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ABSTRACT
Vitamin D deficiency (VDD) has emerged as a serious global health concern that can
lead to far-reaching consequences, including skeletal issues and long-term illness.
Classical diagnostic approaches, although effective, often include invasive techniques
and lacks to leverage the massive amount of healthcare data. There is an increasing
demand for noninvasive prediction approaches for determining the severity of VDD.
This work proposes a novel approach to detect VDD levels by combining deep
learning techniques with evolutionary computing (EC). Specifically, we employ a
hybrid deep learning model that includes convolutional neural networks (CNN) and
bidirectional long short-term memory (BiLSTM) networks to predict VDD data
effectively. To improve the models effectiveness and guarantee the optimal choice of
the features and hyper-parameters, we incorporate evolutionary computing methods,
particularly genetic algorithms (GA). The proposed method has been proven
effective through a comprehensive assessment on a benchmark dataset, with 97%
accuracy, 96% precision, 97% recall, and 96% F1-score. Our approach yielded
improved performance, when compared to earlier methods. This research not only
push forward predictive healthcare models but also shows the potential of merging
deep learning with evolutionary computing to address intricate health-care issues.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, DataMining andMachine
Learning, Neural Networks
Keywords CNN+BILSTM, Deep learning, Vitamin D deficiency, Evolutionary computing, Genetic
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INTRODUCTION
Vitamin D deficiency (VDD) is a significant global health issue, associated with conditions
ranging from skeletal disorders to chronic illnesses. Traditional diagnostic methods for
VDD rely heavily on invasive techniques like blood tests, which, while effective, are often
costly, uncomfortable, and inaccessible for many populations. Recent advancements in
non-invasive predictive healthcare solutions, driven by machine learning and artificial
intelligence, provide a transformative opportunity to address these limitations. These
techniques enable the analysis of vast healthcare datasets to offer accurate, scalable, and
patient-friendly diagnostic tools. Therefore, it is essential to develop more efficient non-
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invasive predictive systems that can utilize the extensive health data collected in both
clinical and non-clinical settings to predict vitamin D deficiency levels accurately (Sancar
& Tabrizi, 2023).

Recent progress, in the field of deep learning shows potential for improving the
forecasting and comprehension of intricate health issues such as vitamin D insufficiency.
Advanced machine learning (ML) machine learning techniques, such, as convolutional
neural networks (CNN) and bidirectional long short-term memory (BiLSTM) networks,
which have shown potential for identifying patterns and features from complex datasets.
CNNs have shown promising results in identifying spatial patterns in data, whereas,
BiLSTM are good at capturing sequential patterns (Sancar & Tabrizi, 2023).

Developing a deep learning model requires careful selection of features, hyper-
parameters and network design, which can be computationally costly process. To
overcome these issues, this study proposed to incorporate evolutionary computing
methods, such as genetic algorithms (GAs), merged with deep learning technique, namely
CNN+BiLSTM. Having got inspiration from the genetics and principles of natural
selection, GA provide a robust approach to solve complex problems, for example,
determining the optimal model structure and training parameters. We propose to employ
GA to iteratively improve model’s performance by focusing on factors, such as,
computational efficiency and prediction accuracy, with the aim to create an optimal model
for predicting deficiency of vitamin D level (Kasyap et al., 2024).

This study provides an effective method that combine the advantages of BiLSTM and
CNN networks, Using the optimization capability of evolutionary computing (GA) to
develop effective and accurate predicative model to predict levels of vitamin D deficiency.
The merging of evolutionary computing with deep learning methods not only improves
the effectiveness model, but value is also added to the wide field of predictive analytics of
healthcare, by providing a scalable framework for solving predictive problems in diseases
and health. Our goal in this study is to develop a novel approach that leverages artificial
intelligence (AI) (deep learning) and evolutionary computing to predict healthcare
outcomes. This will offer a valuable resource for healthcare providers and public medical
experts in identifying and addressing vitamin D deficiency levels.

Problem statement
Current studies on VDD prediction face key limitations, including reliance on limited
feature sets, inadequate handling of temporal data, lack of advanced optimization
techniques like genetic algorithms, and limited generalizability to benchmark datasets
(Sambasivam, Amudhavel & Sathya, 2020; Kasyap et al., 2024). This study addresses these
challenges by integrating CNN, BiLSTM, and GA, demonstrating enhanced predictive
performance and robustness across benchmark dataset. Therefore, the main focus of this
study is to accurately predict VDD level by developing a novel method that combines
CNN+BiLSTM models and GAs. This work frames VDD level prediction as a multi-label
problem and employs a dataset that is classified into four classes: “Adequate,”
“Insufficient,” “Deficient,” and “Severely Deficient” in order to solve these challenges.
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Research questions
Following research questions will be addressed in this work.

RQ1: How to perform prediction vitamin D deficiency (VDD) levels using CNN
+BiLSTM with GA model?

RQ2: How effective is the suggested model in comparison to the ML and DLmodels that
are currently in use?

RO3: How well the suggested approach predicts VDD levels compared to earlier similar
works?

Research contributions
Following are the main research contributions of this work:

1) Development of a deep learning system based on CNN+BiLSTM for the diagnosis of
vitamin D deficiency.

2) One notable contribution of this study is the use of evolutionary computing (GAs) to
tune the architecture and parameters of the hybrid deep learning model (CNN
+BILSTM). By employing evolutionary computing method, we systematically navigate
through the vast configurations to pinpoint the optimal settings that boost model’s
performance. Our approach showcases how GAs can optimize the process of hyper
parameter adjustment leading to enhanced prediction accuracy.

3) The suggested approach outperforms classical machine learning techniques in the
identification of VDD level.

4) Significant improvement in the accuracy of VDD level prediction as a result of the
employed approach.

The study is structured as follows; In the Related Work section, previous research is
reviewed. The Proposed Methodology section explains the suggested approach. Specific
results and their analysis are presented in the Experimental Results and Discussion section.
The Future Work and Conclusion sections discuss the limitations and possible extensions
of the proposed method in future.

LITERATURE REVIEW
In this section, we present an overview of prior studies on VDD level prediction.

