. In these matrices, rows are actual values and columns are predicted values.
In the ResNet64 model, there were 92 correct predictions for the mild class, with one
incorrect prediction classified as moderate and seven as healthy. For the moderate class,
there were 93 correct predictions, along with one mild, four healthy, and two severe
incorrect predictions. Regarding the severe class, there were 99 correct predictions and one
incorrect prediction classified as moderate. Lastly, for the healthy class, there were 89
correct predictions, with seven mild and five moderate incorrect predictions. Although the
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Table 5 Confusion matrices of models (A) ResNet64 (B) YOLOv5 (C) YOLOVS. The highest correct
classification rate in all three models belongs to the severe class. In these matrices, rows are actual values
and columns are predicted values.

A

ResNet64 Mild Moderate Severe Healthy
Mild 92 1 0 7
Moderate 1 93 2 4

Severe 0 1 99 0
Healthy 7 5 0 89

B

YOLOV5 Mild Moderate Severe Healthy
Mild 91 0 0 27
Moderate 1 100 0 1
Severe 4 0 100 6
Healthy 4 0 0 66

C

YOLOvV8 Mild Moderate Severe Healthy
Mild 99 0 0 5
Moderate 0 95 1 1

Severe 0 0 99 6
Healthy 1 5 0 88

number of incorrect predictions for the healthy class is slightly high, the overall accuracy
value of the ResNet64 model is 93%. Upon examining the YOLOvV5 model, there appear to
be more errors in the predictions of the mild class. Additionally, there is an increase in the
number of incorrect predictions in the severe class, particularly in the mild and healthy
classes. Looking at the confusion matrix of the YOLOv8 model, the performance seems
quite good. Most predictions for each class are correct, but as with all models, the number
of incorrect predictions in the healthy class is higher than in the other classes. The ROC
curves obtained for the models according to these values are presented in Fig. 7.

As seen in Fig. 7, the ResNet64 model achieved the highest correct classification rate in
the severe class, followed by moderate, mild, and healthy classes, respectively. In contrast,
the YOLOV5 model exhibited the highest correct classification rate in the moderate class,
followed by the healthy, severe, and mild classes. Similarly, the YOLOv8 model
demonstrated high success rates across all classes, with the highest value observed in the
severe apnea class, followed by mild, moderate, and healthy classifications. The area under
the ROC curve indicates the level of classification success, with the high accuracy value of
severe apnea proportional to the high AHI value.

These experiments show that the YOLOv8 model reaches higher success ratios than the
ResNet64 and YOLOvV5 models. Although the TCC ratios of the YOLOv8 and ResNet64
models are comparable, the YOLOvV8 model uses fewer parameters and layers than the
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Figure 7 ROC curves of models (A) ResNet64 (B) YOLOv5 (C) YOLOvS8. The ResNet64 model
achieved the highest correct classification rate in the severe class, followed by moderate, mild, and healthy

classes, respectively.
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others, providing a faster processing time and a higher TCC ratio. The findings of the study
make a significant contribution to the current state of the art. YOLOVS8’s processing speed
and efficiency enhance its usability in time-sensitive situations like sleep apnea. While the
ResNet64 model is capable of learning complex patterns due to its deep architecture and
residual connections, the lighter and faster structure of YOLOVS8 has proven to be a more
effective option by reducing hardware requirements during the classification process. The
advantages of both models are highlighted, and the critical importance of obtaining quick
results in biomedical diagnosis processes is emphasized. The obtained results demonstrate
that it is possible to classify sleep apnea using only EEG signals, offering a new approach to
the literature. It is thought that this study will inspire future research, and that model
performance can be further enhanced by expanding databases with the addition of
different EEG channels. The combination of speed, accuracy, and efficiency offered by

YOLOV8 makes it a viable alternative for widespread use in sleep apnea diagnosis in

clinical settings.
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CONCLUSIONS

In this study, ResNet64, YOLOv5, and YOLOv8 models are proposed for sleep apnea
classification from EEG signals. For sleep apnea syndrome classification, EEG signals,
which are divided into four classes mild, moderate, severe, and healthy, are segmented into
30-s segments, and spectrograms are taken, resized, and applied as input to all three
models separately. The Acc value was 93% in the ResNet64 model, 88.2% in the YOLOv5
model, and 93.2% was achieved in the YOLOvV8 model.

In conclusion, due to its high performance, the YOLOvV8 model can be used as a new
tool for sleep apnea classification from EEG signals. It is thought that the classification of
sleep apnea syndrome using only EEG signals without the need for overnight recording in
sleep laboratories, and the fact that this proposed model has not been used in previous
studies will have an important impact on biomedical applications.
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