Submitted 23 August 2024
Accepted 28 January 2025
Published 24 February 2025

Corresponding author
Sungsu Lim, sungsu@cnu.ac.kr

Academic editor
Carlos Fernandez-Lozano

Additional Information and
Declarations can be found on
page 25

DOI 10.7717/peerj-cs.2717

() Copyright
2025 Park et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Dynamic Periodic Event Graphs for
multivariate time series pattern prediction

SoYoung Park, HyeWon Lee and Sungsu Lim

Department of Computer Science and Engineering, Chungnam National University, Daejeon,
Republic of South Korea

ABSTRACT

Understanding and predicting outcomes in complex real-world systems necessitates
robust multivariate time series pattern analysis. Advanced techniques, such as
dynamic graph neural networks, have shown significant efficacy for these tasks.
However, existing approaches often overlook the inherent periodicity in data, leading
to reduced pattern or event prediction accuracy, especially in periodic time series. We
introduce a new method, called dynamic Periodic Event Graphs (PEGs), to tackle this
challenge. The proposed method involves time series decomposition to extract
seasonal components that capture periodically recurring patterns within the data. It
also uses frequency analysis to extract representative periods from each seasonal
component. Additionally, motif patterns, which are recurring sub-sequences in the
time series data, are extracted. These motifs are used to define event nodes using the
representative periods extracted from the seasonal components. By constructing
periodic motif pattern-based dynamic bipartite event graphs, we specifically aim to
enhance the performance of link prediction tasks, leveraging periodic characteristics
in multivariate time series data. Our method has been rigorously tested on multiple
periodic multivariate time series datasets, demonstrating over a 5% improvement in
link prediction performance for both transductive and inductive scenarios. This
demonstrates a substantial enhancement in predictive accuracy and generalization,
providing confidence in the technique’s effectiveness. Reproducibility is ensured
through publicly available source code, enabling future research and applications.

Subjects Data Mining and Machine Learning, Data Science
Keywords Multivariate time series analysis, Dynamic graphs, Event graphs, Graph neural networks,
Self-supervised learning, Link prediction

INTRODUCTION

Multivariate time series analysis is crucial for capturing real-world complexities through
the interactions among multiple variables (7say, 2013). This approach enhances model
accuracy, offers richer information for robust predictions, and provides flexibility for
modeling diverse scenarios. Analyzing multivariate time series is essential for predicting
future patterns, aiding decision-making, and strategy formulation across various domains.
For example, in finance, Torres ¢ Qiu (2018), Aseeri (2023) forecast stock market price or
volatility, and Zhao, Xie ¢» West (2016) optimizes investment portfolios. Similarly, in
industry, Sun et al. (2022) predicts substation equipment temperature, and Zhai, Yao &
Zhou (2020) forecasts industrial production levels and optimizes inventory. The inherent
complexity of time series data requires a comprehensive understanding of
interdependencies and multivariate relationships for accurate modeling. Specifically,

How to cite this article Park S, Lee H, Lim S. 2025. Dynamic Periodic Event Graphs for multivariate time series pattern prediction. Peer]
Comput. Sci. 11:e2717 DOI 10.7717/peerj-cs.2717

http://dx.doi.org/10.7717/peerj-cs.2717
mailto:sungsu@�cnu.�ac.�kr
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2717
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

PeerJ Computer Science

understanding the nonlinear and temporally shifting relationships between different time
series is crucial (Chiang et al., 2024). Many forecasting models have been developed to
tackle complex temporal patterns and dependencies, but validation of their performance
across tasks is still lacking. The absence of comprehensive comparisons across tasks further
hinders the assessment and selection of the most effective models (Yin et al., 2019).

To address these challenges, graph neural networks (GNNs) have emerged as a powerful
approach for forecasting in multivariate time series analysis (Cao et al., 2020; Wu et al,
2020; Shao et al., 2022; Liu et al., 2022). These models excel at capturing complex, dynamic
interactions among multiple variables, making them particularly effective for modeling
relationships inherent in time series data. Building on this, dynamic event-based bipartite
graphs (Wu et al., 2022) have been proposed as a promising technique to incorporate
temporal dependencies, thereby enhancing interpretability and predictive power for
pattern forecasting. In such bipartite graph models, time series are represented as one type
of node, while patterns or events are represented as another type of node. Edges capture
temporal relationships between specific time series at given timestamps, enabling explicit
modeling of interdependencies. For instance, Event2Graph (Wu et al., 2022) successfully
integrates these graph structures to model event-event interactions. However, existing
approaches often overlook the inherent periodicity in data, which is critical for improving
the performance of link prediction tasks in periodic multivariate time series. The primary
objective of this study is to construct dynamic bipartite event graphs by leveraging periodic
characteristics in multivariate time series and to validate their effectiveness in enhancing
link prediction performance. To bridge this gap, it is essential to model the periodic
components of time series explicitly. Leveraging techniques such as Seasonal and Trend
decomposition using Loess (STL) (Cleveland et al., 1990) and Fourier transformation
(Bracewell, 1989), periodicity can be identified and incorporated into the graph structure to
enhance predictive accuracy. For example, while HVAC systems in multiple households
might exhibit regular periodic cycles, the energy usage patterns of household appliances
(e.g., refrigerators, washing machines, and dishwashers) often vary due to user behaviors
and daily routines (Cetin, Tabares-Velasco ¢ Novoselac, 2014). Accurately capturing these
nuances through periodicity extraction enables a deeper understanding of individual time
series and their unique characteristics, improving model generalization across diverse
datasets. In this context, the Periodic Event Graphs (PEGs) advances existing methods by
integrating periodic and residual components into the graph representation. This dual-
focus approach not only improves the ability to model seasonal trends but also accounts
for non-periodic variations, ensuring robustness and versatility across datasets with
varying characteristics.

By understanding such nuances and extracting relevant periodicities, we can
significantly enhance the accuracy of predicting and modeling pattern event nodes within
multivariate time series analysis for graph-based analysis. Extracting useful motifs and
other temporal patterns is crucial, as it emphasizes the significance of understanding
complex interactions and periodic behaviors in multivariate time series data (Kim ¢ Lim,
2021). This article proposes a novel approach that automatically detects periodicity in
multivariate time series data to generate the dynamic PEGs, referencing prior research

Park et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2717 2/28

http://dx.doi.org/10.7717/peerj-cs.2717
https://peerj.com/computer-science/

PeerJ Computer Science

Multivariate Time Series [Fourier Transformer]
2 —'| Clustering

u X (0 Periodic Event Node
’ Dominant Frequency ~ X W W W

(- Xu(D)
. X4 (t) = f;,dominant) 1(®) M = a
] 1
[STL Decompose]) S M w W W = a
v L1 31 17
} —'[Matrix Profile]
Seasonal Component ¥ W = @
{ r Period ~ r Period ~ -
| Motif — W = @
| HXa® k
X4(t) X0 XD
Figure 1 Multi-step process for generating PEGs. Full-size k] DOT: 10.7717/peerj-cs.2717/fig-1

(Wu et al., 2022). This approach is not just a new method, but a significant advancement in
the field of multivariate time series analysis. The proposed approach, illustrated in Fig. 1,
generates periodic event nodes based on time series patterns. The approach follows a
multi-step process to analyze multivariate time series data. This process involves time
series decomposition, frequency analysis, motif extraction, and graph-based
representation. First, time series decomposition is applied to each time series to extract
seasonal components reflecting inherent periodic patterns. Next, frequency analysis
determines the periodicity within each seasonal component, identifying representative
periods. These periods are then used to generate representative patterns as motifs, forming
the basis for event nodes. Finally, motifs are clustered to create periodic event nodes. This
comprehensive process provides insights into the data’s periodic nature, enhancing our
ability to interpret and understand its underlying patterns.

By extracting seasonal components and identifying periodicity through frequency
analysis, we gain a deeper understanding of the temporal dynamics present in the time
series data. This understanding is pivotal for developing more accurate predictive models
across various domains, allowing us to leverage the periodic patterns for forecasting and
decision-making. The potential impact of this research is not limited to one field, but it can
revolutionize predictive modeling in many areas. In addition, motifs (i.e., representative
patterns) are extracted from each time series using the identified periodicity information.
These motifs represent characteristic patterns within the data, serving as the basis for
defining pattern-based event nodes. Clustering these motifs across the entire multivariate
time series enables the identification of coherent patterns and relationships among
different variables. Subsequently, bipartite graphs represent the interactions between these
event nodes. This dynamic event graph encapsulates the temporal dependencies and
interactions within the multivariate time series data. Such a representation facilitates the
effective utilization of various dynamic graph neural networks (DGNNs) for multivariate
time series pattern prediction.

Park et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2717 3/28

http://dx.doi.org/10.7717/peerj-cs.2717/fig-1
http://dx.doi.org/10.7717/peerj-cs.2717
https://peerj.com/computer-science/

PeerJ Computer Science

The proposed approach offers a systematic and comprehensive framework for analyzing
multivariate time series data. It’s not just a method, but a complete system for
understanding and modeling complex time series data. Integrating time series
decomposition, frequency analysis, motif extraction, and graph-based representation, it
enables efficient learning of dependencies and accurate modeling of time series for pattern
prediction across diverse domains. In summary, our contributions to this work are as
follows:

o Automated time series period extraction: Automated processes extract periodic
patterns from time series data, enhancing model automation and stability.

o Self-supervised learning for pattern prediction: Using self-supervised learning, the
model autonomously predicts patterns in time series data without manual labeling,
enabling efficient use of large datasets. This approach opens up new possibilities for
pattern prediction in time series data.

« Interpretation of patterns as event nodes: Time series patterns are interpreted as
discrete event nodes, improving predictions’ understanding, explanation, and reliability.

 Ensuring reproducibility: To ensure easy replication of the research, the source code
and datasets used in this article are available at https://github.com/peg-repo/periodic-
event-graph.

The rest of this article is organized as follows. “Related Work” discusses previous
research, “Background and Problem Formulation” provides background and problem
definition, “Proposed Method: Periodic Event Graphs” presents our proposed method,
“Experiments” describes the experiments and results, and “Conclusions” concludes the
article.

RELATED WORK

Our study focuses on time series pattern or event prediction, aiming to model time series
patterns as nodes through GNNs and make predictions via link prediction.