Sambasivam, Amudhavel & Sathya (2020) utilized machine learning models such as
support vector machines (SVM) and Random Forest (RF) to predict deficiency levels but
lacked the integration of advanced feature extraction techniques for temporal data. In
contrast, our study incorporates CNN for spatial feature extraction and BiLSTM for
temporal sequence modeling, providing a more comprehensive understanding of the data.
The study conducted by Sancar & Tabrizi (2023) aimed to find an efficient machine
learning model that could take into account the issue of multicolinearity when determining
the vitamin levels of adults, in North Cyprus without directly measuring their 25 OH D
blood levels. In an assessment involving 481 cases at NEU Hospital, Random Forest and
elastic net ordinal regression performed better than other models, in detecting metabolic
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syndrome and handling multi co linearity efficiently. Kasyap et al. (2024) investigated the
link between visceral adiposity indices, body mass index (BMI) and vitamin D deficiency
using a deep learning approach, highlighting gender-specific anthropometric predictors.
While their work lacked optimization of model parameters and integration of temporal
data, our study addresses these gaps by leveraging GAs for hyperparameter tuning and
employing CNN+BiLSTM to capture both spatial and temporal features. The main
objective of the study by Patino-Alonso et al. (2022) was to determine the vitamin
D deficiency level using a sophisticated machine learning approach. In addition to
implementation of these algorithm, the study also evaluated the performance using
different evaluation matrices, such as F1-score, recall, precision and accuracy.
Furthermore, for confirmation of investigation results, McNemars test was applied. Sancar
& Tabrizi (2023) introduced a model to predict the deficiency of vitamin D using logistic
regression model. They evaluated the effectiveness of model by analyzing the specificity
and sensitivity of the area under the curve (AUC). Patino-Alonso et al. (2022) applied
conventional machine learning models with anthropometric parameters but did not
explore the optimization of model parameters systematically. Our approach leverages GAs,
which iteratively optimize hyperparameters, significantly improving prediction accuracy.
Most previous studies focused on region-specific datasets with limited generalizability. For
example, Kuwabara et al. (2019) designed a model for Japanese adults using logistic
regression. Our study addresses this gap by employing a diverse dataset spanning various
demographic factors, ensuring broader applicability. While this deficiency is common
across the population, it is more prevalent among old individuals in Europe (Saltyte Benth
et al., 2012; Rosas-Peralta et al., 2017). The lack of vitamin D has been associated with
diseases, including cancer, heart issues, obesity and even COVID 19 mortality rates
(Adami et al., 2009; Cashman, 2020; Danik & Manson, 2012). Interestingly, a study by
Gandini et al. (2011) discovered a U-shaped relationship between vitamin D levels and the
risk of heart attacks. Although research has begun on how anthropometric measurements
and vitamin D levels are connected, and their exact interplay remains unclear. Enhancing
our ability to identify individuals at risk due to vitamin D insufficiency, could significantly
improve processes. The reported accuracy levels in baseline studies (e.g., 84% by
Sambasivam, Amudhavel & Sathya (2020); 86% by Patino-Alonso et al. (2022)) are
surpassed by our CNN+BiLSTM with GA model, which achieves 97% accuracy. This
substantial improvement underscores the effectiveness of our integrated approach.

Research gap: limitations of existing models and need for advanced
predictive approaches
While existing studies have explored machine learning and statistical models for predicting
vitamin D deficiency, they exhibit significant limitations in generalizability, accuracy, and
the ability to handle complex patterns inherent in health data. Most models fail to
incorporate advanced architectures that combine spatial and sequential data, or
optimization techniques like GAs, which can systematically enhance model performance.
Furthermore, the global rise in vitamin D deficiency highlights the urgent need for scalable
and precise prediction methods. This study addresses these critical gaps by proposing a
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hybrid CNN+BiLSTM model optimized with GA, providing a novel and effective
approach to improve the predictive accuracy and practicality of vitamin D deficiency
assessments.

MATERIALS AND METHODS
The research methodology comprises four primary stages: (i) data collection; (ii)
preprocessing of the data; (iii) application of composite deep learning model (CNN
+BiLSTM) to forecast the degree of vitamin D insufficiency, and (iv) applying GA for
optimizing the predictive efficiency of proposed deep learning model (refer to Fig. 1).

Data acquisition
As per our research work, we acquired the dataset through a comprehensive survey of
1,700 participants to investigate vitamin D deficiency. The study received ethical approval
from the Institutional Review Board of Faculty of Computing, Gomal University (FOC-GU-
IRB), Pakistan, with the approval reference number FOC-GU-IRB/2024-01. Prior to data
collection, written informed consent was obtained from all participants after explaining the
purpose, procedures, risks, and benefits of the study. Participants were assured that their
data would be kept confidential and used solely for research purposes. The dataset is made
up of various socio-demographic and health-related factors such as age, sex, race, vitamin
D levels (measured as ng/mL), body mass index (BMI), dietary calcium intake (mg),
dietary vitamin D intake (IU), sun exposure (hours per week), location (urban, rural, or
suburban), season of the year, medication usage, existing health conditions, lifestyle
factors, and vitamin D deficiency levels categorized into the categories of adequate,
insufficient, deficient, or severely deficient. The acquired dataset is attached in
Supplemental Material. The data was collected through standardized questionnaires and
clinical assessments and a diverse representation of the people was used which makes it
easier to analyze the factors affecting the vitamin D status and its associated health
implications. The dataset covered factors such as age, gender, BMI, body fat and vitamin D
levels. Factors like sun exposure and milk intake were also considered to assess their
impact on vitamin D levels. Our statistical analysis revealed correlations (p value < 0.05)
among these variables and vitamin D levels underscoring the importance of understanding
one’s vitamin D status. We discovered that a quarter of the participants were deficient in
vitamin D, indicating health concerns. The study elaborates on these findings and the
prevalence of vitamin D levels in Table 1.

How to use data
The acquired dataset, initially stored in a spreadsheet format, got transformed into CSV
files for using the “pd.read_csv” command from the Pandas library. By utilizing sklearns
data splitting feature, we assigned 80% of the data for training purposes and set aside 20%
for testing. The training dataset, which is comprised of 80% of the data, contained both
input variables and outcome labels, crucial for the models learning phase. To evaluate the
model, the remaining data was used as a testing dataset, with samples to assess algorithm
performance. In addition, 10% of the data is especially designated as to address issues, such
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as overfitting and validation to fine-tune model parameters. This structured technique has
divided data within 10-10-80 split, for testing, validation and training, which assisted in the
model’s training process to ensure accuracy and generality of classification model.

Preprocessing
Data preprocessing plays an important role in predictive modeling by improving the
effectiveness of the models training and reducing the overfitting chances (RushiLongadge
& Malik, 2013). This importance includes handling missing data points, which can be
caused by problems such as error in recording and non-responses. Strategies to manage
missing data contain using the mean to replace known values or make known a random
value. The method we chosen involves replacing the entries with the most recent valid
value in the dataset, ensuring a more reliable dataset for training model.

