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ABSTRACT
In cloud computing, ensuring the high availability and reliability of data is dominant
for efficient content delivery. Content replication across multiple clouds has emerged
as a solution to achieve the above. However, managing optimal replication while
considering dynamic changes in data popularity and cloud resource availability
remains a formidable challenge. In order to address these challenges, this article
employs TFT-based Dynamic Data Replication Strategy (TD2RS), leveraging the
Temporal Fusion Transformer (TFT), a deep learning temporal forecasting model.
This proposed system collects historical data on content popularity and resource
availability from multiple cloud sources, which are then used as input to TFT. Then
TFT is used to capture temporal patterns and forecasts future data demands. An
intelligent replication is performed to optimize content replication across multiple
cloud environments based on these forecasts. The framework’s performance was
validated through extensive experiments using synthetic time-series data simulating
with varied cloud resource characteristics. Some of the findings include that the
proposed TFT approach improves the availability of data by 20% when compared to
traditional replication techniques and also cuts down the latency level by 15%. These
outcomes indicate that the TFT-based replication strategy targets to improve content
delivery efficiency in the dynamic cloud computing environment, thus providing
effective solution to dynamically address the availability, reliability, and performance
challenges.

Subjects Artificial Intelligence, Computer Networks and Communications, Distributed and
Parallel Computing, Scientific Computing and Simulation, Neural Networks
Keywords Content replication,Data availability, Deep learning, Latency reduction,Multiple clouds,
Temporal fusion transformer

INTRODUCTION
The provision of on-demand computer resources via the internet is referred as cloud
computing (Pham et al., 2023). A shared pool of programmable computer resources, such
as servers, storage, databases, networking, software, and applications, is made available to
users. Users can use these resources as services, paying for what they use on a subscription
or pay-as-you-go basis, in place of owning and maintaining physical infrastructure
(Islam, Karunasekera & Buyya, 2022). Data replication is a critical aspect of cloud
computing, particularly in the context of ensuring data availability. It becomes increasingly
important as businesses rely on the cloud for their data storage and processing needs
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(Dustdar, Pujol & Donta, 2023). It involves the duplication of data across multiple cloud
environments or geographic regions, providing a robust solution to address several
pressing challenges. Data replication plays a pivotal role in addressing various challenges
in the cloud computing landscape. One of the primary challenges is ensuring high
availability and reliability of data. Downtime, whether due to hardware failures, network
issues, or other disruptions, can be detrimental to businesses (Shahidinejad, Ghobaei-
Arani & Masdari, 2021). By replicating data across multiple cloud environments,
organizations can mitigate these risks. In the event of an outage or failure in one cloud
provider’s infrastructure, data remains accessible from another which ensures business
continuity. Data replication also serves as a cornerstone of disaster recovery strategies.
Natural disasters, cyberattacks, or human errors can lead to data loss or system outages. By
generating redundancy through data replication, businesses can quickly resume operations
by utilizing replicated data from cloud environments. In today’s fiercely competitive and
fast-paced corporate environment, redundancy is essential for preventing data loss and
minimizing downtime. Data replication can lower latency and improve speed in addition
to disaster recovery. Organizations can optimize data access times by putting copies of the
data in strategically located geographic areas or closer to end users. This is especially
important for real-time analytics and content delivery networks, two applications that
demand low-latency data retrieval (Huang et al., 2020;Milani & Navimipour, 2017). While
data replication offers numerous advantages, implementing an effective strategy is
complex. It necessitates careful planning, synchronization mechanisms, cost
considerations, and adherence to compliance requirements, particularly when dealing with
sensitive data (Dabas & Aggarwal, 2019).

Several recent approaches in content replication techniques for dynamic cloud
environment are designed to enhance data accessibility, resource efficiency, response time,
and flexibility in the changeable cloud environment. Static replication strategies are not
effective for managing the complexity of cloud networks since the latter is dynamic. For
this reason, machine learning and predictive models are currently being employed to make
real-time replication decisions. Long short-term memory (LSTM) as well as Recurrent
Neural Network (RNN) are among the models currently in use to predict future data usage
and cloud resource variability (Lim et al., 2021). This allows replication to be more
efficient, in terms of sparing resources whilst maintaining high availability. One of these is
data popularity prediction models whereby an organization can predict the content that
will be most popular. These models enable systems to replicate content proactively and
that is due to the use of deep learning and TSF (time-series forecasting). This minimizes
the time taken and keeps content ready for use to meet resource demand. Multi-cloud and
edges computing have also enhanced the replication of strategies as a result of integrating
the two. Replication is therefore spread across several cloud providers as well as edge
resources to improve availability and minimize latency. Centralized cloud storage coupled
with edge computing or a combination of both is useful in meeting user needs more
comprehensively, especially in environments where such needs are limited by available
resources. However, resource aware replication has been developed as a means of
improving resource utilization in the cloud (Milani & Navimipour, 2017). In replication
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decisions, availability of compute power, storage and bandwidths in real time is taken into
consideration with reference to cost and performance. This has helped in improving the
output of content delivery and costs been well managed.

The use of the Temporal Fusion Transformer (TFT) for content replication in cloud
environments represents an innovative approach to deal with the challenges of data
availability, reduction in latency, and efficient resource utilization (Lim et al., 2021). This
cutting-edge technique uses the capabilities of TFT, a deep learning-based temporal
forecasting model, to optimize content replication strategies in cloud computing. Here, an
overview of how TFT is applied in content replication across cloud environments is
provided. TFT is a sophisticated deep learning model designed to analyze temporal data
and make accurate forecasts. It excels in capturing complex temporal patterns, making it
suitable for predicting future data trends and behavior, which is particularly valuable in the
context of content replication. Implementing TFT-based content replication can lead to
significant performance improvements. By proactively replicating content based on
accurate forecasts, organizations reduce data retrieval times, enhance data availability, and
optimize cloud resource utilization. This translates into improved user experiences,
reduced latency, and greater resilience in the face of unexpected challenges. The
application of the TFT model for content replication in cloud environments is a forward-
thinking approach. It harnesses the power of deep learning to optimize data availability
and latency reduction. By using TFT’s capabilities for data popularity forecasting and
resource availability prediction, organizations can achieve more efficient content
replication and enhance their cloud computing capabilities (Makridakis, Spiliotis &
Assimakopoulos, 2020).

