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ABSTRACT
There are 2.2 billion visually impaired individuals and 285 million blind people
worldwide. The vestibular system plays a fundamental role in the balance of a person
related to sight and hearing, and thus blind people require physical therapy to
improve their balance. Several clinical tests have been developed to evaluate balance,
such as the mini-BESTest. This test has been used to evaluate the balance of people
with neurological diseases, but there have been no studies that evaluate the balance of
blind individuals before. Furthermore, despite the scoring of these tests being not
subjective, the performance of some activities are subject to the physiotherapist’s
bias. Tele-rehabilitation is a growing field that aims to provide physical therapy to
people with disabilities. Among the technologies used in tele-rehabilitation are
inertial measurement units that can be used to monitor the balance of individuals.
The amount of data collected by these devices is large and the use of deep learning
models can help in analyzing these data. Therefore, the objective of this study is to
analyze for the first time the balance of blind individuals using the mini-BESTest and
inertial measurement units and to identify the activities that best differentiate
between blind and sighted individuals. We use the OpenSense RT monitoring device
to collect data from the inertial measurement unit, and we develop machine learning
and deep learning models to predict the score of the most relevant mini-BESTest
activities. In this study 29 blind and sighted individuals participated. The one-legged
stance is the activity that best differentiates between blind and sighted individuals. An
analysis on the acceleration data suggests that the evaluation of physiotherapists is
not completely adjusted to the test criterion. Cluster analysis suggests that inertial
data are not able to distinguish between three levels of evaluation. However, the
performance of our models shows an F1-score of 85.6% in predicting the score
evaluated by the mini-BESTest in a binary classification problem. The results of this
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study can help physiotherapists have a more objective evaluation of the balance of
their patients and to develop tele-rehabilitation systems for blind individuals.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, DataMining andMachine
Learning, Neural Networks
Keywords Balance, mini-BESTest, Blind, IMU, Quaternions, OpenSense RT, Artificial intelligence

INTRODUCTION
Vision is a crucial factor in the development of postural reflexes (Alotaibi et al., 2016).
Blind individuals face postural issues due to the disruption of neurological processes
caused by the loss of approximately half of the sensory input. Vision is essential for
maintaining balance (Stones & Kozma, 1987; Tomomitsu et al., 2013), as it provides
information about the environment and the body’s position in space. While tactile and
auditory senses are enhanced, they are less effective in maintaining proper biomechanics.
To maintain balance, blind individuals adopt a gait with head retraction, increased pelvic
rotation, excessive backward trunk lean, compensating forward head posture, abnormal
trunk and arm movements, and flexion contractures, leading to faulty body mechanics as a
natural compensation process.

Research has explored posture in visually impaired people (VIP). Alghadir, Alotaibi &
Iqbal (2019) investigated postural stability by comparing the velocity of the center of
gravity (COG) between blind and sighted individuals, showing that the COG velocity of
subjects with visual impairment behaves similarly to that of sighted subjects with closed
eyes. Furthermore, the mean COG velocity was higher in the visually impaired group than
in the sighted group with open eyes, indicating that the visually impaired group may have a
higher risk of falling than the sighted group.

Balance disturbances pose a significant challenge for people with visual impairments,
which significantly affects their mobility, independence, and overall quality of life (Jeon &
Cha, 2013). According to the World Health Organization, there are 2.2 billion visually
impaired individuals worldwide. Of these, 285 million are blind, while the remaining
2 billion have low vision (World Health Organization, 2023). In the US only, in 2016,
36.8 million people reported a balance problem (Mitchell & Bhattacharyya, 2023). To
address this issue, physical therapy interventions, often incorporating balance exercises,
are commonly prescribed (Mohammadkhani et al., 2021). While these interventions have
shown promise in improving balance in this population (Zarei & Norasteh, 2022), the
effectiveness of these exercises can be significantly enhanced through regular monitoring
and feedback.

Traditionally, balance assessments are conducted in clinical settings, limiting the
frequency of evaluations and hindering the ability to track progress over time. To bridge
this gap, there is a critical need for accessible and objective balance measurement tools
suitable for home use (Kelly et al., 2021). Such tools would empower people with visual
impairments to actively participate in their rehabilitation process by independently
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monitoring their balance improvements and allowing healthcare professionals to provide
timely feedback and adjustments to exercise regimens (Rutkowska et al., 2015).

Furthermore, recent studies have shown the potential of home-based exercise programs
to improve balance in people with visual impairments. Omidi et al. (2019) highlighted the
effectiveness of home exercises in enhancing balance, while Yang et al. (2016) explored the
feasibility and potential benefits of home-based virtual reality balance training for
individuals with motor impairments, including Parkinson’s disease. In addition, Haibach-
Beach, McNamera & Lieberman (2022) investigated the effectiveness of a home-based
balance exercise program for older adults with visual impairments. Building upon these
findings, the development of a user-friendly and reliable home-based balance assessment
tool could contribute significantly to the management and rehabilitation of balance
disorders in the visually impaired population.

Balance assessment is a cornerstone in the management of individuals with visual
impairments. Several standardized tests have been developed to evaluate balance, each
with its own strengths and limitations. The Berg Balance Scale (BBS) is a 15–20 min
commonly used measure of functional balance, particularly in the elderly population
(Miranda-Cantellops & Tiu, 2022). The Balance Evaluation Systems Test (BESTest)
provides a comprehensive assessment of postural control systems that is suitable for
patients with Parkinson’s disease and the elderly (Horak, Wrisley & Frank, 2009). It takes
about 35 min to be completed (Franchignoni et al., 2010). The mini-BESTest is the shorter
version of the BESTest focusing on dynamic balance (Di Carlo et al., 2016). It takes 10–15
min to complete and is suitable for assessing balance in community-dwelling adults,
elderly individuals, and patients with Parkinson’s disease and stroke. The Y Balance Test
(Y-Test) is a dynamic balance assessment used in sports medicine (Gil-Martín et al., 2021)
and commonly utilized in clinical practice and research (Johnston et al., 2016).

While these tests offer valuable insights into balance function, they often require
specialized training to administer and interpret them, limiting their accessibility in real
world settings. Moreover, the time-consuming nature of these assessments can hinder their
routine implementation in clinical practice (Wei, McElroy & Dey, 2020). Therefore, there is
a growing need for user-friendly and objective balance measurement tools that can be
easily administered in various environments, including home settings.

