
Submitted 30 October 2019
Accepted 28 March 2020
Published 4 May 2020

Corresponding author
Maksim Karpov, mekarpov@hse.ru

Academic editor
Gang Mei

Additional Information and
Declarations can be found on
page 13

DOI 10.7717/peerj-cs.271

Copyright
2020 Arzymatov et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

SANgo: a storage infrastructure simulator
with reinforcement learning support
Kenenbek Arzymatov1,*, Andrey Sapronov1, Vladislav Belavin1, Leonid
Gremyachikh1, Maksim Karpov1,*, Andrey Ustyuzhanin1, Ivan Tchoub2 and
Artem Ikoev2

1National Research University Higher School of Economics, Moscow, Russia
2YADRO, Moscow, Russia
*These authors contributed equally to this work.

ABSTRACT
We introduce SANgo (Storage Area Network in the Go language)—aGo-based package
for simulating the behavior of modern storage infrastructure. The software is based
on the discrete-event modeling paradigm and captures the structure and dynamics
of high-level storage system building blocks. The flexible structure of the package
allows us to create a model of a real storage system with a configurable number of
components. The granularity of the simulated system can be defined depending on the
replicated patterns of actual system behavior. Accurate replication enables us to reach
the primary goal of our simulator—to explore the stability boundaries of real storage
systems. To meet this goal, SANgo offers a variety of interfaces for easy monitoring
and tuning of the simulated model. These interfaces allow us to track the number of
metrics of such components as storage controllers, network connections, and hard-
drives. Other interfaces allow altering the parameter values of the simulated system
effectively in real-time, thus providing the possibility for training a realistic digital twin
using, for example, the reinforcement learning (RL) approach. One can train an RL
model to reduce discrepancies between simulated and real SAN data. The external
control algorithm can adjust the simulator parameters to make the difference as small
as possible. SANgo supports the standard OpenAI gym interface; thus, the software can
serve as a benchmark for comparison of different learning algorithms.

Subjects Data Mining and Machine Learning, Scientific Computing and Simulation, Software
Engineering
Keywords Storage system simulation, Optimal control, Reinforcement learning, Storage array,
Discrete event simulation

INTRODUCTION
A storage system is a critical part of any IT infrastructure. A significant effort is put into
developing reliability techniques and failure protection schemes of storage area network
systems (SAN), which is an example of a general concept of storage infrastructure. There
are various means of achieving and increasing the system’s reliability in terms of both
accessibility and data preservation: replication of the system’s physical components or
software solutions such as cluster management and RAID technology. The requirements
for reliability and scalability of the SAN system result in its complexity, and consequently,
the SAN architecture becomes challenging to supervise. A dedicated computer simulation

How to cite this article Arzymatov K, Sapronov A, Belavin V, Gremyachikh L, Karpov M, Ustyuzhanin A, Tchoub I, Ikoev A. 2020.
SANgo: a storage infrastructure simulator with reinforcement learning support. PeerJ Comput. Sci. 6:e271 http://doi.org/10.7717/peerj-
cs.271

https://peerj.com/computer-science
mailto:mekarpov@hse.ru
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.271
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.271
http://doi.org/10.7717/peerj-cs.271

model or a digital twin can be created to observe the behavior of the storage infrastructure
virtually. Such computer model granularity depends on the simulation tasks, which may be
performance optimization, failure diagnostics/prediction, or any other data-drivenmethod
for improving the storage system’s functionality.

There are three qualitatively different approaches to create a SAN simulator:
1. a purely physical model with detailed hardware/software processes;
2. a pure Machine Learning (ML) model, based on data from previous SAN operations;
3. a hybrid of the above—when a simplified SAN architecture is implemented in

simulation, and its parameters are adjusted by a trained Deep Learning algorithm.
The first method gives the best results in simulation accuracy and has outstanding

potential for extrapolation beyond the known operation domain. It predicts the system’s
behavior with a configuration that might not have been implemented yet. However, this
approach requires significant expertise in the field of storage architecture and a deep
understanding of the software stack used on-board the SAN. It also takes enormous
resources to implement the model with all the physical and logical details of the system
components when trying to achieve the required simulation quality.

The pure ML model is based on the data-driven approach, meaning that the model
is trained on the data collected from the existing storage system. This method, on the
contrary, may not require as much knowledge of the SAN structure and its operation
principles. It may produce satisfactory accuracy of the simulated parameters, but lack
the vital feature of scalability—the model is bonded with the data collected for particular
SAN architecture and configuration and is unable to extrapolate beyond the scope of the
training parameters.

The hybrid simulation technique is a good trade-off in terms of the quality and depth of
the domain expertise needed. It requires a relatively simple model of the SAN architecture,
implementing only basic components with their functionalities and logical associations.
The components must have effective adjustable parameters with meanings similar to the
real ones, for example, the CPU clock speed or link bandwidth. These parameters must be
adjusted by a reinforcement learning (RL) algorithm to improve the simulation quality.
Similarly to the second approach, the hybrid approach needs real data for training.

