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ABSTRACT
The Ethereum blockchain operates as a decentralized platform, utilizing blockchain
technology to distribute smart contracts across a global network. It enables currency
and digital value exchange without centralized control. However, the exponential
growth of online commerce has created a fertile ground for a surge in fraudulent
activities such as money laundering and phishing, thereby exacerbating significant
security vulnerabilities. To combat this, our article introduces an ensemble learning
approach to accurately detect fraudulent Ethereum blockchain transactions. Our goal
is to integrate a decision-making tool into the decentralized validation process of
Ethereum, allowing blockchain miners to identify and flag fraudulent transactions.
Additionally, our system can assist governmental organizations in overseeing the
blockchain network and identifying fraudulent activities. Our framework
incorporates various data pre-processing techniques and evaluates multiple machine
learning algorithms, including logistic regression, Isolation Forest, support vector
machine, Random Forest, XGBoost, and recurrent neural network. These models are
fine-tuned using grid search to enhance their performance. The proposed approach
utilizes an ensemble of three distinct models (Random Forest, extreme gradient
boosting (XGBoost), and support vector machine) to further improve classification
performance. It achieves high scores of over 98% across key classification metrics like
accuracy, precision, recall, and F1-score. Moreover, the approach is suitable for real-
world usage, with an inference time of 0.13 s.

Subjects Artificial Intelligence, Data Science, Cryptocurrency, Blockchain
Keywords Ethereum, Blockchain, Fraud detection, Ensemble learning, Machine learning,
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INTRODUCTION
Cryptocurrencies like Ethereum (Buterin, 2013; Kushwaha et al., 2022b) and Bitcoin
(Nakamoto, 2008; John, O’Hara & Saleh, 2022) have experienced a remarkable increase in
demand since their inception. These decentralized digital currencies are designed to
empower individual users by shifting control away from centralized authorities (Raskin &
Yermack, 2018). By leveraging blockchain technology, these cryptocurrencies ensure
transparency, security, and immutability of transactions, eliminating the need for
traditional intermediaries such as banks and financial institutions (Dib et al., 2018). This
decentralization not only enhances the privacy and autonomy of users but also reduces
transaction costs and processing times (Singh & Kim, 2019). As a result, cryptocurrencies
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have gained significant traction as viable alternatives to conventional financial systems,
attracting substantial interest and investment from diverse sectors, including finance,
technology, and retail. This growing adoption underscores the transformative potential of
blockchain technology in reshaping the future of digital transactions and data
management (Dib, Huyart & Toumi, 2020). The key benefits of cryptocurrencies in
modern finance are illustrated in Fig. 1.

Ethereum is a prominent example of a cryptocurrency system, offering cost-effective,
user-friendly digital transactions with minimal fees and global access (Laurent, Brotcorne
& Fortz, 2022). Like other cryptocurrencies, Ethereum operates on a blockchain network,
serving as a decentralized and distributed public ledger responsible for verifying and
recording transactions. In addition to cryptocurrency transactions, Ethereum enables the
use of smart contracts, which are self-executing contracts with the terms of the agreement
directly written into code (Kushwaha et al., 2022a). This functionality expands the
potential applications of Ethereum beyond simple transfers, making it a versatile and
powerful tool in the digital economy.

Ethereum’s inherent confidentiality provides organizations and institutions with a
shield from direct accountability for blockchain activities (Chen et al., 2020). However, this
veil of anonymity poses significant challenges in identifying wrongdoers in fraud cases,
making it difficult to pinpoint individual responsibility. Consequently, the combination of
organizational anonymity and user privacy increases the potential for fraudulent behavior
within the Ethereum ecosystem (Zhou et al., 2022). While this anonymity protects users’
privacy and promotes decentralization, it inadvertently creates an environment where
malicious actors can exploit the system without fear of repercussions. Therefore, the
Ethereum network must balance the benefits of decentralization and confidentiality with
robust mechanisms to detect and deter fraudulent activities, ensuring the integrity and
trustworthiness of the blockchain. A list of the different security issues in the Ethereum
blockchain is depicted in Fig. 2.

The paradigm shift towards this new digitized financial transaction system has,
therefore, led to an unprecedented surge in fraudulent activities, presenting substantial
challenges for financial institutions and consumers (Ryman-Tubb, Krause & Garn, 2018).
This rise in fraud and identity theft has become increasingly prevalent, underscoring the
urgent need for robust detection and prevention measures (Chaquet-Ulldemolins et al.,
2022). As the financial landscape evolves, traditional security protocols are often
insufficient to address the sophisticated techniques fraudsters employ. Consequently, the
need for advanced solutions like artificial intelligence and machine learning to identify and
mitigate fraud in real time has become critical (Dib, Nan & Liu, 2024). Integrating these
technologies is essential to enhancing security, protecting consumers, and maintaining
trust in the digital economy.

Traditional fraud detection methods, while somewhat effective, struggle to keep up with
fraudsters’ evolving tactics. On Ethereum, these challenges are further compounded by the
unique characteristics of Ethereum fraud compared to traditional cyber fraud. Unlike
conventional cyber frauds, Ethereum frauds target the Ether token, utilize public keys for
user identification, and operate within the publicly accessible transaction records of
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Figure 1 Core advantages of cryptocurrencies in modern finance. Full-size DOI: 10.7717/peerj-cs.2716/fig-1

Figure 2 Overview of key security issues in the Ethereum blockchain. Full-size DOI: 10.7717/peerj-cs.2716/fig-2
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Ethereum and other digital currency systems (Tan et al., 2021). Moreover, the data
imbalance issue, where there are significantly fewer labeled fraudulent addresses than legal
addresses, presents a significant hurdle in automatically identifying fraudulent transactions
within the Ethereum network. In response to these challenges, the field of data science
emerges as a crucial ally. Its versatility, effectiveness, and capacity to extract complex
patterns—whether normal or fraudulent—from datasets make it invaluable. In fact, data
science offers many advanced, robust, and effective techniques and algorithms to detect
anomalous behavior indicative of fraudulent activities (Da’u & Salim, 2020).

Recognizing the critical need for robust fraud detection tools within the Ethereum
blockchain network, this study thoroughly explores the realm of fraud detection by
leveraging a diverse range of machine learning and anomaly detection methodologies. This
work presents a comprehensive tool that utilizes advanced algorithms and data analytics to
significantly enhance the security and integrity of the Ethereum blockchain, thereby
ensuring a safer and more reliable environment for digital transactions.

Contributions
The main contributions of this article are outlined as follows:

. Discussion of the utilization of a decision-making tool based on machine learning and
learning data within the Ethereum blockchain framework.

. Proposal of a decision-making tool for identifying fraudulent transactions within the
Ethereum blockchain, employing various machine learning techniques and algorithms.

