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ABSTRACT
This article introduces a hybrid multi-biometric system incorporating fingerprint,
face, and iris recognition to enhance individual authentication. The system addresses
limitations of uni-modal approaches by combining multiple biometric modalities,
exhibiting superior performance and heightened security in practical scenarios,
making it more dependable and resilient for real-world applications. The integration
of support vector machine (SVM) and random forest (RF) classifiers, along with
optimization techniques like bacterial foraging optimization (BFO) and genetic
algorithms (GA), improves efficiency and robustness. Additionally, integrating
feature-level fusion and utilizing methods such as Gabor filters for feature extraction
enhances overall performance of the model. The system demonstrates superior
accuracy and reliability, making it suitable for real-world applications requiring
secure and dependable identification solutions.
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INTRODUCTION
Biometrics are the characteristic biological measurement used to identify or authenticate
the individual based on its characteristics. This approach increasingly establishes
person recognition in various applications (Boubchir & Daachi, 2021). Although biometric
recognition techniques can be very effective, they cannot guarantee an outstanding
recognition rate by uni-modal biometric systems that rely on a single biometric signature
(Rasheed et al., 2023). Sensor noise, non-universality, a lack of uniqueness and consistent
representation, and sensitivity to attack are all common problems with these systems
(AlRousan & Intrigila, 2020). Because of these practical constraints, the mistake rates
connected with uni-modal biometric systems are relatively high, making them
inappropriate for deploying vital security applications (Bharadwaj, Vatsa & Singh, 2014;
Ammour et al., 2020). A technique known as mobile biometric service is implemented in
various biometric modalities in the same system to address these issues. This study offered
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a multi-modal identification method that combined facial, iris, and fingerprint data (Hamd
& Mohammed, 2019). Given the difficulty distinguishing people, especially in massive
databases, face recognition has played a vital role in bringing out more researchers’ interest
in this domain (Yang, 2024). The recognition process can be classified based on emotion,
age, and gender (Momin & Tapamo, 2016). As a result, this is viewed as the unchangeable
and most dominant human feature that, unlike gender and age, could be easily concealed,
even under camouflage (Connie et al., 2017). Face recognition based on emotion has
gained popularity in recent years for a range of applications, including improving
surveillance systems and safeguarding various types of multimedia information (Manesh,
Ghahramani & Tan, 2010; Lakafosis et al., 2011), personal privacy and natural identity
management (Xie, Hu & Wu, 2019), and controlling industrial systems (Karau et al.,
2015). Moreover, categorization based on emotion, age, and gender can be used in various
new applications, such as mobile multimedia security and determining crowd
composition.

Biometric verification and identification technologies have gained more popularity in
recent years, resulting in the technology’s widespread use (Gupta, Buriro & Crispo, 2018).
Most importantly, laptops with fingerprint readers and the Windows 10 “hello” feature
that support biometric verification and identification are frequently seen (Charfi et al.,
2017; Alpar & Krejcar, 2018a; Nguyen, Tay & Chui, 2015). Users who register for biometric
usage are eligible for the latter functionality. The stress of logging into devices and products
(like cards or keys), often with identity and privacy theft risks, is eliminated by biometric
authentication (Zhang, Cai & Zhang, 2017). Collecting a person’s biometric information to
generate their biometric template is intricate and occasionally results in an illogical result
(Carroll et al., 2021). However, the success rate of these systems might vary from up to 99
percent in the finest systems. Therefore, biometric solutions help reduce security issues,
including identity theft and privacy invasion (Alpar & Krejcar, 2018b). When a person
reaches adulthood, the characteristics of their hands are fixed for the rest of their lives.
Therefore, these traits can be utilized to recognize and validate a person (Panda et al.,
2021). Many biometric systems currently in use function based on the hand’s surface and
shape elevation and are used to identify a person (Abbas et al., 2020; Renukalatha &
Suresh, 2018). Implementing such systems has several advantages, especially given how
simple it is to obtain the necessary hardware and software (Yang et al., 2023). However, the
biometric properties of a hand’s contour are frequently insufficient to identify between
people. Due to compromised identity security, there is a high false-match rate.
Consequently, improved models are constantly created based on unique, concealed
biometric traits that are impossible to duplicate. For instance, the findings of cutting-edge
fingerprint scanning are duplicated, but its design and implementation costs are very costly
(Yin et al., 2023). Employing two or more biometric traits within a system is a second
option for enhancing verification and identification by biometric systems (Waluś, Bernacki
& Konopacki, 2017). For example, simultaneous hand and bloodstream scanning improves
identification findings and has recently become more affordable and secure (Singh, Singh
& Ross, 2019). The fact that the false matching rate of the various biometric variables is
compounded reduces the false matching rate, which makes this possible.
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Uni-modal biometric systems, while effective in controlled environments, face
significant limitations such as sensor noise, lack of uniqueness, and high error rates due to
non-universality and inconsistent trait representation (Al-Dabbas, Azeez & Ali, 2024b;
Murshed et al., 2023). These challenges make them unsuitable for high-security
applications as they often fail to provide consistent and reliable performance, particularly
in environments with varying conditions or when addressing large and diverse
populations, necessitating the adoption of multi-modal biometric approaches to enhance
accuracy, robustness, and security (Balti et al., 2024; Cherrat, Alaoui & Bouzahir, 2020).
Multi-biometric approaches are more effective because they combine the strengths of
different biometric traits, leading to higher performance and more reliable security. A
hybrid model that combines support vector machine (SVM) and random forest (RF)
classifiers is employed for such application was based on the strengths of these machine
learning (ML) techniques (Gawande, Zaveri & Kapur, 2013). SVM is known for its ability
to perform well with high-dimensional data and to find the optimal hyperplane for
classification tasks (KaviPriya & Muthukumar, 2018). On the other hand, RF is effective
for handling complex datasets and offers advantages in terms of handling noise and
preventing overfitting through its ensemble learning approach (Li, Xie & Bin, 2024). By
combining these classifiers in a hybrid framework, the study aimed to leverage the
strengths of both methods to enhance classification accuracy and reduce error rates. The
suggested approach addressed key challenges in biometric authentication, including
accuracy, system robustness, and computational efficiency, making the approach suitable
for real-world multi-biometric applications.