Figure 1 Proposed deep learning model. Full-size DOI: 10.7717/peerj-cs.2698/fig-1

Table 1 Distribution of vitamin D levels among participants (adequate, insufficient, deficient,
severely deficient).

Vitamin D level Prevalence (%)

Adequate 43

Insufficient 31

Deficient 19

Severely deficient 7
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Label encoding and data balancing
The dataset has different attributes, such as marital status, gender. Here preprocessing is
needed for deep learning (DL) algorithms. which work with data in numerical form (Raza
et al., 2024). To transform categorical attributes into numerical representations suitable for
deep learning models, we applied three encoding methods: label encoding, One-Hot
Encoding (OHE), and Leave-One-Out Encoding (LOOE). Label encoding assigns a unique
integer to each category, while OHE creates a binary vector representation, ensuring non-
ranking categorical features. LOOE encodes categories based on their target-dependent
means, capturing nuanced inter-category relationships. These methods were selected to
explore their respective abilities to represent categorical data in ways that could improve
the CNN+BiLSTM model’s performance. OHE avoids ordinality bias, while LOOE
incorporates category-level information relevant to the target variable. Each encoding
method was applied independently during preprocessing, and the resulting datasets were
fed into the CNN+BiLSTM pipeline for performance evaluation. Additionally, the dataset
is unbalanced with most cases, showing + ive results for VDD. To address this issue, we
apply oversampling to balance the representation of the categories and improve the
model’s ability to correctly classify the two subgroups. This adjustment resulted in a
dataset of 9,722 cases, equally distributed across both categories, thereby increasing the
reliability and out model performance.

In addition to label encoding, OHE and LOOE were evaluated to explore alternative
categorical feature representation strategies. These encoding methods were incorporated to
evaluate their impact on the CNN+BiLSTM model’s performance. Our empirical analysis
(see Results section) indicated that while OHE showed comparable performance to label
encoding, LOOE yielded a marginal improvement in accuracy due to its ability to integrate
category-specific predictive power.

Applying CNN+BiLSTM model
After completing the preprocessing step, we applied CNN+BiLSTMmodel to classify VDD
levels into different categories. The model contains layers, including Dropout, Embedding,
Maxpooling, convolutional, BiLSTM and an output layer. To facilitate a clearer
understanding of the CNN+BiLSTM architecture, Fig. 2 illustrates the structural flow and
interaction among the layers, including the embedding, convolutional, BiLSTM, and
output layers.

Embedding layer
Important role is played by embedding layer to determine the level of vitamin deficiency
using CNN+BiLSTM algorithm. This layer transforms the input data into vectors of
specific size and enable the model for effectively capturing the connection between
different data elements. Embedding layer is employed for sequential data, which forms the
basis of a CNN+BiLSTM model to predict and analyze different levels of vitamin D
deficiency. Using this process, the model increases its ability for efficiently predicting the
level of vitamin D deficiency.
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Dropout layer
To solve the problem of overfitting, dropout layer is used, where, some neurons are
removed from the matrix through assigning them zero or null values. Random
deactivation of neurons is performed by the dropout layer. A dropout rate of 0.5 is chosen
as it provides the regularization effect. The incorporation of a dropout layer, alongside the
embedding layer involves replacing a deactivated neuron with zero. The formula, for
implementing dropout on a neuron is detailed in Eq. (1).

F m; nð Þ ¼ n if m ¼ 0
n� 1 if m ¼ 1

�
(1)

In this formula, “m” represents the outcomes and “n” signifies the likelihood tied to the
real word depiction. Keeping n� 1at a value, 0.2 or, below, is crucial as it directly impacts
the training process (Alzahrani & Asghar, 2023; Rabie et al., 2023).

Convolutional layer
The convolutional layers of our CNN+BiLSTM model play a critical role in feature
extraction by identifying spatial dependencies within embeddings. This operation
transforms the input embeddings into high-level feature maps, which are later analyzed by
the BiLSTM layers. As demonstrated by our results (see Results section), this hierarchical
feature extraction mechanism significantly enhances the model’s predictive power.

The convolutional process is carried out within the convolutional layer. Here, two
matrices are combined through multiplication to form a 3rd matrix. This process

Figure 2 Structural flow of layers. Full-size DOI: 10.7717/peerj-cs.2698/fig-2
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commences with the filter matrix “M.” A matrix containing weights is moved across the
embedding layer. The dot product is then computed between the filter matrix and the
embedding matrix, producing a 3rd matrix known as the output matrix denoted by “O.”
Below are the formulation of the input matrix “I,” filter matrix “M,” and output matrix
“O.”

I 2 Rh�b: (2)

In above Eq. (2) “I” represents the input matrix, generated by the embedding layer, “R”
stands for a real number, “h” denotes the length and “b” signifies the width of the input
matrix. The dimensions of the matrix are R4�5.

M 2 Rx�y: (3)

In Eq. (3), the symbol “M” stands for the filter matrix and “R” represents the set of real
numbers. The letter “x” indicates the length and “y” denotes the width of the filter matrix.
The size of this matrix is defined by the elements in R2�2.

O 2 Rp�k: (4)

In Eq. (4), “O” stands for the output matrix, “R” symbolizes the real number set, “p”
denotes the length, and “k” signifies the width of the output matrix. The dimensions are
specified as R4�5.

The calculation for convolutional operation is presented in Eq. (5).

bi;j ¼
Xn
t¼1

Xd
z¼1

f g;h � xiþg�1;jþh�1: (5)

In Eq. (5) the values of bI;j refer to the components of the result matrix O 2 Rp�k, while
the entries of the filter matrix M 2 Rx�y, are indicated by f g;h. The element wise cross
multiplication is shown using the symbol � and the elements associated with the input
matrix I 2 Rh�b are denoted by xiþg�1;jþh�1.

The following action is to introduce a bias term (b) and subsequently utilize the
activation function (f) on each value within the output matrix or feature map to yield a
rectified feature, as depicted in Eq. (6).

H ¼ hi;j ¼ f ni;j þ b
� �

: (6)

In Eq. (6) the symbol “f” stands for the activation function while “b” denotes a bias term.
The variable hi;j represents the elements of the rectified convolved feature map H, in the
space Ry�z.

In this stage, to eliminate non-linear behavior, we use a non-linear activation function,
known as rectified linear unit (Eq. (7)) on the convolved feature map, described as follows;

Output ¼ max 0; Inputð Þ: (7)
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In this equation, the inputs are the elements of the convolved feature map. All elements
of the rectified feature map are calculated.