Time series pattern prediction plays a pivotal role in uncovering complex temporal
behaviors and forecasting future patterns. Traditional methods such as ARIMA,
SARIMA, and GARCH have been extensively utilized for analyzing time series data. While
these models effectively capture short-term trends and specific periodic features, their
ability to manage intricate multivariate interactions or long-term dependencies
remains limited. Advances in deep learning have revolutionized this field, enabling the
detection and prediction of sophisticated patterns and events. For example, Zhong, Lv ¢
Shi (2023) proposed a hybrid model combining long short-term memory (LSTM)
networks with conditional random fields (CRFs). This approach excels at
capturing long-term dependencies and labeling time series data with structured
patterns, although it struggles to explicitly model event-to-event interactions. On the
other hand, Cao et al. (2023) introduced a generative pre-trained transformer (GPT)-based
framework that leverages prompt learning to predict patterns and events. This method
demonstrates high efficiency for large-scale data but requires domain-specific fine-tuning.

Park et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2717 4/28

https://github.com/peg-repo/periodic-event-graph
https://github.com/peg-repo/periodic-event-graph
http://dx.doi.org/10.7717/peerj-cs.2717
https://peerj.com/computer-science/

PeerJ Computer Science

Recent research has sought to extend time series modeling through graph-based
approaches, emphasizing the representation of complex relationships among multivariate
data. GNNs have emerged as a prominent tool, enabling explicit relationship modeling and
robust pattern learning across datasets. Graph-based methodologies are increasingly
applied to analyze and predict complex patterns within multivariate time series data. By
representing time series as graph structures—nodes representing entities and edges
representing interactions—this approach facilitates an intuitive understanding of
relationships. Several studies have advanced the state-of-the-art in this area. Liu ef al.
(2022) developed temporal polynomial graph neural networks (TPGNN), designed to
model long-term and intricate dependencies. Shao et al. (2022) introduced a pre-training
enhanced graph neural network that concurrently learns temporal and spatial interactions,
improving prediction accuracy. Similarly, Wu et al. (2020) proposed a model integrating
graph structures for short- and long-term forecasting. Cao et al. (2020) combined
frequency-based analysis with graph neural networks in the spectral temporal graph neural
network, achieving deep insights into multivariate time series data. DGNNSs represent a
specialized extension, capturing temporal variations in evolving graphs. Notable DGNN
models include JODIE (Kumar, Zhang ¢ Leskovec, 2019), which focuses on node
interactions and temporal changes; DyRep (Trivedi et al., 2019), which learns dynamic
embeddings for predictive modeling; and TGAT (Xu et al., 2020), which flexibly models
temporal graph structures. Additionally, TGN (Rossi ef al., 2020) and GraphMixer (Cong
et al., 2023) integrate multi-step graph representations to enhance temporal pattern
predictions. The evolutionary state graph by Hu et al. (2021), which models evolving
relationships in time series events. This method effectively learns temporal dynamics but
overlooks periodic structures within data. Wu et al. (2022) addressed this with
Event2Graph, an event-driven bipartite graph model integrating temporal dependencies
for multivariate time series forecasting and anomaly detection. While Event2Graph excels
in modeling event-event interactions, its omission of periodic patterns limits its utility in
datasets with pronounced cyclic behaviors. Despite their strengths, these models generally
overlook periodic patterns in time series data, leading to suboptimal performance for
datasets with strong cyclic characteristics.

Periodic patterns are fundamental to many time series datasets, providing critical
insights that enhance predictive accuracy and analytical depth. In this study, we leverage
STL and Fourier Transformation to identify and model periodic characteristics in
multivariate time series data. This combined approach addresses limitations in traditional
methods and offers a robust framework for capturing seasonal and cyclic behaviors. Time
series decomposition separates data into trend, seasonality, and residual components,
serving as a foundation for various applications. Linear methods such as moving averages
and exponential smoothing (Gardner, 1985) are intuitive but fail to manage nonlinear
complexities. Nonlinear techniques like Wavelet Transformation (Bentley ¢» McDonnell,
1994) and singular spectrum analysis (SSA) (Vautard, Yiou ¢ Ghil, 1992) have been widely
adopted for their ability to extract intricate structures. Among these, STL (Cleveland et al.,
1990), a non-parametric method based on Locally Estimated Scatter plot Smoothing
(LOESS) (Cleveland, 1979), excels in isolating localized seasonal patterns, making it

Park et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2717 5/28

http://dx.doi.org/10.7717/peerj-cs.2717
https://peerj.com/computer-science/

PeerJ Computer Science

particularly suitable for multivariate time series (Cao, Qi ¢ Lu, 2024). Complementing
decomposition, frequency analysis identifies recurring patterns through methods like
autocorrelation function (ACF), partial autocorrelation function (PACF) (Box et al., 2015),
cyclical dummy variables (Hylleberg et al., 1990), and Fourier Transformation (Bracewell,
1989). Fourier Transformation is especially effective for rapid detection of dominant
periodic components in the frequency domain. Chen et al. (2019) demonstrated its utility
in cloud computing environments for detecting high-frequency periodicities. Similarly,
Zhou et al. (2022) integrated Fourier Transformation with decomposition techniques in
their Fedformer model, achieving enhanced temporal pattern understanding and
forecasting accuracy.

Addressing this limitation, our proposed PEGs explicitly incorporates periodic
components into graph-based structures using time series decomposition methods such as
STL (Cleveland et al., 1990) and Fourier Transformation (Bracewell, 1989). PEGs uniquely
models both periodic and residual interactions, enhancing its ability to represent and
predict diverse data features. In this study, STL is used to decompose time series data into
trend and seasonal components, while Fourier Transformation identifies dominant
periodic patterns. These patterns form the basis for periodic event node construction in
PEGs, which also integrates residual nodes to capture non-periodic variations. This
approach effectively balances periodic and non-periodic data characteristics, offering a
comprehensive framework for multivariate time series analysis and prediction.

BACKGROUND AND PROBLEM FORMULATION

Multivariate time series pattern or event prediction often encounters challenges due to a
mixture of periodic and non-periodic patterns. To address this complexity, we propose
PEGs, which leverages time series decomposition, frequency analysis, and advanced graph-
based techniques to construct dynamic bipartite graphs. This framework aims to capture
temporal dynamics more effectively by incorporating both periodic patterns and residual
interactions, enabling accurate link predictions in DGNNs. PEGs integrates key
methodologies, including time series decomposition to extract trends, seasonality, and
residuals, frequency analysis to identify dominant periodic patterns, and Matrix Profile for
motif discovery. These methods, combined with the power of DGNNS, provide a robust
approach to dynamic multivariate time series modeling.

Multivariate tiem series

Consider a multivariate time series dataset X = {X;(t), Xa(t), ..., Xu(t)}, where X;(t)
represents the i-th time series at time t. Here, n denotes the number of time series, with
each series capturing a different feature or measurement over time. The variable ¢
represents a discrete time index, ranging from ¢ = 1 to t = T, where T denotes the total
number of time steps in the dataset. The dataset X forms a matrix of size T X n, where each
row corresponds to a specific time step, and each column corresponds to a particular time
series. The goal of multivariate time series analysis is to model the temporal dynamics,
interactions, and dependencies between these time series to uncover patterns, infer causal
relationships, or make accurate predictions.

Park et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2717 6/28

http://dx.doi.org/10.7717/peerj-cs.2717
https://peerj.com/computer-science/

PeerJ Computer Science

Time series decomposition
Time series decomposition separates multivariate time series data into three components:
trend, seasonality, and residuals, expressed as:

Xi(t) = Ti(t) + Si(t) + Ri(1), (1)

where X;(t) represents the observed value of the i-th time series at time ¢, T;(t) is the trend
component, S;(t) is the seasonal component, and R;(t) represents the residuals. This
decomposition is essential for isolating and analyzing the underlying patterns, which
enhances the accuracy of forecasting and modeling.

A widely used method for time series decomposition is STL (Cleveland et al., 1990),
which applies LOESS (Cleveland, 1979) to iteratively extract the trend T;(¢) and seasonal
components S;(t). The residuals R;(¢) are then computed as:

Ri(t) = Xi(t) — (Ti(t) + Si(1))- (2)

STL decomposition is robust against outliers and provides flexibility in capturing a wide
variety of time series patterns. This makes it an ideal choice for extracting the seasonal
components S;(f) and residual components R;(t) from multivariate time series, ensuring
effective separation of periodic and non-periodic behaviors.

Frequency analysis

In this article, frequency analysis is used to identify periodic patterns in the seasonal
components of time series data. A widely adopted method for this purpose is Fourier
Transform (FT), which converts time series data from the time domain to the frequency
domain. For the seasonal components S;() of each time series, the Fourier Transform is
applied as follows:

Si(f) = / N Si(t)e 2 dt. 3)

o0

Here, S;(t) represents the seasonal component of the i-th time series at time ¢, where ¢ is
the continuous time variable. FT allows for the extraction of frequency components from
the time series, enabling the identification of periodic behaviors by analyzing how the time
series behaves over time. The dominant frequency fiominant> coOrresponding to the highest
amplitude in the Fourier spectrum, determines the primary period as the inverse of this
frequency:

1
~ f,dominant’

(4)

Wj

The dominant frequency f;dominant is crucial for identifying the periodic behavior of
the seasonal component. Its inverse provides the primary period ®;, which is used to
segment the time series into periodic patterns. These periodic patterns form the basis
for constructing periodic event nodes. The combination of FT for period extraction and
the decomposition of time series enables the accurate capture of significant periodic
features, which are essential for modeling and predicting temporal patterns.