This study presents a novel hybrid multi-biometric system that uniquely integrates
fingerprint, face, and iris recognition with advanced ML techniques to enhance biometric
authentication accuracy and reliability. Unlike conventional systems, the proposed
approach employs a hybrid classification model combining SVM and RF classifiers, further
optimized using bacterial foraging optimization (BFO) and genetic algorithms (GA).
Additionally, the use of feature-level fusion and Gabor filters for precise feature extraction
enhances system performance by addressing the inherent limitations of uni-modal
biometric systems, such as sensor noise and high error rates. This comprehensive
methodology demonstrates a significant improvement in accuracy and robustness,
providing a state-of-the-art solution for secure and reliable authentication in real-world
applications.

The structure of the article is systematically organized into several critical sections for
clarity and a thorough examination of the topic. The article introduces a hybrid multi-
biometric system using fingerprint, face, and iris recognition, enhanced by SVM-RF model
for improved performance and security in practical applications. The second section is
dedicated to a comprehensive literature review, providing context and background by
exploring existing research and related studies. The third section delves into the proposed
methodology, offering a detailed explanation of the techniques and approaches utilized in
the study. The fourth section presents the results, critically discusses the study’s outcomes,
and compares them with previous findings. This section is essential for evaluating the
effectiveness and implications of the proposed system. Finally, the study concludes in the
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fifth section, summarizing the essential findings and contributions and suggesting
potential directions for future research.

LITERATURE REVIEW
Barra et al. (2019) developed a mobile hand identification system using a device’s camera
to capture hand images in visible light, extracting 57 features through hand segmentation.
This two-phase method first employs dimensional reduction to isolate robust features,
then contrasts various matching techniques, achieving an equal error rate (EER) of 0.52
percent, indicating improved processing efficiency and accuracy by removing distortion-
prone features. Veluchamy & Karlmarx (2017) designed a multi-modal biometric system
by fusing finger vein and knuckle images using a fractional firefly (FFF) optimizer. They
extracted features via a repeated line-tracking approach and optimized weight scores for
feature fusion, employing a layered k-SVM classifier for recognition. This system
demonstrated a 96% accuracy rate, evaluated by accuracy, false rejection, and false
acceptance ratios. Saadat & Nasri (2015) developed a novel multi-instance human
identification model with the help of various finger vein biometrics. The score level fusion
is used to execute the multi-biometric system. The efficiency of various score-level fusion
strategies is thoroughly investigated. The implementation results show that the highest
score level fusion strategy performs better than other fusion techniques and some
traditional fusion techniques for biometric models that have been created.

Wang, Zhang & Shark (2014) created a biometric detection system using hand vein
images captured with near-infrared imaging, focusing on crucial point matching and
employing geometric rectification, image enhancement, and region-of-interest extraction
to handle an extensive database with over 200 classes. Based on measurements of a user’s
hand geometry and vascular pattern, Park & Kim (2013) developed a hand biometric
identification system. The angles and lengths of finger valleys, profiles and lengths of the
fingers, K-curvature with the hand-shaped code chain, extraction method of direction-
based pattern, and lengths and angles of the hand geometry employed to obtain the hand
geometry, that helps in creating a new multi-modal biometric approach. The feature points
in the multi-modal biometric model are extracted from a single image. The performance of
the multi-modal biometric approach to vascular pattern recognition and hand geometry is
measured at the score level. The findings indicated that the developed system’s equal error
rate was 0.06 percent. Kang & Park (2010) proposed a multi-modal system integrating
score-level finger geometry with vein detection, utilizing Fourier descriptors for robust
finger recognition and SVM-based score-level fusion, significantly reducing error rates
compared to single-method approaches. The literature survey summary is depicted in
Table 1.

RESEARCH METHODOLOGY
The study proposes a multi-biometric system integrating face, iris, and fingerprint
validation to enhance the accuracy of individual authentication. The methodology is
systematically divided into several key phases: dataset loading, data pre-processing, feature
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extraction, classification using the proposed hybrid SVM-RF classifier, and optimization
using GA and BFO. The final phase involves comparing the results with state-of-the-art
techniques to evaluate performance improvements. The basic schematic of the developed
methodology is illustrated in Fig. 1.