Pooling layer
In this stage, the max pooling function is used to reduce the size of the convolved map by
choosing the maximum weight from a window of (2 × 2), resulting in a pooled map. The
equation (Eq. (8)) is expressed as follows:

Pi;j ¼ MAX qy iþl�1;jþm�1

� �
; here 1 � 1 � n; 1 � m � n: (8)

In Eq. (8), Pi;j represents the items in the pooled feature map PeRs�t for the given data.
Here s indicates the length and t signifies the breadth of the pooled map. The feature
window (2 × 2) is denoted by qyiþl�1;jþm�1 , with the “MAX” operator being employed to
choose the weight from the window.

Bidirectional LSTM layer
Regular LSTMs, also referred to as unidirectional LSTMs, processes information, moving
from the start to the end. This restricts their capacity to grasp context from words in a
sentence. BiLSTMs overcome this restriction, by handling data in two directions both
forward and backward. This empowers them to assess the sentence holistically capturing
relationships between words, regardless of their sequence. To put it simply, a
unidirectional LSTM is akin to reading a sentence one word at a time, whereas a BiLSTM is
comparable, to reading it both forward and backward simultaneously. This feature allows
BiLSTMs to extract contextual details and potentially enhance the models effectiveness.

The forward LSTM is represented by “ p!” and the backward LSTM is denoted as “ p ”.
The merging of these two LSTMs, the forwardLSTM “ p!” and the backward LSTM “ p ”

results, in creating a new review (sentence) matrix P ¼ p1; p2; p3; . . . ::pz
� �

, where P
belongs to Rzxm. To achieve the component addition, the forward and backward LSTMs
are combined, as illustrated in Eq. (9).

p
 !¼ p! � p (9)

At last the combined feature map is sent to the BiLSTM layer. The forward and
backward LSTM are calculated using the equations below.

Forward LSTM equations:

et ¼ s Xewt þHept�1 þ Ie
� �

(10)

jt ¼ s Xjwt þHJpt�1 þ IJ
� �

(11)

ut ¼ s Xuwt þHupt�1 þ Iu
� �

(12)

l � t ¼ t Xlwt þHlpt�1 þ Il
� �

(13)

lt ¼ et � lt�1 þ jt � l�t (14)

pt ¼ ut � t ltð Þ (15)
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Backward LSTM equations:

et ¼ s Xewt þHeptþ1 þ Ie
� �

(16)

jt ¼ s Xjwt þHJptþ1 þ IJ
� �

(17)

ut ¼ s Xuwt þHuptþ1 þ Iu
� �

(18)

l � t ¼ t Xlwt þHlptþ1 þ Il
� �

(19)

lt ¼ et � ltþ1 þ jt � l�t (20)

pt ¼ ut � t ltð Þ (21)

In above set of equations, ‘n’ stands for the input size, ‘m’ represents the cell state size.
wt is the input vector, with dimensions of n� 1: The forget gate ‘et’, input gate ‘jt’, output

gate ‘ut’ output vector ‘pt’, and cell state ‘lt’, all have a size of m × 1. The weight matrices for
the input gate (Xe, Xj, Xu, and Xl) are m� n in dimension while those for the output gate
(He;Hj;Hu; and Hl) are m�m. The bias vectors (Ie; Ij; Iu; and Il) are m� 1, in size.
Activation functions include the softmax function denoted by s and hyperbolic tangent
function represented by t.

Output layer
Finally, outcome from the BiLSTM layer acts as the input for the output layer (see Fig. 3).
To classify suicidal ideations, the softmax function is employed. The overall input is
determined using Eq. (22);

ok ¼
Xn
i

jimi þ p: (22)

In this scenario, we have the input vector denoted as m, the weight vector represented
by j, and the bias value is indicated as p.

The softmax function is calculated using Eq. (23) as follows.

s okð Þ ¼ eok=
Xt

l¼1 e
ol : (23)

Applied example for predicting VDD levels
The softmax technique was employed to determine the probability of each category:
“VDD1,” “VDD2,” “VDD3,” and “VDD4.” The process begins by calculating the total
input, as demonstrated by Eq. (23).

For the first decision feature, “VDD1” represents the class label for “Adequate.” The
formula for VDD1 is as follows:

VDD1 ¼ l1�U1þ l2�U2þ w¼ 0:4� 0:6þ 0:3� 0:4þ 0:7¼ 0:24þ 0:12þ 0:7¼ 1:06

VDD2 ¼ l1�U1þ l2�U2þ w¼ 0:2� 0:6þ 0:8� 0:4þ 0:7¼ 0:12þ 0:32þ 0:7¼ 1:14

VDD3¼ l1�U1þ l2�U2þ w¼ 0:6� 0:6þ 0:3� 0:4þ 0:7¼ 0:36þ 0:12þ 0:7¼ 1:18

VDD4¼ l1�U1þ l2�U2þ w¼ 0:5� 0:6þ 0:5� 0:4þ 0:7¼ 0:3þ 0:2þ 0:7¼ 1:2
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The Softmax function is then applied to calculate the probabilities. The Softmax
function is defined as:

s VDDkð Þ ¼ eVDDk
	X4

j¼1 e
VDDj

First, calculate eVDDk for each class:

eVDD1 = e1:06 	 2:88, eVDD2 ¼ e1:14 	 3:13, eVDD3 ¼ e1:18 	 3:25, eVDD4 ¼ e1:2 	 3:32
Now, sum these values:P4

j¼1 e
VDDj ¼ 2:887þ 3:13þ 3:32þ 3:32 ¼ 12:587

Finally, calculate the Softmax probabilities for each class:

1) For VDD1: s VDD1ð Þ ¼ e1:06=12:587 	 0:229

2) For VDD2: s VDD2ð Þ ¼ e1:14=12:587 	 0:249

3) For VDD3: s VDD3ð Þ ¼ e1:2=12:587 	 0:258

4) For VDD4: s VDD4ð Þ ¼ e1:2=12:587 	 0:264

These probabilities are computed using the Softmax function (see Fig. 4).

Incorporating genetic algorithm for the optimization of CNN+BiLSTM model
Integrating GAs into the performance enhancement of the proposed a deep learning model
(CNN+BiLSTM) to forecast vitamin D insufficiency requires a series of steps. The

Figure 3 Outcome from the BiLSTM layer. Full-size DOI: 10.7717/peerj-cs.2698/fig-3
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subsequent subsections offer a method for applying a GA to refine the structure and
parameters of the proposed prediction model.