The development of SANgo was motivated by research aimed to create a monitoring
tool able to diagnose the current SAN state and predict possible failures of its components.
The diagnostic algorithms were designed to analyze the time series of different parameters
collected during storage system operation. Since the algorithms are based on the ML
paradigm, they needed plenty of training data, which, in this particular case, could only
be obtained from a simulated environment. An essential requirement was the physical
consistency of the synthetic data, and with reasonable efforts, it became plausible with the
hybrid approach to the simulation.

Such a coupling of the simplified SAN simulator with runtime control by an RL agent
required a dedicated study. With many deep learning technologies available, one has to
select an approach and its configuration to obtain the best combination of simulation
quality, training effort, and speed. The corresponding study was conducted and presented
in Karpov et al. (2018) and Sapronov et al. (2018).

Arzymatov et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.271 2/16

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.271

The simulator is developed to provide a user with the simplicity of configuration.
The user needs to specify the following files: a file that sets the architecture of a storage
array in an XML format, a file that defines the impact of external effects (temperature,
humidity, atmospheric pressure, and vibration) and finally a set of functions that defines
the behavioral logic of each component of a storage array.

There are several open-source storage system simulators available, for example, a
software package ‘‘CODES project’’ (Cope et al., 2011;Mubarak et al., 2017) developed by a
team of researchers from the Computer Science andMath department of Argonne National
Laboratory and Rensselaer Polytechnic Institute (US, Illinois). The CODES simulator is
based on the technologies of the Rensselaer’s Optimistic Simulation System (ROSS), which
allows the parallel execution of an event-driven system that can significantly decrease
the runtime of the simulation. The main uses of CODES include large-scale storage
systems, scientific distributed applications, parallel and high-performance computing
systems with high-load input/output operations, and computational complexity. Another
simulator, the C++ based ns3 framework (Riley & Henderson, 2010), is also popular among
researchers. The general approach to network-like structure simulation is the OMNeT++
framework (Varga & Hornig, 2008). Another work presents a simulation compliant with
the fiber channel technology often used in contemporary SAN architectures, developed as
the SANSim tool (Wang et al., 2003). More simulation method descriptions and studies
dedicated to SAN system modeling can be found in Molero et al. (2000a), Molero et al.
(2001), Perles et al. (2001), Molero et al. (2000b) andMuknahallipatna et al. (2010).

SOFTWARE DESCRIPTION
SANgo is a modular framework for the Discrete Event Simulation (DES) of storage
infrastructure. Its metadata description is given in Table 1. DES is a method of simulating
the behavior and performance of a real-life process, facility, or system. DES models the
system as a series of events (e.g., a beginning/end of file writing, data block transfer or
a start of TCP connection), which happens over time. The main assumption of the DES
paradigm is the invariability and consistency in the modeled system between the events. It
proves itself as a viable approach to effectively evaluating diverse sets of algorithms. More
information can be found in Fishman (1978).

SANgo provides the functionality to build a simple model for specific computing
environments, especially storage area networks. The primary site of interest is the
exploration of the behavior of the storage machine under stress testing or exploitation
in the medium- or long-term, for observing failures of its components.

In SANgo, each file to be written to the storage is modeled as an independent entity
that has corresponding attributes, such as name, size, and block size. The fundamental
principle of the simulation process is resource modeling and control. SANgo focuses on
algorithms that have the following common objective: assigning a set of tasks to a set of
resources in a way that is optimal with respect to some metric. The three basic types of
resources are provided: CPU, network interface, and storage. Other types are built upon
these basic ones. For example, a storage controller, PCIe-fabric can use CPU type as its

Arzymatov et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.271 3/16

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.271

Table 1 Code metadata.

Nr. Code metadata Description

C1 Current code version v 0.8
C2 Permanent link to code/repository used for

this code version
https://github.com/HSE-LAMBDA/sango

C3 Code Ocean compute capsule https://codeocean.com/capsule/9707185
C4 Legal Code License GPL
C5 Code versioning system used git
C6 Software code languages, tools, and services

used
Golang 1.8+, Python 3.6, Jupyter Notebook

C7 Compilation requirements, operating
environments & dependencies

pytorch 0.4.0+, OpenAI/gym, libzeromq-dev

C8 If available, link to developer
documentation/manual

C9 Support email for questions karzymatov@hse.ru

basis; RAM, SSD, hard-drives, and JBOD (as a collection of hard-drives) use storage type
to implement additional functionality. An example of SAN architecture with these primary
resources collected into SAN components is shown in Fig. 1.

The SANgo core library is written in the Go programming language. This choice was
made because Go can efficiently create lightweight threads, so-called goroutines. We use a
goroutine as a representation of the SAN component logic that a user wants to simulate. In
other words, the user creates a function and specifies a sequence of actions and/or behaviors
that a resource should follow. Such functions are given in Table 2. When sequences of
‘behaviors’ are specified, the simulation starts.