Park et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2717 7/28

http://dx.doi.org/10.7717/peerj-cs.2717
https://peerj.com/computer-science/

PeerJ Computer Science

Matrix Profile

The Matrix Profile (Yeh et al., 2016) is a powerful tool used to identify repeating motifs and
measure similarities within time series data. It calculates the distance between all
subsequences of a time series, highlighting regions that exhibit similar patterns over time.
By capturing these repeating subsequences, the Matrix Profile enables the detection of
periodic and recurring behavior within the data. This is particularly useful for time
series analysis, where such recurring patterns are often the key to understanding
temporal dynamics. Formally, the Matrix Profile is defined as the minimum distance
between a subsequence starting at position k and all other subsequences starting at
position [# k:

Matrix Profile(k) = rzr;glz? dist(Si(t)[k : k+ w; — 1, S;()[1 : I + w; — 1)), (5)
where S;(t)[k : k + w; — 1] represents a subsequence of length w; taken from the seasonal
component S;(t) of the time series X;(¢). The value of w; is the dominant period derived
from the FT of S;(¢), as defined in Eq. (4). The function dist(-, -) is a distance measure
(typically the Euclidean distance) between two subsequences. The Euclidean distance
between two subsequences is computed as:

dist(Si(£)[k : k+ ; — 1), ()] : 1+ o; — 1]) = i (Si() [k + m] — Si(B)[1 + m])>. (6)

m=0

Here, the distance measures the similarity between two subsequences by calculating the
squared differences between corresponding elements. Once motifs (repeated patterns) are
discovered using the Matrix Profile, these motifs are grouped into a motif set M, which is
defined as the collection of all detected motifs M = {M;, M, ..., M, }. Each M; represents
a motif detected within the seasonal component S;(t). These motifs are clustered into ¢
groups to form periodic event nodes, denoted as Vpg = {PE;, PE,, ..., PE.}, as shown in
Fig. 1. The clustering process groups similar motifs together, forming nodes that represent
the periodic behaviors of the time series. The resulting periodic event nodes serve as the
building blocks for constructing PEGs, which model the temporal dynamics of the system.
The Matrix Profile, combined with the clustering algorithm, ensures that the periodic
structures in the data are efficiently captured. By identifying and grouping recurring
patterns, PEGs can accurately represent the periodic nature of the time series, providing a
powerful framework for tasks such as link prediction.

Dynamic time warping
To represent these series in a graph structure, we divide each time series X;(t) into sliding
time windows of dominant period w;, creating a set of time series nodes:

TS; = {tsty, tst,, -+ o 4.}, tsy, = {Xi(;), Xi(t; +1),... . Xi(; +wi = 1)}, ti=to+j-s,(7)

In this approach, ts;, represents the sliding window starting at time ;, where
ti=ty+j-sforj=0,1,... k. Here,sis the stride, which defines the step size for moving

Park et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2717 8/28

http://dx.doi.org/10.7717/peerj-cs.2717
https://peerj.com/computer-science/

PeerJ Computer Science

the sliding window. Each sliding window has a fixed length w;, which captures the segment
[ti, t; + w; — 1] of the time series X;(t). The first node, ts,,, corresponds to the segment
starting at #j, and the subsequent node, ts,, corresponds to the segment starting at

t1 = to + s, and so on. The total number of sliding windows, k + 1, is determined by the
equation k = [(T — w;)/s], where T is the total length of the time series X;(¢). Each node
ts;, represents a specific segment of length w;, and together, these nodes form the set

TS; = {ts,, tst,, . - ., tsy, }, referred to as the time series node set of X;(t). When considering
all variables in the multivariate time series dataset X = {X;(¢), X5(¢),...,X,(t)}, the
union of all time series node sets forms the set Vs = {TS;, TS,, ..., TS,}. This represents
the complete set of time series nodes across all variables. These sliding windows allow the
time series X;(¢) to be mapped into a graph structure, where each node captures the
temporal features of its corresponding segment.

Dynamic time warping (DTW) is a commonly used technique for measuring the
similarity between two temporal sequences, which may vary in time or speed. In this
context, DTW is used to measure the similarity between time series nodes Vs and event
nodes Vpg. The DTW distance is calculated recursively as follows:

DTW(TS;_,, PE)),
DTW(TS;, PE;) = dist(TS;, PE[j]) + min{ DTW(TS;, PEj_,), (8)
DTW(TS;_y, PE;_y).

Here, TS; represents the i-th time series node from Vrs, and PE; represents the j-th
event node from Vpg. The function dist(-, -) is the distance measure between the nodes
TS; and PE;.

Dynamic graph neural networks

DGNNs model temporal changes in graph structures by encoding evolving relationships
between nodes and edges, making them highly effective for learning and predicting
temporal dynamics. A dynamic graph is defined as:

G:{G17G27"'7GT}a (9)

where G; = (Vy, E;) represents the graph at time ¢, with V; being the node set and E; the
edge set. The graph structure evolves over time, reflecting the temporal nature of the data.
In PEGs, DGNNss are utilized to predict the link formation probabilities between time
series nodes Vs and periodic event nodes Vpg. The likelihood of a link P(Vrs, Vpg) is
modeled as:

P(Vrs, Veg) = f(Vrs, Veg; 0), (10)

where f is a dynamic graph neural network function parameterized by 0. By leveraging
both temporal features and graph topology, DGNNs enable effective link prediction.
DGNN:Ss are particularly useful in modeling time-varying relationships, capturing both the
temporal dependencies and the complex interactions between nodes in the graph. The
main advantage of DGNNEs is their ability to model the dynamic and complex relationships
between nodes over time. This enables PEGs to make more accurate predictions compared

Park et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2717 9/28

http://dx.doi.org/10.7717/peerj-cs.2717
https://peerj.com/computer-science/

PeerJ Computer Science

to traditional methods. For example, DGNNss are effective in link prediction task which are
essential for analyzing multivariate time series pattern. By combining the temporal features
with the structural information in the graph, DGNNs allow PEGs to provide an efficient
and scalable solution for modeling periodic patterns and dependencies in time series data.

Problem definition: link prediction in dynamic bipartite graphs

The main goal of this study is to model temporal relationships within multivariate time
series data. To achieve this, dynamic bipartite graphs representing interactions between
time series nodes Vg and periodic event nodes Vpg are constructed. Using DGNNSs, the
model predicts link formation probabilities between these nodes, effectively capturing
temporal dependencies in multivariate time series. Link prediction serves as the
performance evaluation method in this study, addressing challenges in dynamic graph
modeling and improving accuracy. PEGs decomposes each time series X;(¢) into seasonal
component S;(¢) and residual component R;(¢) using STL decomposition, isolating
significant periodic components to capture temporal dynamics. The Fourier Transform is
applied to the seasonal component S;(t) to extract the dominant period w, followed by the
identification of repeating motifs through the Matrix Profile. These motifs are clustered
and form periodic event nodes, which are linked to time series nodes using DTW,
constructing the dynamic bipartite graph. DGNNs are then employed to predict link
formation probabilities between time series nodes Vg and periodic event nodes Vpg. This
process allows for predicting future relationships within the time series data. By modeling
both periodic and residual components separately, PEGs improves predictive accuracy,
offering more accurate predictions compared to traditional methods. This dual-focus
approach makes PEGs a robust and powerful tool for time series pattern or event
prediction.

The computational complexity of PEGs is dominated by the time series decomposition,
period extraction, motif discovery, and dynamic graph construction steps, with an overall
complexity of O(max(n* nlogn)). PEGs is efficient for small- to medium-sized datasets,
and for larger datasets, GPU acceleration or parallel processing techniques can be
employed to reduce computational costs. Furthermore, the training process of DGNNs in
PEGs does not introduce additional overhead compared to standard GNN training,
ensuring scalability and computational efficiency. PEGs separates periodic components
using STL decomposition, applies FT for period extraction, and captures periodic
behaviors. The Matrix Profile is used to detect recurring motifs, which are clustered to
form periodic event nodes. Then, DTW links time series nodes and event nodes,
constructing the dynamic bipartite graph. This dynamic graph enables link prediction,
overcoming the limitations of traditional methods that do not consider periodicity. By
separately modeling periodic and residual components, PEGs improves interpretability
and predictive accuracy, making it a powerful and effective tool for multivariate time series
analysis. Link prediction performance further demonstrates PEGs superior capabilities
compared to other methods, delivering strong results in a variety of tasks.

Park et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2717 10/28

http://dx.doi.org/10.7717/peerj-cs.2717
https://peerj.com/computer-science/

PeerJ Computer Science

PROPOSED METHOD: PERIODIC EVENT GRAPHS

In this section, we introduce a new model, the dynamic PEGs, a unique approach for
modeling multivariate time series. Our proposed method focuses on leveraging periodic
patterns in multivariate time series to construct dynamic bipartite event graphs. These
graphs are explicitly designed to enhance link prediction performance by capturing
temporal dynamics more accurately. This graph structure represents periodic time series
patterns as event nodes, opening new avenues for pattern prediction analysis.

To evaluate the effectiveness of this proposed graph structure, we use typical DGNNs
for link prediction tasks in pattern forecasting. Our primary objective is to validate the
applicability of our new graph structure and explore its potential utility in dynamic graph
analysis. This research offers a promising tool for future research and applications in the
field. The construction process of the proposed PEG model is a comprehensive series of
stages, as illustrated in Fig. 2. This approach ensures the robustness and thoroughness of
our research. The pseudocode for constructing and predicting with the dynamic PEGS is
provided in Algorithm 1.

e Step 1: Periodic event nodes: In this initial step, we decompose each time series from the
multivariate time series data to extract their seasonal components. We extract periods
based on dominant frequencies for each time series using FT. We then utilize the Matrix
Profile technique for motif extraction to identify pattern motifs within each time series.
These pattern motifs serve as representative pattern nodes for the multivariate time
series dataset. Subsequently, periodic event nodes are generated through a clustering
process.

e Step 2: Dynamic Periodic Event Graphs (PEGs): In the second step, we construct sliding
time windows for each time series based on the seasonal components and representative
periods extracted in Step 1. Each time window represents a time series node at a specific
timestamp. Employing a pattern-matching algorithm, the periodic event nodes
generated in Step 1 are matched with time series nodes to create the dynamic PEGS.

e Step 3: DGNN' s for link prediction: The proposed model is trained using DGNNSs in the
final step. These trained models are then applied to link prediction tasks to facilitate
pattern forecasting in multivariate time series data.

Periodic event nodes

The generation of periodic event nodes involves the extraction of representative patterns
from multivariate time series through a series of structured steps. This process includes
decomposition into seasonal and residual components, period extraction via frequency
analysis, motif discovery using the Matrix Profile technique, and clustering to define the
final event nodes.