The objectives of this research are two fold: (1) propose a replication solution that
dynamically adapts to evolving conditions in popularity of content and availability of cloud
resource, ensuring sustained efficiency in content delivery over time in multi-cloud
environment, and (2) use the temporal forecasting capabilities of TFT model to precisely
predict future popularity of content based on historical usage patterns, thus enabling a
proactive and informed replication strategy. The remaining part of this article is arranged
as follows: An overview of previous methods and drawbacks is given in “Related Work”.
“TFT General Architecture and its Components” presents basic idea behind Temporal
Fusion Transformer. “System Model” describes the proposed system model and problem
formation of proposed system. “Proposed System” presents the methodology, including
the TFT and the replication framework. “Simulation Setup and Performance Evaluation”
discusses the experimental and simulation setup, evaluation metrics and analysis of the
results of the proposed system. Lastly, “Conclusion and Future Work” paraphrases the
conclusion of the article and outlines potential research trends.

RELATED WORK
An adaptive data replication strategy (ADRS) is a statistical model that demonstrates the
relationship among the number of copies and system availability. To duplicate content in
cloud storage, a hierarchical multi-tier cloud system design is used. In ADRS, data file
replication is done adaptively using data popularity (Al-Dailamy et al., 2022). Bandwidth
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expenditure, availability, and number of replicas are the three characteristics used in this
technique. It makes the decision regarding which data file to replicate using the temporal
locality theory. This method examines data related to the users’ access information. The
degree of popularity as well as replica factor was calculated based on this analysis. The
ADRS increases availability of data, job execution in cloud system, response time, as well as
bandwidth usage by putting popular data files based on access history. In order to attain
the relationship between availability and replica quantity, Awad, Abdelkader & Salam
(2021) devised a novel dynamic cost effective replication management technique. They
calculate and maintain the smallest number in replicas necessary to attain a file’s
availability requirement. The availability of a file is determined by the current number of
blocks, block locations and the count of replicas, network bandwidth, and other factors.
According to Bouhouch, Zbakh & Tadonki (2023), replica replacement is done efficiently
based on the capacity of data nodes and their blocking likelihood. In the diverse cloud
environment, this strategy dynamically shifts workload among data centers. It generates
more replicas dynamically if the data node’s current replica count falls below the minimum
replica count and the availability requirements are not satisfied. The Hadoop Distributed
File System (HDFS) is utilized with the above technique, furthermore, the results
demonstrate that it is more economical and excels in default HDFS replication
management with respect to load balancing for large-scale cloud storage and performance.
In order to lower the related cost of all transmission of data among the data centers, a
combination of a data placement strategy and a dynamic data replication management
technique was introduced (Bouhouch, Zbakh & Tadonki, 2023). Arasteh et al. (2023),
introduced dynamic data replication management approach which considers three
important factors such as the number of replicas, the dependency among datasets and
tasks, and the storage capability of data centers. The satisfaction of those three criteria
determines when and whether to retain or remove replicas. It is found that replication of
data and optimally placing them on the finest data servers available is a problem of NP-
complete. Consequently, a number of heuristic approaches to place replica in distributed
computer systems has been put forth. Reducing cost of time to access data, lowering the
number of copies, and improving dependability of the algorithms used to place replicas are
the main objectives of the study (Arasteh et al., 2023). Their work established a hybrid
imitation approach and discretized heuristic mechanism along with artificial intelligence.
Particle and grey-wolf-based optimizations are their suggested approach which looks for
the best solution using a local memory and velocity. Both global and local search are
symmetric in their suggested approach. One more contribution of this research is the
introduction of the optimization algorithm for resolving the data object replication
problem in distributed cloud systems. Li et al. (2020), suggested one method for replica
placement based on the fast non-dominated sorting genetic algorithm. Furthermore, their
study suggests load-balancing using replica recovery method and a delay-adaptive replica
synchronization technique in order to address the issues of data replica synchronization
and content recovery of failing data nodes in edge cloud (Li et al., 2020). Bai et al. (2013),
suggested a replica management technique based on reaction time that produces a replica
to increase the number of replicas automatically using response time average named
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Response Time-Based Replica Management (RTRM). It measures replica servers’
bandwidth while receiving a new request and selects the replicas accordingly, combining
the number of replicas and the network transfer time. Three difficulties addressed by the
RTRM technique are replica formation, replica selection, and replica placement. Locality
replication manager (LRM) is another one data replication algorithm which suggests
lowering the cost of using resources, the cost of energy, and the time it takes for the system
to respond, as well as increasing the system’s availability. LRM’s main job is to obtain the
user’s queries, acquire information regarding the cluster’s nodes, and then pick the best
host for block placement. LRM completes this process with the help of its other
components, and LRM makes the ultimate choice. The above mentioned technique
manages replication using the HDFS architecture. When LRM is compared to other
algorithms, it is discovered that this method uses resources and energy more efficiently,
offers availability, and diminishes system delay. To get more optimal replication
parameters, LRM uses quality-of-service (QoS) function as well as the physical location of
data blocks (Sookhtsaraei et al., 2016).