Simulation sequence
The general algorithm of the SANgo operation is shown in Fig. 2. The entry point is the
definition of the input parameters: the storage system topology and component parameters
and the definition of the load scenario. The latter means the sequence of I/O requests from
a virtual client that the simulated SAN must process. Depending on the load scenario,
a specific process (component activity) and mode (asynchronous or synchronous) are
chosen. Further, an option of component failure, either spontaneous or planned, is
processed. With or without this failure, the process of event simulation continues until the
load scenario is complete. During each simulation stage, metrics are collected from the
components and written out. These metrics describe the state of the simulated system and
provide primary information on its operation. Unlike other simulators, the framework
allows online adjustments of the components parameters. This feature makes possible
coupling with an RL agent as described in Section ‘‘Illustrative Examples’’.

Software functionalities
Online configuration The simulation models created within the SANgo framework are
configurable during runtime. It is an important feature, created intentionally, for coupling
with a controlling agent and implementing the hybrid simulation method. The details of
such cooperation can be found in Section ‘‘Illustrative Examples’’.

Arzymatov et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.271 4/16

https://peerj.com
https://github.com/HSE-LAMBDA/sango
https://codeocean.com/capsule/9707185
http://dx.doi.org/10.7717/peerj-cs.271

Figure 1 An example of SAN architecture implemented in the SANgo framework.
Full-size DOI: 10.7717/peerjcs.271/fig-1

Table 2 Functions that define the simulated behaviors of SAN components.

Component name Behavior Description

SendPacketSync Send a packet to the dest and wait until the end
of transmission (two side communication)

SendPacketAsync Send a packet without waiting for the end of the
transmission (two side communication)

BroadCastSendPacket Send a broadcasting message with a packet to all
processes which listen to ‘dest‘ address

DetachedSendPacket Send a packet and wait until the end of the trans-
mission (one side communication)

ExecutePacket Process packet

Contoller

Wait Turn on waiting mode
WriteAsync

WriteSync

Write data blocks in a logical volume in an
async/syncmode

ReadAsync
Hard-drive

ReadSync

Read data blocks from a logical volume in an
async/syncmode

Arzymatov et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.271 5/16

https://peerj.com
https://doi.org/10.7717/peerjcs.271/fig-1
http://dx.doi.org/10.7717/peerj-cs.271

Figure 2 SANgo discrete event simulation workflow.
Full-size DOI: 10.7717/peerjcs.271/fig-2

Load generationOne of themain interests is how a storage array behaves under different
loads. The complete list of the fully measured output metrics is shown in Table 3.

Output format. During the runtime of the simulation, the program opens a file
descriptor and saves the simulated metrics in a JSON (Crockford, 2018) array format.
Each item in the array is a key-value representation of the resource objects (storage
controllers, links, and hard-drives) created in the simulation. Go allows users to change the
encoding of each object by the format string stored under the ‘‘json’’ key in the resource
field’s tag. This language feature allows the user to additional mute parameters. Together
with native struct embedding (inheritance), it is possible to adapt the output format needed
for different hardware configurations easily.

Anomalies. For the simplified simulation, we chose to split the failure factors into two
categories: internal and external. The former relates to the component operation mode,

Arzymatov et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.271 6/16

https://peerj.com
https://doi.org/10.7717/peerjcs.271/fig-2
http://dx.doi.org/10.7717/peerj-cs.271

Table 3 Output characteristics.

Parameters Component name Output name Description

cpu_usr User CPU utilization, %
cpu_sys System CPU utilization, %
cpu_idle CPU idle time, %
mem_used_MB Used RAMmemory, MB
mem_free_MB Free RAMmemory, MB
cpu_temp CPU temperature, ◦C

Storage
controller

fan_speed Fan angular velocity, Hz
RxKB Input traffic through interface, MBNetwork

interface TxKB Output traffic through interface, MB
tota_cap_MB Raw capacity, MB
used_cap_MB Used capacity, MB
alloc_MB Memory used by system, MB
len_MB Requested volume size, MB
r_KBps

w_KBps
Disk read/write speed, KB/s

r_ops

w_ops
Read/write operations per second, IOPS

r_await_ms Average read/write request
w_await_ms processing time, ms
ccrm Number of denied requests, n
rrqm

wrqm
Number of read/write requests, n

avgrq_sz Average size of request, n
avgqu_sz Average client queue size, n
MB_read

MB_wrtn
Total amount of read/write data, MB

blk_read Number of read/write blocks

Hard drive

blk_wrtn with given size, n

Inner

Each component Health state One of OK, MISSED, BAD or LOST
humidity

atm_pressure

temperature
Outer Atmospheric

vibration

Current values of humidity, atmosphere
pressure, temperature, and vibration
meausured inside storage system %, kPa,
◦C, Hz respectively

its load, and neighboring component conditions. The internal factors are better described
by the RL counterpart of the SANgo, which takes into account operation history and
composite state of the system. For the latter category, we consider four ways in which the
external parameters could affect the failure of parts of the system, such as the impact of
temperature, humidity, atmospheric pressure, and vibration level.