Dataset used
In this study, three distinct datasets, including fingerprint, face, and iris data, are utilized to
implement the proposed methodology. The datasets are processed uniformly to ensure
comprehensive evaluation and validation, accounting for variations in biometric traits.

System configuration
The computing infrastructure used in this study included MATLAB software (The
MathWorks, Natick, MA, USA) for algorithm implementation and data analysis. The
experiments were conducted on a system running a Windows 10 operating system,
equipped with an Intel Core i7 processor and 16GB of RAM. This setup provided adequate
computational power to handle the data preprocessing, feature extraction, and
classification tasks for the multi-biometric datasets, ensuring efficient execution of the
proposed hybrid SVM-RF model. The MATLAB environment facilitated integration of
various ML and optimization algorithms.

Table 1 Summary of the literature review.

Author(s) Methods Sample size Error (%)

Barra et al. (2019) FG and PP 100 0.52

Veluchamy & Karlmarx (2017) FV and FK 100 0.35

Saadat & Nasri (2015) MFV 106 0.08

Wang, Zhang & Shark (2014) FV and HG 204 0.02

Park & Kim (2013) HG and FV 100 0.06

Kang & Park (2010) FG and FV 102 0.074

Note:
FG, Finger geometry; PP, palm print; FV, finger vein; FK, finger knuckle; MFV, multi-finger vein; HG, hand geometry.

Figure 1 Schematic illustration of the proposed model. Full-size DOI: 10.7717/peerj-cs.2699/fig-1
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Data pre-processing
The datasets undergo a comprehensive pre-processing phase designed to standardize
inputs, enhance quality, and remove noise for effective feature extraction. The pre-
processing techniques includes:

Noise removal
To reduce noise in fingerprint and iris images, median filtering with a kernel size of 3 × 3 is
applied, which effectively mitigates salt-and-pepper noise while preserving critical edge
details.

Image resizing
All images are uniformly resized to standardized dimensions of 128 × 128 pixels using
bilinear interpolation, ensuring compatibility with the feature extraction process and
reducing computational complexity.

Contrast enhancement

For contrast enhancement, adaptive histogram equalization (CLAHE) with a clip limit of
2.0 is employed on face and iris images, which improves visibility of subtle features while
preventing over-enhancement in low-contrast areas (Huang, 2022). These carefully
calibrated steps ensure that the input data is optimized, noise-free, and feature-rich,
providing a robust foundation for the subsequent phases of the methodology.

Feature extraction using the Gabor filter method
Gabor filters (GF) are employed to extract features, leveraging their capability to analyze
spatial and frequency domain information (Shroff & Maheta, 2015). The convolution
process with Gabor filter banks is used to identify textural patterns unique to each
biometric trait. The extracted Gabor features are multi-dimensional and expressive,
reducing redundancies through dimensionality reduction techniques (Muthukumar &
Kavipriya, 2017). The mathematical formulation of Gabor filters ensures robust extraction
of discriminative features, suitable for handling diverse biometric traits like fingerprint
ridges, iris textures, and facial structures (Patro et al., 2020). The convolution process of an
input picture with a GF bank primarily estimates the GF as follows:

Gu;v p; qð Þ ¼ I p; qð Þ � w p; qð Þ: (1)

These Gabor characteristics are further discernible based on a filtering action of the
Gabor with size “u” and orientation (Garg, Vig & Gupta, 2016; Purohit & Ajmera, 2021).
This convolution is frantically carried out for the actual and imagined parts. The initial
definition of the Gabor feature representation is:

Re O p; qð Þð Þm; n ¼ I p; qð Þ � Re w p; q; km; hnð Þð Þ (2)

Im O p; qð Þð Þm: n ¼ I p; qð Þ � Im w x; y; km; hnð Þð Þ: (3)

As a result, calculating amplitude incorporates both imaginary and genuine parts,
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O p; qð Þm; n ¼ Re O p; qð Þð Þm; n

� �2
þ Im O p; qð Þð Þm; n

� �2
� �1

2
(4)

when utilizing GF, the multi-dimensional and highly expressive Gabor features are crucial
in dimensionality reduction. These Gabor features, once filtered, form a well-defined
feature vector that encapsulates the essential characteristics of the input data. This feature
vector is employed to identify the class of the test data for the classification task. This
process is facilitated by a supervised learning algorithm trained on labeled data to
accurately classify new, unseen data based on the extracted Gabor features. The use of
Gabor characteristics not only enhances the efficiency of the feature extraction process but
also significantly improves the accuracy of the classification task.