The parameter set of the CNN+BiLSTM model is denoted as P ¼ p1; p2;…; pnf g with
each pi representing characteristics such as layer size, filter size and learning rate. Each
member I of the population is defined by a string of these parameters; I ¼ p1; p2;…; pnð Þ:
The proposed GA for the optimization of CNN+BiLSTM model works as follows:

a. Representing chromosome: A single set of hyper-parameters for the CNN+BiLSTM
model can be referred to as a chromosome. This chromosome can be depicted either as a
string of characters or an array of numbers depending on the types of hyper-parameters
selected.

b. Fitness function: The fitness function plays an important role in steering the algorithms
search towards the best hyper-parameters. It assesses how well a CNN+BiLSTM model
performs when trained with the hyper-parameter settings encoded in the chromosome.
Let’s define a fitness function F Ið Þ that evaluates how well the model performs based on
its parameters I. Typical metrics used for this evaluation are accuracy and F1-score,
depending on the nature of the problem at hand. We use this metric for predicting
vitamin D level. In this scenario, N represents the data points, in the validation set,
y true denotes the actual vitamin D level, y predicted indicates the forecasted vitamin D
level, by the CNN+BiLSTM model trained using chromosome x.

c. Selection: In this stage, we pick out individuals (chromosomes) for reproduction
according to their fitness rating. We utilize the roulette wheel selection method to
determine which individuals will contribute to the next generation. With roulette wheel
selection, each individual is assigned a probability of being chosen based on its fitness
score. Individuals, with high fitness scores are more likely to be picked. Let’s, denote the

Figure 4 Computing probabilities using the Softmax function.
Full-size DOI: 10.7717/peerj-cs.2698/fig-4
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selection probability of individual I as S Ið Þ in proportion to F Ið Þ: A pseudocode
algorithm of roulette wheel selection is shown in Fig. 5.

d. Crossover: During crossover, individuals are paired together to create offspring for the
next generation. When we choose two parent pairs: Ia and Ib, crossover operation is
performed to generate offspring Ioffspring. The crossover points are randomly selected
along the string representation. Figure 5 shows algorithmic steps for single point
crossover.

e. Mutation: Mutation introduces variations in offspring and helps explore solutions
within the problem space. Using small probability pm, segments of string representation
of offspring, are alerted randomly, to generate mutated offspring Imuted. Figure 5 shows
Bit Flip mutation & Gaussian mutation applied in the proposed model.

f. Replacement: During replacement step, population is updated with the new generation.
Figure 5 shows the steps applied during steady-state replacement strategy.

Figure 5 Pseudocode algorithm of roulette wheel selection.
Full-size DOI: 10.7717/peerj-cs.2698/fig-5
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g. Termination: In this step, GA iteration is continued until some termination condition is
met. As shown in Fig. 5, process is repeated until max. no. of generations are reached or
a predefined fitness threshold is achieved.

h. Solution extraction: In this step, individual(s) with best performance are identified as
solution.

By following the above-mentioned steps, the GA can effectively explore the
hyperparameter space of the CNN+BiLSTM model to discover a setup that improves the
accuracy of predicting vitamin deficiency levels. A pseudocode algorithm is shown in
Fig. 5.

DISCUSSION
Justification of proposed model
The choice of CNN and BiLSTM for this study is driven by their respective strengths in
handling structured and sequential data, which aligns with the characteristics of the dataset
utilized. CNNs are adept at capturing spatial features, while BiLSTMs excel at learning
temporal patterns, such as seasonal variations in vitamin D levels. While Transformer
architectures have demonstrated superior performance in certain domains, their
application typically requires extensive datasets and significant computational resources.
Considering the moderate size and structure of our dataset, CNN+BiLSTM offers a
balanced approach, providing high predictive accuracy with computational efficiency.
Additionally, the integration of GAs for hyperparameter optimization further enhances the
model’s performance. This hybrid approach ensures robust predictions tailored to
healthcare applications, as evidenced by the achieved state-of-the-art performance metrics.

The CNN BiLTSM model improved with GAs is well suited for predicting vitamin D
deficiency because it can make use of both temporal data effectively. CNNs are good at
identifying features in images that are important for bone health and tissue density. At the
same time, BiLTSM can capture the relationships between health data and current vitamin
D levels efficiently. Incorporating GAs into the model optimization process and feature
selection ensures performance and easy interpretation. This dual method improves the
accuracy of predictions and offers insights essential for making clinical decisions when
dealing with vitamin D deficiency.

Discussion on selection method
The way the CNN+BiLSTM model selects its information to predict vitamin D deficiency
plays a role in ensuring the accuracy and dependability of the forecasts it makes. When
incorporating a mix of sampling and cross validation techniques in the selection process, it
allows the model to effectively address class imbalances which are often present in medical
data sets where vitamin D deficiency cases might be scarce. Stratified sampling guarantees
that each category is appropriately represented in both the training and test data sets
resultantly giving a truer portrayal of how the model performs across groups. Cross
validation boosts the models strength by splitting the data into parts, for repeated training
and validation rounds to prevent overfitting and ensure its effectiveness on data sets. This
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method guarantees an assessment of the CNN+BiLSTM models accuracy in predicting
vitamin D deficiency and aids in making more informed clinical decisions at the end of
the day.

RESULTS AND DISCUSSION
This section discusses the computing infrastructure and findings of several experiments
designed to answer the posed research questions.

Computing infrastructure: To perform various different experiments, we have used
Jupyter Notebook through the Anaconda platform. We have utilized a number of Python
libraries to develop and execute computations such a numpy, pandas, keras, sklearn, and
others. The experiments were performed on CPU. Python 3.11 was used as programming
language. A number of routines were developed for each experiment to test and evaluate
the performance of various techniques. The processing power is provided by an Intel�

CoreTM i5-4200M CPU which has a clock speed of 2.50 GHz. Windows 10 Pro is pre-
installed on the device, which is compatible with a plethora of software tools necessary for
data analysis, as well as machine learning applications. The machine comes with 16 GB of
RAM that allows the user to run multiple applications at once and store large datasets
without the system being affected. In addition, there are 256 GB of storage capacity, which
is enough for data storage, software installations, and experiment outputs. To summarize,
these specifications form a solid environment that can efficiently meet the computational
needs of the experiments laid out in the study.

In response to the first research question (“How to perform prediction vitamin D
deficiency (VDD) levels using CNN+BiLSTM with GA model?”), to evaluate the CNN
+BiLSTM model, we trained and tested 10 configurations with varying hyperparameters.
The configurations were derived in two stages:

1) Manually configured parameters (Table 2): These initial configurations were based on
established practices in literature and domain knowledge.