Temperature. There are multiple failure mechanisms in electronic components related
to their temperature: electromigration (d’Heurle, 1971), high temperature stress migration
(Aoyagi, 2005), thermal fatigue (Zhou & Hashida, 2002), mechanical stresses induced by
differential thermal expansion of materials (Rabiei & Evans, 2000), the drift of parameters

Arzymatov et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.271 7/16

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.271

(frequency, current, voltage) of devices (Rabiei & Evans, 2000), solder joint failures (Yeh
et al., 2002), ionic effects (Berg & Paulson, 1980), increase in leakage current (Hamidi &
Coquery, 1997) and bond-wire fatigue (Roesch & Jittinorasett, 2004; Matsunaga & Uegai,
2006). The detailed review of electronics failuremodes that are influenced by temperature is
given in Blanks (1990). The temperature of individual simulated components we consider
as an internal factor and, therefore, not implement in the SANgo code. Inclusion of all or
even some of these mechanisms into simulation would require a very detailed simulation
of the circuit boards and electronic parts of the SAN components.

In general, the Arrhenius model (Lakshminarayanan & Sriraam, 2014) is a good
approximation for exact failure mechanisms, including electromigration, corrosion, and
certainmanufacturing defectswhendealingwith slowly changing ambient temperature. The
model is derived from the observed dependence of chemical-reaction rates on temperature
changes. We use the Arrhenius model solely to take into account the external factor of
ambient temperature for the failure rate of the electronic components. According to this
model, the reaction acceleration rate is given by:

K =Aexp{Ea/k[1/Tref −1/T]}, (1)

where K is the resulting failure rate, A is a rate constant empirically derived, Ea is the
activation energy (eV), k is the Boltzmann’s constant (8.6×10−5eV /K), T is the ambient
temperature (K) and Tref is the component’s reference temperature (K).

For non-electronic components (such as hard-drives), the failure rate is calculated based
on fail-safe operation time T (Sankar, Shaw & Vaid, 2011). Using the maximum likelihood
method, β (form factor), ζ (scale coefficient) the failure probability is estimated:

Kβ,ζ =
βTβ−1exp−T

ζ

β

ζ β
, (2)

where β > 0,ζ > 0,T > 0.
Humidity. Atmospheric pressure. Vibration. The impacts of these three external factors

are modeled similarly. The predefined mappings from the environment factor value to
failure rates for humidity, pressure, and vibration are taken from Mitchel (1996), Strom
et al. (2007) and Dutta & Barnard (2017) correspondingly. At each timestamp t of the
simulation, current values of humidity, pressure, and vibration are taken. Then the
corresponding failure rates are calculated using the said relationships.

For all of the external factors the failure-triggering pseudo-code looks like:

WHILE s imu l a t i o n i s go ing :
READ c u r r e n t v a l u e s o f temperature , humidity ,

pressure , vibration ;
CALCULATE f a i l u r e r a t e s imposed by :

f 1 ← temperature ;
f 2 ← humidity ;
f 3 ← pressure ;
f 4 ← vibration ;

Arzymatov et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.271 8/16

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.271

GENERATE a random number R from [0 , 1) un i f o rm l y ;
IF R < (f 1 + f 2 + f 3 + f 4) : CREATE breakdown ;
ELSE : no th ing happens ;
WAIT u n t i l n ex t t ime s t e p ;

ILLUSTRATIVE EXAMPLES
An example of the SANgo application for the simulation of a mid-range storage array
with basic structure is described below. The simulated architecture was configured with
parameters corresponding to the real SAN components parameters.Most underlying effects
of the SAN functioning, such as the operating system and software logic, load distribution
algorithms, and other more complex hardware details are not described by the simulator.
In order to better approximate the behavior of the real-life system, SANgo was coupled
with DeepController (DC)—an RL optimizer. The scheme of cooperation between SANgo
and DC is shown in Fig. 3.

DC represents the RL and deep learning paradigm for controlling the simulator by
tuning the effective parameters of its components. The simulation process is split into two
phases.

Training
phase

: DC takes as input the real SAN data (load and metrics), and the initial
effective parameters of SANgo. By varying the effective parameters, DC
learns what needs to be done to obtain a simulator state, similar to the real
SAN under the same load conditions. The output for this phase is a trained
model with corresponding neural network (NN) weights.

Control
phase

: during the actual simulation, DC takes as input the load and current effective
parameters and simulated metrics. The corrections to the effective SANgo
parameters are given to the output for every next simulation step.

In this context, it is important to note that a special wrapper was implemented to
create an OpenAI Gym environment (Brockman et al., 2016) using DC, SANgo, real SAN
data, and initial effective parameters. Such an environment provides an advantageous
opportunity to use multiple state-of-the-art RL-algorithm libraries, implemented in the
OpenAI toolkit (Dhariwal et al., 2017; Hill et al., 2018; Kolesnikov, 2018). In particular, we
used a DDPGmodel to train DC as one of the efficient approaches for Continuous Control
problem (Lillicrap et al., 2015). Also, the obtained gym-environment could be used as a
benchmark for other RL-algorithms, especially since there are not so many environments
for digital twins (Koch et al., 2019).