Time series decomposition into seasonal (S;(¢)) and residual (R;(#)) components is
performed using STL decomposition, as detailed in “Background and Problem
Formulation”. This decomposition isolates periodic and residual behaviors, forming the
basis for subsequent period extraction and pattern analysis. Periods are extracted from the

Park et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2717 11/28

http://dx.doi.org/10.7717/peerj-cs.2717
https://peerj.com/computer-science/

PeerJ Computer Science

Step 1: Periodic Event Node Generation

Multivariate Time

M

Series |
\ —'-)[STL Decompose]
\ I

y

X() = X1(1), X2 (1) -+, X;(0)

————————————————— Tem TS T e e e — = =
*For each time series X; (%),

*For all time series

Periodic Event Node

- @

\-

I
I
b
b
I o
I
x| ! |
X,(6) : R;(t) Si(®) [I -
|
b 'Xn(t) : v | :
I
| ! i
| [Fourier TransformerJ ')[Matrix Profile]: ! [(};:_l];l]s;tgg,l;%\l)]
| ' 7
: v v [: Representative
I e || Pattern Motifs N Pattern Node
I i (M;) : :’ (M ={My,Mj,--,My})
I

*From tg to ty

\ 4

Periodic Event Bipartite Graph

Step 3: Link Prediction with DGNNs

Periodic Event Bipartite Graph

{Ria

Dynamic Graph Neural Networks

Link Prediction

® 0O
o0
@

Tkt1

J

Figure 2 Construction process of the PEGs.

Full-size K&] DOT: 10.7717/peerj-cs.2717/fig-2

seasonal components using FT (refer to Eqs. (3) and (4) in “Background and Problem
Formulation”). These periods capture dominant temporal characteristics and guide the
identification of representative patterns. Motif discovery from seasonal and residual

Park et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2717

12/28

http://dx.doi.org/10.7717/peerj-cs.2717/fig-2
http://dx.doi.org/10.7717/peerj-cs.2717
https://peerj.com/computer-science/

PeerJ Computer Science

Algorithm 1 Algorithm for constructing and predicting with PEGs.

Input: The algorithm requires a periodic multivariate time series dataset X = {X;(¢), ..., X, (¢)}, where X;(¢) is the i -th time series variable, a Dynamic
Graph Neural Network (DGNN) model DGNNs, and four hyper-parameters: p (STL period), s (stride for sliding window), k (number of motifs), and m
(minimum cluster size).

Output: Dynamic Periodic Event Graphs G = {G,,, Gy, . -

inferred through link prediction.

1

[N N N N S S N e T e S e S)

Step 1: Periodic Event Node Generation
for each X;(t) € X do
Si(t), Ri(t) < STLDecompose(X;(t), p)
; < FourierTransform(S;(t))

M; — MatrixProfile(S;(t), k)

: end for

M — {M;,M,,...,M,}

: Vpg < Clustering(M, method = H-DBSCAN, min_cluster_size = m))
. Vpp = {PEy,PE,,...,PE.}, |Vps| =c

: Step 2: Periodic Event Bipartite Graph Construction

: for each X;(t) € X do

TS; < SlidingWindows(X;(t), w;), s
TS[= {tSt[” tstl yeeey tStk}

: end for
2 Vpg — {TS, TS, ..., TSy}

: for each k in t do

e — DTW(VTs, VPE)

: end for

: E—{e,e,...,e}

: G «— PEGs(Vrs, Vpg, E)

: Step 3: Link Prediction with DGNNs
: Train(DGNNs, G)

: Gy, < LinkPredict(DGNNs, G)

., Gy, Gy, }» where G,,,, represents the predicted graph containing new or missing links

> Decompose X;(t) using Eq. (1) with given period
> Extract dominant period w; using Eqs. (3) and (4)

> Extract k motifs using Eq. (5)
D> Multivariate time series motifs

> Cluster motifs to form periodic event nodes

> Periodic event nodes clustered into ¢ groups

> Create nodes TS; using Eq. (7)

> Time series nodes at each time step

> Set of all time series nodes

> Match using DTW as in Eq. (8)

> Edge for graph
> Construct periodic bipartite graph using Eq. (9)

> Train DGNN on the graph for link prediction
> Predict links using Eq. (10)

components is conducted using the Matrix Profile technique (refer to Eq. (5) in

“Background and Problem Formulation”). This approach highlights recurring

subsequences in the time series, which are further processed to select the most

representative patterns that align with the identified periods. DTW is used to measure the

similarity between patterns, leveraging the robust distance matrix generated from Eq. (8)

in “Background and Problem Formulation”. Similar patterns are grouped using
Hierarchical Density-Based Spatial Clustering of Applications with Noise (H-DBSCAN)
(McInnes, Healy e~ Astels, 2017). The centroids of these clusters are defined as event nodes,

ensuring comprehensive representation of both seasonal and residual patterns.

Park et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2717

13/28

http://dx.doi.org/10.7717/peerj-cs.2717
https://peerj.com/computer-science/

PeerJ Computer Science

Event bipartite graphs

Constructing PEGs involves establishing connections between periodic event nodes and
time series nodes. Time series nodes are derived from sliding window datasets containing
timestamps for the seasonal and residual components of each time series data. The window
size for the sliding windows is determined based on the periods identified during frequency
analysis (see “Background and Problem Formulation”), ensuring alignment with the
extracted temporal patterns.

For pattern matching between nodes, DTW, as described in “Background and Problem
Formulation”, is employed to measure the similarity between time series nodes and
periodic event nodes. DTW captures non-linear alignments between sequences and
provides a robust distance metric, enabling accurate comparisons of patterns even with
temporal distortions. The DTW-generated distance matrix is used to identify the most
similar event node for each time series node.

After computing similarity, the most similar seasonal or residual event node is
connected to each time series node through attribute edges. This process iteratively
matches nodes for each timestamp, constructing a bipartite graph structure. The resulting
event bipartite graph effectively captures both periodic and residual patterns present in the
multivariate time series.

DGNNs for link prediction

DGNNSs are specialized neural networks designed to capture the dynamic behavior of
graphs, adapting to changes in graph structure over time. These networks leverage
temporal and structural features of dynamic graphs to model evolving node-edge
relationships. This capability makes DGNNSs effective tools for tasks such as link prediction
in PEGs.

The core of DGNNs is a dynamic backbone that integrates two key components: a graph
structure encoder and a time encoder. The graph structure encoder generates initial
embeddings for nodes and edges based on the topology of the dynamic graph. Meanwhile,
the time encoder processes temporal information to capture evolving relationships over
time. Together, these encoders provide a robust representation of the graph’s dynamic
properties.

DGNNs dynamically update node and edge states based on structural and temporal
changes, ensuring accurate modeling of evolving relationships. Temporal features are
incorporated into the architecture to predict changes in the graph at each time step,
facilitating tasks such as link prediction.

In the context of PEGs, DGNN5s predict the formation of links between time series
nodes (Vrg) and periodic event nodes (Vpg). The probability of a link is modeled as
P(vrs, vpg) = f(vrs, ve;), where f represents the DGNN parameterized by 0 (refer to
Eq. (10) in “Background and Problem Formulation”). This enables PEGs to identify and
forecast relationships between temporal patterns effectively. The workflow of DGNN:ss for
link prediction is depicted in Fig. 3 and comprises three primary steps:

Park et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2717 14/28

http://dx.doi.org/10.7717/peerj-cs.2717
https://peerj.com/computer-science/

PeerJ Computer Science

[Generation Dynamic Graph

Graph Structure Encoder i
Dynamic Backbone MLP i—{ Link Prediction
Time Encoder i

t

a N CEEEEE——

K iters

L]

PE,

Figure 3 Workflow of DGNN:s for link prediction.

Full-size K&l DOT: 10.7717/peerj-cs.2717/fig-3

1. Dynamic graph construction: Using PEGs, the dynamic graph is constructed, with time
series nodes (blue) and event nodes (orange) representing temporal and periodic
patterns.

2. Graph encoding: The graph structure and temporal features are encoded using the graph
structure encoder and time encoder, enabling the dynamic backbone to adaptively
model the evolving graph.

3. Link prediction: Trained DGNNSs are applied to predict links, identifying relationships
and patterns in the dynamic graph over time.

Evaluation metrics

Evaluating the performance of link prediction models requires metrics that measure
accuracy and discrimination power. Two common evaluation metrics are average
precision (AP) and area under the receiver operating characteristic curve (AUC-ROC).

Y e (p(k) x rel(K))

AP =
Total positive samples’

(11)

where P(k) represents the precision at cutoff k, and rel(k) denotes the relevance of the item
at rank k. AP quantifies the accuracy of identifying positive samples within the predicted
rank list, indicating the model’s effectiveness in retrieving positive samples. Higher AP
values indicate superior performance.
1
AUC — ROC = / TPR (FPR)d (FPR) (12)
0
where TPR(FPR) represents the true positive rate (sensitivity) as a function of the false
positive rate (FPR). The AUC-ROC evaluates the model’s classification ability, particularly

in binary scenarios. A higher AUC-ROC value indicates better model performance, with a
value of 1 representing perfect classification. These metrics provide a comprehensive

Park et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2717

15/28

http://dx.doi.org/10.7717/peerj-cs.2717/fig-3
http://dx.doi.org/10.7717/peerj-cs.2717
https://peerj.com/computer-science/

PeerJ Computer Science

evaluation of DGNN performance in modeling and predicting dynamic relationships in
PEGs, guiding potential research improvements.

EXPERIMENTS

Evaluation scenarios

To evaluate the effectiveness of DGNNs with the proposed PEGs for link prediction, we
conducted experiments under two distinct scenarios:

o Transductive: In the transductive experiments, the model was rigorously trained on a
portion of graph data with labeled nodes or edges and made predictions within this
dataset to label the remaining unlabeled nodes or edges within the same graph. The
evaluation focused on the accuracy of these predictions within the original graph
structure, instilling confidence in the thoroughness of our approach.

e Inductive: In the inductive experiments, the model was trained on a subset of graph data
with labeled nodes or edges and then tested on a separate dataset, potentially containing
entirely new examples. The aim was to assess the model’s ability to not only learn from
the training set but also to generalize its learned patterns to new instances beyond the
training set, thereby demonstrating its adaptability and generalization capabilities.