. Utilization of ensemble learning as a collaborative classifier to effectively distinguish
fraudulent transactions from normal transactions with high confidence.

. Provision of a comprehensive experimental analysis focusing on various classification
algorithms and ensemble learning techniques.

Article structure
The remainder of the article is organized as follows: “Related Work” reviews existing
literature on applying machine learning to detect fraudulent transactions in various
sectors. “A Fraud Detection System Within the Ethereum Network” highlights the
significance of fraud detection tools as a decision-making aid within the Ethereum
ecosystem. “Proposed Framework” elaborates on the dataset and proposes a classification
framework. “Experimental Study” details the experimental setup and presents results
highlighting classification metrics across various algorithms. This section also includes a
comparative analysis against existing fraud detection models. Finally, “Conclusion”
summarizes the article’s contributions and explores potential directions for future research
and improvement.

RELATED WORK
Fraud detection has been a critical concern in various industries, particularly finance,
where the consequences of fraudulent activities can be substantial (Ryman-Tubb, Krause &
Garn, 2018). Traditional fraud detection methods have relied on rule-based systems
(Engels, Kumar & Philip, 2021). However, these methods often fall short in adapting to the
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evolving nature of fraud and detecting sophisticated schemes effectively (Öztürk & Usul,
2020). Consequently, there is increasing interest in utilizing machine learning (ML) and
deep learning (DL) techniques to enhance traditional methods and improve fraud
detection accuracy. This section reviews the literature on fraud detection methodologies,
focusing on ML techniques, anomaly detection methods, DL approaches, hybrid models,
evaluation metrics, and benchmark datasets. The aim is to identify the strengths and
limitations of current methods and highlight potential research directions.

Rule-based system
A rule-based system is an expert system that employs a set of “if-then” rules to apply
domain-specific knowledge and heuristics for solving problems within a specific and
practical problem domain (Öztürk & Usul, 2020). Rule-based expert systems offer
advantages such as applicability, ease of implementation, and understandability. However,
they are constrained by the need for manual rule creation and maintenance, limited
capability to manage complex or uncertain scenarios, and susceptibility to inaccuracies if
rules are not regularly updated (Öztürk & Usul, 2020). While rule-based systems have
distinct advantages and limitations, recent literature highlights a trend toward combining
them with artificial intelligence to enhance their effectiveness (Hilal, Gadsden & Yawney,
2022; Güneysu, 2023; Bellomarini, Laurenza & Sallinger, 2020).

AI-based systems
Artificial intelligence (AI) based systems utilize advanced ML algorithms and DL
techniques to detect and mitigate fraudulent activities. Unlike rule-based systems, AI-
based systems autonomously learn patterns and anomalies from data, allowing them to
adapt to evolving fraud schemes. These systems excel in handling complex and uncertain
situations by analyzing large datasets and identifying subtle patterns that indicate
fraudulent behavior. Moreover, AI-based systems can continuously learn and update their
models based on new data, reducing the need for manual intervention and rule
maintenance. These models have demonstrated remarkable performance across various
sectors. For example, Dou et al. (2021) proposed an efficient automated ML approach for
predicting the risk of progression to active tuberculosis based on its association with host
genetic variations. Liu et al. (2021) effectively utilized ML approaches to investigate the
relationship between genetic factors and autism spectrum disorder. Zhenghan & Dib
(2022) applied several ML models to examine the impact of the agriculture sector on the
Chinese gross domestic product (GDP). Chen et al. (2023) reviewed the application of
several ML algorithms for breast cancer diagnosis. These studies highlight the potential of
ML algorithms to enhance decision-making processes across various fields.

Recent literature emphasizes the increasing integration of AI into fraud detection
systems, with studies showcasing the enhanced detection accuracy and efficiency of AI-
driven approaches. The following sections will review the application of various AI-based
models for fraud detection.
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Logistic regression
InMegdad, Abu-Naser & Abu-Nasser (2022), logistic regression (LR) achieved an accuracy
of 90.0% when operating on an unbalanced dataset. However, LR may underperform in
recall and F1-score, particularly with unbalanced datasets. In contrast, Hamal & Senvar
(2021) found that LR outperforms other algorithms in overall accuracy for detecting
fraudulent financial reporting.

Support vector machine
Many articles, such as Sivaram et al. (2020), Zhang, Bhandari & Black, 2020, and Trivedi
et al. (2020), state that an support vector machine (SVM) can handle high-dimensional
data efficiently, making it suitable for complex datasets. However, SVM is unsuitable for
massive datasets due to computational overhead. Additionally, SVM tends to
underperform when the feature count of every data point exceeds the number of training
data samples.

Isolation forest
Zade (2024) reported that the Isolation Forest (IF) model exhibits poor performance in
terms of accuracy, precision, and F1-score both before and after hyperparameter tuning.
Its underperformance may be attributed to its sensitivity to parameter settings or the data’s
lack of distinct anomalous patterns. While the IF algorithm showed moderate recall,
indicating some capability to identify fraud, its high rate of false positives poses a
significant drawback for practical applications where precision is crucial. Therefore,
without substantial model modifications or complementary techniques to enhance its
specificity, the IF may not be the most reliable standalone model for detecting fraudulent
transactions. Singh et al. (2024) stated that one of the advantages of the IF algorithm is its
minimal memory allocation requirement and low computational overhead, thanks to its
linear time complexity. However, a potential disadvantage of the IF algorithm is that it may
struggle with highly imbalanced datasets, which can impact its performance.

Local outlier factor
Singh et al. (2024) stated that the local outlier factor (LOF) identifies outliers by comparing
a data point’s local variances to those of its neighbors, assessing outliers based on local
density influenced by proximity to nearest neighbors. LOF measures the extent of density
deviation of a data point from its neighbors, enabling the detection of regions with notably
lower densities and emphasizing local relationships and densities to unveil nuanced
anomalies often overlooked by traditional methods. This approach enriches anomaly
detection granularity, providing a more comprehensive understanding of irregularities
within the dataset. One advantage of the LOF algorithm is its ability to capture subtle
anomalies that may be missed by other methods due to its focus on local density
relationships. However, a potential disadvantage of LOF is its sensitivity to the choice of
parameters and the need for careful tuning to achieve optimal performance.
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Random forest
In Dileep, Navaneeth & Abhishek (2021), the authors indicated that the Random Forest
(RF) algorithm offers several advantages for financial fraud detection. Firstly, it is an
improved version of the decision tree algorithm, combining decision trees to provide better
results. RF effectively handles large volumes of decision trees during training and
inference, which is the mode of the modules that is beneficial for classification tasks.
Additionally, RF is less prone to overfitting than individual decision trees, enhancing the
model’s generalization capability. However, some disadvantages are associated with RF in
financial fraud detection. One potential drawback is the complexity of interpreting the
results due to the ensemble nature of the model, which can make it challenging to
understand the decision-making process. Another limitation is the computational
resources required for training and maintaining a large number of decision trees, which
can lead to increased processing time and resource consumption.