The real SAN data were used to validate the behavior of the hybrid simulator. A sequence
of load requests was generated on the real storage system prototype together with artificially
induced failures of one of the components: a storage controller, a network interface, or a
storage device. The labeled metrics of the healthy and broken systems were collected and
used to train the hybrid simulator with the same workload and failure scenarios. In the
end, the simulated metrics are compared against the real ones. An example of one of the
metrics –the storage controller CPU load is shown in Fig. 4.

Arzymatov et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.271 9/16

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.271

Figure 3 The hybrid simulation scheme using OpenAI/gym interfaces.
Full-size DOI: 10.7717/peerjcs.271/fig-3

Figure 4 Comparison of the CPU loadmetrics between simulated (A) and real data (B). The periods
marked ‘Failure’ correspond to a storage processor being offline.

Full-size DOI: 10.7717/peerjcs.271/fig-4

One can observe a qualitative agreement between the simulated and the real data. The
more component parameters added, the closer the DC model distributions were to the real
data.

For generating data in this scenario, the simulator was launched by the following
command:

go run main.go -sim_run=210000 -platform=virt_setup.xml

-num_jobs_config=num_jobs.json -packet=packet.json

-controlling_mode=0 -num_jobs=1 -atm_dep=temp.json

-atm_control=atm_control.json -file_amount_w=10

-file_size_w=10GB -output=output.json

In this command snippet, several flags are used. They define the following behavior
of the simulation. It runs for 210000 s, writes 10 files, each with size 10 GB, uses 1 job,

Arzymatov et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.271 10/16

https://peerj.com
https://doi.org/10.7717/peerjcs.271/fig-3
https://doi.org/10.7717/peerjcs.271/fig-4
http://dx.doi.org/10.7717/peerj-cs.271

a topology information is provided in virt_setup.xml, the external dependencies are
defined in atm_control.json, packet.json provides a packet block timing information,
and finally, output data is written to the output.json file. There are other flags available
to configure the simulator functionality. A complete list of execution options is given in
Table 4.

The hardware parameters configuration is an essential step in the SANgo setup. For
example, we used empirically obtained parameters of the storage devices affecting the speed
of writing and reading data using Flexible I/O tester.We performed data transfer in different
modes, such as reading, writing, random reading, random writing, reading/writing, and
random reading/writing. Thesemodeswere combinedwith different data block sizes—from
2 Kb to 26 Gb to cover a full range of possible IO conditions. The FIO tool allows user
to directly measure some parameters, such as latency, transmission, and processing time.
Other parameters, such as rate and seek time, had to be calculated from the parameters
that FIO allowed to measure. An example of hard drive parameter values for 8 Kb block
size, measured with such an approach, is provided in Table 5.

IMPACT
The SANgo simulator helps researchers to address several issues in the area of SAN
architecture development. The primary purpose of the developed SAN digital twin
(Sapronov et al., 2018), in which the SANgo is a critical component, is to provide realistic
data for the SAN optimization. In conditions where the real data are scarce, for example,
during the early stages of development, the synthetic data may help to improve the system’s
stability, study its behavior under different load regimes and observe how the system reacts
to various failures of its components. Besides, synthetic data allows the development of
diagnostic and prediction tools for system malfunction based on data-driven algorithms
available in the Machine Learning domain (Hushchyn, Sapronov & Ustyuzhanin, 2019).
The SAN architecture optimization and parameter tuning is another possible application
of such a digital twin.

For example, the SANgo code was used to produce synthetic data for training diagnostic
and predictive software. The software relies on data-driven algorithms to assess the state of
the storage system, diagnose its malfunction, and calculate the probability of failures in the
near future. Using SANgo helps to significantly reduce the amount of collected real SAN
operation data, which is quite expensive in most cases.

The application of SANgo software is somewhat limited outside the intended scope. The
simulator intentionally describes the storage infrastructure in low detail and, therefore, can
be used only for deterministic and approximate emulation of the SAN operation. However,
the general approach of combining the basic simulator with an RL agent is very scalable
for other uses where one needs to simulate a complex apparatus or a system with many
loosely controlled parameters, but with available real data collected during its operation.

The SANgo alone has limited precision in terms of simulation quality. The storage system
model describes only high-level components and provides a very simplified description
of their failure mechanics. However, the strong side of our approach is the adjustable

Arzymatov et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.271 11/16

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.271

Table 4 A complete description of the SANgo execution options.