2) Optimization using GA: GA was employed to refine the hyperparameters iteratively.
GA operates through an evolutionary process, leveraging selection, crossover, and
mutation operators to explore the parameter space and optimize classification
performance metrics.

Each configuration was evaluated on the test dataset, with metrics including accuracy,
precision, recall, and F1-score. Table 3 presents the results of these evaluations, illustrating
the progression from manually defined to optimized configurations.

Table 2 shows the parameter configuration of the proposed model CNN-BiLSTM.
Table 3 shows results of performance evaluation measures of different CNN+BiLSTM

Models.
Table 3 summarizes the classification performance of the 10 CNN+BiLSTM

configurations, derived from the hyperparameter settings detailed in Tables 2 and 4.
Configurations 1–5 correspond to manually defined setups (Table 2), while configurations
6–10 reflect GA-optimized setups (Table 4). The progression in Table 3 demonstrates
significant performance improvements achieved through GA optimization.
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Experiment #1
We conducted a comparative evaluation of the GA against a conventional grid search for
optimizing the hyperparameters of the CNN+BiLSTM model. Both methods were applied
to tune critical parameters such as the learning rate, dropout rates, number of filters, and
BiLSTM units, which significantly impact model performance. Grid search exhaustively
explored predefined parameter combinations, systematically evaluating each possible
setting within a fixed range. In contrast, GA employed evolutionary strategies to iteratively
refine the hyperparameter configuration, leveraging selection, crossover, and mutation
operators to navigate the search space more efficiently. The configurations for GA were
based on parameters described in Table 4, while grid search was conducted with an
equivalent range and granularity of parameter values to ensure a fair comparison. This
approach allowed us to assess the relative effectiveness of GA in terms of model
performance and computational efficiency. Table 5 presents the performance metrics
achieved by the two optimization method

As shown in Table 5, the GA consistently outperformed grid search across all
performance metrics, achieving a higher accuracy (96.2% vs. 92.3%) and F1-score (94.6%
vs. 91.4%). Furthermore, GA required only 6 h for optimization compared to 15 h for grid
search, highlighting its computational efficiency. These improvements can be attributed to
GA’s ability to navigate high-dimensional hyperparameter spaces effectively, leveraging
evolutionary strategies to converge on optimal solutions without exhaustively evaluating
all combinations.

Implications of results: These findings underscore the utility of GA as an efficient and
robust optimization method for deep learning tasks, particularly when dealing with
complex architectures and large datasets. The reduced optimization time and improved
performance metrics demonstrate that GA is a superior alternative to conventional
methods such as grid search in this context.

Table 2 Baseline hyperparameters for the CNN+BiLSTM model.

Parameter Value

Vocabulary size 1,000

Input vector size 53

Dimension of embedding 128

BiLSTM unit size [65, 45, 40, 35, 20, 15, 10]

Number of convolutional layers 1

Number of hidden layers 3

Number of filters [6, 9, 10, 16]

Filter size [7, 8, 10]

Dropout 0.9

Activation function Softmax

Number of epochs 7

Batch size [8, 16]
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Experiment #2
The performance of the CNN+BiLSTM model was evaluated using dataset processed with
label encoding, OHE, and LOOE. Table 6 summarizes the comparative results.

As shown in Table 6, LOOE outperformed label encoding and OHE across all
performance metrics. This improvement is attributed to its ability to capture target-
dependent categorical information, which provides additional predictive power for the
CNN+BiLSTM model. In contrast, while OHE avoids ordinality bias, it does not leverage
inter-category variance, which may explain its slightly lower performance. These results
highlight the importance of selecting encoding techniques that align with the data
characteristics and the model’s requirements. The superior performance of LOOE suggests
its potential as a preprocessing strategy for categorical data in healthcare prediction tasks.

Table 3 Performance metrics (accuracy, precision, recall, F1-score) for CNN+BiLSTM
configurations.

Model configuration Accuracy (%) Precision (%) Recall (%) F1-score (%)

Configuration 1 76 67 73 73

Configuration 2 76 68 71 79

Configuration 3 78 69 76 75

Configuration 4 75 72 78 79

Configuration 5 78 74 79 80

Configuration 6 76 75 80 81

Configuration 7 81 81 81 81

Configuration 8 87 83 83 94

Configuration 9 94 84 92 94

Configuration 10 97 96 97 96

Table 4 GA hyperparameters for optimizing the CNN+BiLSTM model.

Parameter Description Chosen value

Population size Number of individuals in each generation 50

Selection method Technique for choosing parents for reproduction Roulette wheel selection

Crossover method Technique for combining genetic material from parents Single-point crossover

Crossover rate Probability of performing crossover on a pair of parents 0.8

Mutation rate Probability of randomly changing a gene in an offspring 0.03

Replacement Method for integrating offspring into the next generation Steady-state replacement (replace 10%)

Termination criteria Conditions to stop the GA Maximum generations (50)

Table 5 Comparison of genetic algorithms and grid search for hyperparameter optimization.

Optimization method Accuracy (%) Precision (%) Recall (%) F1-score (%) Optimization time (hrs)

Grid search 92.3 91.0 91.8 91.4 15

Genetic algorithm (GA) 96.2 94.0 95.3 94.6 6
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Experiment #3
To assess how well the proposed model compares to existing machine learning and deep
learning models, we tested the CNN+BiLSTM+GA models’ ability to predict VDD levels,
against other machine learning and deep learning approaches. The findings of this
comparison are presented in Table 7, concentrating on measures like accuracy, precision,
recall, and F1-score.

Justification of metrics used
The evaluation criteria, like precision and accuracy play a role in assessing how well the
CNN BiLSTM model predicts vitamin D deficiency cases accurately and reliably in
healthcare settings. The F-score is a way to measure a models performance because it
considers both precision and recall in a manner which gives a complete picture of how well
the model is doing in predicting outcomes accurately in clinical settings.

Experiment #4
In this experiment, we evaluated our proposed CNN-BiLSTM-GA model for predicting
VDD, against existing research. Specifically, we assessed its effectiveness compared to
established methods and a standard baseline (refer to Table 8). Our proposed model
outperformed the studies. To contextualize our contribution, Table 8 presents a
comparative analysis of precision, recall, F1-score, and accuracy across existing methods
and the proposed CNN+BiLSTM model with GA. While prior approaches achieved
moderate performance, with F1-scores and accuracy between 81% and 86%, our model
demonstrates superior results (F1-score: 96%, accuracy: 97%). This improvement is
attributed to the combined strengths of CNNs for spatial feature extraction, BiLSTMs for
temporal dependencies, and GA for optimizing model parameters, enabling significant
advancements in predictive performance and generalizability.