Classification using SVM and RF
The choice of SVM and RF classifiers for this study was made based on their
complementary strengths in handling different aspects of classification tasks. These
algorithms were selected to achieve robust and accurate classification in the multi-
biometric system, considering the nature of the data and the need for efficient processing.
Classifiers are central to ML tasks, where their role is to categorize data based on previously
learned patterns (Ulhe et al., 2024). In this study, classification is performed by first
organizing the extracted features into feature vectors, which serve as input for the
classifiers. The process involves dividing the dataset into training and testing sets to
evaluate the performance of the classifiers. The selection of SVM and RF was driven by
their distinct characteristics, which together enhance the system’s ability to identify
individuals accurately (Prakash, Krishnaveni & Dhanalakshmi, 2020). SVM is employed in
this study due to its effectiveness in finding the optimal decision boundary, or hyperplane,
that separates different classes in a high-dimensional feature space (Kulkarni et al., 2024).
It is particularly suitable for datasets with many features, where it aims to maximize the
margin between data points of different classes. The objective function of SVM can be
expressed as (Santoso, Safitri & Samidi, 2024):

min
1
2
jjxjj2 þ C

XN
i¼1

ni (5)

subject to:

yi x � xi þ bð Þ � 1� ni; ni � 0; 8i (6)

where, weight vector is denoted by x, b represents the bias term, ni are slack variables that
allow for some misclassification, C is the regularization parameter that controls the trade-
off between maximizing the margin and minimizing classification errors, yi and xi
represents the class labels and input feature vectors, respectively. In this study, a linear
kernel is used, which computes the decision boundary directly based on the feature space,
making it computationally efficient for classification tasks.

RF was selected to complement SVM, particularly for its ability to handle larger datasets
and imbalanced data distribution effectively (Reddy et al., 2024). RF is an ensemble
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learning method that builds multiple decision trees during training and merges their
outputs for a final prediction. The method constructs each decision tree using a randomly
selected subset of features, which reduces overfitting and enhances generalization. The
classification process in RF can be described as follows (Shi et al., 2024):

Each decision tree is trained using a different subset of the data. For each node, the
splitting criterion is chosen to maximize the separation between classes, commonly using
metrics like Gini impurity:

G ¼ 1�
XN
i¼1

p2i (7)

where pi is the probability of class i.
For classification tasks, the final prediction is determined by the majority vote from all

decision trees,

ŷ ¼ mode y1; y2; . . . . . . ::; yTð Þ (8)

where ŷ is the predicted output and T is the total number of trees.
The hybrid algorithm combines the strengths of SVM and RF, leveraging SVM’s

capacity for precise decision boundaries and RF’s ability to handle large, complex datasets.
The approach involves initially classifying the data using SVM to achieve a high level of
accuracy, followed by using RF to further refine the predictions, especially in cases of
overlapping classes or noisy data. The integration of these classifiers was chosen to
improve the overall performance, as SVM efficiently handles linear separability while RF’s
ensemble learning addresses non-linear relationships and reduces overfitting. This
combination enhances the identification process, resulting in superior classification
outcomes compared to using either technique alone.

Optimization using GA and BFO
The selected features are optimized with the help of two different algorithms, the GA and
the BFO. This phase is one of the methodology’s most critical phases because it helps
optimize the results compared to the previous methods. Artificial intelligence uses GA as a
search tool, which uses the natural selection process. With the help of natural evolution,
various beneficial solutions to optimization problems are developed (Gururaj et al., 2024).
In this study, GA selects the best feature sets by considering the mutual information
between the features and the output. Population (N = 72) is first created from the retrieved
feature set. Using the mutual information-based fitness function, GA determines each
feature’s fitness and transforms the results into a more usable set of benefits for ML
models. Based on fitness levels, it chooses the members designated as parents. In order to
create a child for the following generation, crossover and mutation strategies are used. This
procedure is repeated till the target satisfies the requirements. The acquired optimal feature
set is iteratively tested with the classifier until a low error rate and high accuracy are
achieved, with BFO and GA employed in tandem (Shanmugasundaram, Mohamed &
Ruhaiyem, 2017).
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The BFO algorithm was employed to discover the local best value (Pbest). However, the
BFO algorithm exhibited slow convergence, primarily due to the fixed step size during the
tumbling stage (Al-Dabbas, Azeez & Ali, 2024a). Despite this limitation, BFO
demonstrated a solid capability to avoid local optima. Consequently, BFO was utilized to
identify the local best value (Pbest), while GA was used to determine the global best search
(Gbest). The combination of these methods effectively mitigated the issue of sluggish
convergence, as illustrated by the following equations.

hi j þ 1; k; lð Þ ¼ hi j; k; lð Þ þ C ið Þ � hj (9)

Pbest ¼ f hi j þ 1; k; lð Þð Þ (10)

where hi is the new position of the ith position, hj is the previous position, C ið Þ is the step
size, and Pbest is the local best fitness value. This combination ensures both global
exploration and local exploitation, resulting in optimized feature subsets that improve
classification accuracy. Experimental results confirm the efficacy of this optimization
strategy, reducing the error rate and improving the system’s precision and recall metrics.

Performance metrics and evaluation
The assessment metrics used in this study were carefully selected to evaluate the
performance of the multi-biometric recognition system accurately and comprehensively.
These metrics include accuracy, precision, recall, F1-score, and specificity. Each metric
serves a distinct purpose in assessing various aspects of the system’s effectiveness in
classification tasks, ensuring a balanced evaluation.

TP: true positive, TN: true negative, FP: false positive and FN: false negatives.
1. Accuracy: This metric measures the proportion of correctly classified instances out of

the total number of samples. However, in cases where there is class imbalance, accuracy
alone may not fully capture the system’s effectiveness, as it can be biased towards the
majority class. Therefore, while accuracy is useful, other metrics are also considered to give
a more complete evaluation.