Type Flag’s name Type Description

-sim_run float Total simulation runtime
-disk_amount int Amount of hard-drivesCommon

-num_jobs int The analog of the fio numjobs
-platform string

-packet string Data block’s timing parameters
-atm_control string A change of atmosphere parameters over time
-atm_dep string Impact of atmosphere parameters on the system

components
-client string

Input files

-num jobs config string Client’s load & quota specification
-file_amount_w int Number of files to be written
-file_size_w float Write files size range
-load_range_w float File write rate
-file_amount_r int Number of files to be read
-file_size_r float Read files size range

Load

-load_range_r float File read rate
-anomaly_type string Controller, link, disk type anomaly
-anomaly_amount int Number of anomalies
-anomaly_tim_range float Anomaly ocurring rate

Anomaly

-anomaly_duration float Duration of anomalies
-controlling_mode bool Enabling DC
-host string Hostname
-port int A communication endpoint
-protocol tcp, SANgo-DC communication protocol

udp

DC1 mode

-delay float Delay in messaging between GT and DC

Table 5 An example of hard drive parameter values for 8 Kb block size, where ‘‘t’’ is time in seconds. .

transmission t latency t read processing t write processing t sequential read rate t

3.96e−05 0.01784 0.01229 0.02331 0.00065

parameters of these components. When the parameters are controlled by an RL-trained
agent, the simulation quality can be improved. At the same time, the physical model within
the SANgo framework ensures the results are interpretable and physically consistent.

While the software itself is not used in any commercial setting, the product of its
application, the diagnostic and prediction tool for the SAN malfunction, is bundled with
an undisclosed commercial storage system. The tool is developed and trained using real
data and synthetic data obtained from the digital twin of the SAN.

Arzymatov et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.271 12/16

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.271

CONCLUSION
A flexible framework SANgo for the creation of an event-driven storage simulator was
presented. Within this framework, the storage system models have simplified design, but
researchers are allowed to adjust the components’ effective parameters during runtime to
improve the quality of the simulation. This approach complies with a hybrid simulation
method, where a reinforcement learning algorithm adjusts a physical model.

The SANgo framework allows the user to emulate the I/O load on the storage system,
as well as failures of its components. It was initially designed to work in tandem with the
DeepController program, implementing the RL algorithm. The simulator can also be used
as a benchmark for comparison of different learning algorithms, due to support of the
OpenAI/gym interface.

The purpose of such a hybrid simulator is to serve as a storage system digital twin and
provide large amounts of synthetic data. This data can be further used for storage system
optimization, diagnostic, and failure prediction.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The researchwas carried outwith the financial support of theMinistry of Science andHigher
Education of Russian Federation within the framework of the Federal Target Program
Research and Development in Priority Areas of the Development of the Scientific and
Technological Complex of Russia for 2014-2020 (unique identifier RFMEFI58117X0023,
agreement 14.581.21.0023 on 03.10.2017). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Ministry of Science and Higher Education of Russian Federation within the framework of
the Federal Target Program Research.
Development in Priority Areas of the Development of the Scientific and Technological
Complex of Russia for 2014-2020 (unique identifier RFMEFI58117X0023, agreement
14.581.21.0023 on 03.10.2017).

Competing Interests
Ivan Tchoub and Artem Ikoev are employees of YADRO Inc., Russia. The authors declare
there are no competing interests.

Author Contributions
• Kenenbek Arzymatov conceived and designed the experiments, performed the
experiments, performed the computation work, prepared figures and/or tables, and
approved the final draft.
• Andrey Sapronov conceived and designed the experiments, authored or reviewed drafts
of the paper, and approved the final draft.

Arzymatov et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.271 13/16

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.271

• Vladislav Belavin performed the experiments, performed the computation work,
prepared figures and/or tables, and approved the final draft.
• Leonid Gremyachikh performed the experiments, prepared figures and/or tables, and
approved the final draft.
• Maksim Karpov analyzed the data, prepared figures and/or tables, and approved the
final draft.
• Andrey Ustyuzhanin analyzed the data, authored or reviewed drafts of the paper, and
approved the final draft.
• Ivan Tchoub and Artem Ikoev conceived and designed the experiments, authored or
reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

SANgo, a discrete-event based simulator, is available at Code Ocean: https://codeocean.
com/capsule/9707185.

Code is available at GitHub: https://github.com/HSE-LAMBDA/sango.

REFERENCES
Aoyagi M. 2005. Temperature characteristics of stress-induced migration based on

atom migration. Journal of Vacuum Science & Technology B: Microelectronics and
Nanometer Structures Processing, Measurement, and Phenomena 23(6):2384–2389
DOI 10.1116/1.2123447.

Berg HM, PaulsonWM. 1980. Chip corrosion in plastic packages.Microelectronics
Reliability 20(3):247–263 DOI 10.1016/0026-2714(80)90204-8.

Blanks HS. 1990. Arrhenius and the temperature dependence of non-constant
failure rate. Quality and Reliability Engineering International 6(4):259–265
DOI 10.1002/qre.4680060408.

Brockman G, Cheung V, Pettersson L, Schneider J, Schulman J, Tang J, ZarembaW.
2016. OpenAI Gym. CoRR abs/1606.01540.

Cope J, Liu N, Lang S, Carns P, Carothers C, Ross RH. 2011. CODES: enabling co-
design of multi-layer exascale storage architectures. Available at https://www.mcs.
anl.gov/uploads/ cels/ papers/P1884.pdf .