Previous research has explored the potential of simpler balance assessments, such as the
Dynamic One-Leg Stance (DOLS), for individuals with visual impairments (Blomqvist &
Rehn, 2007). The mini-BESTest have shown potential to be used in the evaluation of
balance in people suffering from chronic stroke (Tsang et al., 2013), subacute stroke (Inoue
et al., 2024), Parkinson’s disease (Franchignoni et al., 2022; Lopes et al., 2020), or other
neurological diseases (Caronni et al., 2023). However, the optimal balance assessment
protocol for this population remains elusive. Daneshmandi, Norasteh & Zarei (2021)
emphasized the need for qualitative studies to identify the most efficient balance
assessment approach for individuals with visual impairments.

Traditional balance assessment methods, such as force plate platforms, while providing
accurate measurements, are often expensive and lack portability, hindering their
application in home-based settings (Chen et al., 2021). To overcome these limitations,
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there is growing interest in exploring alternative approaches that leverage emerging
technologies. IMUs are incorporated into wearable devices to gather data on human
movement. The integration of artificial intelligence (AI) and wearable devices, specifically
inertial measurement units (IMUs), offers promising avenues for developing innovative
solutions to address the challenges associated with balance assessment in individuals with
visual impairments.

While camera-based systems have been employed for balance analysis, their
invasiveness and reliance on 2D estimations limit their effectiveness (Milosevic, Leardini &
Farella, 2020). In contrast, IMUs provide three-dimensional real-time motion data,
enabling accurate and objective balance assessments (Noamani et al., 2020).

Previous research has demonstrated the potential of IMUs and AI techniques for
balance evaluation (Bao et al., 2019; Kamran et al., 2021; Lin et al., 2022). Kim et al. (2021)
used a one-dimensional (1D) convolutional neural network (CNN) and gated recurrent
unit (GRU) ensemble model to assess clinical balance using BBS. They compared it with
previous work that used machine learning (ML) instead of deep learning (DL), obtaining
98.4% as the best accuracy of the model. Also, El Marhraoui et al. (2023) utilized a CNN to
train and extracted the weights after training to predict fall events using the Balance
Test Score.

These technologies have been successfully applied in various clinical settings, for
example, in populations with neurological impairments, such as stroke (Kim et al., 2021).
Wei, McElroy & Dey (2020) showcased the feasibility of combining IMUs, cameras, and
Deep Learning for on-demand balance assessment. However, the application of IMUs for
balance assessment in individuals with visual impairments, particularly in the context of
home-based tele-rehabilitation, remains largely unexplored.

A comprehensive review of the literature revealed a lack of research investigating the
application of IMUs to assess balance in individuals with visual impairments, particularly
in the context of identifying optimal exercise protocols within the mini-BESTest
framework. Although the potential of IMUs for the evaluation of balance in other
populations, such as individuals with Parkinson’s disease, has been explored (Silva-Batista
et al., 2023), their application to the visually impaired population remains a largely
unexplored area.

Traditional balance tests often rely on subjective evaluation, which can introduce bias
and variability in the results. The use of objective measurements, such as those obtained
from IMUs, can mitigate these issues by providing consistent and quantifiable data. This
approach not only enhances the accuracy of balance assessments, but also facilitates the
development of personalized rehabilitation programs.

The objectives of this study are: (i) to analyze whether the level of balance using the
mini-BESTest score differs between blind and non-blind individuals, and to identify the
most distinct exercise within the test in order to prioritize its improvement by
professionals, thus avoiding the necessity of executing the entire test. (ii) Investigate the
feasibility of employing AI techniques to automatically classify the level of performance
achieved in the most significant exercises based on IMUs. (iii) Finally, to explore potential
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alternative groups of participants and scores, unsupervised clustering techniques will be
employed.

By focusing on specific balance tasks derived from the mini-BESTest, we seek to identify
the most relevant exercises for monitoring balance progression in the blind population.
This research has the potential to inform the development of a user-friendly, home-based
balance assessment tool that can facilitate tele-rehabilitation and improve outcomes for
individuals with visual impairments. In addition, this work contributes to the
improvement of balance assessment practices and ultimately enhances the quality of life of
this population.

METHODOLOGY
Experimental setup
To assess balance in blind and sighted individuals, OpenSense RT was used. OpenSense RT
is a prototype developed by Slade et al. (2021) at Stanford University. The system was built
around a Raspberry Pi 4 that controls a set of IMU sensors. This study used 12 IMU
strategically placed on various body segments: pelvis, left and right feet, left and right
shanks, left and right hands, left and right arms, torso, C5, and head. Figure 1 shows the
placement of the IMUs in the body.

Data acquisition
The IMUs used in this study were mounted on an AdaFruit ISM330DLC board, which is a
six-axis IMU equipped with an accelerometer and a gyroscope (Adafruit, 2024). All sensors
were wired to an I2C mux connected to a Raspberry Pi 4, which was responsible for data
acquisition. The data were stored locally on an SD card for subsequent analysis. The
Raspberry Pi 4 was powered by a battery and both components were placed in the pelvis,
with all elements attached to the body using Velcro. The data acquisition process was
initiated and terminated using an I2C button. The OpenSense RT system was configured
to operate at a sampling frequency of 50 Hz, thereby capturing triaxial acceleration and
gyroscopic measurements.

Experimental conditions
The data acquisition took place in a controlled indoor environment with ambient lighting
and minimal disturbances. Participants were asked to perform static and dynamic balance
tasks. Prior to the session, they received instructions to maintain natural movements
throughout the experiment. Participants were instructed to press a button to start, wait for
the voice signal to begin, perform the task at a steady pace, and remain still once finished.
They were then instructed to press the button again to end the task and confirm that the
data had been recorded. The same instructions were given to blind and sighted people to
ensure consistency.