Accuracy ¼ TN þ TP
TN þ FP þ TN þ FN

: (11)

2. Precision: Precision assesses the accuracy of the positive predictions made by the
model, indicating how many of the samples labelled as positive are truly positive. This
metric is particularly important in scenarios where false positives need to be minimized,
such as in biometric security systems where incorrectly granting access could lead to
security breaches.

Precision ¼ TP
TP þ FP

: (12)

3. Recall: Recall, or sensitivity, measures the model’s ability to identify all relevant
instances within the dataset. It indicates the proportion of actual positives that are correctly
classified by the system. High recall is crucial in cases where failing to identify a positive
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instance (FN) could have significant consequences, such as in authentication where
genuine users must not be denied access.

Recall ¼ TP
TP þ FN

: (13)

4. F1-score: The F1-score is the harmonic mean of precision and recall, providing a
single metric that balances both concerns. The F1-score helps to ensure that the system
performs well across different conditions, rather than optimizing for one metric at the
expense of the other.

F �Measure ¼ 2 � Precision � Recall
Precisionþ Recall

: (14)

5. Specificity: This metric measures the proportion of TN that are correctly identified,
providing an indication of the system’s ability to recognize negative instances accurately.
Specificity is important in biometric systems where it is necessary to reduce the number of
false alarms (FP), thus increasing the reliability of the system.

Specificity ¼ TN
TN þ FP

: (15)

The combination of these metrics ensures a comprehensive evaluation of the model’s
performance across different dimensions. While accuracy gives an overall picture,
precision and recall provide insights into the handling of positive cases, and the F1-score
balances precision and recall. Specificity adds another layer by evaluating the correct
identification of negative cases. This multi-faceted approach allows for a thorough and
balanced assessment of the multi-biometric recognition system’s effectiveness.

RESULTS AND DISCUSSIONS
The comprehensive implementation of the suggested methodology was conducted using
MATLAB software. Initially, the dataset was divided into two parts: 70 percent was
designated for training, while the remaining 30 percent was reserved for testing. This split
ensures that the model has substantial data for learning and sufficient data for evaluation.
The detailed step-by-step process and corresponding results of the developed methodology
are outlined below:

Performance metrics for various datasets
The performance metrics of individual biometric datasets (face, finger, and iris) as well as a
combined multibiometric dataset is studied as it is crucial for understanding the strengths
and limitations of different models in a comprehensive manner. By examining precision,
recall, accuracy, and F1-score across these datasets, the model’s effectiveness and
robustness in various biometric recognition tasks can be determined. This analysis not
only helps identify the most suitable model for specific biometric traits but also
underscores the potential improvements achieved through the integration of multiple
biometric modalities.
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Figure 2 illustrates the performance metrics of three different models including SVM,
RF and the proposed hybrid SVM-RF, when applied to separate face, finger, iris, and
combined multibiometric datasets. Figure 2A depicts the SVM model performance for
various datasets, suggesting the performance is relatively consistent around 50–60% for all
face datasets. However, there is a noticeable drop in performance, particularly in accuracy,
which falls below 40%, when model is applied to the finger biometric dataset. The iris

Figure 2 Performance metrics of (A) SVM, (B) RF, and (C) hybrid SVM-RF model for various datasets.
Full-size DOI: 10.7717/peerj-cs.2699/fig-2
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dataset performs better, with scores around 60% whereas the combined dataset yields the
highest scores across all metrics, with values approaching 70%. Figure 2B displays the RF
model performance showing the scores are fairly even, with all metrics hovering around
60–70% for face dataset. The finger dataset shows slightly better performance compared to
the SVMmodel, with scores above 50%. The iris dataset maintains high scores, like the face
dataset. The combined dataset once again produces the best results, with all metrics scoring
around 70%. Figure 2C presents the proposed hybrid SVM-RF model performance,
estimating high scores around 70% for the face dataset. The finger dataset shows an
improvement over the previous models, with all metrics around 60%. The iris dataset
maintains strong performance, with scores above 70%. The combined dataset significantly
outperforms the individual datasets, with all metrics scoring close to 100%, indicating
superior accuracy, precision, recall, and F1-score. This indicates that the hybrid SVM-RF
model achieves superior performance when integrating multiple biometric modalities, thus
validating the effectiveness of the hybrid approach in a multibiometric system. The model
assessment parameters for SVM, RF and hybrid SVM-RF models towards various datasets
is illustrated in Table 2.

The results underscore the importance of using combined multibiometric datasets for
enhanced performance in biometric recognition systems. The proposed hybrid SVM-RF
model consistently outperforms the individual SVM and RF models, particularly on the
combined dataset, showcasing its effectiveness and potential for real-world biometric
applications. This study demonstrates that leveraging a hybrid approach and integrating
multi-biometric modalities can significantly enhance the performance accuracy of
biometric systems.

Performance metrics of the suggested hybrid SVM-RF model
The hybrid SVM-RF model has demonstrated superior performance compared to the
individual SVM and RF models, this hybrid model is now employed on a multibiometric
dataset for further analysis. The rationale behind using a multibiometric dataset lies in its
potential to provide more accurate and robust results. By integrating multiple biometric
traits such as face, finger, and iris, the multibiometric approach capitalizes on the strengths
of each individual modality, thereby reducing the overall error rate and enhancing the
system’s reliability. This comprehensive evaluation allows for a more nuanced
understanding of the hybrid model’s capabilities, ensuring that the resulting biometric
system is both precise and resilient.