Data replication over a network of read-intensive systems results in higher energy and
cost savings as well as faster end-user response times. Despite the existence of
straightforward and flexible replication techniques, the solution is non-deterministic. The
data replicas must be tailored to the application systems stability, performance, and data
usability. Metaheuristics are used to tackle the replication problem, which is non-
deterministic. The replication process is optimized in this study through the employment
of the Harmony Search and Tabu Search algorithms. An unconventional Harmony-Tabu
optimization method is suggested for efficient data replication and placement by
Chandrakala & Loganathan (2023). It shows the methods, metrics, metric scores and
limitations of the background of the review. This analysis of the literature makes it clear
that additional research has to be done in the field of cloud data storage. This section
covers some of the most important considerations that need to be made when replicating
data. Making decisions during the replication process is a crucial step (Nastic et al., 2020;
Kamila et al., 2022). There is also the option for decentralized or centralized replication
decisions (Yu, Liu & Fan, 2021). If the network is seeing more traffic than usual, there is a
chance of a bottleneck in centralized systems and unnecessary replications in distributed
systems (Nannai John & Mirnalinee, 2020). The literature review reveals that no single
technique can address all issue related to data replication. Certain strategies focused on
fault tolerance, load balancing, availability, and reliability, while others were more
concerned with preserving network capacity. Creating a methodical approach that
considers every aspect needed for improved data replication is essential (Mazumdar et al.,
2019; John & Mirnalinee, 2019). The fixed replication strategy (FRS) is quite basic and
conventional that replication policies are fixed, limited by workload, or resources at all
times. Consequently, FRS is easy to implement and integrate and may be implemented
successfully only for a limited period but fails to perform optimally in terms of scalability
under different conditions, resulting in ineffective utilization and wastage of important
resources. Cost-Integrated Replication (CIR) is a development of FRS in that it makes cost
a variable in the replication decision. This strategy places emphasis on cost minimization
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hence improving resource utilization; but this strategy may still prove uneconomical in
terms of scale and scope of tasks. LRM contains the amount of resource used by the
replicating node during replication tasks as much as possible. The proposed LRM is less
complex and more efficient compared to the FRS and CIR as it exercises less
computational overhead. But resource utilization reduction can hinder its capability to
handle a larger number of requests at once and provide fallback options for error recovery.
These strategies act as base lines to compare with the performance and superiority of other
replication strategy such as the temporal data-driven replication strategy (TD2RS). Table 1
includes the comparison of various literature reviews related with the proposed system.

TFT GENERAL ARCHITECTURE AND ITS COMPONENTS
Temporal Fusion Transformer (TFT) combines the strengths of both convolutional neural
networks (CNNs) and Transformer models. It is specifically designed to process sequences
of data. The temporal fusion aspect of the model refers to its ability to fuse information
from multiple time scales, making it well-suited for tasks that involve understanding
patterns and relationships across time. It makes use of a temporal self-attention
mechanism that allows it to attend the information from past and future time steps.
Additionally, TFT incorporates a temporal convolutional layer that allows it to capture
local temporal correlations in the data. This layer is designed to be lightweight and
efficient, making it well-suited for cloud computing environments. Finally, TFT also
includes a temporal pooling layer that is used to confine information from different time
steps. Together, these components enable TFT to capture both long-term and also short-
term temporal patterns in the data. It is suited for applications such as anomaly detection,
forecasting, and classification. TFT’s main components are given below.

1) Adaptive depth and network complexity are provided via gating techniques, which
bypass portions of the architecture’s idle components to suit a variety of datasets and
circumstances.

2) Networks for variable selection is another important component and used to choose
appropriate input variables at each time slot.

3) Using context vector encoding, static covariate coders add static features into the
network for conditioning temporal dynamics.

4) Using both observed as well as identified time-varying inputs, temporal processing is
applied to learn short as well as long-term temporal correlations. For local processing, a
sequence-to-sequence layer is used, and an interpretable multi-head attention block is
applied to record long-term dependencies.

5) The range of target values at each prediction horizon is determined using cumulative
probability forecasts as prediction intervals.

A broad range of datasets and circumstances are supported by the architecture’s
customizable depth and network complexity. It comes with gating methods to pass over
any unnecessary components. It has two dense layers as well as the two different kinds of
activation functions such as exponential linear unit (ELU) and gated linear units (GLU).
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The initial application of GLU was in the construction of gated convolutional networks
(Makridakis, Spiliotis & Assimakopoulos, 2020) for choosing the most crucial features for
word prediction. The network is assisted by both of these activation functions in
determining which input modifications are straightforward which need for more intricate
modeling. Standard layer normalization will take and process the final output. A residual
link is another feature of the GRN that allows the network to learn to ignore the input
entirely if necessary. Depending on where the GRN is located, the network also uses static
variables in certain situations. To enhance explainability, the TFT employs a self-attention
mechanism that is adapted from transformer-based design’s multi-head attention to
examine long-term interactions at different time steps. The four distinct layers Static
Enrichment Layer, Locality Enhancement with Sequence-to-Sequence Layer, Position-wise
Feed-forward Layer and Temporal Self-Attention Layer are utilized by the temporal fusion
decoder to examine the temporal associations found in the available dataset.

Figure S1 represents the general architecture and the various components of TFT. It
outlines a predictive modeling architecture with various interconnected components for
time series analysis. The process begins with observed past inputs, known past inputs, and
static metadata, which are encoded by the encoder. The model utilizes an interpretable
multi-head attention mechanism, allowing it to concentrate on different parts of the input
data. Furthermore, a static covariate coder transforms non-temporal features, while
networks for variable selection aid in determining the relevance of different inputs. The

Table 1 Summary of literature survey.

Study Methodology Metrics used Metric scores Limitations

Al-Dailamy et al.
(2022)

Adaptive heuristic-based
strategy

Latency, Cost, Availability Low transfer cost (23%), 99%
availability

Decreases with traffic surges, lacks
predictability

Awad, Abdelkader &
Salam (2021)

MO-PSO and MO-ACO
optimization

Cost, Locality, Utilization 25% cost reduction, optimal
locality/utilization

High computational cost, slow for
large datasets

Bouhouch, Zbakh &
Tadonki (2023)

Dynamic replication &
placement strategy

Storage capacity, Read/
Write Speeds

76% data placement gain, 52%
cost improvement

High execution time, difficult
migration

Arasteh et al. (2023) Hybrid particle-gray wolf
algorithm

Cost Efficiency,
Availability, Response
Time

35% access time reduction High overhead, needs historical data

Li et al. (2020) Delay-adaptive & load-
balancing strategies

Response Time,
Throughput, Storage

Improved throughput,
reduced response time

Lacks demand predictability

Chandrakala &
Loganathan (2023)