Crockford D. 2018. ETF RFC 8259 The javascript object notation (JSON) data inter-
change format. Available at https://www.json.org/ .

Dhariwal P, Hesse C, Klimov O, Nichol A, Plappert M, Radford A, Schulman J, Sidor S,
Wu Y, Zhokhov P. 2017. OpenAI Baselines. GitHub repository. GitHub. Available at
https:// github.com/openai/baselines.

D’Heurle FM. 1971. Electromigration and failure in electronics: an introduction.
Proceedings of the IEEE 59(10):1409–1418 DOI 10.1109/PROC.1971.8447.

Dutta T, Barnard AR. 2017. Performance of hard disk drives in high noise environments.
Noise Control Engineering Journal 65(5):386–395 DOI 10.3397/1/376555.

Fishman GS. 1978. Principles of discrete event simulation. In:Wiley Series on Systems
Engineering and Analysis. New York: John Wily & Sons, 23–58.

Arzymatov et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.271 14/16

https://peerj.com
https://codeocean.com/capsule/9707185
https://codeocean.com/capsule/9707185
https://github.com/HSE-LAMBDA/sango
http://dx.doi.org/10.1116/1.2123447
http://dx.doi.org/10.1016/0026-2714(80)90204-8
http://dx.doi.org/10.1002/qre.4680060408
https://www.mcs.anl.gov/uploads/cels/papers/P1884.pdf
https://www.mcs.anl.gov/uploads/cels/papers/P1884.pdf
https://www.json.org/
https://github.com/openai/baselines
http://dx.doi.org/10.1109/PROC.1971.8447
http://dx.doi.org/10.3397/1/376555
http://dx.doi.org/10.7717/peerj-cs.271

Hamidi A, Coquery G. 1997. Effects of current density and chip temperature distribution
on lifetime of high power IGBT modules in traction working conditions.Microelec-
tronics Reliability 37(10):1755–1758 DOI 10.1016/S0026-2714(97)00154-6.

Hill A, Raffin A, Ernestus M, Gleave A, Kanervisto A, Traore R, Dhariwal P, Hesse C,
Klimov O, Nichol A, Plappert M, Radford A, Schulman J, Sidor S, Wu Y. 2018.
Stable baselines. GitHub repository. GitHub. Available at https:// github.com/hill-
a/ stable-baselines.

HushchynM, Sapronov A, Ustyuzhanin A. 2019.Machine learning algorithms for
automatic anomalies detection in data storage systems operation. Advances in
Systems Science and Applications 19(2):23–32 DOI 10.25728/assa.2019.19.2.725.

KarpovM, Arzymatov K, Belavin V, Sapronov A, Ustyuzhanin A, Nevolin A. 2018.
Hybrid approach to design of storage attached network simulation systems. Inter-
national Journal of Civil Engineering and Technology 9(11):220–226.

KochW,Mancuso R,West R, Bestavros A. 2019. Reinforcement learning for UAV
attitude control. ACM Transactions on Cyber-Physical Systems 3(2):22–24.

Kolesnikov S. 2018. Reproducible and fast DL & RL. GitHub repository. GitHub.
Available at https:// github.com/catalyst-team/catalyst .

Lakshminarayanan V, SriraamN. 2014. The effect of temperature on the reliability
of electronic components. In: 2014 IEEE international conference on electronics,
computing and communication technologies (CONECCT). Piscataway: IEEE, 1–6
DOI 10.1109/CONECCT.2014.6740182.

Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, Silver D,Wierstra D. 2015.
Continuous control with deep reinforcement learning. CoRR abs/1509.02971.

Matsunaga T, Uegai Y. 2006. Thermal fatigue life evaluation of aluminum wire
bonds. In: 2006 1st electronic systemintegration technology conference. 726–731
DOI 10.1109/ESTC.2006.280092.

Mitchel T. 1996. International disk drive equipment and materials association Japan. In:
Proceeding of Diskcon ’96 international disk forum. 1–10. Available at https:// ci.nii.ac.
jp/naid/10007265434/ en/ .

Molero X, Silla F, Santonja V, Duato J. 2000a.Modeling and simulation of storage area
networks. In: Proceedings of the 8th international symposium on modeling, analysis and
simulation of computer and telecommunication systems, MASCOTS ’00. Washington,
D.C.: IEEE Computer Society, 307. Available at http://dl.acm.org/ citation.cfm?id=
580760.823773.

Molero X, Silla F, Santonja V, Duato J. 2000b. Performance analysis of storage area
networks using high-speed LAN interconnects. In: Proceedings IEEE international
conference on networks 2000 (ICON 2000). Networking trends and challenges in the
new millennium. 474–478.

Molero X, Silla F, Santonja V, Duato J. 2001. A tool for the design and evaluation of
fibre channel storage area networks. In: Proceedings of the 34th annual simulation
symposium (SS01), SS ’01. Washington, D.C.: IEEE Computer Society, 133. Available
at http://dl.acm.org/ citation.cfm?id=882496.884475.