As shown in Fig. 3, the training phase of the model exhibits a clear trend: as the number
of epochs increases, the training accuracy improves while the error loss decreases.
Figure 3A illustrates the accuracy of the models over 100 epochs. The hybrid SVM-RF
model shows a consistent improvement in accuracy, starting at approximately 60% and
reaching 97.56% by the 100th epoch. This suggests the effective learning and adaptation
capabilities of the model. The RF and SVMmodel exhibit the lowest initial accuracy which
has increased roughly to 54.52% and 66% by the 100th epoch, respectively. Figure 3B
depicts the loss values obtained for the models across 100 epochs. The hybrid SVM-RF
model shows a significant decrease in loss, starting at around 0.6 and reducing to nearly
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0.02, indicating a substantial improvement in the model’s prediction accuracy. The RF
model starts with the highest loss at about 0.8, which gradually decreases to around 0.64,
while the SVM model begins with a loss of approximately 0.7, decreasing to about 0.49 by
the 100th epoch. The results demonstrate that the hybrid SVM-RFmodel beats the existing
models in terms of both accuracy and loss reduction when applied to combined
multibiometric datasets.

The performance parameters such as precision, F1 score, and recall obtained for the
models is presented in Fig. 4. Figure 4A illustrates the precision of each model over 100
epochs. Among all the models, the hybrid SVM-RF model shows a consistent

Table 2 Performance parameters for different models across various datasets.

Model Performance metrics (%) Face dataset Fingerprint dataset Iris dataset Multi-biometric dataset

SVM Accuracy 54.52 50.26 55.18 65.03

Precision 57.20 53.12 58.99 65.31

Recall 58.25 17.41 54.11 68.90

F1-score 57.72 26.23 56.44 67.06

RF Accuracy 56.44 62.21 58.31 65.99

Precision 56.87 64.59 60.88 67.45

Recall 66.35 59.39 62.14 68.42

F1-score 61.24 61.88 61.50 67.93

Hybrid SVM-RF Accuracy 58.92 64.41 60.12 97.56

Precision 59.10 66.12 69.34 97.37

Recall 73.27 62.43 68.8 98.12

F1-score 65.43 64.29 69.06 97.92

Figure 3 (A) Accuracy and (B) loss obtained using various model for multibiometric dataset. Full-size DOI: 10.7717/peerj-cs.2699/fig-3

Sonal et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2699 13/25

http://dx.doi.org/10.7717/peerj-cs.2699/fig-3
http://dx.doi.org/10.7717/peerj-cs.2699
https://peerj.com/computer-science/


improvement in precision and evaluated around 98.89% by the 100th epoch. However, the
RF and SVM model shows a steady increase in precision up to 67.45% and 65.35%,
respectively by the 100th epoch. Figure 4B depicts the F1 score for each model and showed
a gradual increase till 67.45% and 65.35% for RF and SVM model, respectively. Although,
hybrid SVM-RF model shows a significant improvement with the F1 score increasing from
around 50% to 98.12% by the 100th epoch. Similarly, the recall values for the models over
100 epochs is presented in Fig. 4C suggesting the hybrid SVM-RF model exhibits a
substantial increase in recall up to 97.37% till the training period ending as compared to RF
and SVMmodels. Therefore, the proposed hybrid SVM-RF model came out to be superior
compared to both the SVM and RF models in terms of precision, F1 score, and recall when
applied to combined multibiometric datasets. This highlights the robustness and

Figure 4 (A) Precision, (B) F1 score and (C) recall obtained using various model for multibiometric dataset.
Full-size DOI: 10.7717/peerj-cs.2699/fig-4
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effectiveness of the hybrid approach in achieving higher performance metrics, thus
validating its suitability for multibiometric recognition systems.

Figure 5 presents the confusion matrix for the proposed hybrid SVM-RF multi-
biometric system, highlighting the classification performance across different classes. The
matrix is divided into two target classes, with the actual class labels on the vertical axis and
the predicted class labels on the horizontal axis. As shown in Fig. 5, the model correctly
identified 446 instances of Class 0 whereas 5 instances of Class 0 were incorrectly classified
as Class 1, representing false positives. Furthermore, the model accurately predicted 236
instances of Class 1 while 12 instances of Class 1 were misclassified as Class 0, indicating
false negatives. The confusion matrix demonstrates that the hybrid SVM-RF model
exhibits strong classification capabilities, achieving high accuracy rates and maintaining
low misclassification rates across all classes. The relatively low numbers of false positives
and false negatives further underscore the model’s effectiveness in distinguishing between
the two classes, thereby validating its robustness and reliability for classification tasks in
multibiometric systems. The high accuracy and low error rates indicate the model’s
potential for practical applications where reliable biometric authentication is crucial.