Experimental settings

Datasets

Multivariate time series datasets

PEGs are constructed using publicly available multivariate time series datasets, including
Traffic (Lai et al., 2018), Power Consumption (Goncalves et al., 2022), and Exchange Rate.
The statistics and characteristics of these datasets, including time series length (Length),
the number of time series (Number), sampling spacing (Space), and dataset size (Size),
mean (Mean), standard deviation (Std Dev.), and temporal patterns (Temporal Pattern),
are summarized in Table 1. These datasets represent diverse domains and provide rich
temporal features suitable for evaluating PEGs. The datasets used in our experiments span
various domains and exhibit diverse temporal characteristics:

o Traffic (https://pems.dot.ca.gov): This dataset comprises 48 months of hourly data from
2015 to 2016 collected by the California Department of Transportation. It describes road
occupancy rates (between 0 and 1) measured by various freeway sensors in the San
Francisco Bay area. The dataset reveals clear weekly peaks and daily diurnal patterns,
making it suitable for periodic analysis.

e Power Consumption (https://zenodo.org/records/6778401): This dataset contains
power consumption data for a local community of 50 households and one public
building. The public building data used in the experiment provides consumption profiles
segmented by appliances. It spans 96 intervals per day at 15-min intervals, offering a
year’s worth of data and profiles for 10 appliances. The dataset reflects seasonal and daily
variations, capturing appliance-level energy usage trends.

Park et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2717 16/28

https://pems.dot.ca.gov
https://zenodo.org/records/6778401
http://dx.doi.org/10.7717/peerj-cs.2717
https://peerj.com/computer-science/

PeerJ Computer Science

Table 1 Statistics and characteristics of multivariate time series datasets.

Dataset Length Number Space Size Mean Std dev. Temporal pattern

Traffic 52,560 137 10 min 172 MB 0.35 0.12 Weekly/Hourly Peaks
Power consumption 35,136 10 15 min 146 MB 35.6 kWh 5.2 kWh Seasonal (Summer/Winter)
Exchange rate 7,588 8 1 day 534 KB 0.75 0.10 Economic Trends/Events

s ol »th.\\\\|\.wlwh me\lu\l MMMMM b
il

bl
i

et

s\ttt il i

bt e okbe

|
e TTT————r—
|
|

0 0 0l A i , : :

(a) Traffic

(b) Power Consumption (c) Exchange Rate

Figure 4 Multivariate time series graphs for three datasets: (A) Traffic dataset, (B) Power Consumption dataset, and (C) Exchange Rate
dataset. Each graph represents the temporal trends and interactions across multiple time series. ~ Full-size k&l DOT: 10.7717/peerj-cs.2717/fig-4

¢ Exchange Rate: This dataset includes daily exchange rates from 1990 to 2016 for eight
countries: Australia, the UK, Canada, Switzerland, China, Japan, New Zealand, and
Singapore. The dataset showcases long-term economic trends and periodic fluctuations
influenced by global events and market changes.

The temporal characteristics of each dataset offer a robust foundation for testing PEGs.
The Traffic dataset demonstrates distinct diurnal and weekly patterns, Power
Consumption captures appliance-level energy trends with seasonal variations, and
Exchange Rate reflects long-term economic patterns. These diverse characteristics validate
the applicability and effectiveness of PEGs across multiple domains.

Figure 4 illustrates the multivariate time series graphs for three datasets. The Traffic
dataset consists of 20 selected time series capturing traffic flow across different locations.
The Power Consumption dataset includes 10 time series segmented by appliances, sampled
at 15-min intervals to represent detailed energy usage patterns. The Exchange Rate dataset
comprises eight time series depicting daily currency exchange rate fluctuations across
multiple countries. These datasets were preprocessed using STL decomposition to extract
seasonal and residual components, enabling the generation of PEGs with various
configurations, as outlined in the methodology.

Graph datasets generation

The datasets were first preprocessed to prepare them for analysis. For instance, the Power
Consumption dataset was resampled at 15-min intervals, and specific columns were
selected for the Traffic dataset to focus on relevant features. STL decomposition (Cleveland
et al., 1990) was applied to separate the time series data into seasonal and residual

Park et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2717 17/28

http://dx.doi.org/10.7717/peerj-cs.2717/fig-4
http://dx.doi.org/10.7717/peerj-cs.2717
https://peerj.com/computer-science/

PeerJ Computer Science

components, isolating periodic patterns for further analysis. Fourier Transform (Bracewell,
1989) was then used to analyze the seasonal component, identifying dominant frequencies
and extracting representative periods. The Matrix Profile (Yeh et al., 2016) was employed
to calculate subsequence similarities, enabling the identification of seasonal and residual
motifs. These motifs were clustered to generate event nodes, which were subsequently
linked to time series nodes representing sliding windows segmented by the extracted
periods.

Event graphs (EGs) are constructed without considering periodicity, using a fixed
window size to generate event nodes. In contrast, the proposed PEGs incorporates
periodicity into the generation of event nodes, resulting in a graph structure that better
captures temporal patterns. Additionally, both EGs and PEGs have variations that include
residual nodes. Residual nodes are categorized into two types. The first type, simple
residual (SR) Nodes, represents only positive or negative deviations from predefined
thresholds, capturing unexpected event patterns. The second type, periodic residual (PR)
Nodes, is specific to PEGs and is generated by incorporating periodicity into the residual
components of time series decomposition. PEGs are designed to capture both periodic and
irregular patterns, with variations depending on the inclusion or exclusion of residual
nodes. These variations allow for detailed evaluations of the effects of integrating residual
components and periodicity into the graph structure. The final PEGs are saved in CSV
format for further analysis and experimentation.

For comparative purposes, while Event2Graph (Wu et al., 2022) was proposed as a
baseline, its implementation code was not publicly available. As a result, we implemented
EG independently to replicate a structure that does not account for periodic patterns in the
data. These EGs serve as a benchmark to evaluate the advantages of incorporating
periodicity in PEGs.

Graph datasets
In Table 2, EG is constructed without considering periodicity, using a fixed window size to
generate event nodes. In contrast, the proposed PEGs incorporates periodicity to generate
event nodes, resulting in a graph structure that better captures temporal patterns.
Additionally, there are variations of both EGs and PEGs that include residual nodes. These
residual nodes consist of simple residual nodes, which represent only positive or
negative deviations, and, in the case of PEGs, periodic residual nodes, which are
generated by incorporating periodicity into the residual components of time series
decomposition.

Figures 5 and 6 depict the distributions of periodic event nodes and residual nodes
within PEGs across timestamps. The histograms provide a visual summary of node
occurrences over time:

e Figure 5: Periodic event nodes are distributed based on their periodicity patterns derived
from time series decomposition (e.g., seasonal trends).

e Figure 6: Residual nodes capture non-periodic or irregular patterns remaining after
periodic components are extracted.

Park et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2717 18/28

http://dx.doi.org/10.7717/peerj-cs.2717
https://peerj.com/computer-science/

PeerJ Computer Science

Table 2 Comparison of nodes and edges between event graph (EG) and Periodic Event Graph (PEG)
with residual nodes, classified as simple residual nodes (SR) or periodic residual nodes (PR), leading
to various event graph variations.

Dataset Event graph Residual node # Nodes # Edges
Traffic EG w/o 24 87,680
w/SR 26 175,360

PEG w/o 31 87,680

w/SR 33 175,360

w/PR 40 175,360

Power consumption EG w/o 12 70,256
w/SR 14 140,512

PEG w/o 14 70,256

w/SR 16 140,512

w/PR 18 140,512

Exchange rate EG w/o 13 15,160
w/SR 15 30,320

PEG w/o 13 15,160

w/SR 15 30,320

w/PR 16 30,320

jlm I {\\‘\\H‘\‘I\I‘:‘I \‘ \:‘I\“\

| Nmmh i “:w I i

pi H HHH IH
1| ‘ \H \‘ il H‘\‘ H\‘\ ‘H’I I‘ \H‘I ‘W‘ \“H“‘ ‘\ \Ilmm\“\\‘\l|\‘lw‘ ’ :‘H‘
I‘HH‘I\hIN”I‘I‘"W \‘I‘\H‘fl\l JII‘I‘ i \’I“ \I‘IH \H\ HHIIIHII\IIIH‘\ I\IhI\IIIHIIIII\| \‘ \‘I
il HI\” J “HH I HH"‘HIH\‘I‘H\IH‘\" ‘\ ‘HH l“H\ \HH\}'HI\I\IIII) \I\HI\II‘IHI‘\‘\WI HH
A R

ey 'rM

Ml \‘H[(I

(a) Traffic (b) Power Consumption (c) Exchange Rate

Figure 5 Histogram showing the distribution of periodic event nodes in PEGs across timestamps for three datasets: Traffic, Power
Consumption, and Exchange Rate. Colors represent node categories detailed in Table 2. Full-size K&l DOT: 10.7717/peerj-cs.2717/fig-5

The x-axis in both figures represents timestamps, and the y-axis quantifies the node
occurrences at each timestamp. The histogram bars are color-coded to distinguish between
event categories, as described in Table 2. For example, in the Traffic dataset, green bars
correspond to nodes representing daily traffic patterns, whereas orange bars capture
irregular fluctuations, such as anomalies. Similarly, in the Power Consumption dataset,
blue bars denote weekly usage patterns, while red bars highlight deviations caused by
unusual power demands. By aligning these visualizations with the decomposition and
clustering processes of PEGs, Figs. 5 and 6 demonstrate how periodic and residual events
are captured and analyzed. These distributions validate the effectiveness of PEGs in
distinguishing and modeling different temporal patterns within the datasets.

Park et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2717 19/28

http://dx.doi.org/10.7717/peerj-cs.2717/fig-5
http://dx.doi.org/10.7717/peerj-cs.2717
https://peerj.com/computer-science/

PeerJ Computer Science

(a) Traffic

(b) Power Consumption (¢) Exchange Rate

Figure 6 Histogram showing the distribution of residual nodes in PEGs across timestamps for three datasets: (A) Traffic, (B) Power
Consumption, and (C) Exchange Rate. Colors correspond to residual event types defined in Table 2.Full-size Kal DOT: 10.7717/peerj-cs.2717/fig-6

Implementations

In our experimentation, we implemented our methodologies using Python and various
external libraries, combining built-in functions with code provided by the authors (Zhong
& Mueen, 2024; Siffer et al., 2017). We utilized the DyGLib (Yu et al., 2023) library for
dynamic graph neural networks (DGNNs) to conduct comprehensive comparisons
between our proposed graphs and existing models, including JODIE (Kumar, Zhang ¢
Leskovec, 2019), DyRep (Trivedi et al., 2019), TGAT (Xu et al., 2020), TGN (Rossi et al.,
2020), and GraphMixer (Cong et al., 2023).