Subjects
To estimate the number of participants required to have a statistical power of 0.8,
references are made to the assumptions of Rutkowska et al. (2015). Their study
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demonstrated that at least 75% of the sighted individuals had a balance level above the
average, while only 22% of blind individuals achieved a similar balance level. These
percentages were used as reference values for our calculations to determine the necessary
sample size. Setting an alpha value of 0.05, the resulting minimum number of participants
equally divided between sighted and blind volunteers was 26. A total of twenty-nine
volunteers were recruited for this study: fifteen sighted individuals and fourteen blind
individuals. Table 1 shows the details of the sociodemographic variables of the participants
in this study. The number of participants is higher compared to some in the state-of-the-
art Reyes Leiva, Gato & Olmedo (2023), Nair et al. (2022), Stearns et al. (2018) with nine, 11
and 12 participants, respectively. The study was conducted in two locations: Centro de
Tecnología Biomédica (CTB) and Organización Nacional de Ciegos de España (ONCE),
Madrid, Spain.

The study objectives, experimental protocol, and informed consent were approved by
the Ethics Committee of the Universidad Politécnica de Madrid (UPM) (ADPCEPCDVY-
JJSO-DATOS-20230329).

Expert evaluation of mini-BESTest
A physiotherapist and a blind mobility teacher adapted the mini-BESTest for use with
blind individuals by reducing the duration of the exercises, thus allowing blind participants
to complete them. To illustrate this point, in Test 3, the maximum duration was reduced
from 15 to 10 s. The test was adapted from the Spanish translation performed by

Figure 1 Sensor placement in the body. Full-size DOI: 10.7717/peerj-cs.2695/fig-1
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Dominguez-Olivan et al. in Franchignoni et al. (2017). Each participant completed the
mini-BESTest in approximately 1 h.

The activities were recorded on video for subsequent evaluation by the two experts. The
exercises were assigned a rating of 0, 1, or 2, corresponding to bad, mild, and good balance,
respectively. The total possible score for the exercises was 28 points. In instances where
exercises were designed to be performed on both the left and right sides, the final
evaluation considers the worst-case scenario.

Cohen’s Kappa coefficient was calculated for the fourteen activities of the test. This
coefficient quantifies the average concordance between the two raters. The results showed
a highly satisfactory Cohen’s Kappa index of 0.87. Thus, it was decided to use for the rest of
the manuscript the punctuation determined by expert 1.

Methodology on modeling and data analysis
A comprehensive methodology was developed to analyze the feasibility of using IMU data
to classify the mini-BESTest. The methodology was divided into three main stages. The
methodology workflow is illustrated in Fig. 2, which also highlights the main steps of the
study as follows:

1. A statistical analysis of the mini-BESTest evaluation performed by the physicians,
followed by and compared to a statistical analysis of the duration of the IMU data of
the most representative exercise.

2. A supervised classification strategy using information from the IMU data: (i) based on
signal similarities using Dynamic Time Warping (DTW) and classification with K-
Nearest Neighbors (KNN). DTW was chosen for its ability to align and compare time
series with temporal distortions, while KNN was selected for its simplicity, robustness,
and effectiveness in clustering, particularly compared to other methods such as
DBSCAN; (ii) based on time features extracted from the signals and classification with
Random Forest, a robust and versatile algorithm known for its ease of implementation
and generally strong performance across various datasets; and (iii) based on the raw
signals and classification with advance Deep Learning models, such as CNN + LSTM, to
leverage their capability to capture complex temporal patterns and explore modern
approaches for time series analysis.

3. Finally, two cluster analyses were performed to identify whether there were subgroups
of participants or scores based on (i) sociodemographic information and mini-BESTest
scores, and (ii) IMU data, respectively.

Table 1 Mean values and standard deviation of values of sociodemographic variables.

Cohort Male/Female (%) Age (years) Height (m) Weight (kg) Practice sport (%) Location

Sighted 6/9 (40.0/60.0) 25:9� 5:5 1:65� 0:07 63:5� 8:1 14 (93.3) CTB

Blind 6/8 (42.9/57.1) 40:1� 10:6 1:65� 0:09 69:9� 10:2 11 (78.6) ONCE

Total 12/17 (41.4/58.6) 32:8� 10:9 1:65� 0:08 66:6� 9:6 25 (86.2)
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Statistical analysis on mini-BESTest evaluation and signal duration
Several statistical analysis tests were performed during the study. The two main analyses
are shown in Fig. 2. To analyze the differences in the mini-BESTest evaluations between
blind and sighted individuals, an independent sample t-test was used. This process was
applied in the analysis during the duration of the IMU signals. The significance level was
set at p ¼ 0:05.

For the feature selection carried out in the cluster analysis using sociodemographic
information and mini-BESTest scores, the Recursive Feature Elimination (RFE) algorithm
using a Pearson correlation coefficient analysis was carried out. Pearson’s correlation
coefficient was used to analyze the relationship between the mini-BESTest scores and the
sociodemographic information of the participants. To do so, the scikit-learn Python
library was utilized.

AI-driven classification methods
Before any classification task, inertial data were processed as follows: 1 s was removed at
the beginning and end of the signals to avoid using the data when the participant was not
performing the activity.

In all studies, a 5-CV strategy was employed to evaluate the models with stratified
subject-wise splits. The imbalance in tabular data collected from IMUs (DTW and time
features) was corrected in the training data using the Synthetic Minority Over-sampling
Technique (SMOTE) algorithm (imbalanced-learn Python library v0.12.3). The models
were trained for multiclass and binary classification grouping either bad and mild
evaluations or mild and good evaluations. The performance metrics used were accuracy,
precision, recall and the F1-score weighted on the test folds. The models were
implemented and evaluated using the scikit-learn and keras Python libraries.

In order to have a larger dataset, activities involving the evaluation of both legs were
considered separately.

Figure 2 Methodology workflow for the signal processing, feature extraction, data analysis and
supervised modeling. Full-size DOI: 10.7717/peerj-cs.2695/fig-2
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We conducted an exploratory analysis to determine the minimum number of sensors
required for an accurate classification. The analysis was based on the importance of the
sensors in the classification of the mini-BESTest guided by experts and also based on the
body parts that were less relevant to movement. Consequently, up to six sensors were
excluded from the analysis in different experiments, including the head, neck (C5), left and
right forearms, and left and right feet.