Extreme gradient boosting
Hajek, Abedin & Sivarajah (2023) stated that the advantages of extreme gradient boosting
(XGBoost) in financial fraud detection include its computational efficiency, scalability,
ability to build incremental models to improve predictive power, and ability to minimize
overall errors by reducing errors with incremental improvements. XGBoost also improves
robustness to noise and overfitting by introducing random sampling schemes with a more
normalized model to control overfitting. In addition, XGBoost has advantages when
dealing with high-dimensional data and has been successfully applied in areas such as
insurance fraud detection. One of the drawbacks of XGBoost is that applying the XGBoost
algorithm in the improved XGBOD feature space results in a long execution time,
averaging 4,256.25 s. In addition, XGBOD’s disadvantages include its long execution time.
Still, compared to other anomaly detection methods, XGBOD takes advantage of the labels
assigned to mobile transactions and performs well in terms of accuracy and recall rates.

Recurrent neural networks
In Nama & Obaid (2024), recurrent neural networks (RNNs) excel in modeling sequential
data, such as transaction histories, by capturing temporal associations and patterns in
financial transactions. They can identify abnormalities in transaction amounts,
frequencies, or other relevant factors to detect potentially fraudulent transactions,
leveraging the temporal dynamics of the data. RNNs have the capability to evaluate
streaming data in real-time, enabling quick responses for fraud detection and loss
prevention. Despite their effectiveness in managing unbalanced datasets with few
fraudulent transactions, RNNs are often combined with other methods and algorithms,
such as ensemble approaches and feature engineering, to enhance overall fraud detection
system efficacy and robustness.

Building on the extensive body of research and diverse methodologies explored in the
literature, our work aims to address the persistent and evolving challenges in fraud
detection within the Ethereum blockchain network. By integrating state-of-the-art ML and
anomaly detection techniques, we leverage the Ethereum Fraud Detection Dataset initially
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referenced by Farrugia, Ellul & Azzopardi (2020). This dataset serves as a foundation for
testing the effectiveness of our approach, providing real-world transaction data to train
and validate models capable of identifying fraudulent activity. While traditional rule-based
systems have been instrumental in early fraud detection efforts, their limitations in
adaptability and handling complex, evolving fraud patterns have paved the way for AI-
based systems that leverage advanced algorithms and continuous learning.

Our approach builds on this shift toward AI by combining a variety of cutting-edge
techniques. We employ sophisticated data preprocessing methods that enhance the quality
and relevance of input data, ensuring that the models can focus on the most important
features. Hyperparameter tuning is incorporated to optimize model performance, as even
slight adjustments can yield significant improvements in fraud detection accuracy.
Furthermore, we integrate multiple ensemble learning methods—such as voting, stacking,
and boosting classifiers—which allow us to combine the strengths of different models,
reducing biases and improving overall predictive power. These ensemble methods also
increase robustness, as they can mitigate overfitting and improve the model’s ability to
generalize across different datasets and environments. By positioning our work within the
context of these advancements, we demonstrate how our model matches and exceeds the
performance benchmarks set by previous studies, offering significant improvements in
precision, recall, and computational efficiency. This research, therefore, contributes
significantly to the ongoing evolution of fraud detection technologies in the digital world,
particularly in the realm of e-commerce and other online transactions. By providing a
robust and scalable solution, our work enhances the security and integrity of digital
transactions on the Ethereum blockchain, ensuring a safer environment for users and
stakeholders in the rapidly growing digital economy.

A FRAUD DETECTION SYSTEM WITHIN THE ETHEREUM
NETWORK
In this section, we elaborate on how the proposed fraud detection system is seamlessly
integrated into the decision-making process within the Ethereum consensus mechanism.
Additionally, we provide a detailed explanation of its practical applicability by illustrating a
real-world scenario, demonstrating how the system enhances transaction validation and
strengthens network security.

The proposed approach for detecting fraudulent transactions on the Ethereum
blockchain begins with the initiation of a transaction. A native transaction object is
constructed, including critical parameters such as Nonce, Gas Price, Gas Limit, destination
address, sending amount, and transaction data. The sender signs the transaction using
their private key to confirm ownership and authorization. This signed transaction is then
submitted to a local node for initial verification of legitimacy and authenticity.

At this stage, the proposed fraud detection module, embedded within local nodes and
miner nodes, applies ML algorithms to analyze the transaction for signs of anomalous or
malicious behavior. These algorithms thoroughly examine patterns in the transaction’s
metadata, such as unusual gas prices, transaction sizes, or the frequency of transactions
originating from specific addresses. Transactions flagged as suspicious are temporarily
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isolated and subjected to further scrutiny, while legitimate transactions proceed to the next
phase.

Once verified by the ML module, legitimate transactions are added to the transaction
pool managed by miner nodes, where they await inclusion in a block. The transaction is
then broadcast across the Ethereum network, allowing other nodes to validate and process
it. When a miner node successfully solves the proof-of-work problem and discovers a valid
block, it includes the transaction alongside others in the block. This block is then broadcast
to the network for synchronization with the distributed ledger.

To ensure the security and finality of the transaction, it undergoes multiple block
confirmations. During this process, additional instances of the fraud detection module
embedded in local nodes continuously monitor the transaction chain for any
inconsistencies or anomalies. This multi-layered approach enhances transaction integrity
and network security. The framework illustrating the main steps of deploying the fraud
detection system within the Ethereum network is presented in Fig. 3.

To further substantiate the practical utility of the proposed system, we consider the case
of a decentralized finance (DeFi) platform built on Ethereum. Fraudulent activities, such as
flash loan attacks or smart contract exploits, can be detected through the system’s ML
module, which analyzes transaction patterns in real time. For instance, a series of rapid
transactions with unusually high gas prices might indicate a flash loan attack. By flagging
such transactions early, the system prevents them from being included in a block,
mitigating financial losses and safeguarding platform users. Additionally, consider
phishing scams where compromised wallets suddenly generate high volumes of outgoing
transactions. The fraud detection module can identify these anomalies based on the
wallet’s historical behavior, alerting validators to halt suspicious transactions.

PROPOSED FRAMEWORK
This section outlines the framework for analyzing and detecting fraudulent transactions
within the Ethereum network using the Ethereum Fraud Detection Dataset (Farrugia, Ellul
& Azzopardi, 2020). The key components of the framework are presented in Fig. 4 and
include data exploration and preprocessing, data split, feature engineering, model
selection, and tuning. This framework integrates various data preprocessing techniques
and machine learning models to accurately classify transactions as fraudulent or legitimate.