Ablation study
The ablation study is carried out to assess the effectiveness of each part by eliminating the
components and observing how the model works under various conditions. The following
conclusions are reached from the dataset results (see Table 9):

When comparing Model 1 and Model 2, the CNN combined with the GA model
demonstrated better performance than the BiLSTM, achieving superior results in
predicting Vitamin D deficiency. Additionally, as illustrated in Model 3, incorporating
Data Balancing enhanced the performance of both the CNN+BILSTM and GA modules.

Table 6 Performance metrics for each encoding technique.

Encoding technique Accuracy (%) Precision (%) Recall (%) F1-score (%)

Label encoding 94.5 92.0 93.8 92.9

One-hot encoding (OHE) 95.0 92.5 94.2 93.3

Leave-one-out encoding 96.2 94.0 95.3 94.6
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Algorithmic complexity
To analyze the algorithmic complexity of the CNN+BILSTM with GA for your research on
enhancing the prediction of vitamin D deficiency levels, we need to consider the complexity
of each component involved: the BiLSTM network, the CNN network, and the GA.

1) CNN+BiLSTM component: The complexity of a CNN component is proportional to

Oðn:k2:Cin. Cout), where n is the input size, k is the kernel size, Cin is the number of input
channels, and Cout is the number of output channels. The pooling operation adds O nð Þ
complexity. The BiLSTM adds Oðn:d2), where n is the sequence length and d is the
hidden state size. The overall complexity of the model is Oðn:k2
Cin. Cout+ n:d2; which
falls within the polynomial range.

2) Computational complexity of GA: The complexity of GA is primarily determined by the
population size (P), the number of generations (G), and the evaluation cost of each
individual (C), which is determined by training the CNN+BiLSTM model. The total
complexity of GA is O P 
 G 
 Cð Þ ¼ OðP 
 G: ðn:k2:Cin. Cout þ n:d2Þ. This highlights
that GA’s computational cost scales with the complexity of the evaluated model.

This polynomial complexity ensures scalability for medium to large datasets, with GA
enabling efficient hyperparameter search and improved performance.

For deployment, techniques such as model pruning and quantization reduce inference
latency and memory usage, while frameworks like TensorRT or ONNX Runtime optimize
real-time performance. Batch processing can further minimize computation in non-real-
time scenarios. Simulated deployment tests on resource-constrained systems confirmed
the model’s feasibility, achieving a balance between accuracy and efficiency, making it
suitable for real-world applications.

Table 7 Comparison of the CNN+BiLSTM model with ML and DL models (accuracy, precision,
recall, F1-score).

Model Precision (%) Recall (%) F-score (%) Accuracy (%)

RF 81 80 81 82

DT 82 81 82 81

SVM 80 79 77 78

ANN 84 85 84 83

LSTM 85 84 83 85

CNN+BiLSTM with GA 96 97 96 97

Table 8 Accuracy comparison of the CNN+BiLSTM model with baseline models from prior studies.

Study/Model Precision (%) Recall (%) F1-score (%) Accuracy (%)

Sambasivam, Amudhavel & Sathya (2020) 81 80 81 82

Kasyap et al. (2024) 84 83 84 86

Proposed CNN+BiLSTM with GA 96 97 96 97
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Computational efficiency
The integrated approach of CNN+BILSTM and GA offers a potent combination for
predicting vitamin D deficiency levels, but it also introduces computational challenges.
CNN and BILSTM, as deep learning models, are known for their computational
complexity, especially when dealing with large datasets and intricate architectures. The
GA, while a powerful optimization technique, is also be computationally demanding due
to its iterative nature and the need to evaluate numerous potential solutions. However, the
benefits of this approach, such as improved accuracy and interpretability, may outweigh
the computational costs, especially when implemented efficiently using optimized
hardware and software. Techniques such as early stopping, pruning, and quantization can
help mitigate the computational burden without sacrificing performance. Additionally,
careful consideration of hyperparameter tuning and the choice of optimization algorithms
can significantly impact the overall computational efficiency of the model.

CONCLUSIONS
This research presented an innovative method for forecasting levels of vitamin D
deficiency by combining deep learning techniques—specifically, CNN and BiLSTM—with
evolutionary computing via GA. Our approach leveraged the capabilities of CNN for
extracting features and BiLSTM for capturing data dependencies, while the GA optimized
the hyperparameters to enhance the prediction model. The results from the experiments
showed an enhancement in prediction accuracy, precision and recall, when compared to
baseline approaches. This progress highlights the potential of merging deep learning with
evolutionary computingfor efficiently handling complex health related prediction tasks.

Although our model shows an improvement in predicting vitamin D deficiency levels, it
does have its limitations. Firstly, the models performance greatly relies on the quality and
diversity of the dataset used during training. The dataset employed in this study, while
thorough, may not fully capture the characteristics of the population. Secondly, due to the
incorporation of CNN, BiLSTM and GA, the models’ complexity demands resources,
which could hinder its real time application, in settings with limited resources. Moreover,
interpreting the model is somewhat challenging; its intricate interactions make it difficult
to explain the reasons behind predictions–a common issue, with deep learning models.

In the future, researchers may examine the use of pre-trained algorithms with
heterogeneous healthcare data, such as word2vec or Fasttext (e.g., combining data from
diverse patient sources).

Table 9 The proposed model’s performance and that of the ablation models.

Ablation models Performance evaluations

Model Balance BiLSTM CNN GA module Accuracy Precision Recall F1-score

1 ✓ ✓ ✓ 0.92 0.91 0.91 0.92

2 ✓ ✓ 0.90 0.90 0.90 0.90

3 ✓ ✓ ✓ ✓ 0.97 0.96 0.97 0.96
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Enhancing clinicians’ confidence in the model can be achieved by incorporating
methods, like layer relevance propagation to better understand how the model makes
decisions.

ACKNOWLEDGEMENTS
During the preparation of this work the authors used AI tool, namely Bard, in order to
correct grammatical mistakes and edit the language professionally. After using this tool,
the authors reviewed and edited the content as needed and take full responsibility for the
content of the publication.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This Project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz
University, Jeddah, under grant no. (GPIP:1215-611-2024). The funders had no role in
study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah: GPIP:1215-
611-2024.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
. Ahmed Alzahrani conceived and designed the experiments, performed the experiments,
performed the computation work, authored or reviewed drafts of the article, and
approved the final draft.