DTW and KNN classification
As previously stated, the first classification task was based on the similarity of the signals
using DTW and the classification with KNN. The DTW algorithm was computed by
comparing each axis (X, Y, Z) of each of the 12 sensors between all the participants. Thus,

the matrix of distances evaluated had 3 � 12 � 29
2

� �
¼ 14,616 comparisons on each leg. It

was used the fastdtw Python library to compute the DTW distance. The KNN algorithm
was used to classify the participants according to the DTW distance.

Following an exploratory analysis, the sensors that were most relevant for the
classification were selected. The sensors selected for this purpose included the pelvis, right
foot, left foot, right hand, left hand, and head. The duration of the recording was also
included as a feature. No other sociodemographic information was included. A sequential
forward feature selection with a KNN estimator (k ¼ 3) and the 3-CV method was used to
select the most relevant features. The value k ¼ 3 was chosen because it is the default
parameter in the sklearn Python library and is appropriate given the limited number of
participants, as larger values would dilute the classification performance. Feature subsets
of 20% and 50% were tested to balance the reduction of dimensionality with the retention
of information, with no significant differences in the results, demonstrating the robustness
of the model. After feature selection, the DTW data were standardized. A KNN
classification was performed with k ¼ ½1 : 28� neighbors, covering the feasible range based
on the number of participants. The classification was performed using the Euclidean
distance.

Time features and random forest classification

The second classification task was based on four time features extracted from the
accelerometer signals and classification with Random Forest (refer to Fig. 2). We extracted
144 features including: mean, standard deviation, energy, and amplitude for each axis of
the 12 sensors. The duration of the recording was also added as a feature. No other
sociodemographic information was used. The features were computed using an overlap
sliding window. Several combinations of window sizes ws ¼ ½0:5; 1; 1:5� s and overlap
times ot ¼ ½0; 0:5� s were studied. Window sizes smaller than 0.5 s were avoided since the
movements of interest are not rapid enough to justify shorter windows, while window sizes
larger than 1.5 s were excluded because some activities are brief, and larger windows could
reduce classification performance by averaging out relevant information. The overlap
times were selected to align with the range of window sizes tested, ensuring sufficient data
coverage while avoiding redundancy.
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A sequential forward feature selection with the same parameters as in the DTW
experiment was used to select the most relevant features. After that, the Random Forest
algorithm was used to classify participants according to the selected time features. The
Random Forest algorithm was implemented using the sklearn Python library. A grid
search was performed to find the best hyperparameters for the Random Forest algorithm.
The hyperparameters tuned were: number of estimators ns ¼ ½25; 50; 500; 1,000�,
maximum depthmd ¼ ½10; 20; 30�, minimum sample splitmss ¼ ½2; 5; 10�, and minimum
sample leaf msl ¼ ½2; 5; 10�. The range of values for the number of estimators ns was
chosen based on standard practices for datasets of this size, as these values balance
computational efficiency and model performance.

The windowing led to a data set in which different participants had different numbers of
samples. For training, each window was assigned the same label as the participant. In the
testing phase, only one label per participant was used. To achieve this, the final prediction
was selected as the most prevalent label for each participant.

Deep learning classification

The third classification task was based on raw signals and classification with a DL model
(Fig. 2). The DL models were fed alternatively with two kinds of raw signals: (i) the raw
acceleration signals from the IMUs, and (ii) the quaternions obtained from the IMUs. A
quaternion is a mathematical representation of a rotation in a three-dimensional space.
The quaternions were obtained from the acceleration and gyroscope data using the
Mahony filter to estimate the orientation of the sensor. The Attitude and Heading
Reference Systems (AHRS) Python library was used to compute the quaternions.

Both raw signals were windowed and standardized using the Standard Scaler function
from the sklearn Python library. The signals were segmented using a sliding window
technique (Reyes Leiva, Gato & Olmedo, 2023). The window sizes used were ws ¼ ½0:5; 1� s
with fixed overlap time ot ¼ 20 ms to do the data augmentation necessary for these kinds
of models.

Four DL architectures were tested: CNN, LSTM, GRU, and two architecture variations
of a CNN-LSTM hybrid model. Table 2 shows the configuration of the models’
architectures. These network architectures were chosen at the discretion of the
experimenter after a number of iterations of exploratory analysis. All models were trained
with: batch size ¼ ½32; 64�, epochs ¼ ½25; 50; 100�, learning rate ¼ 0:001,
optimizer ¼ Adam, ReLU as activation function, and loss= categorical
crossentropy. The models were implemented using the keras Python library.

It is worth mentioning that in the exploratory analysis time-series data augmentation
was employed to correct the imbalance of the dataset. In order to achieve this objective, the
raw signals were augmented with different techniques, such as time change, time warping,
and amplitude modulation, using the tsaug Python library. However, the results were not
improved and the data augmentation was discarded. A total of 20% of the participants
were used for validation and 20% for testing. Due to the reduction in the dataset resulting
from the validation split, in this experiment a double nested 5-CV strategy was used. The
models were trained using the keras Python library.
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Machine learning clustering methods
In view of the results obtained and recognizing the difficulty in classifying the evaluations
of the participants, a cluster analysis was performed to determine whether subgroups of
participants could be identified. Specifically, two cluster analyses were conducted: (i) one
based on sociodemographic information and mini-BESTest scores and (ii) another based
on the features of the IMUs.

Both cluster analyses were performed using the K-means algorithm. The number of
clusters k ranged from k ¼ 1 to k ¼ 9, as we did not anticipate the presence of more than
nine meaningful subgroups in the data.

To compare the performance of the cluster analysis, three metrics were used: the Within
Cluster Sum of Squares (WCSS), the Silhouette score, and the Davies-Bouldin. The elbow
method was used to determine the optimal number of clusters according to WCSS. To find
the optimal number of clusters based on the Silhouette coefficient, we must select the
number of clusters that maximize it. In contrast, to do so based on the Davies-Bouldin
index, we must select the number of clusters that minimize it.

Clustering based on sociodemographic information and mini-BESTest
scores

The first cluster analysis was based on sociodemographic information and the mini-
BESTest scores. A total of 23 features were used as input data: (i) the 14 individual
punctuations and four aggregate punctuations of the mini-BESTest, and (ii)
sociodemographic information on sex, age, height, weight, and sport practice. Before the
cluster analysis, a feature selection was conducted by eliminating first high correlated
features —those with absolute correlation higher than 0.9—, and then an RFE with linear
regression approach was used. The features were standardized before the cluster analysis.