Table 3 presents a detailed set of parameters obtained during implementing the
proposed hybrid SVM-RF multi-biometric system. These parameters are essential for
analyzing the characteristics and performance of biometric data. The measured values
include a contrast of 0.3059, indicating the difference in luminance that makes objects
distinguishable, and a correlation of 0.1421, reflecting the linear relationship between
pixels. The energy value is 0.78623, representing the uniformity in the image’s texture. At
the same time, homogeneity is measured at 0.93793, showing the closeness of the
distribution of elements to the diagonal in the gray level co-occurrence matrix (GLCM).
The mean intensity of the pixel values is 0.0063091, and the standard deviation is 0.089593,

Figure 5 Confusion matrix for hybrid SVM-RF multi-biometric system performance.
Full-size DOI: 10.7717/peerj-cs.2699/fig-5
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indicating the variation in pixel values. Entropy, which reflects the randomness in the
image texture, is 3.2051. The pixel intensity’s root mean square (RMS) is 0.089803, and the
variance measures the spread of pixel intensity values, is 0.0080177. The smoothness of the
image texture is indicated by a value of 0.95913. The kurtosis, describing the sharpness of
the distribution, is 12.2408, while skewness, reflecting the asymmetry of the intensity
distribution, is 1.1048. Finally, the inverse difference moment (IDM), which indicates
texture uniformity, is 1.2156. These comprehensive parameters help evaluate and optimize
the biometric data, contributing significantly to the accuracy and effectiveness of the multi-
biometric system for robust identification and authentication.

Figure 6 showcases the performance metrics of the proposed hybrid SVM-RF multi-
biometric system, detailing its effectiveness in terms of accuracy, precision, recall, F1-score,
and specificity. The system achieved an impressive accuracy of 97.56%, indicating a high
level of correctness in identifying individuals across the biometric datasets. The precision
rate is 98.89%, reflecting the system’s ability to identify true positives among the predicted
positive results correctly. The recall, also at 97.37%, demonstrates the system’s efficiency in
detecting true positives from the actual positive instances, ensuring minimal false
negatives. The F1-score, a harmonic mean of precision and recall, is recorded at 98.12%,
underscoring the balanced performance of the system in both precision and recall aspects.
Lastly, the specificity is 97.92%, highlighting the system’s ability to identify true negatives,
thereby correctly reducing false positives. These metrics collectively illustrate the
robustness and reliability of the hybrid SVM-RF system in multi-biometric identification,
showcasing its superior performance compared to conventional methods.

Figure 7 presents a bar graph comparing the performance metrics of the existing and
proposed models. The graph demonstrates that the proposed hybrid algorithm

Table 3 Detailed parameter values obtained during the implementation of the hybrid SVM-RF
model.

Contrast 0.3059

Correlation 0.1421

Energy 0.78623

Homogeneity 0.93793

Mean 0.0063091

Standard deviation 0.089593

Entropy 3.2051

RMS 0.089803

Variance 0.0080177

Smoothness 0.95913

Kurtosis 12.2408

Skewness 1.1048

IDM 1.2156
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Figure 6 Performance parameters for hybrid SVM-RF model.
Full-size DOI: 10.7717/peerj-cs.2699/fig-6

Figure 7 Graphical illustration of the performance matrix of various models.
Full-size DOI: 10.7717/peerj-cs.2699/fig-7
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outperforms SVM and RF across all key metrics. From the visualized data, it is evident that
the proposed hybrid SVM-RF model consistently outperforms both the SVM and RF
models across all metrics. Specifically, the hybrid algorithm shows an accuracy of 97.56%,
superior to that obtained for SVM (54.52%) and RF (66%) models. Regarding loss, the
proposed method significantly reduces the error to 0.02, compared to 0.49 for SVM and
0.61 for RF. Precision is highest for the hybrid system at 98.89%, with SVM and RF at
65.35% and 67.45%, respectively. Recall rates for the hybrid method reach 97.37%, while
SVM and RF are at 68.90% and 68.42%. Lastly, the F1-score of the proposed system is
98.12%, outperforming SVM (65.35%) and RF (67.45%). This clear dominance of the
hybrid SVM-RF model suggests that the integration of the strengths of both SVM and RF
into a single framework result in a more powerful and reliable classification tool, making it
a preferable choice for applications where high performance across multiple evaluation
criteria is critical. Table 4 compares the performance metrics for existing and the proposed
models, effectiveness of the hybrid SVM-RF algorithm in enhancing multi-biometric
identification accuracy and reliability.

Figure 8 illustrates a comparison of the receiver operating characteristic (ROC) curves
and the corresponding area under the curve (AUC) values for the existing SVM and RF
and the proposed SVM-RF model. In the comparison, the hybrid SVM-RF model
significantly outperforms the SVM and RF models. The AUC for the hybrid model is 0.94,
indicating excellent discriminative ability. In contrast, the SVM and RF models achieve
lower AUC values of 0.68 and 0.69, respectively, reflecting their comparatively weaker
performance. The ROC curve for the hybrid model signifies its superior capability to
correctly classify positive instances while minimizing false positives. This enhanced
performance highlights the effectiveness of combining SVM and RF in a hybrid approach,
which leverages the strengths of both models to achieve higher accuracy and reliability in
classification tasks. Therefore, the hybrid SVM-RF model is demonstrated to be the most
robust and effective among the models compared, making it a preferable choice in
scenarios where precise classification is essential. The comparative analysis of the proposed
model with the state-of-the-art approaches is tabulated in Table 5.