Harmony-Tabu search
technique

Bandwidth 3.57–18.18% bandwidth
savings

Energy/security not considered

Nastic et al. (2020) SLO-driven elasticity
mechanisms

Availability, Resource
Guarantees

Promotes SLO-native
approach

Inefficient for SLOs/SLAs under
heavy workloads

Kamila et al. (2022) ML-based predictive
modeling

Accuracy, Efficiency, Cost 38.15% resiliency, 90.08%
reduced error

Limited scalability, struggles with
non-stationary data

Yu, Liu & Fan (2021) QoS-oriented MDupl
strategy

Access Time, QoS, IO
Strength

20–30% reduced queuing time High cost, limited scalability

Nannai John &
Mirnalinee (2020)

Intelligent Water Drop
(IWD) algorithm

Popularity, Response, Cost 40% free space, 18% faster
access

QoS not optimized, query
optimization remains challenging

Note:
This table shows the summary of literature survey used for this research.
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quantile prediction aspect implies a probabilistic forecasting approach, offering a range of
possible outcomes instead of a single point estimate. The decoder generates predictions,
taking into account known future inputs.

TFT for time series forecasting
An attention-based Deep Neural Network with excellent performance and interpretability
is called TFT. Engineers from Google introduced the TFT in 2019. TFT is a novel
transformer architecture designed to efficiently process time-series data in cloud
computing environments. TFT offers the potential for both interpretable predictions and
multi-horizon forecasting (Junankar, Sondhi & Nair, 2023). Different dimensions of
temporal relationships are modeled using recurrent layers and interpretable self-attention
layers. Appropriate features are chosen using specialized components, and extraneous
features are suppressed using a succession of gating layers. Three different aspects are
supported by TFT such as time-dependent data along with already identified inputs in the
future. In addition, there are categorical/static variables, also referred to as time-invariant
features, and time-dependent data that has only recently become discovered (Liao &
Radhakrishnan, 2022). TFT is hence more adaptable than earlier types. Through the
discovery of globally relevant variables, enduring stable temporal patterns, and important
events for the prediction issue, TFT aims to improve understandability of time series
forecasting (Anandaraj et al., 2021). This achieves Explainable AI’s goal of making the
output of the model more reliable and usable. The model needs the following inputs for a
given timestep t, window for lookback w, and a Wmax window step in advance to a
maximum, where t 2 [t-w…. t + Wmax]: Identified potential inputs x in the time period [t
+1… t +Wmax], observed preceding inputs x in the time period [t-w… t], and a collection
of static variables s be present. The time range [t+1… t + Wmax] is too covered using
dependent variable y. TFT is used in the proposed system to detect popular files. It
combines multiple time-series features from cloud to detect popular files by recognizing
patterns in the data that indicate high usage. By combining multiple sources of data, the
TFT detect patterns that are not visible when analyzing only one source. For example, the
TFT combines usage data from multiple cloud providers to detect which cloud-hosted files
are popular across multiple providers. Additionally, the TFT can detect changes in usage
patterns over time by analyzing time-series data. It is used to identify which files are
becoming more popular over time. Finally, the TFT identify outliers in the data, which is
used to identify files that are abnormally popular or unpopular. Multi-horizon forecasting
capability of the TFT is one of the key novelties of the proposed method. Unlike
conventional models which focus on short-term predictions, TFT enables simultaneous
forecasting across multiple time intervals. This allows the proposed system to predict
future data popularity trends more effectively and ensures that replication strategies are
proactive instead of reactive. TFT reduces latency and optimizes resource allocation across
dynamic cloud environments by using a broader temporal perspective. The utilization of
temporal attention mechanisms within TFT improves its ability to recognize and prioritize
the most significant features in the generated dataset. It contrasts with conventional
replication methods which often rely on fixed rules or heuristic approaches. The attention
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mechanism dynamically adjusts to evolving patterns in data popularity and cloud resource
availability. It is significantly improving prediction accuracy and replication decisions.
Finally, the proposed framework’s adaptability and scalability further differentiate it from
existing methods. This adaptability ensures efficient and reliable performance even in
fluctuating multi-cloud environments, addressing limitations commonly associated with
conventional replication strategies.

SYSTEM MODEL
As shown in Fig. S2, the multi-level hierarchical cloud system framework facilitates a
valuable approach for data sharing, computational resources, and other set of resources. It
usually consists of various sizes and region of data centers in different levels. Super data
centers in level 0 used to handle intradomain data analysis and also interdomain data
interchange. Level 1 comprises the primary data centers, level 2 comprises typical data
centers, and level 3 comprises the cloud users. By constructing and dispersing replicas
from the super data centers to regular data centers or to main data centers, the design
reduces the amount of network traffic and data access time. Super data centers regularly
gather and disseminate global information.

Problem formulation
The information storage unit in the cloud is a block to decrease access time. An original
data is broken up into multiple blocks if it is too huge in size. The unit for data access,
however, is typically a data file. The characteristics of proposed technique are as follows.
(1) Mathematical representation formed in Sun et al. (2012) is used and further expanded
and explained how the quantity of copies and system availability relate to one another. (2)
The temporal locality is used to identify the popular data using TFT and the replication
operation will start when a data file’s popularity reaches a dynamic threshold. (3) Replicas
are also distributed evenly among data nodes. There are mainly four stages to adapt for
attaining the maximum benefits of replication. In the first stage, it is not a fair way to
identify several popular data because replicating every data files raises unnecessary burden
of maintaining numerous replicas and raises the replication cost beyond the satisfactory
limit. In second stage, producing extra copies of a data file wastes storage space and makes
storage more difficult and so only a fair number of replicas are created. The demand for a
data file at a given time, on the other hand, can decide the best possible number of replicas.
The amount of data replication is proportional to the availability rate according to
researchers. However, in case of system availability, more data replicates raise overhead
charges. The next stage in the replication process is to determine where the new replicas
are placed. Locating replicas at random will not improve the performance of system. As a
result, copies should be located at right place at right time so that the system’s performance
and availability are improved. The next important stage in the replication is to find how
efficiently perform the replication process. Consistency is the capacity of multiple users to
perform read and write simultaneously. The replication criterion’s primary difficulty is
storing all data consistently.
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This section explains the preferred architectural model for sharing data between cloud
nodes and keeping replication in right place. It is being utilized in a number of research
(Yu et al., 2022; Slimani, Hamrouni & Ben Charrada, 2020). Data replication access and
placement through cloud nodes are described in the proposed model framework. As a
result, this depends on previous studies to obtain the best access to the selected nodes at the
lowest cost and the quickest route between DCs. By utilizing the statistical distribution
across nodes in various ways, optimization of data replication placement using the
heterogeneous system is done. Every DC has different stages, therefore the VM is different
from the DCs, and so on. Figure S3, describes the formal model for cloud data center
architecture as a cloud data service scheme usually consists of the scheduling agent, replica
selector and agent, as well as data centers. The replication process is managed by the
scheduling agent, which stores all information about the number of replicas and their
locations across different data centers.