Clustering based on IMU data

The second cluster analysis was based on time features. On the 144 features extracted from
the IMU data, a feature selection was carried out, as in the previous cluster analysis, by
eliminating first the high correlated features and then using RFE. The features were also
standardized.

Table 2 Architectures and hyperparameters tested on the evaluation of deep learning classification models.

Parameters Layers information Dropout
rate

CNN 1D-Conv (32, filter = 3, kernel = 0) ! MaxPooling (2) ! Flatten ! Dense (64) ! SoftMax –

LSTM LSTM (100) ! Dense (100) ! SoftMax 0.5

GRU GRU (64) ! GRU (32) ! Dense (64) ! SoftMax –

CNN-LSTM
arch. 1

1D-Conv (filter = 16, kernel = 5) ! 2 * 1D-Conv (filter = 64, kernel = 3) ! MaxPooling (2) ! Flatten, LSTM (20) !
Flatten ! Dense (20) ! SoftMax

0.5

CNN-LSTM
arch. 2

1D-Conv (filter = 64, kernel = 3) ! Flatten ! LSTM (50) ! Flatten ! SoftMax 0.5
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RESULTS
This section presents the results of the study. The results are divided into four subsections
following the division of experiments presented in the methodology section (see Fig. 2).
The subsections are as follows: (i) evaluation of the mini-BESTest, (ii) duration analysis,
(iii) automatic classification of the mini-BESTest score based on IMU data, and (iv) cluster
analysis to identify if subgroups of participants exist.

Statistical analysis on mini-BESTest evaluation and signal duration
Expert evaluation of Mini-BESTest
In this section, it was analyzed whether mini-BESTest is capable of identifying differences
in balance between blind and sighted individuals. Figures 3A and 3B depicts the
punctuation histograms for each of the fourteen activities of the mini-BESTest for blind
and sighted individuals.

As can be seen in Fig. 3, the punctuation of some activities was unable to identify
differences between blind and sighted individuals, but some of them did. To better
understand the differences in balance between blind and sighted individuals, a statistical
analysis was performed.

The results shown in Table 3 suggest that there were no significant differences between
blind and sighted individuals in the reactive postural control and sensorial orientation
categories. However, there were significant differences in the categories of anticipatory
postural control and dynamic gait, which is in line with the results of Wiszomirska et al.
(2013) for visually impaired women. The overall mBESTest score was also significantly
different between blind and sighted individuals, but mainly due to differences in the
categories of anticipatory postural control and dynamic gait.

The average mini-BESTest score for all participants was 25:9� 2:3, leaving 86:7% of
sighted individuals and 28:6% of blind individuals above the average. These results match
the assumptions made in the sample size calculation. With these results, we can also say
that the average balance of young sighted adults is 27:3� 1:2, while for blind individuals it
is 24:7� 2:1. These insights can be used to compare the expected results with other
cohorts of participants such as those described in Almeida, Marques & Santos (2017).

To discern which of the activities in the anticipatory postural control and dynamic gait
categories are responsible for the differences between blind and sighted individuals, a post
hoc analysis was performed. The values are shown in Tables 4 and 5.

The evaluation of anticipatory postural controls involves the performance of tasks that
necessitate deliberate and volitional movements that challenge the subject’s ability to
maintain equilibrium. Include Tests 1, 2, and 3, which correspond to the following tasks:
sit to stand, rise to the toes, and stand on one leg. The mini-BESTest employs these tasks to
assess an individual’s capacity to anticipate and prepare for postural alterations.

Assessment of dynamic gait entails the performance of tasks that challenge the
individual’s capacity to maintain balance while walking under varying conditions. This
assessment involves activities such as those tested in Tests 10, 11, 12, 13, and 14, including:
changing speed, walking with head turns, walking with pivot turns, stepping over obstacles,
and timed up and go with dual task. The mini-BESTest assesses the individual’s capacity to
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manage these dynamic challenges, which are essential for safe and effective ambulation in
daily life.

The results of the post hoc analysis in Tables 4 and 5 showed that the differences
between blind and sighted individuals in the anticipatory postural control category were
mainly due to Test 3. The differences in the dynamic gait category were mainly due to Test
11 and Test 14. The results suggest that the anticipatory postural control and dynamic gait
categories were the most relevant to discern between blind and sighted individuals.

Figure 3 Histograms of the mini-BESTest for sighted and blind individuals. (A) Histogram for sighted individuals. (B) Histogram for blind
individuals. Full-size DOI: 10.7717/peerj-cs.2695/fig-3

Table 3 Average and standard deviation of partial and overall mini-BESTest punctuations for both blind and sighted.

Anticipatory
(p ¼ 0.0007)

Reactive postural control
(p ¼ 0.4045)

Sensorial orientation
(p ¼ 1.0)

Dynamic gait
(p < 0.0001)

Overall mBESTest score
(p ¼ 0.0003)

Sighted 5.9 � 0.4 5.4 � 1.0 6.0 � 0.0 10.0 � 0.0 27.3 � 1.2

Blind 4.6 � 1.1 5.1 � 0.9 6.0 � 0.0 8.7 � 1.3 24.4 � 2.4

Table 4 Average and standard deviation of punctuations on the three tests of the anticipatory
category for both blind and sighted.

Test 1 (p ¼ 1.0) Test 2 (p ¼ 0.4508) Test 3 (p < 0.0001)

Sighted 2.0 � 0.0 1.9 � 0.3 1.9 � 0.3

Blind 2.0 � 0.0 1.8 � 0.4 0.8 � 0.8

Table 5 Average and standard deviation of punctuations on the four tests of the dynamic gait
category for both blind and sighted.

Test 11 (p ¼ 0.0100) Test 12 (p ¼ 0.2071) Test 13 (p ¼ 0.3409) Test 14 (p < 0.0001)

Sighted 2.0 � 0.0 2.0 � 0.0 2.0 � 0.0 2.0 � 0.0

Blind 1.5 � 0.7 1.9 � 0.3 1.9 � 0.4 1.4 � 0.5
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The results suggest that blind individuals have more difficulty maintaining balance
while standing on one leg compared to sighted individuals. The total number of sighted
individuals was evaluated with the highest value in Test 3, indicating a good balance. In
contrast, blind individuals exhibited a spectrum of balance, including poor, mild and
optimal balance: 28.6% of blind individuals had poor balance, 42.9% had mild balance, and
21.4% had good balance.