Data preprocessing
The following discusses the data preprocessing steps to prepare the dataset (Farrugia, Ellul
& Azzopardi, 2020) for effective learning. The dataset can be publicly accessed here: Vagifa
(2024). Since proper preprocessing is essential for effective training and accurate
classification of fraudulent transactions, we applied a range of preprocessing techniques to
handle the complexity and diversity of the dataset.

The Ethereum Fraud Detection Dataset initially referenced by Farrugia, Ellul &
Azzopardi (2020) was primarily loaded with 50 features, each comprising 9,841 samples.
After examination, the ‘Index’ and ‘Address’ features were deemed irrelevant for
subsequent fraud detection and removed. The remaining 48 features were divided into
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numerical and categorical groups based on their data types: numerical and object. Two of
the 48 features were identified as categorical variables with high cardinality. These were
excluded from further analysis to ensure more efficient and effective learning. Regarding
the numerical features, the initial investigation centered on the ‘FLAG’ feature, which
indicated whether a transaction was fraudulent. A pie chart analysis of this feature revealed
an imbalanced dataset, with 77.86% of the data classified as non-fraudulent and 22.14% as
fraudulent, as shown in Fig. 5. Zhang et al. (2024) stated that selecting the most effective

Figure 3 Integration of a fraud detection system into the Ethereum blockchain infrastructure. Full-size DOI: 10.7717/peerj-cs.2716/fig-3
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active learning strategy in imbalanced datasets can be challenging due to the skewed
distribution of classes.

Next, missing values were visualized in Fig. 6, and a median imputation method was
applied to fill the gaps. Missing data is a common challenge in datasets, often resulting
from the absence of values for certain variables in specific observations. As noted by Gupta
et al. (2024), missing data can introduce bias and significantly impact the performance and
reliability of predictive models, potentially leading to misleading results. To mitigate this,
Lee & Yun (2024) suggests that median imputation, by reflecting relationships between
influential factors, can provide a robust solution compared to other methods. However, the
imputation technique, while useful, may not completely address the underlying causes of
missing data, such as systemic biases in data collection. Additionally, variance analysis was
conducted to identify features with zero variance, which were subsequently dropped due to
their lack of significance. Zero variance features are listed below:

Figure 4 Architecture for financial fraud detection leveraging ensemble machine learning. Full-size DOI: 10.7717/peerj-cs.2716/fig-4
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. ERC20 avg time between sent tnx

. ERC20 avg time between rec tnx

. ERC20 avg time between rec 2 tnx

. ERC20 avg time between contract tnx

. ERC20 min val sent contract

. ERC20 max val sent contract

. ERC20 avg val sent contract

A correlation matrix in Fig. 7 identified and removed highly correlated numerical
features to enhance training efficiency by reducing redundancy.

By observing the correlation matrix, the following features are dropped:

. Avg value sent to contract

. ERC20 min val sent

. ERC20 max val sent

. ERC20 avg val sent

. Max val sent to contract

Figure 5 Distribution of fraud and non-fraud instances illustrated via a pie chart.
Full-size DOI: 10.7717/peerj-cs.2716/fig-5
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. Total ether sent contracts

. Time Diff between first and last (Mins)

. Total ether balance

. ERC20 max val rec

. ERC20 uniq rec token name

Figure 6 Visualization of missing values in the dataset. Full-size DOI: 10.7717/peerj-cs.2716/fig-6
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Figure 7 Heatmap of feature correlations to evaluate variable interdependencies. Full-size DOI: 10.7717/peerj-cs.2716/fig-7
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. ERC20 avg val rec

. Total transactions (including tnx to create contract)

. ERC20 uniq sent token name

. Total ERC20 tnxs

After dropping the following features, the correlation matrix becomes Fig. 8
Boxplot analysis, as illustrated in Fig. 9, aids in visualizing the distribution of each

feature, facilitating the identification of features exhibiting tightly clustered quartiles or
extreme skewness. Anomalies in distribution can potentially distort data analysis
outcomes. Subsequent refinement involved utilizing the value_counts method, with a
threshold of 10 for unique values. Features with fewer than 10 unique values were deemed
insignificant and therefore excluded. Consequently, the following features were dropped:

. ERC20 unique sent addresses

. Minimum value sent to contract

Data split
The dataset was divided with 20% allocated to the test set and 80% to the training set. This
allocation ensures a representative sample for evaluating model performance while
providing a larger set for training the model, enabling it to effectively learn patterns and
relationships within the data. By reserving a separate portion of the data for testing, the
study ensures an unbiased evaluation of the model’s accuracy and generalization
capabilities on unseen data.

Feature engineering
The Boxplot observations revealed that the dataset features displayed non-normal
distributions. To enhance model performance and bring the features’ distributions closer
to normal, we implemented a PowerTransformer transformation. This transformation aids
in stabilizing the data distribution, mitigating skewness, and facilitating improved model
learning. Following the PowerTransformer transformation, boxplots resemble those
depicted in Fig. 10.

After examining Fig. 10, it became evident that five features still exhibited poor
distribution. Further investigation revealed that many of these features contained many
zero values. Efforts were thus made to tackle this issue by employing various imputation
methods, such as median and mean filling, but no significant improvement in feature
distribution was observed. Additionally, dropping these features entirely and evaluating
performance using logistic regression, random forest, and XGBoost classifiers negatively
impacted model accuracy.

To address the dataset’s imbalance, particularly with respect to fraudulent transactions,
we employed the SMOTE (Synthetic Minority Over-sampling Technique) method to
enhance the model’s ability to detect fraudulent activities, which typically constitute the
minority class. SMOTE works by generating synthetic samples for the underrepresented
class rather than simply replicating existing data points. This process involves selecting a
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data point from the minority class and generating new synthetic samples along the line
segments joining it to its nearest neighbors. By increasing the number of samples in the
minority class, SMOTE helps balance the class distribution, reducing the bias that would
otherwise favor the majority class during training. This technique improves the model’s
sensitivity and recall for detecting fraud, ensuring that the predictive performance is not

Figure 8 Updated correlation matrix after eliminating highly correlated features. Full-size DOI: 10.7717/peerj-cs.2716/fig-8
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skewed toward the majority class. Furthermore, applying SMOTE enhances the model’s
generalization capabilities, ensuring better detection of previously unseen fraudulent
patterns. Further analysis of the dataset revealed varying ranges of values across different

Figure 9 Boxplot analysis for identifying outliers and distribution patterns. Full-size DOI: 10.7717/peerj-cs.2716/fig-9
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features. This discrepancy could cause the model to assign disproportionate importance to
features with higher numerical values. To address this, we applied MinMaxScaler to
normalize the range of feature values, scaling them to a range between 0 and 1. This

Figure 10 BoxPlot analysis after applying PowerTransformer. Full-size DOI: 10.7717/peerj-cs.2716/fig-10
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normalization eliminates dimensional differences among features and ensures the model
treats all features with consistent sensitivity.