Let C ¼ fc1; c2; . . . ; cng be n number of cloud users, ST ¼ fST1; ST2; . . . ; STng be a set
of tasks of the cloud user set C, and STi ¼ fsti1; sti2; . . . ; stinig be a subset of tasks of the ith
client ci, where ni is used to represent the amount of subtasks, and stj is the j

th task given to
the scheduling agent over a cloud interface. If c0 has two tasks, then ST0 ¼ fst1; st2; st3g,
and n0 = 3. A task stj is defined by a four tuple such as stj ¼ ðtidj; trj; tdj; tfjÞ, where tidj, trj,
tdj and tfj are the identification of task, rate of task generation, time limit time of task along

with the number of needed files to perform the task stj, respectively (Awad, Abdelkader &
Salam, 2021; Bai et al., 2013; Kamila et al., 2022). DC ¼ fdcmd1; cmd2; . . . ; dcmdng are the
representation of data center contain sm data nodes on a physical machine PY.

Each node executes a virtual machine, and is defined by dcmdj that is a five tuple
dcmdj ¼ ðdcmdj; dcrj; dctsj; dcfj; dcbwjÞ, where dcmdj, dcmdj, drj, dtsj, dfj and dcbwi are

used to identify the data node, rate of arrival of request, average service providing time,
probability of network failure and data node’s network bandwidth such as dcmdj,
respectively. To ensure the service performance of the each data center DC, the rate of task
generation trj of cloud consumer set C, the rate of arrival of request dcrj as well as chance of
failure dcfj of DC need to reach Eq. (1).

XNS

i¼0
tri �

Xm

j¼0
dcrjX 1� dcfj

� �
(1)

where trj is the rate of generation of task j, is the rate of request arrival of task j on the node
i, dfk is the chance of failure of task j. Let DF ¼ fdf1; df2; . . . ; dflg are the available set of
data files at data center. B ¼ fB1;B2; . . . ;Bng are collection of blocks in the data center and
Bj ¼ fbj1; bj2; . . . ; bjm1g are the jth subset of blocks belonging to the jth data file dfj. It is

stripped into mj predetermined blocks in compliance with its length. Any block bj is
defined by a five tuple bj ¼ ðbidj; bpj; bsj; bnj; btjÞ where bidj; bpj; bsj; bnj and btj are the
identification of block, number of requests, size of the block, the number of replicas needed
and the last access time of the block bj, respectively. While user ck send a request to access a
block bj from a data node dmdj with guaranteed bandwidth performance, bandwidth
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bsj=dtsi need to be consigned to this session. The entire bandwidth utilized to hold diverse

set of requests from cloud user set C need to be less than dcbwj, as shown by Eq. (2).

XNS

i¼0

bsj
dtsi

� dcbwj: (2)

NS represents the upper limit of network connections of data node dcmdj which provide
services simultaneously, bsj represents the block size of block bl, dtsi represents the typical
service time of data node dcmdj, dcbwj represents the bandwidth of the network available
for data node dcbwj. Availability of block is defined as the capability of a data block to offer
appropriate service below agreed restraints. The block availability of a block bj is
represented as ABj. ABj is the possibility of block bj in an available state. ðABjÞ is the
possibility of block bk in an unavailable status, and PðABjÞ ¼ 1� PðABjÞ. The number of
replicas of block bj is bmj. It is apparent that block bj is considered not available only if all
the replicas of block bj are unavailable. Hence the unavailability as well as availability of
block bj are calculated as per Eqs. (3) and (4).

PðABjÞ ¼ 1� ð1� PðabkÞÞbmj (3)

PðAB0
jÞ ¼ 1� PðabkÞbmj: (4)

The capability of a data file to deliver appropriate service within predetermined
restrictions is known as availability of file. The availability of file for a data file dj is
represented as AFj. (AFj) is the chance of data file dj in the state of unavailable status, and
PðAFjÞ ¼ 1� PðAFjÞ. If the data file dj is divided into mj predetermined blocks

represented using Bj ¼ fbj1; bj2; . . . ; jm1g, which are distributed on different data nodes.
Mj ¼ fbmj1; bmj2; . . . ;mjmkg is the collection of the numbers of replicas of the blocks of
Bj. The unavailability and availability of data file dj is given as:

PðAFjÞ ¼ 1� ð1� PðbajÞÞbmjÞmj (5)

The available possibility of every replica is represented as PðbajÞ in data file dj if the data
file dj is divided into mj blocks. Each block in data file dj has mj replicas available for it, and
each and every blocks at the same location need to have the similar available possibility
because each and every blocks need to be located in data nodes with similar configuration
in the cloud data centers.