These results satisfied the objective (i) of this study. The mini-BESTest identified
differences in balance between blind and sighted individuals. The differences were mainly
due to the anticipatory postural control and dynamic gait categories, which were the most
relevant to discerning between blind and sighted individuals.

Henceforth, the focus will be directed towards the Test 3 activity, as it is the most
relevant to evaluate anticipatory capacity, where health professionals can concentrate their
attention.

Analysis of evaluations of Test 3 by signal duration
One of the objectives of this work is to analyze whether automatic evaluation of the
activities of the mini-BESTest is possible. In particular, the focus will be on Test 3
(monopodal support) which, as presented earlier, is the activity with the greatest difference
between blind and sighted individuals. According to the adapted evaluation test
(Franchignoni et al., 2017) and the review of experts, to score the Test 3 activity, one must:

. Record the number of seconds that the subject can sustain, up to a maximum of 15 s,
stopping the time when the subject moves his hands from his hips or puts one foot down.

. Include only the score for one side (the worst score) and select the best time of the two
records (for one side) for the score.

. Award a score of 0 if the subject cannot stand on one foot for 5 s, 1 if they can stand
between 5 and 10 s, and 2 if they can stand for more than 15 s.

Based on these rules, the first thing to think about is automating the score according to
the duration of the exercise. As mentioned above, the duration of the IMU recording starts
and stops when the participant presses the button, so to calculate the duration of the
exercise, the time that elapses from when the participant presses the button until one foot
is lifted off the ground, and from when the foot is placed on the ground until the button is
pressed again, must be subtracted. Automating this is a complicated task, as in the same
record there may be several attempts to perform the exercise, and therefore several exercise
times. It has been decided to make a manual selection of the records by looking at
accelerometer data, and subsequently, score the exercises. In this section, an analysis of the
times and scores awarded by the evaluators for Test 3 was made.

Figure 4A shows the three axes of the right shank’s accelerometer (standing on the left
leg) of a well-performed exercise by a sighted participant. The record had a duration of
17:92 s, but the time between the acceleration peaks is 15:64 s. Figure 4B shows an example
of a score of 0 rated by the evaluators for a blind participant standing on his right foot. In
this case, the record duration is 9:66 s, but there are four attempts in the record. Due to
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similar cases, it is complicated to automate the cutting of the records to consider only the
last attempt. In this case, the time of the last attempt was 2:60 s. The average extra time in
the records was 2:69� 1:00 s for the sighted and 3:27� 1:06 s for the blind. The
difference between blind and sighted individuals was significant (p ¼ 0:0342), so it can be
inferred that blind individuals found more difficulty finishing the exercise, recovering the
position and pressing the button.

The average duration of the exercises for both legs of the sighted participants was
14:49� 4:00 s, and 6:08� 4:05 s for the blind (p < 0:0001) with no significant difference
between legs among the same group (refer to Table 6).

The average differences between the durations and the scores are significant when
analyzing the entire dataset (see Table 7). The average difference between the durations of
the exercises evaluated with 0 and 1 is 5:37 s (p < 0:001) and 5:75 s between the exercises
evaluated with 1 or 2 (p < 0:001).

Referring to Table 7, it can be seen that there were only significant differences in the
duration of the signals between blind and sighted individuals when scored with the
maximum rating 2 (p < 0:01). The average duration of the blind for a score of 2 was
9:54� 3:40 s, and 14:51� 4:07 s for sighted. Sighted individuals lasted an average of
4:97 s longer to achieve a score of 2.

As can be inferred, there were many classifications of 2 in blind participants with a
duration less than 10 s required by the evaluation sheet, which does not occur when the
score was 1. In this case, the average duration of the blind was 6:71� 2:83 s; this was
higher than the 5 s required by the evaluation sheet. The reason why evaluators have
scored blind individuals with durations of less than 10 s with 2 is something that needs to
be analyzed; it may be due to the difficulty in counting times by watching a video or to
some subjective and positive bias toward the blind evaluation.

In search of these results, a re-evaluation of the exercises of the participants according to
the manually cut activity durations was made. Tables 8 and 9 compared the results of the
expert evaluation with the re-evaluation based on the manual inspection of IMU signals for
sighted and blind participants, respectively. Most of the discrepancies occurred between
punctuations 1 and 2. For example, two exercises were evaluated as 2 while their durations
were 4:92 s (sighted) and 3:28 s (blind). The Cohen’s Kappa coefficient between the
evaluations of the experts and the re-evaluation is 0:596, indicating a fair-moderate

Figure 4 Comparison of exercise performance. (A) Example of a well-performed exercise. (B) Example
of a poorly performed exercise with several attempts. Full-size DOI: 10.7717/peerj-cs.2695/fig-4
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agreement between the evaluations. If separated between blind and sighted individuals, as
shown in Tables 8 and 9 the agreement for the evaluation of the sighted was 86:7%, while
for the blind was 67:9% with a Cohen’s Kappa of 0:519. The agreement was higher in the
sighted than in the blind, which may be due to the difficulty in evaluating the blind by
experts and other errors in the evaluation process.

Using re-evaluations based on IMU signals to search for significant differences in Test 3,
it can be seen that they were still significant, so Test 3 was still the most relevant. The

Table 6 Average and standard deviation of duration on the performance of Test 3 for sighted and
blind participants after manual cut of the IMU signals.

Left leg (s) (p < 0.0001) Right leg (s) (p < 0.0001) Both legs (s) (p < 0.0001) n

Sighted 14:01� 2:73 14:97� 5:02 14:49� 4:00 30

Blind 5:32� 3:16 6:84� 4:78 6:08� 4:05 28

Table 7 Average and standard deviation of duration on the performance of Test 3 for sighted and
blind participants for the different evaluation marks.

0 points (s) 1 point (s) 2 points (s) n of 0 n of 1 n of 2

Sighted + blind 2:12� 0:60 7:49� 3:54 13:24� 4:45 10 9 39

Sighted 0:00� 0:00 13:76� 0:00 14:51� 4:07 0 1 29

Blind 2:12� 0:60 6:71� 2:83 9:54� 3:40 10 8 10

Table 8 Comparison of physicians evaluations and re-evaluation of Test 3 performance for blind
people based on the manual inspection of IMU signals on both legs.