Model training and tuning
After completing data preprocessing, splitting, and feature engineering, the next step
involves selecting appropriate machine learning models and training them to detect
fraudulent transactions within the Ethereum network. As illustrated in Fig. 4, the model
selection phase involves training various machine learning and deep learning algorithms
for the classification problem. The selected algorithms include LOF for anomaly detection,
RNN, RF, XGBoost, IF, SVM, and LR. Our objective is to evaluate the performance of these
different models and analyze their results to achieve optimal classification performance.

The selection of these methods for detecting fraudulent transactions in the Ethereum
network was driven by the need for robustness and accuracy in handling complex, high-
dimensional data. Each chosen algorithm offers unique advantages suited to different
aspects of fraud detection. For example, LOF excels in identifying anomalies in dense data
clusters, crucial for spotting irregular transactions. RNNs were leveraged for their ability to
capture sequential dependencies, ideal for detecting patterns indicative of fraudulent
behavior over time. RF and XGBoost provided robustness against noise and scalability for
large datasets, while IF offered efficiency in isolating outliers. SVMs handled non-linear
relationships well, and LR provided interpretable results, serving as a reliable baseline.
Ensemble methods like voting, stacking, and boosting further consolidated these strengths,
enhancing predictive accuracy through model combination and error correction. This
comprehensive approach aimed to achieve optimal performance by leveraging the
strengths of each method within a cohesive framework tailored to the unique challenges of
fraud detection in cryptocurrency transactions.

The following presents the detailed benefits of applying each algorithm for the
classification task. LOF is particularly effective at identifying anomalous transactions by
measuring the local density deviation of data points. It is suitable for detecting outliers in
high-dimensional datasets where fraudulent transactions may appear as anomalies.

RNNs, despite being powerful for sequential data analysis, can also be used for
classification tasks. They can capture complex dependencies and detect irregularities in
transaction data, making them suitable for spotting fraudulent activities.

RF is robust and versatile, providing high accuracy by combining the predictions of
multiple decision trees. It handles large datasets well and can manage various feature types,
making it effective for complex fraud detection tasks.

IF isolates observations by randomly selecting features and splitting values, effectively
identifying outliers. Its efficiency and scalability suit large datasets with potentially
fraudulent transactions.

SVM is effective for binary classification by finding the optimal hyperplane that
maximizes the margin between classes. It performs well in high-dimensional spaces and
can handle non-linear relationships using kernel functions.
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LR is a simple yet powerful linear model for binary classification. It provides
probabilities for class membership, making it easy to interpret and implement. It’s often a
strong baseline model for fraud detection.

After training each algorithm, grid search is used alongside cross-validation to fine-tune
the individual models and potentially improve their performance. Grid search
systematically explores a range of hyperparameter combinations to identify the optimal
settings for each model. Cross-validation, typically k-fold cross-validation, ensures that the
model’s performance is evaluated robustly by splitting the data into multiple training and
validation sets.

To further enhance the classification framework, the top three models in terms of
accuracy have been selected as the base for further improvement. These models serve as the
base learners for three advanced ensemble learning algorithms: voting, stacking, and
boosting.

The voting ensemble method aggregates the predictions of the selected top models by
taking a majority vote or averaging their probabilities. This approach capitalizes on the
diverse decision-making processes of each individual model, improving overall
performance and robustness against overfitting. By combining multiple models, voting
could reduce the impact of any one model’s weaknesses.

Stacking, on the other hand, involves training a meta-model on the outputs of the base
models. Here, the predictions from the top models (RF, XGBoost, and SVM) serve as input
features for the meta-model, such as LR or gradient boosting machine. The meta-model
learns to correct the errors of the base models, resulting in improved predictive accuracy.
This method is particularly useful when the base models complement each other and have
different strengths, allowing the stacking model to capture complex patterns that
individual models may miss.

Boosting, specifically gradient boosting, sequentially trains models such that each
subsequent model focuses on correcting the errors of its predecessor. This iterative process
minimizes bias and variance, leading to a more accurate and robust model. Boosting is
particularly effective for fraud detection, where detecting subtle and complex patterns is
crucial. It helps the model to concentrate on difficult-to-classify fraudulent cases, thus
improving detection rates for minority fraud cases, which are typically underrepresented
in the dataset.

To further optimize performance, each ensemble method was fine-tuned using Optuna,
a cutting-edge hyperparameter optimization framework. Optuna employs advanced
techniques such as Bayesian optimization, tree-structured Parzen estimators (TPE), and
multi-armed bandit algorithms to efficiently explore the hyperparameter space, identifying
the optimal settings for each model. This optimization process ensures that the final
models are both accurate and well-calibrated to the specific characteristics of the dataset.

The evaluation of these ensemble methods aims to maximize classification accuracy
while enhancing the model’s adaptability to evolving fraudulent patterns. By combining
multiple models, we aim to improve robustness and reliability, striving to achieve high
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detection accuracy and minimize false positives. This approach ensures the system’s
practical effectiveness in real-world fraud detection applications.

Performance evaluation
In this subsection, we detail the various techniques employed to rigorously evaluate the
performance of machine learning models.

We use both cross-validation and hold-out validation methods to assess the robustness
and generalizability of models. The use of these validation approaches helps ensure that the
model’s performance is not overly reliant on a specific data split and is representative of the
entire dataset. Additionally, we use confusion matrices to analyze the model’s predictions
regarding true positives, false positives, true negatives, and false negatives. From the
confusion matrix, we derive key metrics such as accuracy, recall, precision, and F1 score to
measure the model’s performance on different aspects of classification.

In fraud detection, missing a fraudulent transaction can lead to significant financial
losses, making recall a critical metric. Recall ensures the model identifies as many actual
fraudulent transactions as possible, thereby minimizing the risk of undetected fraud.
Equally important is precision, which measures the model’s accuracy in predicting fraud
and helps reduce false positives that could otherwise result in unnecessary investigations
and wasted resources. Given the need to balance these two metrics, the F1 score is utilized
as it provides a harmonic mean of precision and recall, offering a comprehensive
assessment of the model’s ability to effectively detect fraud while maintaining reliability.
These metrics are prioritized to align with the dual goals of minimizing undetected fraud
and avoiding excessive false alarms in practical applications.