PROPOSED SYSTEM
Our research was inspired by the prediction where more recent data need to be accessed
several time in upcoming sessions. It can be done based on the existing data access pattern.
It is known as temporal locality. In temporal locality, data popularity is identified by
examining accessing pattern of data by the user. The replication process will start when the
data’s popularity reaches a dynamic threshold. The availability of system and possibility of
failure is used to calculate the required number of copies. New copies are constructed close
to users that query the data the most. The proposed dynamic replication of data has three

S. and D. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2713 11/22

http://dx.doi.org/10.7717/peerj-cs.2713
https://peerj.com/computer-science/


significant stages. They are selection of data, selection of number of replicas and location
for replication phase. Data files are chosen for replication during the selection stage. The
second phase determines the appropriate number of copies to satisfy the given quality
requirements. The third phase is determining where copies should be placed. During the
selection phase, it is decided on which data to replicate and when to do that replication. It
uses a straightforward and simple time series technique to forecast the anticipated
frequency of data access. It is done after looking at the history of access requests of the data
chunks. Data chunks are chosen for replication if anticipated future demand for them
exceeds an adaptive threshold. Deep-learning algorithms can efficiently handle time series
and produce precise forecasts. Hence, TFT is used in the proposed system to find the
sequence of recent data points to analyze the current context of a file within a cloud storage
system. This type of technique identifies the most relevant and valuable files to users and
organizations based on their past interactions and usage, as well as the current trends in
usage (Yu et al., 2022). By identifying the most popular and trending files, this model
assists individuals and organizations in making better choices on which files to access and
utilize. Additionally, proposed system assists in determining which files should be
discarded or archived and which should be kept in the cloud.

Algorithm and pseudo code
A strategic level algorithm (Algorithm 1) of the proposed system is given below with steps
to be followed. This algorithm provides a structured approach to build an efficient content
replication framework using the TFT model.

1) Initially set the value for availability and unavailability of each block replica of block bl,
P(abl) and P(uabl)

2) While data file dj at all data centres DC do the following

a) Determine the degree of popularity dpl of a block bl of data file dj using TFT.

b) Determine replication factor FRj of data file dj using degree of popularity dpl

c) If the value of FRj is less than threshold T, then enable the replication process for the
data file fj

3) End while

4) while each replication process for data file fj:

a) for every block bj in data file fj:

i) determine the new FRj by introducing replication at each and every data centre DCj

ii) implement the replication that yields the highest new FRj

b) end for

5) end while
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6) identify the file fj with the minimum degree of popularity in the dataset:

a) while true:

i) eliminate the replica that results in a new FRj, without replication, exceeding the
threshold T

b) end while

7) end while

Algorithm 1

BEGIN

INPUT cloud_providers, content_metadata, network_metrics, replication_constraints

LOAD and CLEAN historical_replication_data, user_demand_forecast_data

NORMALIZE_features and SPLIT into training_set, testing_set

INITIALIZE TFT model: using embedding, temporal fusion, output layers

DEFINE Loss_Function = Mean_Squared_Error()

DEFINE Optimizer = Adam with learning_rate 0.001

Using range(num_epochs) for epoch: epoch_loss = 0

batch_labels, batch_data FOR (training_set, batch_size) IN iterate_batches:

TFT(batch_data), batch_labels, and loss = LossFunction

Loss.backward(), Optimizer.step(), and Optimizer.zero_grad()

Epoch_loss += loss

Write “Epoch [epoch + 1] Loss: [epoch_loss/num_batches]”

SUM = test_loss(LossFunction(labels, TFT(data)) FOR tags, data IN iterate_batches(batch_size,
testing_set))

Write “Test Loss: [test_loss/num_test_batches]”

preds_of_popularity_for_data = forecast_data_popularity(TFT, future_time_steps)

replication_strategy = get_optimize_replication(data_popularity_predictions, replication_constraints)

FOR any_cloud_provider IN cloud_providers:

run_replication(create_replication_plan(replication_strategy, cloud_provider))

WHILE replication process-active:

MONITOR network_conditions

OTHER If any deviation is made then adjust the inputs if necessary.

Forecasts and optimizations, repeat.

PRINT Performance Metrics

END
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The process of determining the degree of popularity of a block bj is framed as a time
series forecasting issues and addressed using TFT. dpj represents upcoming access
frequency, which is predicted using the number of access demands, nad(m), at a particular
moment m. TFT uses an attention based deep neural network that combines excellent
performance with interpretability. It is a time series prediction method which offers
accurate predictions with low computational cost. The rates of measured request arrivals
and service demands are chosen for short-term forecasting using TFT. The proposed
strategy is inspired by the observation that files accessed frequently in recent times are
probable to experience similar demand in the near future. Predictive statistics based on file
access patterns are used to infer this (Bouhouch, Zbakh & Tadonki, 2023; Arasteh et al.,
2023). The replication process is initiated when the accessibility of every existing replica
surpasses a predefined threshold, and the replication factor is established using data blocks.
A new replica with a higher replication factor is created on a chosen node. The number of
additional replicas is determined using a heuristic approach designed to enhance file
accessibility. This article adopts the problem formalization outlined in Sun et al. (2012).
However, for forecasting future data file requests, a simplified time-series method is
employed in the proposed system.

Determine the popularity of file
In the proposed system, TFT is employed to determine the popularity of individual files in
the cloud system. It takes into account basic temporal aspects, the frequency with which
files are accessed, and how recently they were accessed, and brings in temporal aspects and
manners of how frequent the user is in accessing them over time. The other criteria
considered are time associated with the file, number of different users, and the size of the
file. These factors are combined to compute a normalized score that effectively represents
the overall popularity of each file. The TFT uses its predictive capabilities to identify files
that are likely to experience high demand in the near future. The system assures efficient
allocation of resources and enhanced access performance by giving priority to these files.
The replication process starts when a file’s popularity score rises above a dynamic
threshold. Because of its flexibility, this threshold makes the system to react to shifting
access trends. In order to increase accessibility and decrease latency for end users, more
copies of the content are produced throughout the replication process. This ensures that
frequently accessed files remain readily available, optimizing system performance and
meeting user demands efficiently. By integrating TFT with adaptive replication strategies,
the proposed system achieves a balance between computational efficiency and user
satisfaction in a cloud. The formula to compute the degree of popularity of the file by using
TFT is given below.

TFT fjð Þ ¼ 1=Tð Þ �
X

t ¼ 1T f tð Þ � b tð Þð Þ (6)

where f(t) represents frequency of data file by time t, T symbolizes total number of time
steps, and β(t) describes adjustable weighting factor for time t. The adjustable weighting
factor is determined by various methods, such as taking into account the popularity of the
file in the past or the relative importance of the file at that time step. The TFT produces an
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overall popularity score for the file, which is used to determine the most popular file in
cloud computing.