The implementation was carried out in Python 3.9, leveraging several key libraries:
PyTorch 1.11.0 for building and training DGNN models, NumPy 1.21.0 and pandas 1.3.3
for numerical operations and data handling, tqdm 4.62.3 for progress visualization,
DyGLib for DGNN implementations and link prediction modules, and Matplotlib 3.4.3
for result visualization. All experiments were performed on a server with the
following specifications: NVIDIA Tesla V100 GPU (32 GB VRAM), Intel Xeon Gold
6230 CPU (2.10 GHz), 256 GB RAM, 2 TB NVMe SSD, and Ubuntu 20.04 as the operating
system.

The standard experimental settings included a batch size of 200, two attention heads, a
learning rate of 0.0001, 10 epochs, five runs, a time embedding dimension of 100, a
dropout rate of 0.1, and validation and test set ratios of 15%. Negative edge sampling
followed a “random” strategy, and historical neighbors were sampled using the “recent”
approach to ensure temporal relevance. For each DGNN model, parameters such as the
number of neighbors and layers were optimized according to the configurations provided
by DyGLib (Yu et al., 2023) for link prediction:

* JODIE: 10 neighbors, one layer

e DyRep: 10 neighbors, one layer

e TGAT: 20 neighbors, two layers

e TGN: 10 neigTGAT hbors, one layer
¢ GraphMixer: 20 neighbors, two layers

Park et al. (2025), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2717 I 20/28

http://dx.doi.org/10.7717/peerj-cs.2717/fig-6
http://dx.doi.org/10.7717/peerj-cs.2717
https://peerj.com/computer-science/

PeerJ Computer Science

Node features in the event graph were initialized using random initialization techniques,
while edge features were generated via one-hot encoding to represent the number of nodes
connected by each edge. To ensure consistent results and enhance reproducibility, random
seeds were fixed across all experiments.

Reproducibility

To ensure reproducibility, we have made our code, configurations, and datasets publicly
accessible at https://github.com/peg-repo/periodic-event-graph. The repository provides
detailed, step-by-step instructions for setting up the environment, executing the
experiments, and validating the results, allowing others to replicate our findings with ease.

Model limitations and constraints

Our model is specifically designed for multivariate time series data that exhibit periodic
patterns. It is particularly effective in tasks such as link prediction, event detection, and
temporal relationship analysis, where the identification of periodic events plays a critical
role. However, the model has the following limitations and constraints. The model requires
input data that include temporal features, node features, and edge features. It performs best
on datasets where periodicity is a dominant characteristic. Non-periodic or irregular
datasets may result in reduced performance. The scalability of the model depends on the
computational resources available. Our experiments were conducted on datasets with up to
33 nodes and 175,360 edges using an NVIDIA Tesla V100 GPU. Larger datasets may
require additional memory and computational power. The model is tailored for problems
involving temporal dynamics and periodic patterns. For non-temporal graph problems or
static data, alternative approaches may be more effective.

Evaluation metrics

The link prediction performance of dynamic graph neural networks is evaluated using two
metrics, AP (Eq. (11)) and AUC-ROC (Eq. (12)), in both transductive and inductive
scenarios. Transductive learning performs predictions only within the given graph data,
whereas inductive learning generalizes the trained model to make predictions on new data.

Results

Tables 3 and 4 present the AUC-ROC and AP performance of DGNN:Ss for link prediction
tasks in transductive and inductive settings. The evaluation compares various event graph
configurations, including the proposed PEGs and standard EGs which differ based on the
incorporation of periodicity. EG variations are categorized by residual node types: non-
residual (NR), simple residual (SR), and periodic residual (PR) nodes. These experiments
were conducted on three datasets “Traffic, Power Consumption, and Exchange Rate” to
ensure a comprehensive comparison across diverse domains.

Transductive experiments

In the transductive DGNNs link prediction experiments, detailed in Table 3, we assessed
the performance of different models across three datasets using metrics like AP and AUC-
ROC. These models were trained on labeled subsets of nodes or edges and subsequently
used to predict labels for the remaining unlabeled nodes or edges within the same graph.

Park et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2717 21/28

https://github.com/peg-repo/periodic-event-graph
http://dx.doi.org/10.7717/peerj-cs.2717
https://peerj.com/computer-science/

PeerJ Computer Science

Table 3 Link prediction performance of transductive DGNNs comparing PEG variants (PEG-NR, PEG-SR, PEG-PR) and EG variants
(EG-NR, EG-SR).

DGNN Event graph Model Traffic Power consumption Exchange rate
AUC-ROC AP AUC-ROC AP AUC-ROC AP
JODIE EGs EG-NR 59.87 (0.42) 59.61 (0.44) 72.26 (2.21) 67.53 (1.69) 50.38 (2.00) 51.18 (1.75)
EG-SR 61.73 (1.69) 59.50 (1.23) 64.80 (5.05) 60.68 (4.55) 56.77 (1.59) 55.17 (1.34)
PEGs PEG-NR 68.85 (1.82) 65.62 (1.18) 75.18 (4.10) 71.22 (3.83) 62.31 (2.67) 60.98 (2.31)

PEG-SR 63.86 (1.94) 79.59 (0.17) 70.06 (3.02) 6589 (3.38) 59.21 (2.72) 59.56 (1.76)
PEG-PR 81.89 (0.19) 61.17 (1.19) 7166 (551) 66.72 (1.89) 63.62 (229) 56.64 (1.95)

DyRep EGs EG-NR 59.64 (0.34) 58.06 (0.42) 7234 (0.98) 6771 (1.50) 51.45(2.85) 51.44 (2.19)
EG-SR 6222 (221) 5979 (145) 6948 (1.77) 6640 (1.12) 57.32(7.98) 56.24 (6.39)
PEGs PEG-NR 6650 (291) 6528 (0.98) 76.14 (1.60) 72.64 (0.87) 63.54 (1.43) 62.67 (0.75)

PEG-SR 6242 (246) 78.17 (1.02) 70.61 (2.67) 59.81 (6.09) 52.88 (541) 59.43 (3.21)
PEG-PR 79.35 (2.02) 6036 (1.86) 63.54 (8.52) 6722 (143) 64.14 (547) 51.86 (4.34)

TGAT EGs EG-NR 79.36 (0.15) 7464 (0.31) 76.15(0.42) 7221(027) 48.07 (0.58) 50.05 (0.79)
EG-SR 7162 (1.10) 66.77 (0.82) 76.67 (0.45) 7053 (0.75) 50.92 (7.74) 49.31 (5.25)
PEGs PEG-NR 80.38 (0.42) 78.61(0.35) 82.51(0.05) 78.33 (0.10) 78.73 (0.22) 74.60 (0.28)

PEG-SR 73.81 (0.38) 82.58 (0.43) 76.86 (0.23) 73.78 (0.22) 69.87 (0.33) 70.17 (0.47)
PEG-PR 8272 (0.09) 72.17 (0.73) 80.30 (0.22) 72.67 (0.24) 7626 (0.16) 66.29 (0.62)

TGN EGs EG-NR 7551 (0.85) 7171 (1.08) 77.14 (0.14) 72.83 (0.40) 51.44 (1.67) 51.65 (0.99)
EG-SR 7143 (0.69) 6625 (0.62) 72.84 (1.11) 6629 (0.65) 53.67 (7.25) 52.30 (4.96)
PEGs PEG-NR 79.06 (0.68) 77.35(0.77) 82.32(0.09) 78.17 (0.14) 78.54 (0.77) 74.30 (0.80)

PEG-SR 7024 (1.49) 81.52 (0.57) 7539 (0.13) 71.26 (2.39) 6547 (1.40) 69.38 (1.07)
PEG-PR 84.53 (0.85) 68.60 (1.04) 78.64 (1.19) 71.14 (0.35) 75.94(0.68) 60.53 (1.01)

GraphMixer ~ EGs EG-NR 77.06 (0.24) 7297 (0.34) 76.15(0.42) 7221(027) 50.35(1.01) 50.36 (1.13)
EG-SR 69.29 (2.39) 65.69 (1.85) 74.81(1.28) 69.58 (0.72) 5027 (6.17) 49.74 (3.92)
PEGs PEG-NR 7949 (0.59) 77.32(0.51) 82.61 (0.17) 78.67 (0.13) 76.78 (0.80) 72.37 (0.86)

PEG-SR 7237 (0.72) 8253 (0.30) 77.55 (0.46) 74.07 (0.68) 69.21 (0.97) 70.67 (0.41)
PEG-PR 86.58 (0.23) 71.80 (045) 80.12 (0.39) 73.28 (0.46) 76.48 (0.17) 65.76 (1.33)

Note:
The best result is shown in bold, while the second best is shown in underline.