Accuracy is chosen when the dataset is balanced. Accuracy measures the ratio of the
model’s overall correct predictions. Accuracy is calculated using the formula:

Accurancy ¼ TP þ TN
TP þ TN þ FP þ FN

: (1)

Precision is used to predict how many samples of a positive class in a model are correct.
Precision is determined as follows:

Precision ¼ TP
TP þ FP

: (2)

Recall allows the model to correctly detect the proportion of the true positive (TP)
sample. Recall is computed as follows:

Recall ¼ TP
TP þ FN

: (3)

F1 score balances the trade-off between accuracy and recall. F1-score is the harmonic
mean of precision and recall:
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F1 ¼ 2� Precision� Recall
Precisionþ Recall

: (4)

In addition, since the detection module will operate within the blockchain network,
whether on a private or public version of Ethereum, it is crucial to measure the time
required for the model to determine whether a transaction is fraudulent or not. Thus, we
ensure that the testing time is optimized for real-time performance. Moreover, as the
network evolves, new patterns of fraudulent transactions may emerge. Therefore, we have
also measured the training time for each algorithm to assess how quickly the models can be
retrained with new data, whether using offline or online learning methods. This ensures
that the model can adapt swiftly to new fraud patterns, maintaining its effectiveness and
reliability.

EXPERIMENTAL STUDY
Experimental setup
Experiments and model training were conducted on a Dell Precision 3660 Tower,
featuring a 12th Gen Intel Core i9-12900 CPU with 16 cores (2.40 GHz base clock), 64 GB
of memory, an NVIDIA RTX A5000 GPU, and running Windows 11. The experimental
setup used PyCharm and Anaconda, with Python libraries, including Pandas for data
manipulation, Scikit-learn for machine learning and evaluation, Matplotlib for
visualization, and XGBoost for gradient boosting. The list of project libraries and
requirements can be found in our GitHub repository (Zhexian & Dib, 2024).

Based on extensive research on related work, the selected models for the experiments
were LR, SVM, IF, LOF, RNN, random forest (RF), and XGBoost. To ensure
reproducibility, we have made the complete source code of our project publicly available
on GitHub. The repository can be accessed from here Zhexian & Dib (2024).

Initial testing involved running each model with its default parameters to establish a
performance baseline. This step aimed to understand the default performance of each
model. Subsequently, the impact of hyperparameter tuning on model performance was
studied, specifically focusing on how parameter adjustments affect detection in the context
of fraud detection. Additionally, the performance of three stacking algorithms based on
ensemble learning with the top three individual models was investigated to explore the
benefits of ensemble learning in enhancing the classification framework. For all models
and experiments, classification metrics for both normal and fraud instances were reported
to comprehensively evaluate each model’s performance.

In the final part of the study, the best-performing model was fixed and used in a
comparative analysis against existing articles and projects utilizing the same dataset,
aiming to benchmark the model’s performance against the state-of-the-art.

Experimental results
The performance metric of the original version of different classification algorithms is
reported in Table 1 and further illustrated in Fig. 11. The comparative analysis of different
models reveals that RF and XGBoost are the most effective for fraud detection, achieving
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near-perfect accuracy, precision, recall, and F1-scores for both fraud and normal instances,
with RF and XGBoost showing accuracy rates of 0.99 for both instance types. RF’s
precision and recall for fraud detection are 0.98 and 0.95, respectively, while XGBoost
achieves 0.97 for both metrics. Logistic Regression (LR) also demonstrates high
performance, with accuracy at 0.94, precision at 0.81, recall at 0.92, and an F1-score of 0.86
for fraud detection, all with minimal computational costs (training time of 0.09 s and
testing time of 0.00 s). Conversely, LOF and SVM show significantly lower performance,
particularly in fraud detection, with LOF and SVM achieving F1-scores of 0.14 and 0.35,
respectively. RNN and IF offer moderate performance; however, RNN’s high training time
of 8.88 s is a notable drawback.

These results have significant implications for the Ethereum classification problem.
Given the high volume and complexity of transactions on the Ethereum network, the
ability to accurately and efficiently detect fraudulent activities is crucial. The superior
performance of RF and XGBoost indicates that these models can effectively identify
fraudulent transactions with high precision and recall, minimizing false positives and false
negatives. This ensures that legitimate transactions are not wrongly flagged, maintaining
the integrity of the network. Furthermore, the efficiency of these models in terms of
computational cost makes them suitable for real-time fraud detection, essential for the
dynamic and fast-paced environment of blockchain transactions. Logistic regression, with
its balance of performance and computational efficiency, offers a practical alternative for
scenarios with limited computational resources. In contrast, the lower performance of LOF
and SVM suggests that these models may not be adequate for the Ethereum classification
problem without significant tuning. The moderate performance of RNN and IF, along with
RNN’s high training time, indicates that while these models have potential, they may not
be the most practical choices given the need for timely detection. Overall, the findings

Table 1 Performance metrics of different original models.

Model Instance Accuracy Precision Recall F1-score Training (s) Testing (s)

RNN Fraud 0.86 0.64 0.82 0.72 8.88 0.50

Normal 0.86 0.96 0.85 0.90

LR Fraud 0.94 0.81 0.92 0.86 0.09 0.00

Normal 0.94 0.98 0.94 0.96

LOF Fraud 0.73 0.22 0.10 0.14 0.18 0.10

Normal 0.77 0.37 0.90 0.14

IF Fraud 0.66 0.37 0.82 0.51 0.07 0.05

Normal 0.66 0.92 0.63 0.75

SVM Fraud 0.57 0.26 0.55 0.35 2.21 0.25

Normal 0.57 0.82 0.58 0.68

RF Fraud 0.99 0.98 0.95 0.97 1.52 0.01

Normal 0.99 0.99 1 0.99

XGBoost Fraud 0.99 0.97 0.97 0.97 0.32 0.00

Normal 0.99 0.99 0.99 0.99
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Figure 11 Visualization of the performance metrics of various original models. Full-size DOI: 10.7717/peerj-cs.2716/fig-11
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highlight RF and XGBoost as the most promising models for enhancing fraud detection on
the Ethereum network, ensuring both accuracy and efficiency.

The parameters of each model were fine-tuned using Grid Search technology, which
systematically traverses a predefined parameter grid to evaluate the performance of each
parameter combination. This process identifies the optimal set of parameters to enhance
model performance. During fine-tuning, parameters such as learning rate, tree depth, and
regularization factors are adjusted to maximize performance on the training set and ensure
robust generalization. The performance metrics of the fine-tuned versions of various
classification algorithms are presented in Table 2 and further illustrated in Fig. 12.