Arzymatov et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.271 15/16

https://peerj.com
http://dx.doi.org/10.1016/S0026-2714(97)00154-6
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
http://dx.doi.org/10.25728/assa.2019.19.2.725
https://github.com/catalyst-team/catalyst
http://dx.doi.org/10.1109/CONECCT.2014.6740182
http://dx.doi.org/10.1109/ESTC.2006.280092
https://ci.nii.ac.jp/naid/10007265434/en/
https://ci.nii.ac.jp/naid/10007265434/en/
http://dl.acm.org/citation.cfm?id=580760.823773
http://dl.acm.org/citation.cfm?id=580760.823773
http://dl.acm.org/citation.cfm?id=882496.884475
http://dx.doi.org/10.7717/peerj-cs.271

MubarakM, Carothers CD, Ross RB, Carns P. 2017. Enabling parallel simulation of
large-scale HPC network systems. IEEE Transactions on Parallel and Distributed
Systems 28(1):87–100 DOI 10.1109/TPDS.2016.2543725.

Muknahallipatna S, Miles J, Hamann J, Johnson H. 2010. Large fabric storage
area networks: fabric simulator development and preliminary performance
analysis. International Journal of Computers and Applications 32(2):167–180
DOI 10.1080/1206212X.2010.11441973.

Perles A, Molero X, Marti A, Santonja V, Serrano JJ. 2001. Improving the execution
of groups of simulations on a cluster of workstations and its application to storage
area networks. In: Proceedings. 34th annual simulation symposium. 227–234
DOI 10.1109/SIMSYM.2001.922136.

Rabiei A, Evans A. 2000. Failure mechanisms associated with the thermally grown oxide
in plasma-sprayed thermal barrier coatings. Acta Materialia 48(15):3963–3976
DOI 10.1016/S1359-6454(00)00171-3.

Riley GF, Henderson TR. 2010. The ns-3 network simulator. In: Wehrle K, Güneş
M, Gross J, eds.Modeling and tools for network simulation. Berlin: Springer Berlin
Heidelberg, 15–34.

RoeschWJ, Jittinorasett S. 2004. Cycling copper flip chip interconnects.Microelectronics
Reliability 44(7):1047–1054 DOI 10.1016/j.microrel.2004.03.010.

Sankar S, ShawM, Vaid K. 2011. Impact of temperature on hard disk drive reliability
in large datacenters. In: 2011 IEEE/IFIP 41st international conference on dependable
systems networks (DSN). 530–537 DOI 10.1109/DSN.2011.5958265.

Sapronov A, Belavin V, Arzymatov K, KarpovM, Nevolin A, Ustyuzhanin A. 2018.
Tuning hybrid distributed storage system digital twins by reinforcement learning.
Advances in Systems Science and Applications 18(4):1–12.

Strom B, Lee S, Tyndall G, Khurshudov A. 2007.Hard disk drive reliability mod-
eling and failure prediction.Magnetics, IEEE Transactions on 43:3676 – 3684
DOI 10.1109/TMAG.2007.902969.

Varga A, Hornig R. 2008. An overview of the OMNeT++ simulation environment. In:
Proceedings of the 1st international conference on simulation tools and techniques for
communications, networks and systems & workshops, Simutools ’08. ICST, Brussels,
Belgium, Belgium: ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), 60:1–60:10. Available at http://dl.acm.org/
citation.cfm?id=1416222.1416290.

Wang C-Y, Zhou F, Zhu Y-L, Chong CT, Hou B, XiW-Y. 2003. Simulation of fibre
channel storage area network using SANSim. In: The 11th IEEE international
conference on networks, 2003. ICON2003. 349–354
DOI 10.1109/ICON.2003.1266215.

Yeh ECC, ChoiWJ, Tu KN, Elenius P, Balkan H. 2002. Current-crowding-induced elec-
tromigration failure in flip chip solder joints. Applied Physics Letters 80(4):580–582
DOI 10.1063/1.1432443.

Zhou Y, Hashida T. 2002. Thermal fatigue failure induced by delamination in thermal
barrier coating. International Journal of Fatigue 24(2):407–417
DOI 10.1016/S0142-1123(01)00096-2.

Arzymatov et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.271 16/16

https://peerj.com
http://dx.doi.org/10.1109/TPDS.2016.2543725
http://dx.doi.org/10.1080/1206212X.2010.11441973
http://dx.doi.org/10.1109/SIMSYM.2001.922136
http://dx.doi.org/10.1016/S1359-6454(00)00171-3
http://dx.doi.org/10.1016/j.microrel.2004.03.010
http://dx.doi.org/10.1109/DSN.2011.5958265
http://dx.doi.org/10.1109/TMAG.2007.902969
http://dl.acm.org/citation.cfm?id=1416222.1416290
http://dl.acm.org/citation.cfm?id=1416222.1416290
http://dx.doi.org/10.1109/ICON.2003.1266215
http://dx.doi.org/10.1063/1.1432443
http://dx.doi.org/10.1016/S0142-1123(01)00096-2
http://dx.doi.org/10.7717/peerj-cs.271