Replication factor from popularity degree
The replica factor (RF) is defined as the ratio of the total bytes of data files (fj) demanded
by all tasks within the designated constraint to the popularity degree. It is utilized to decide
whether the data file fi, represented as RFi in the code, should be replicated.

Replica factor ðRFjÞ ¼ ðPopularity of the fileÞ=ðReplication RateÞ (7)

Replication rate ¼ Number of Requests þ Number of access requestð Þ=
Number of replicas

(8)

SIMULATION SETUPAND EVALUATION OF PERFORMANCE
This section explicates the simulation setup as well as parameter together with the
evaluation of performance of the proposed finding.

Simulation setup and parameter
CloudSim is an open source toolkit used to simulate cloud environments (Ghobaei-Arani
& Shahidinejad, 2021; Saharan et al., 2020). It provides a simulation environment for
modeling the cloud computing infrastructure, services, and applications. It is designed to
help researchers and industry practitioners to explore and analyze various cloud
computing scenarios (Sun et al., 2012). CloudSim with added module for TFT is a powerful
software suite that enables cloud computing systems to be more efficiently and effectively
managed. It offers a broad collection of tools for managing and optimizing the
performance of cloud computing systems. TFT works by merging multiple data sources
into a single unified view, and then applying temporal fusion to analyze the data. Cloudsim
with TFT for data replication allows users to study the performance of data replication
strategies on cloud computing platforms. The tool allows users to specify the replication
strategies and parameters to be used, as well as the performance metrics to be monitored
(Maweu et al., 2021). Table S2 specifies the actual configuration depending on the type of
data centers, number of systems, PE per system, MIPS and Bandwidth. The simulation
results are compared with different replication strategies to identify the most effective ones.
In the simulated environment, 42 data centres are established. The number of processing
components (PCs) on each of the 670 virtual machines designated as service providers
ranges from 2 to 6. Each of the fifty individual data files in the cloud storage environment
has a size between (0.1, 15) GB. Each file is kept in a block, which is a fixed-size storage unit
(bs = 0.1 GB). The same data file’s blocks are dispersed over various virtual machines.
Every data file has one initial replica, which is distributed at random. In furtherance of
simplicity, it is assumed that one single data file will serve as both the replication element
and the base element for data storage (Rambabu & Govardhan, 2023). The 670 virtual
computers receive 1,500 tasks; each requests some data files. It is distributed according to
the Poisson distribution with the preceding set of task. Configuration settings for
evaluating the proposed system are shown in the Table S3.
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Performance evaluation
TFT provides a robust and scalable approach to content replication across multiple clouds
by taking into account temporal dependencies and uncertain user demands (Fu, Zhou &
Han, 2021). It provides better performance by dynamically adapting replication strategies
based on changing user demands and network conditions. TFT provides a good balance
between performance, scalability, and computational complexity for content replication
across multiple clouds. However, the specific performance of the TFT may vary depending
on the network topology, the specific parameters used in the model, and other factors.
Additionally, the use of multiple clouds for content replication may also involve additional
costs and complexities that need to be considered.

Dataset generation
TFT models are designed to handle time-series data, which is used to model various
aspects of cloud file access patterns. Therefore, a dataset for training TFT models for cloud
file access include both file access patterns and corresponding time-series data. Tabular
Generative Adversarial Network is used for synthetic tabular data generation that includes
time-series data that captures the key characteristics of cloud file access patterns (Slimani,
Hamrouni & Ben Charrada, 2020). The snapshot of data is shown in Fig. S4. This
CloudSim configuration is the infrastructure setup used for the cloud environment in the
content replication strategy across the multi-cloud environment. Such configurations
simulate the server configurations and network environment in which the TFT based
strategy is tested and validated. The various types of data centers reflect differences in the
computational as well as the networking capabilities of these centers as essential when
replicating content across different cloud contexts. The synthetic dataset used for this
experimentation includes 10,000 records generated using TGAN, with variability across
multiple attributes such as file type, file size, access patterns, and user actions, reflecting
inherent biases and imbalances observed in real-world cloud environments. It highlights
the high correlation (0.93), low distortion (RMSE: 0.04, MAE: 0.03), and strong similarity
(0.96) between the synthetic and real datasets. Moreover, privacy results confirm no
duplication of real data points, ensuring ethical data synthesis. For validation, real-world
datasets were indirectly referenced by ensuring the synthetic data statistically mimics real-
world distributions.

Training process
Generated dataset is divided into three sections for learning, validation for tuning of
hyperparameter, and test set for evaluation of performance. Multiple random search
experiments were conducted with varying iteration counts and 250 numbers of iterations
of a random search achieved near optimal performance, while 50 iterations provided
satisfactory results with minimal variability in outcomes compared to higher iteration
counts. The dataset and ideal model parameters are presented in Fig. S4 together with the
complete search ranges for all hyperparameters.
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Parameters for evaluation
System effective rate in bytes: The system effective rate (SER) in bytes ‘R’, is the ratio of
the aggregate bytes requested by all tasks in a system to the total bytes potentially accessible
(Li et al., 2021). The independence of file requests is ensured as any two requests will access
distinct replicas. This is because a single data file access operation is limited to requesting
only one file. One or several data files may be requested concurrently by users from set U.

Replica numbers: A sufficient number of data file replicas must be created in order to
maintain a high system effective rate in bytes (Yu, Liu & Fan, 2021). The block availability
is set to 0.7 initially in order to assess the convergence of the proposed method, and various
values of the adjustable a weighting parameter are used to determine the required replicas
number.

Response latency: The time between when a job is submitted and when the result is
returned is the response latency for a data file. The average response latency of the system,
is the indicative measure of response time in favor of every data request task completed by
the client can be ascertained by Mazumdar et al. (2019).

Rate of successful execution of task: It is a measure of how often a particular task or
process is completed successfully. It is typically expressed as a percentage of successful
executions compared to the total number of attempts. This metric is used to evaluate the
performance of a variety of tasks and processes, including software applications, customer
service operations, and manufacturing processes. The successful execution rate is used to
determine the overall efficiency of a system or process, as well as identify areas for
improvement (Govardhan & Dugyani, 2024).