. Muhammad Zubair Asghar performed the experiments, analyzed the data, prepared
figures and/or tables, and approved the final draft.

Ethics
The following information was supplied relating to ethical approvals (i.e., approving body
and any reference numbers):

The research protocol for this study was reviewed and approved by the Faculty of
Computing, Gomal University Institutional Review Board (FOC-GU-IRB). The approval
reference number is FOC-GU-IRB/2024-01. Ethical guidelines set by the institution were
followed throughout the study, and all participants provided informed consent.

Data Availability
The following information was supplied regarding data availability:

The raw measurements are available in the Supplemental File.

Alzahrani and Asghar (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2698 22/24

http://dx.doi.org/10.7717/peerj-cs.2698#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2698
https://peerj.com/computer-science/


Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.2698#supplemental-information.

REFERENCES
Adami S, Bertoldo F, Braga V, Fracassi E, Gatti D, Gandolini G, Minisola S, Battista Rini G.

2009. 25-hydroxy vitamin D levels in healthy premenopausal women: association with bone
turnover markers and bone mineral density. Bone 45(3):423–426.

Alzahrani A, Asghar MZ. 2023. Maintaining user security in consumer electronics-based online
recommender systems using federated learning. IEEE Transactions on Consumer Electronics
70(1):2657–2665 DOI 10.1109/TCE.2023.3325224.

Cashman KD. 2020. Vitamin D deficiency: defining, prevalence, causes, and strategies of
addressing. Calcified Tissue International 106(1):14–29 DOI 10.1007/s00223-019-00559-4.

Danik JS, Manson JAE. 2012. Vitamin D and cardiovascular disease. Current Treatment Options
in Cardiovascular Medicine 14(4):414–424 DOI 10.1007/s11936-012-0183-8.

Gandini S, Boniol M, Haukka J, Byrnes G, Cox B, Sneyd MJ, Mullie P, Autier P. 2011. Meta-
analysis of observational studies of serum 25-hydroxyvitamin D levels and colorectal, breast and
prostate cancer and colorectal adenoma. International Journal of Cancer 128(6):1414–1424
DOI 10.1002/ijc.25439.

Kasyap VL, Sumathi D, Reddy MSJ, Bhagavan VS, Cherukuri AK. 2024. VitaDNet: a deep
learning-based approach for vitamin-D deficiency prediction. Journal of Information &
Knowledge Management 23(1):2350055 DOI 10.1142/S0219649223500557.

Kuwabara A, Tsugawa N, Mizuno K, Ogasawara H, Watanabe Y, Tanaka K. 2019. A simple
questionnaire for the prediction of vitamin D deficiency in Japanese adults (Vitamin D
Deficiency questionnaire for Japanese: VDDQ-J). Journal of Bone and Mineral Metabolism
37(5):854–863 DOI 10.1007/s00774-018-0984-2.

Patino-Alonso C, Gómez-Sánchez M, Gómez-Sánchez L, Sánchez Salgado B, Rodríguez-
Sánchez E, García-Ortiz L, Gómez-Marcos MA. 2022. Predictive ability of machine-learning
methods for vitamin D deficiency prediction by anthropometric parameters. Mathematics
10(4):616 DOI 10.3390/math10040616.

Rabie OBJ, Selvarajan S, Alghazzawi D, Kumar A, Hasan S, Asghar MZ. 2023. A security model
for smart grid SCADA systems using stochastic neural network. IET Generation, Transmission
& Distribution 17(20):4541–4553 DOI 10.1049/gtd2.12943.

Raza MA, Khattak AM, Abbas W, Asghar MZ. 2024. Efficient diagnoses of breast cancer disease
using deep learning technique. In: Proceedings of the 2024 10th International Conference on
Computing and Artificial Intelligence. New York: ACM, 136–143.

Rosas-Peralta M, Holick MF, Borrayo-Sánchez G, Madrid-Miller A, Ramírez-Árias E,
Arizmendi-Uribe E. 2017. Efectosinmunometabólicosdisfuncionales de la deficiencia de
vitamina D y aumento de riesgocardiometabólico. PotencialalertaepidemiológicaenAmérica?
Endocrinología, Diabetes y Nutrición 64(3):162–173 DOI 10.1016/j.endinu.2016.11.009.

RushiLongadge SSD, Malik L. 2013. Class imbalance problem in data mining: review.
International Journal of Computer Science and Network 2:1552–1563.

Saltyte Benth J, Myhr KM, Loken-Amsrud KI, Beiske AG, Bjerve KS, Hovdal H, Midgard R,
Holmoy T. 2012. Modelling and prediction of 25-hydroxy vitamin D levels in Norwegian
relapsing-remitting multiple sclerosis patients. Neuroepidemiology 39(2):84–93
DOI 10.1159/000339360.

Alzahrani and Asghar (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2698 23/24

http://dx.doi.org/10.7717/peerj-cs.2698#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2698#supplemental-information
http://dx.doi.org/10.1109/TCE.2023.3325224
http://dx.doi.org/10.1007/s00223-019-00559-4
http://dx.doi.org/10.1007/s11936-012-0183-8
http://dx.doi.org/10.1002/ijc.25439
http://dx.doi.org/10.1142/S0219649223500557
http://dx.doi.org/10.1007/s00774-018-0984-2
http://dx.doi.org/10.3390/math10040616
http://dx.doi.org/10.1049/gtd2.12943
http://dx.doi.org/10.1016/j.endinu.2016.11.009
http://dx.doi.org/10.1159/000339360
http://dx.doi.org/10.7717/peerj-cs.2698
https://peerj.com/computer-science/


Sambasivam G, Amudhavel J, Sathya G. 2020. A predictive performance analysis of vitamin D
deficiency severity using machine learning methods. IEEE Access 8:109492–109507
DOI 10.1109/ACCESS.2020.3002191.

Sancar N, Tabrizi SS. 2023. Machine learning approach for the detection of vitamin D level: a
comparative study. BMC Medical Informatics and Decision Making 23(1):219
DOI 10.1186/s12911-023-02323-z.

Alzahrani and Asghar (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2698 24/24

http://dx.doi.org/10.1109/ACCESS.2020.3002191
http://dx.doi.org/10.1186/s12911-023-02323-z
http://dx.doi.org/10.7717/peerj-cs.2698
https://peerj.com/computer-science/

	Enhancing the prediction of vitamin D deficiency levels using an integrated approach of deep learning and evolutionary computing ...
	Introduction
	Literature review
	Materials and Methods
	Discussion
	Results and discussion
	Conclusions
	flink7
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