While the proposed hybrid multi-biometric system demonstrates significant
improvements in accuracy and robustness, it is essential to address computational cost and
multimedia data handling to ensure practical applicability. The integration of ML
classifiers (SVM and RF) and optimization algorithms (GA and BFO) naturally increases
computational demands, particularly during the training phase. To mitigate this,

Table 4 Performance comparison of SVM, RF, and proposed hybrid SVM-RF algorithm.

Models Accuracy (%) Precision
(%)

Recall
(%)

F1-score (%) Loss

SVM 54.52 65.35 68.90 65.35 0.49

RF 66 67.45 68.42 67.45 0.61

Proposed hybrid SVM-RF 97.56 98.89 97.37 98.12 0.02
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optimization processes are confined to the training stage, while real-time operations
leverage pre-trained models to minimize latency. Additionally, parallel processing and
dimensionality reduction techniques are employed to reduce runtime computational
overhead without compromising performance. The system’s modular design supports the
integration of diverse biometric modalities, including fingerprint, face, and iris data, and
can accommodate multimedia data such as images and video streams. However, the

Figure 8 ROC curve of the SVM, RF and the proposed SVM-RF model.
Full-size DOI: 10.7717/peerj-cs.2699/fig-8

Table 5 Comparison of the proposed SVM-RF model with the existing models towards multibiometric authentication.

Model Modalities Accuracy Reference

ResNet-50, VGG16, SVM Face and iris 93.33% Hasan & Abdulazeez (2024)

Artificial neural network (ANN) Face, iris and fingerprint 73.46% Lalitha et al. (2024)

Naïve-LLR-GMM Face & ocular 93.91 % Eskandari & Sharifi (2017)

Modified borda count method Fingerprint & iris 85% Bala, Gupta & Kumar (2022)

RSA and DNN Retina, finger and fingervein 91% Srivastava (2020)

HOG and log gabor filter Iris & Palm-print 92.23% Ramachandran & Sankar (2020)

Mbp-fusion scheme ECG, fingerprint & face 92.6% Amritha & Aravinth (2020)

Deep reinforcement learning Multimodal biometrics fusion 84–93% Huang (2022)

Neural and decision level fusion Iris & fingerprint 91.5% Garg, Vig & Gupta (2016)

Optimal gray wolf optimization (OGWO) Fingerprint, ear, and palm-print 91.67% Purohit & Ajmera (2021)

Fruit fly optimisation Fingerprint & iris 92.23% Prakash, Krishnaveni & Dhanalakshmi (2020)

RGB + Entropy network Face & periocular 87.41% Bala, Gupta & Kumar (2022)

Proposed SVM-RF Face, iris and fingerprint 97.56% This work
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current implementation focuses primarily on static images. Future enhancements will aim
to expand the system’s capacity for handling high-resolution and dynamic multimedia
datasets. Techniques such as batch processing, adaptive memory management, and
hardware accelerations, such as GPU support, will be explored to enhance scalability and
processing speed. These considerations ensure the system remains adaptable and scalable,
making it a strong candidate for deployment in real-world, high-demand biometric
applications. Future work will focus on refining these aspects to fully realize the system’s
potential for multimedia data handling and computational efficiency.

CONCLUSION
The hybrid SVM-RF multi-biometric system introduced in this study demonstrates a
significant advancement in biometric authentication by effectively integrating face, iris,
and fingerprint recognition. The comprehensive methodology employed, which includes
feature extraction using Gabor filters, classification through a hybrid SVM-RF approach,
and optimization with GA and BFO, has proven to enhance system performance
considerably. The proposed system achieves an impressive accuracy of 97.56%,
outperforming conventional methods such as SVM and RF, which recorded 54.52% and
66% accuracy, respectively. The experimental results highlight the superior capabilities of
the hybrid model in terms of accuracy, precision, recall, and F1-score, underscoring its
robustness and reliability in multi-biometric identification tasks. Additionally, the hybrid
approach’s ability to minimize loss values to 0.02 further underscores its effectiveness
compared to the higher loss values observed in traditional algorithms. The successful
implementation and optimization of the hybrid system suggest its potential for practical
applications, providing a more secure and dependable solution for biometric
authentication.

However, the model has some limitations that should be acknowledged. The increased
computational complexity from combining multiple classifiers and optimization methods
may result in longer processing times, making the system less suitable for real-time
applications. The scalability of the system to very large datasets also pose a challenge, as
computational demands could grow significantly. Additionally, the system’s performance
heavily depends on the quality of biometric data, with noisy, low-resolution, or incomplete
inputs potentially affecting classification accuracy. While the use of RF helps to mitigate
class imbalance, biased results can still occur when certain classes are underrepresented.
Moreover, the model does not fully consider variations in environmental conditions, such
as changes in lighting, which could impact its reliability in real-world applications. Future
research may focus on expanding the number of biometric modalities and further
enhancing the security features to address evolving challenges in biometric systems. This
study confirms that integrating advanced ML techniques and optimization algorithms can
significantly improve the accuracy and reliability of biometric systems, paving the way for
more sophisticated and secure identification solutions.
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