Re-evaluation for sighted participants

0 1 2 Sum

Physicians evaluation 0 10 0 0 10

1 2 5 1 8

2 1 5 4 10

Sum 13 10 5 28

Table 9 Comparison of physicians evaluations and re-evaluation of Test 3 performance for sighted
people based on the manual inspection of IMU signals on both legs.

Re-evaluation for sighted participants

0 1 2 Sum

Physicians evaluation 0 0 0 0 0

1 0 0 1 1

2 1 2 26 29

Sum 1 2 27 30
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difference increased from 1:1 to 1:3 points between blind and sighted individuals
(p < 0:0001).

In summary, all this analysis indicated that the evaluation of the exercises in Test 3 was
complicated, and that the objective measurement of the duration of the exercises was an
important factor to consider. The average duration of the exercises for blind individuals
was lower than that of sighted individuals, and the agreement between the evaluations of
the experts and the re-evaluation by time was moderate. This discrepancy had an impact
on the modeling of the automatic classification of the score with supervised learning
algorithms, and therefore this factor had to be taken into account in future work. However,
the work continued with the evaluation of the experts, as it was considered the ground
truth.

AI-driven classification analysis
DTW and KNN classification analysis in Test 3
The analysis of DTW distances between accelerometer signals of the different subjects
aims to show if there is a significant difference between the signals of the subjects in general
and according to the score in Test 3. In the statistical analysis of the DTW distance matrix,
some interesting results stood out.

To perform a comparison of the distances between the signals of the subjects, the mean
distance between the signals of the subjects was calculated. It is defined as the arithmetic
mean of the distances of each acceleration axis of a subject to the rest of the subjects. The
comparison was made by punctuation. The results are shown in Table 10.

The difference in means between the distances of the signals of subjects with a score of 1
and 2 was 331.73 � 95.96, while the difference in means between the distances of the
signals of subjects with a score of 2 was 367.87 � 82.17. The comparison of these two
distributions showed a significant difference with p < 0:00001. This means that there were
differences between the signals of the subjects with a score of 1 and 2. In contrast, the fact
that the remaining comparisons were not significant indicates that there were no
significant differences between the signals of subjects with a score of 0 and 1 and between
subjects with a score of 1 and 2, which may be symptomatic of the signals being more
similar to each other and the classification being more complicated.

Going deeper into this comparison, and looking at Table 10, it can be asserted that it was
in blind subjects where the distance between signals with a score of 1 and 2 (288.45 �
85.05) was lower than in sighted subjects (427.28 � 101.16). This again reveals that, in
general, the signals of blind subjects with a score of 1 and 2 were more similar to each other
than those of sighted subjects, which may also be a factor that affects the classification.

Other more detailed analysis suggested that the signals of only five subjects with vision
(33:3%) had significant differences from other subjects and that seven blind subjects, who
constituted 50% of the population, did not. This will also be a handicap for the
classification.

As expected from the aforementioned complications, the classification of the signals of
the subjects according to their score in Test 3 was tough. A KNN classification analysis was
conducted and the best results are shown in Table 11. A weighted F1-score of 73.9 � 9.3
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was achieved for binary classification grouping bad and mild evaluations. This model
exceeded the ground truth—which is 66.7—, however, it was not significantly different
from the next best model for k ¼ 4 and F1-score 68.9 � 15.9 (p ¼ 0:4082). The best result
was obtained for a selection of 12 sensors: head, neck, torso, pelvis, left and right forearm,
hands, shanks, and feet.

Time features and random forest classification analysis in Test 3
Table 11 shows the best results of the classification analysis using time features and
Random Forest. A weighted F1-score of 70.0 � 13.6 was achieved for binary classification
grouping bad and mild evaluations, which slightly exceeded the ground truth, which is
66.7. However, the difference was not significant (p ¼ 0:3069) from the next best model
with an F1-score of 62.0 � 10.3. The best result was obtained for a selection of 24 features
belonging to four sensors: the left and right shanks. It is also noteworthy that none of the
selected features includes the energy of the signal.

As expected, the imbalance and errors in the evaluations lead to a decrease in the
classification performance and lead to the application of a binary classification approach to
improve the results. The result was lower than the DTW + KNN model, despite the fact
that the difference is not significant (p ¼ 0:5535).

Deep learning classification analysis in Test 3
In this section, the classification analysis of Test 3 with Deep Learning and raw acceleration
signal is shown. As mentioned in the methodology, different architectures, input data such
as quaternions, and temporal windows was tested. The results of the best combination of
architecture and input data are shown in Table 11.

The best result was obtained with a weighted F1-score of 85.6 � 6.7 for binary
classification grouping mild and good evaluations. This model exceeded the ground truth,
which is 66.7, and the difference is significant (p ¼ 0:0272) from the next-best model,
which is DTW + KNN. However, the best result was obtained for the entire set of sensors.
As a result, for the current results it was not possible to determine which sensors were most
relevant for the classification of Test 3 and remove any of them.

Because the best model combines mild and good evaluations, in contrast to other
models, it was evident that mild evaluations were the most difficult to classify. Nine out of
thirteen incorrectly evaluated by duration were mild evaluations that should have been
good or good evaluations that should have been mild.

Table 10 DTW distances comparing the Test 3 score and cohort of participants.

Score 1st ind. Score 2nd ind. n DTW all participants n both blind DTW blind n both sighted DTW sighted

0 0 21 268.46 � 61.04 21 268.46 � 61.04 0 –

0 1 44 296.47 � 102.63 40 282.04 � 59.98 0 –

0 2 194 329.81 � 102.63 48 300.86 � 76.04 0 –

1 1 16 303.57 � 95.96 12 285.32 � 59.28 0 –

1 2 176 331.73 � 95.96 40 288.45 � 85.05 14 427.28 � 101.16

2 2 361 367.87 � 82.17 21 332.44 � 114.20 196 372.93 � 116.36
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The input data was the acceleration, as the quaternions did not improve the results of
acceleration in any of the cases. The results of options 1 and 2 were similar despite the
variation in the temporal window. The F1-score obtained was 85.6� 6.7, and exceeded the
ground truth, which was 66.7.