Across all datasets, PEGs consistently outperformed other representations, with PEG-
SR emerging as the top performer. PEG-SR significantly improved over EG-NR and EG-SR
in both AP and AUC-ROC scores. Specifically, PEG-SR exhibited an increase of
approximately 44% to 53% in AP and 38% to 50% in AUC-ROC compared to EG-NR, and
approximately 32% to 33% in AP and 45% to 46% in AUC-ROC compared to EG-SR. This
trend persisted across all datasets, with PEG-SR consistently achieving the highest AP and
AUC-ROC scores. Notably, PEG-NR showcased the highest scores in the Power
Consumption dataset, indicating significant enhancements over EG-NR and EG-SR.
Similar results were observed in the Exchange Rate dataset, with PEG-NR demonstrating
notable improvements over EGs, particularly in AUC-ROC scores. Furthermore, the
transductive experiment showcased our models’ adaptability by leveraging intrinsic graph
relationships for robust link prediction within known structures. This underscores the

Park et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2717 22/28

http://dx.doi.org/10.7717/peerj-cs.2717
https://peerj.com/computer-science/

PeerJ Computer Science

Table 4 Link prediction performance of inductive DGNNs comparing PEG variants (PEG-NR, PEG-SR, PEG-PR) and EG variants (EG-NR,

EG-SR).
DGNN Event graph ~ Model Traffic Power consumption Exchange rate
AUC-ROC AP AUC-ROC AP AUC-ROC AP
JODIE EGs EG-NR 59.47 (4.01) 54.97 (2.27) 49.60 (0.33) 49.94 (0.23) 51.08 (1.88) 52.36 (1.70)
EG-SR 54.56 (6.60) 52.03 (4.55) 49.08 (0.84) 49.63 (0.64) 65.53 (4.28) 60.10 (4.50)
PEGs PEG-NR 70.73 (2.43) 62.38(1.94) 58.85 (4.81) 57.64 (3.33) 50.16 (0.36) 50.60 (0.55)
PEG-SR 5638 (9.41) 5321 (628) 6529 (3.57) 60.69 (3.32) 54.17 (1.79) 52.97 (1.36)
PEG-PR 69.22 (5.05) 65.34 (4.79) 74.10 (2.31) 62.67 (1.68) 57.30 (2.88) 55.82 (1.70)
DyRep EGs EG-NR 55.47 (7.13) 51.97 (4.16) 48.77 (0.70) 49.39 (0.50) 50.79 (3.88) 51.47 (2.93)
EG-SR 62.69 (6.39) 56.53 (5.01) 47.43 (6.74) 49.44 (4.78) 51.82 (19.49) 53.51 (14.15)
PEGs PEG-NR 63.58 (5.51) 58.19 (4.08) 60.93 (14.39) 58.13 (8.44) 49.84 (0.92) 50.50 (0.63)
PEG-SR 61.58 (627) 55.64 (445) 52.98 (5.19) 52.87 (2.67) 57.13 (3.96) 54.58 (2.79)
PEG-PR 56.78 (4.46) 59.48 (4.64) 56.38 (18.60) 54.61 (11.05) 53.77 (19.53) 53.79 (11.78)
TGAT EGs EG-NR 7371 (022) 70.00 (0.36) 49.56 (0.32) 49.98 (0.22) 4823 (1.04) 50.14 (0.61)
EG-SR 6320 (3.03) 57.41(2.12) 57.90 (1.51) 54.54 (1.96) 50.47 (13.27) 48.29 (8.90)
PEGs PEG-NR 80.92 (0.24) 77.44 (0.42) 73.46 (0.24) 66.61 (0.43) 58.70 (0.11) 55.95 (0.28)
PEG-SR 65.66 (0.56) 61.12 (0.34) 73.63 (2.46) 65.38 (2.24) 65.39 (0.75) 62.79 (0.87)
PEG-PR 8058 (0.35) 7524 (0.42) 81.56 (0.52) 69.75 (1.32) 71.03 (0.43) 64.35 (0.48)
TGN EGs EG-NR 64.30 (2.09) 63.14 (2.32) 49.72 (0.29) 49.96 (0.22) 49.53 (2.62 50.85 (1.40)
EG-SR 64.86 (3.77) 57.63 (3.43) 57.55 (0.97) 52.93 (1.31) 52.63 (10.00) 51.13 (7.63)
PEGs PEG-NR 79.62 (0.57) 76.14 (0.78) 72.83 (0.50) 66.40 (0.18) 58.85 (0.44) 56.25 (0.26)
PEG-SR 7020 (4.36) 64.10 (4.89) 74.43 (2.31) 64.43 (2.05) 64.79 (1.04) 62.41 (1.31)
PEG-PR 7839 (1.07) 73.48(1.29) 78.91 (1.24) 66.69 (2.27) 70.53 (0.46) 63.65 (0.77)
GraphMixer EGs EG-NR 69.67 (0.89) 67.58 (0.74) 49.56 (0.32) 49.98 (0.22) 50.75 (2.97) 51.96 (1.81)
EG-SR 58.68 (4.00) 53.71(2.59) 52.76 (1.26) 49.85 (0.85) 4777 (1206 48.15 (7.72)
PEGs PEG-NR 78.31(1.05) 73.89 (1.20) 72.04 (0.31) 65.62 (0.39) 58.69 (0.93) 56.39 (1.00)
PEG-SR 6042 (2.81) 58.08 (1.46) 77.53 (1.24) 68.36 (1.29) 63.17 (1.36) 59.87 (1.74)
PEG-PR 80.14 (0.59) 74.37 (0.64) 86.36 (2.40) 79.40 (4.17) 71.38 (0.44) 64.66 (0.64)
Note:

The best result is shown in bold, while the second best is shown in underline.

effectiveness of integrating PEGs and simple residual nodes in dynamic graph neural

networks, validating our approach and suggesting promising directions for future research

in dynamic graph modeling. In the transductive setting, paired t-tests revealed that PEG-
NR significantly outperformed EGs across all datasets (p < 0.01), with PEG-SR also

showing improvements over EG-NR (p < 0.01) but being less consistent compared to EG-
SR (p < 0.05); among PEG variants, PEG-PR achieved the best performance, significantly
surpassing EGs (p < 0.01).

Inductive experiments

In the inductive experiments, our model was trained on labeled graph data and then tested

on a separate dataset, potentially containing new or unseen data, to assess its generalization

performance. Summary results are presented in Table 4.

Park et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2717

23/28

http://dx.doi.org/10.7717/peerj-cs.2717
https://peerj.com/computer-science/

PeerJ Computer Science

Across various datasets, models with PEGs and simple residual nodes, especially PEG-
SR, consistently outperformed others. Notably, in the Traffic dataset, PEG-SR showed
significant improvements of around 19% in AP and 16% in AUC-ROC compared to EG-
NR, and approximately 25% in AP, and 27% in AUC-ROC compared to EG-SR. Similarly,
in the Power Consumption dataset, PEG-SR exhibited remarkable enhancements of
approximately 25% in AP and 49% in AUC-ROC over EG-NR, and about 26% in AP and
51% in AUC-ROC over EG-SR. In the Exchange Rate dataset, PEG-SR also performed
well, with notable increases of around 6% in AP and 12% in AUC-ROC over EG-NR, and
despite a slight decrease in AP, still delivering significant improvement in AUC-ROC
compared to EG-SR. These findings underscore the effectiveness of integrating PEGs and
simple residual nodes to enhance link prediction performance in dynamic graph neural
networks. Moreover, our inductive experiments revealed additional advantages of the
model, highlighting its ability to generalize well to new or unseen graph structures, thereby
enhancing its applicability in real-world scenarios. Statistical validation for inductive
experiments showed that PEG-NR consistently outperformed EGs across all datasets
(p < 0.01). Paired t-tests further revealed that PEG-SR demonstrated significant
improvements over EG-NR (p < 0.01) but produced mixed results compared to EG-SR
(p < 0.05). Among the PEG variants, PEG-PR achieved the most significant advantages
over EG-NR and EG-SR (p < 0.01), highlighting its effectiveness in inductive scenarios.

CONCLUSIONS

In this article, we present a novel method called the dynamic PEGs, designed to enhance
prediction accuracy in multivariate time series patterns. The proposed method not only
enhances model automation and stability but also ensures efficiency by automating the
extraction of periodic patterns from time series data. Through self-supervised learning, our
model independently identifies patterns in each dataset, eliminating the need for manual
labeling and enabling efficient use of large-scale datasets. Representing time series patterns
as discrete event nodes enhances interpretability and prediction reliability, facilitating
model refinement and decision-making. Experimental results, supported by rigorous
statistical validation in both transductive and inductive scenarios, demonstrate that
integrating periodicity into event graphs significantly improves link prediction
performance for multivariate time series pattern forecasting across diverse domains,
including transportation (e.g., predicting traffic flow), power consumption (e.g.,
forecasting energy demand), and exchange rates (e.g., predicting currency fluctuations).
This study’s results were rigorously validated through statistical tests, including paired t-
tests, demonstrating consistent performance improvements (p < 0.01) across multiple
scenarios. While PEGs consistently outperforms EGs, its performance may be suboptimal
in datasets with minimal or irregular periodicity, where the advantage of periodicity-based
modeling diminishes. Further error analysis is necessary to explore such scenarios and
optimize performance under these conditions. PEGs exhibit exceptional predictive
accuracy, particularly in scenarios without residual nodes. PEG-SR, which introduce
simple residual nodes to PEG, effectively capture patterns unexplained by the event graph,
further enhancing prediction accuracy. In conclusion, we underscore the transformative

Park et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2717 24/28

http://dx.doi.org/10.7717/peerj-cs.2717
https://peerj.com/computer-science/

PeerJ Computer Science

potential of our method in enhancing pattern prediction performance in event graphs
based on time series patterns. Future research could focus on applying PEGs to a broader
range of multivariate time series datasets, including those with irregular sampling intervals,
and exploring its applicability in healthcare, financial forecasting, and environmental
monitoring.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No. RS-2023-00214065) and by the Institute of
Information & Communications Technology Planning & Evaluation (IITP) grant funded
by the Korea government (MSIT) (No. RS-2022-00155857, Artificial Intelligence
Convergence Innovation Human Resources Development (Chungnam National
University)). This work was also supported by the research fund of Chungnam National
University. The funders had no role in study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:

National Research Foundation of Korea (NRF).

Korea government (MSIT): RS-2023-00214065, RS-2022-00155857.

Institute of Information & Communications Technology Planning & Evaluation (IITP).
Artificial Intelligence Convergence Innovation Human Resources Development
(Chungnam National University).

Competing Interests
The authors declare that they have no competing interests.

Author Contributions

» SoYoung Park conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

* HyeWon Lee analyzed the data, prepared figures and/or tables, authored or reviewed
drafts of the article, and approved the final draft.

 Sungsu Lim conceived and designed the experiments, analyzed the data, authored or
reviewed drafts of the article, and approved the final draft.

Data Availability

The following information was supplied regarding data availability:
The code for this study is available at GitHub
- https://github.com/peg-repo/periodic-event-graph.
The data for the experiments is available at GitHub (Lai ef al., 2018)
- https://github.com/laiguokun/multivariate-time-series-data.

Park et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2717 25/28

https://github.com/peg-repo/periodic-event-graph
https://github.com/laiguokun/multivariate-time-series-data
http://dx.doi.org/10.7717/peerj-cs.2717
https://peerj.com/computer-science/

PeerJ Computer Science

The traffic raw data is available at Caltrans Performance Measurement System (PeMS):
https://pems.dot.ca.gov.