Result and analysis
The weighted relevance of the different input features in the TFT is shown in Fig. S5. These
weights, highlight which features most influence the model’s predictions of data popularity
patterns, are generated from the attention processes within TFT. Certain features such as
the use of cloud content, network latency, historical replication, data size, and security
policies are given more weight compared to others. This realization demonstrates how well
the TFT finds and ranks the most important characteristics for precise predictions.
Dynamically weighing attributes allows for flexibility in adjusting to different multi-cloud
setups, which improves content replication decision-making. The mean squared error
(MSE) values for the TFT model during training and validation are shown in Fig. S6. As a
measure of prediction accuracy, MSE determines the typical squared difference among the
predicted and actual values. The model which fits the observed data better is indicated
using lower values of MSE. The figure’s findings show that the model successfully reduces
error during learning, guaranteeing precise and reliable predictions for the replication
method. By minimizing unnecessary resource usage and improving system efficiency, this
increase in accuracy aids in the optimization of replication decisions. The number of
training iterations carried out during the TFT optimization is shown by the 50 iterations in
Fig. S6. In order to guarantee that the model converges and captures enough temporal
patterns for accurate predictions, these iterations were chosen. After 50 iterations, the data
showed steady, dependable performance that was neither overfit nor underfit. The MAE
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attained by the TFT model is displayed in Fig. S7. An intuitive measure of prediction error,
MAE is calculated as the average of the absolute differences among actual and predicted
values. The figure’s low MAE values show that the model continues to produce forecasts
with a high degree of exactness. Since they minimize delay and avoid over or under
provisioning of resources in multi-cloud scenarios, accurate predictions are crucial for
optimizing content replication. For clarity and also to show the dynamics of the TFT’s
early training, the figure is limited to 10 epochs. The most important learning takes place
during these early epochs, providing information about convergence patterns and
performance enhancements. Given that subsequent epochs exhibit very slight changes,
extending the figure past 10 would introduce needless complication. However, the entire
training process continued for the entire number of epochs specified in the proposed
approach, and the discussion shows the outcomes of the entire training process in Fig. S7.

In the absence of employing the TDRS technique, the number of replicas for large-scale
data files is set at 3, resulting in a total of four copies for each data file. As illustrated in
Fig. S8, with an increasing number of tasks, the rate of successful execution of tasks
experiences a significant decline, particularly when the task count surpasses 50%. The
lower the availability of blocks, the lower the rate of successful execution becomes. The
proposed algorithm maintains a high rate of successful execution in the cloud
environment, consistently exceeding 90%. It can be inferred that the proposed algorithm
enhances and sustains the successful execution rate at a reliable and elevated level. As
illustrated in Fig. S9, with an increase in the number of replicas, the TD2RS algorithm
ensures a consistently high level of system effective rate in bytes. When the average block
availability exceeds 0.8 and the number of replicas is fixed at 4, the system effective rate in
bytes remains near to 1, even when the average block availability drops below 0.2. To
maintain the system effective rate in bytes near 1, the number of replicas must not exceed
20. This observation highlights that the TD2RS algorithm significantly enhances the
system effective rate in bytes. As shown in Fig. S10, over time, there is a rapid increase in
the number of replicas. Subsequently, this count of replicas stabilizes at a level determined
by the adjustable parameter β(t). It is inferred that a higher value for the adjustable
parameter necessitates a greater number of replicas to sustain the desired system effective
rate in bytes. It is proved that the TD2RS algorithm has an excellent convergence rate. As
shown in Fig. S11, when the amount of tasks increase, the response latency also raises
significantly, particularly when the task load is greater than 70%. The fewer availability of
block is, the longer the response latency will be. Figure S12 illustrates the TD2RS method
has 95% replication efficiency compared to the other methods because of optimized
resource utilization. It also has a higher task throughput, handling 90 tasks, which is
significantly higher than that of FRS (60), CIR (70), and LRM (75) this reveals that the
system can handle large tasks. Considering computational overhead, TD2RS takes the
lowest measure (5 ms/task). Moreover, TD2RS does 95% of fault tolerance, and produce
accuracy. Combined, these findings mean that TD2RS becomes the least error-prone and
fastest-acting strategy for multi-cloud content replication, while showcasing overall
superior performance in all the measures. A conclusion is drawn that TD2RS algorithm
improves the response latency and retains the response latency at a steady state within a
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small time span. The performance of the model under different conditions is summarized
in Table S4, where normal operation yields the highest performance metrics, while server
failures and high load lead to significant degradation.

CONCLUSION AND FUTURE WORK
The efficient framework for content replication across multiple clouds using Temporal
Fusion Transformer (TFT) offers a powerful and effective solution for addressing the
challenges of content replication in distributed cloud settings. Throughout this article, the
design, implementation, and evaluation of the framework, highlighting its key features and
advantages have been presented. The framework leverages the capabilities of TFT, which
combines the strengths of temporal modelling and transformer-based architectures to
capture complex temporal patterns and dependencies in time series data of distributed
cloud. By applying TFT to the content replication process, efficient and reliable replication
across multiple cloud providers is achieved. Through the evaluation of the framework’s
performance, the effectiveness of proposed system has been demonstrated in terms of
replication efficiency, data consistency, replication latency, load balancing, fault tolerance,
and scalability. It exhibits low replication latency and effectively balances the workload
during replication. Additionally, the framework demonstrates resilience to failures and
disruptions in the cloud environment. With the increasing demand for reliable and
efficient content replication in distributed cloud settings, the proposed framework presents
a significant contribution to the field. It paves the way for improved content availability,
data integrity, and performance in cloud-based applications, enabling organizations to
leverage the benefits of distributed cloud computing while ensuring efficient content
replication across multiple cloud providers. As future work, it is aimed to further optimize
and enhance the framework by exploring advanced techniques for load balancing, fault
tolerance, and dynamic resource allocation. Additionally, it is planned to extend the
framework’s capabilities to support real-time content replication and dynamic workload
adjustments in response to changing cloud conditions. Also, with the other improvements,
efforts will be made to improve the management of high file access load and handling
server failures.
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