After fine-tuning the parameters using Grid Search, the performance metrics of the
models show notable improvements, especially in the classification of fraud instances. RF
and XGBoost continue to be the top performers, achieving an accuracy of 0.99 for both
fraud and normal instances. RF’s precision and recall for fraud detection are 0.98 and 0.95,
respectively, while XGBoost achieves 0.96 and 0.98. These results confirm the robustness
and efficacy of ensemble methods in handling the complexity of Ethereum transactions.

The SVM model shows significant improvement after fine-tuning, with its accuracy for
fraud detection increasing to 0.98, precision at 0.92, recall at 0.97, and F1-score at 0.94.
This enhancement underscores the importance of parameter optimization in boosting the
model’s performance for fraud detection. LR also benefits from fine-tuning, achieving an
accuracy of 0.94 for both fraud and normal instances, with an F1-score of 0.96 for fraud
detection, indicating balanced performance across both categories.

However, not all models showed substantial improvements. The RNN demonstrated a
decrease in performance for fraud detection, with accuracy dropping to 0.79 and an F1-
score of 0.13, despite achieving an F1-score of 0.88 for normal instances. This suggests that

Table 2 Performance metrics of different grided models.

Model Instance Accuracy Precision Recall F1-score Training (s) Testing (s)

RNN Fraud 0.79 0.70 0.07 0.13 40.17 0.45

Normal 0.79 0.80 0.99 0.88

LR Fraud 0.94 0.81 0.94 0.96 1.13 0.00

Normal 0.94 0.98 0.94 0.96

LOF Fraud 0.77 0.37 0.09 0.14 8.50 0.19

Normal 0.77 0.79 0.96 0.87

IF Fraud 0.28 0.23 0.98 0.37 41.67 0.05

Normal 0.28 0.93 0.08 0.15

SVM Fraud 0.98 0.92 0.97 0.94 77.83 0.08

Normal 0.98 0.99 0.98 0.98

RF Fraud 0.99 0.98 0.95 0.97 1,572.28 0.03

Normal 0.99 0.99 0.99 0.99

XGBoost Fraud 0.99 0.96 0.98 0.97 408.53 0.00

Normal 0.99 0.99 0.99 0.99
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Figure 12 Visualization of the performance metrics of different grided models. Full-size DOI: 10.7717/peerj-cs.2716/fig-12
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while RNNs are effective for normal transaction detection, they may struggle with the
nuances of fraud detection even after parameter optimization.

The LOF model also showed limited improvement, with accuracy and F1-score for
fraud detection at 0.77 and 0.14, respectively. Similarly, the Isolation Forest (IF) model
performed poorly for normal instances, with an accuracy of 0.28 and an F1-score of 0.15,
despite achieving a high recall of 0.98 for fraud detection. These results highlight the
limitations of anomaly detection methods in this context.

The training times of the models increased significantly after applying Grid Search,
reflecting the computational cost of parameter fine-tuning. RF and XGBoost training times
rose to 1,572.28 s and 408.53 s, respectively, which is a substantial increase compared to
their initial training times. This trade-off between enhanced performance and increased
computational expense is an important consideration for real-time fraud detection in the
Ethereum network.

To further enhance the robustness of the fraud classification framework, we have chosen
RF, SVM, and XGBoost for integration into three distinct ensemble learning methods:
voting, stacking, and boosting. These individual models were selected as base models due
to their diverse performance characteristics and unique properties, which are
advantageous for ensemble techniques. In ensemble learning, base models should ideally
be as varied as possible to enhance performance.

After fine-tuning through Grid Search, the optimal parameters for each model are as
follows:

. Support Vector Machine: C ¼ 10, gamma ¼ scale, kernel ¼ rbf .

. Random Forest: max depth ¼ None, max f eatures ¼ auto, min samples leaf ¼ 1,
min samples split ¼ 2, n estimators ¼ 100.

. XGBoost: colsample bytree ¼ 0:7, learning rate ¼ 0:5, max depth ¼ 4,
n estimators ¼ 200, subsample ¼ 0:9.

Ensemble learning models can be trained more effectively by integrating these well-
performing base models. In the Boosting method, errors from each model’s training are
iteratively passed to the next model using the gradient boosting algorithm, resulting in a
highly performant Boosting model. For the stacking and voting methods, the Optuna
technique was employed to select optimal parameters, further enhancing model
performance.

The performance metrics of the three ensemble methods—voting, stacking, and
boosting—are presented in Table 3 and further illustrated in Fig. 13.

The results show that for the fraud detection category, both voting and stacking
achieved high performance metrics, with accuracy, precision, recall, and F1-score, all
reaching 0.99. Boosting, while slightly behind in recall (0.95), still maintained a strong
overall performance with an accuracy of 0.98 and F1-score of 0.96. This suggests that
voting and stacking effectively leverage the combined strengths of their constituent models
to achieve robust fraud detection, whereas Boosting focuses on iterative error correction to
enhance predictive accuracy.
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In contrast, across the normal category, all three ensemble methods performed
uniformly well, each achieving an accuracy, precision, recall, and F1-score of 0.99. This
consistency indicates that ensemble methods effectively generalize across normal
transactions, maintaining high performance levels without significant variation.

Regarding computational efficiency, Boosting emerged as the fastest in both training
and testing times, with training completed in 3.99 s and testing in 0.02 s. Stacking, on the
other hand, exhibited the longest training time at 987.09 s and a testing time of 0.37 s.
Voting occupied an intermediate position in terms of computational efficiency.

The application of ensemble learning methods has notably enhanced the performance
of individual models. By combining the predictions of diverse base models, ensemble
methods not only improve accuracy but also enhance robustness against fraudulent
transactions. Voting emphasizes overall model stability and performance consistency,
while boosting excels in refining predictive accuracy through iterative learning. Stacking
offers a more nuanced approach, allowing for complex model interactions and deeper
performance analysis, albeit at the cost of increased computational time.

Comparative analysis
The results presented in Table 4 provide a comprehensive comparative analysis of the best
results from five referenced studies alongside our project results. Each study, including
ours, utilized the same dataset to ensure consistency in comparison. The performance
metrics reported for the five referenced articles reflect their results on the entire test set,
whereas our project specifically details the performance on both Fraud and Normal labels
individually.

The referenced works include:

. Aziz et al. (2022a), which applied LightGBM (LGBM) and optimized its
hyperparameters using Euclidean distance as the loss function with random search.

. Aziz et al. (2022b), which also used LGBM and optimized its hyperparameters with
random search.

. Aziz et al. (2023), which employed a deep learning artificial neural network (DLANN)
and optimized its hyperparameters using a genetic algorithm and cuckoo search.

. Md et al. (2023), which utilized a stacking classifier model with multinomial naive Bayes
and RF as base learners, and logistic regression as the meta-learner.

Table 3 Performance metrics of different ensemble models.