The power consumption raw data is available at Zenodo: Goncalves, C., Barreto, R.,
Faria, P., Gomes, L., & Vale, Z. (2024). Dataset of an Energy Community’s Consumption
and Generation with Appliance Allocation for One Year [Data set]. Zenodo. https://doi.
org/10.5281/zenodo.10854881.

REFERENCES

Aseeri AO. 2023. Effective short-term forecasts of Saudi stock price trends using technical
indicators and large-scale multivariate time series. Peer] Computer Science 9(2):e1205
DOI 10.7717/peerj-cs.1205.

Bentley PM, McDonnell J. 1994. Wavelet transforms: an introduction. Electronics &
Communication Engineering Journal 6(4):175-186 DOI 10.1049/ecej:19940401.

Box GE, Jenkins GM, Reinsel GC, Ljung GM. 2015. Time series analysis: forecasting and control.
New Jersey, USA: John Wiley & Sons.

Bracewell RN. 1989. The fourier transform. Scientific American 260(6):86-95
DOI 10.1038/scientificamerican0689-86.

Cao D, Jia F, Arik SO, Pfister T, Zheng Y, Ye W, Liu Y. 2023. Tempo: prompt-based generative
pre-trained transformer for time series forecasting. ArXiv preprint
DOI 10.48550/arXiv.2310.04948.

Cao W, Qi W, Lu P. 2024. Air quality prediction based on time series decomposition and
convolutional sparse self-attention mechanism transformer model. IEEE Access
12:155340-155350 DOI 10.1109/ACCESS.2024.3484579.

Cao D, Wang Y, Duan J, Zhang C, Zhu X, Huang C, Tong Y, Xu B, Bai J, Tong J, Zhang Q.
2020. Spectral temporal graph neural network for multivariate time-series forecasting. In:
NeurIPS, 17766-17778.

Cetin K, Tabares-Velasco P, Novoselac A. 2014. Appliance daily energy use in new residential
buildings: use profiles and variation in time-of-use. Energy and Buildings 84(5.):716-726
DOI 10.1016/j.enbuild.2014.07.045.

Chen J, Li K, Rong H, Bilal K, Li K, Philip SY. 2019. A periodicity-based parallel time series
prediction algorithm in cloud computing environments. Information Sciences 496(3):506-537
DOI 10.1016/.ins.2018.06.045.

Chiang S, Zito J, Rao VR, Vannucci M. 2024. Time-series analysis. In: Statistical Methods in
Epilepsy. Boca Raton, FL, USA: Chapman and Hall/CRC, 166-200.

Cleveland WS. 1979. Robust locally weighted regression and smoothing scatterplots. Journal of the
American Statistical Association 74(368):829-836 DOI 10.1080/01621459.1979.10481038.

Cleveland RB, Cleveland WS, McRae JE, Terpenning I. 1990. STL: a seasonal-trend
decomposition. Journal of Official Statistics 6(1):3-73.

Cong W, Zhang S, Kang J, Yuan B, Wu H, Zhou X, Tong H, Mahdavi M. 2023. Do we really need
complicated model architectures for temporal networks? In: ICLR.

Gardner ES Jr. 1985. Exponential smoothing: the state of the art. Journal of Forecasting 4(1):1-28
DOI 10.1002/for.3980040103.

Goncalves C, Barreto R, Faria P, Gomes L, Vale Z. 2022. Dataset of an energy community’s
generation and consumption with appliance allocation. Data in Brief 45(7):108590
DOI 10.1016/.dib.2022.108590.

Park et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2717 26/28

https://pems.dot.ca.gov
https://doi.org/10.5281/zenodo.10854881
https://doi.org/10.5281/zenodo.10854881
http://dx.doi.org/10.7717/peerj-cs.1205
http://dx.doi.org/10.1049/ecej:19940401
http://dx.doi.org/10.1038/scientificamerican0689-86
http://dx.doi.org/10.48550/arXiv.2310.04948
http://dx.doi.org/10.1109/ACCESS.2024.3484579
http://dx.doi.org/10.1016/j.enbuild.2014.07.045
http://dx.doi.org/10.1016/j.ins.2018.06.045
http://dx.doi.org/10.1080/01621459.1979.10481038
http://dx.doi.org/10.1002/for.3980040103
http://dx.doi.org/10.1016/j.dib.2022.108590
http://dx.doi.org/10.7717/peerj-cs.2717
https://peerj.com/computer-science/

PeerJ Computer Science

Hu W, Yang Y, Cheng Z, Yang C, Ren X. 2021. Time-series event prediction with evolutionary
state graph. In: Proceedings of the 14th ACM International Conference on Web Search and Data
Mining. New York: ACM, 580-588.

Hylleberg S, Engle RF, Granger CW, Yoo BS. 1990. Seasonal integration and cointegration.
Journal of Econometrics 44(1-2):215-238 DOI 10.1016/0304-4076(90)90080-D.

Kim H, Lim S. 2021. Temporal patternization of power signatures for appliance classification in
nilm. Energies 14(10):2931 DOI 10.3390/en14102931.

Kumar S, Zhang X, Leskovec J. 2019. Predicting dynamic embedding trajectory in temporal
interaction networks. In: KDD, 1269-1278.

Lai G, Chang W-C, Yang Y, Liu H. 2018. Modeling long-and short-term temporal patterns with
deep neural networks. In: SIGIR, 95-104.

Liu Y, Liu Q, Zhang J-W, Feng H, Wang Z, Zhou Z, Chen W. 2022. Multivariate time-series
forecasting with temporal polynomial graph neural networks. In: NeurIPS, 19414-19426.

Mclnnes L, Healy J, Astels S. 2017. hdbscan: hierarchical density based clustering. Journal of Open
Source Software 2(11):205 DOI 10.21105/j0ss.00205.

Rossi E, Chamberlain B, Frasca F, Eynard D, Monti F, Bronstein M. 2020. Temporal graph
networks for deep learning on dynamic graphs. ArXiv DOI 10.48550/arXiv.2006.10637.

Shao Z, Zhang Z, Wang F, Xu Y. 2022. Pre-training enhanced spatial-temporal graph neural
network for multivariate time series forecasting. In: KDD, 1567-1577.

Siffer A, Fouque P-A, Termier A, Largouet C. 2017. Anomaly detection in streams with extreme
value theory. In: KDD, 1067-1075.

Sun L, Liu C, Wang Y, Bing Z. 2022. Substation equipment temperature prediction based on
multivariate information fusion and deep learning network. Peer] Computer Science 8(9):e1172
DOI 10.7717/peerj-cs.1172.

Torres DG, Qiu H. 2018. Applying recurrent neural networks for multivariate time series
forecasting of volatile financial data. Stockholm, Sweden: KTH Royal Institute of Technology.

Trivedi R, Farajtabar M, Biswal P, Zha H. 2019. Dyrep: learning representations over dynamic
graphs. In: ICLR.

Tsay RS. 2013. Multivariate time series analysis: with R and financial applications. Hoboken, New
Jersey: John Wiley & Sons.

Vautard R, Yiou P, Ghil M. 1992. Singular-spectrum analysis: a toolkit for short, noisy chaotic
signals. Physica D: Nonlinear Phenomena 58(1-4):95-126 DOI 10.1016/0167-2789(92)90103-T.

WuY, GuM, Wang L, Lin Y, Wang F, Yang H. 2022. Event2graph: event-driven bipartite graph
for multivariate time series forecasting and anomaly detection. In: AMLTS.

Wu Z, Pan S, Long G, Jiang J, Chang X, Zhang C. 2020. Connecting the dots: multivariate time
series forecasting with graph neural networks. In: KDD, 753-763.

Xu D, Ruan C, Korpeoglu E, Kumar S, Achan K. 2020. Inductive representation learning on
temporal graphs. In: ICLR.

Yeh C-CM, Zhu Y, Ulanova L, Begum N, Ding Y, Dau HA, Silva DF, Mueen A, Keogh E. 2016.
Matrix profile i: all pairs similarity joins for time series: a unifying view that includes motifs,
discords and shapelets. In: ICDM, 1317-1322.

Yin J, Rao W, Yuan M, Zeng J, Zhao K, Zhang C, Li J, Zhao Q. 2019. Experimental study of
multivariate time series forecasting models. In: CIKM, 2833-2839.

Yu L, Sun L, Du B, Lv W. 2023. Towards better dynamic graph learning: new architecture and
unified library. In: NeurIPS.

Park et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2717 27/28

http://dx.doi.org/10.1016/0304-4076(90)90080-D
http://dx.doi.org/10.3390/en14102931
http://dx.doi.org/10.21105/joss.00205
http://dx.doi.org/10.48550/arXiv.2006.10637
http://dx.doi.org/10.7717/peerj-cs.1172
http://dx.doi.org/10.1016/0167-2789(92)90103-T
http://dx.doi.org/10.7717/peerj-cs.2717
https://peerj.com/computer-science/

PeerJ Computer Science

Zhai N, Yao P, Zhou X. 2020. Multivariate time series forecast in industrial process based on
XGBoost and GRU. In: ITAIC, Vol. 9, 1397-1400.

Zhao ZY, Xie M, West M. 2016. Dynamic dependence networks: financial time series forecasting
and portfolio decisions. Applied Stochastic Models in Business and Industry 32(3):311-332
DOI 10.1002/asmb.2161.

Zhong Z, Lv S, Shi K. 2023. A new method of time-series event prediction based on sequence
labeling. Applied Sciences 13(9):5329 DOI 10.3390/app13095329.

Zhong S, Mueen A. 2024. MASS: distance profile of a query over a time series. Data Mining and
Knowledge Discovery 38(3):1466-1492 DOI 10.1007/s10618-024-01005-2.

Zhou T, Ma Z, Wen Q, Wang X, Sun L, Jin R. 2022. FEDformer: frequency enhanced
decomposed transformer for long-term series forecasting. In: International conference on
machine learning. Westminster: PMLR, 27268-27286.

Park et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2717 28/28

http://dx.doi.org/10.1002/asmb.2161
http://dx.doi.org/10.3390/app13095329
http://dx.doi.org/10.1007/s10618-024-01005-2
http://dx.doi.org/10.7717/peerj-cs.2717
https://peerj.com/computer-science/

	Dynamic Periodic Event Graphs for multivariate time series pattern prediction
	Introduction
	Related work
	Background and problem formulation
	Proposed method: periodic event graphs
	Experiments
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