Model Instance Accuracy Precision Recall F1-score Training (s) Testing (s)

Voting Fraud 0.99 0.98 0.97 0.98 134.00 0.13

Normal 0.99 0.99 0.99 0.99

Stacking Fraud 0.99 0.98 0.97 0.97 987.09 0.37

Normal 0.99 0.99 0.99 0.99

Boosting Fraud 0.98 0.98 0.95 0.96 3.99 0.02

Normal 0.98 0.99 0.99 0.99
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. Ravindranath et al. (2024), which conducted an extensive evaluation of fraud detection
methods by implementing ten machine learning models under various preprocessing
settings, including without oversampling, with SMOTENC, and with K-Means-SMOTE.
Notably, the study employed an XGBoost model optimized using K-Means-SMOTE for

Figure 13 Visualization of the performance metrics of different ensemble models. Full-size DOI: 10.7717/peerj-cs.2716/fig-13
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oversampling, demonstrating the effectiveness of advanced oversampling techniques in
enhancing model performance. This comprehensive approach provides valuable
benchmarks for comparison and highlights the impact of different preprocessing
strategies on fraud detection accuracy.

This comparative analysis highlights the varied approaches and optimization
techniques applied across different studies, providing a contextual understanding of our
project’s performance in relation to existing methodologies.

Results in Table 4 indicate that the referenced studies exhibit high accuracy (Acc),
precision (Prec), recall, and F1 scores, demonstrating their robust performance on the
dataset. Notably, Aziz et al. (2022b) achieved exceptional performance, with all metrics
reaching 0.99. Other studies, such as Aziz et al. (2022a) and Aziz et al. (2023), also show
strong results with slight variations in precision, recall, and F1-scores. However, none of
these studies report the training time, and only Ravindranath et al. (2024) reports the
execution time. Moreover, the source code for all these studies is not available, making it
difficult to reproduce the reported results.

In contrast to those approaches, our project employed several data pre-processing
techniques, hyper-parameter optimization tools, and ensemble learning methods such as
the voting classifier, which integrates multiple models to enhance overall performance. The
results indicate that our best mode, the voting classifier, achieves an accuracy of 0.99, with
precision, recall, and F1-scores consistently high across both labels (0.98 and 0.99). The
training and testing times for our model were 134.00 s and 0.13 s, respectively, showcasing
the efficiency of our approach. This comprehensive strategy not only matches but often
surpasses the performance metrics of the referenced studies, highlighting the robustness
and effectiveness of our methodology. This performance is comparable to the best results
from the referenced studies, but our method also offers transparency and reproducibility,
as the source code for our implementation is available. This ensures that our results can be
independently verified and applied in different contexts, enhancing the robustness and
reliability of our findings. Additionally, our comprehensive reporting of both training and
testing times provides a clearer understanding of the computational efficiency of our
method, an aspect that is often overlooked in other studies. Besides, a key advantage of our
model lies in its balanced and superior performance metrics across both Fraud and Normal

Table 4 Benchmarking against existing fraud detection models.

References Acc Prec Recall F1 Training (s) Testing (s) Code

Aziz et al. (2022a) 0.99 0.97 0.93 0.95 No No No

Aziz et al. (2022b) 0.99 0.99 0.99 0.99 No No No

Aziz et al. (2023) 0.99 0.96 0.94 0.97 No No No

Md et al. (2023) 0.97 0.97 0.97 0.97 No No No

Ravindranath et al. (2024) 0.98 0.98 0.97 0.97 No 0.235 No

Our Framework 0.99 0.98 0.97 0.98 134.00 0.13 Yes

0.99 0.99 0.99 0.99
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labels. This consistency is crucial for applications where distinguishing between these
labels with high precision and recall is necessary. Moreover, the efficiency of our voting
classifier is highlighted by its quick training and testing times, making it a practical and
robust solution for real-world applications where time and computational resources are
limited.

The comparative analysis, therefore, highlights that while the referenced studies provide
strong baseline performances, our best model, the voting classifier, matches these
benchmarks and surpasses them in terms of precision, recall, and F1-score. Additionally,
our model demonstrates competitive computational efficiency, with training and testing
times of 134.00 s and 0.13 s respectively, offering a significant advantage in practical
deployment scenarios. This efficiency ensures that our approach is both scalable and
practical for real-world applications, particularly in environments where rapid and
accurate fraud detection is critical.

CONCLUSION
This research investigates the application of ensemble learning methods to enhance the
detection of fraudulent transactions within the Ethereum blockchain. The exponential
growth of online commerce has made the Ethereum platform a prime target for fraudulent
activities such as money laundering and phishing, exacerbating security vulnerabilities. To
address these challenges, this study introduces the Ensemble Stacking Machine Learning
(ESML) approach for accurately detecting fraudulent transactions.

The methodology employed involved rigorous data preprocessing and the evaluation of
multiple machine learning algorithms, including LR, IF, SVM, RF, XGBoost, and RNN.
Each model was fine-tuned using grid search to optimize performance metrics. The models
were then integrated into ensemble learning methods: voting, stacking, and boosting, to
leverage their diverse performance characteristics and enhance overall classification
performance.

The experimental results demonstrated that ensemble learning methods significantly
improve the robustness and accuracy of fraud detection models. Both voting and stacking
methods achieved high performance metrics, with accuracies, precision, recall, and F1-
scores all reaching 0.99 for both fraudulent and normal transactions. Boosting, while
slightly lower in recall for fraud detection at 0.95, maintained high overall performance,
underscoring its effectiveness in iterative error correction.

The impact of this research is substantial, as it not only enhances the security of the
Ethereum blockchain but also provides a robust framework that can be integrated into the
decentralized validation process. This integration allows miners to identify and flag
fraudulent transactions effectively, and assists regulatory bodies in monitoring and
mitigating fraudulent activities. The ensemble methods, especially stacking, which
achieved high scores across all key metrics with an inference time of 0.37 s, are suitable for
real-world applications despite their computational intensity.

Future work will further optimize these models to reduce training and inference times,
making them more suitable for real-time applications in high-frequency trading
environments. Additionally, exploring other machine learning and deep learning
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techniques, such as reinforcement learning and neural architecture search, could further
enhance the performance and robustness of fraud detection systems.

In addition to addressing data limitations, future work will focus on integrating external
data sources to improve the model’s robustness and generalizability. This could include
incorporating real-time transaction data from the Ethereum blockchain or external threat
intelligence feeds to enrich the training process and provide a broader context for fraud
detection. By expanding the scope of the dataset and considering additional data points, we
aim to reduce the impact of biases and better capture the complexities of fraudulent
activities. Moreover, this approach could enhance the model’s ability to adapt to new fraud
patterns, further improving its effectiveness in dynamic and rapidly changing
environments.
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