The difference in F1-score with the DTW + KNN model was 11.7, which was
statistically significant (p ¼ 0:0272). Although the distance with the RF model was 15.3,
the large standard deviation of this model made the difference significant by a very small
margin (p ¼ 0:0540). Based on these results, we can confirm that the Deep Learning model
was the best for classifying Test 3.

It was demonstrated by a range of training exercises that employ different sensor
configurations that the most favorable outcome was achieved with a six-sensor
configuration when executing Test 3. The positioning of these sensors should be as follows:
pelvis, left and right hands, left and right feet, and head.

Machine learning cluster analysis
Because the results were not too encouraging, with very high standard deviations, the
hypothesis arisen to perform a post hoc analysis in which it was worth asking if the cause of
the models not learning was not only because perhaps the ground truth used was not
correct, but because there were actually other subgroups of participants, or evaluations,
that were not being taken into account. In the first part of this analysis, a cluster analysis
was performed to test whether participants can be grouped into more than two groups
(cohorts). In the second part, a cluster analysis was performed to see if the evaluations of
the activities can be grouped into more than two or three groups (scores).

Cluster analysis based on sociodemographic information and mini-BESTest
scores
First, Fig. 5 shows the correlation matrix of the features. As can be seen, all activity
tests of the ‘Sensorial Orientation’ category, ‘Test 1’, and ‘Test 10’ did not have variation,
thus providing no information to the clustering algorithm, and the six features were
discarded.

Table 11 5-CV results of experiments on classification of balance performance for Test 3.

Experiment Accuracy
weighted

Precision Recall F1
weighted

Best setup Most important sensors

DTW + KNN 72.1 �
12.0

76.8 �
12.3

74 �
9.4

73.9 �
9.3

Binary classification (grouping: mild & good). k ¼ 5 12 sensors: head, neck, torso,
pelvis, left and right forearm,
hand, shank and foot

Time features +
RF

64.4 �
13.9

73.6 �
18.6

75.7
�
9.6

70.3 �
13.6

Binary classification (grouping: mild & good). max
depth = 20, min samples leaf = 5, n
estimators = 50, random state = 1

24 features from four sensors:
left and right shank and foot

Raw acceleration
+ DL

85.0 �
10.0

66.0 �
18.5

60.2
�
13.7

85.6 �
7.3

Accelerometer data. Binary classification (grouping:
bad & mild). CNN-LSTM arch. 2

All 12 sensors

Jaén-Vargas et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2695 19/30

http://dx.doi.org/10.7717/peerj-cs.2695
https://peerj.com/computer-science/


Furthermore, by removing features with absolute correlation higher than 0.9, five more
features were removed: ‘Anticipatory’, ‘Test 4’, ‘Test 5’, ‘Test 6’ and ‘Reactive Postural
Control’. Twelve features remained. The RFE selected the most relevant features for the
cluster analysis. Despite the fact that ‘Test 3’ was the most relevant feature and a good
clustering metric was achieved with only this feature, the best clustering metrics were
achieved with three features: ‘Test 3’, ‘Age’ and ‘Sex’.

Figure 6 shows the results of the cluster analysis for the best feature and the three best
features after recursive feature elimination, respectively. The results showed that the
optimal number of clusters was 2 for all metrics and set of features. It is worth mentioning
that ‘Test 3’ is the most relevant feature and good clustering metrics are achieved only with
this feature. However, the best clustering metrics are achieved with three features: ‘Test 3’,
‘Age’, and ‘Sex’.

Figure 5 Correlation matrix of sociodemographic information and mini-BESTest scores.
Full-size DOI: 10.7717/peerj-cs.2695/fig-5
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The clustering metrics were not limited and there was no level to compare with and,
despite the fact that the clustering metrics were not high, Fig. 7 highlights that the
participants were clearly separated into two groups, which corresponded to the original
blind/sighted groups with a 90% F1-score (only one participant was misclassified).

Thus, the cluster analysis based on sociodemographic information and mini-BESTest
scores suggested that there were two groups of participants: blind and sighted. An
interesting aside result of this post hoc analysis was that a person can be classified as blind
or sighted based only on the result of the ‘Test 3’, their ‘Age’, and ‘Sex’.

Cluster analysis based on IMU data

A cluster analysis based on IMU data was performed to determine whether the evaluations
of the activities can be grouped into more than two or three groups (scores). The results of
the cluster analysis are shown in Fig. 8. The best cluster analysis results were achieved with
two features: ‘torso_ay_mean’ and ‘torso_ay_energy’. The results showed that the optimal
number of clusters was 2 for all the WCSS, Shilhouette, and Davies-Bouldin metrics.

These results indicated that time features based on acceleration signals were unable to
group the evaluations of the activities into more than two scores, which was consistent with
the results of the mini-BESTest evaluation.

It is worth mentioning that the ‘duration’ feature was then the next feature that
appeared in the next best clustering, which was indicative that the duration of the activities
was an important factor in the evaluation of the activities as expected. What is more
interesting is that the energy of the torso acceleration signal was one of the most
relevant features, indicating that the energy of the torso acceleration signal was an
important factor in the evaluation of the activity ‘Test 3’. However, this sensor was
only selected in the DTW + KNN model and not in the RF model. This could be due to
the fact that the torso was important, but its low variability was good for clustering,
but not for classification. In fact, the subsequent features that appear are related to the foot
and shank, which are the most relevant sensors for the classification of activity ‘Test 3’ in
the RF model.

Figure 6 Clustering metrics for sociodemographic information and mini-BESTest scores, for the best set of features: ‘Test 3’, ‘Age’, and ‘Sex’.
All metrics suggest that there are only two groups. Full-size DOI: 10.7717/peerj-cs.2695/fig-6
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DISCUSSION
Expert evaluation of mini-BESTest
In the present study, the mini-BESTest was evaluated by two experts: one a physiotherapist
and the other a blind mobility teacher. Both experts observed video recordings of each
activity. A similar process was employed by Kamran et al. (2021), in which a
physiotherapist ranked the activities that had previously been recorded on video.

Statistical analysis of mini-BESTest
After the evaluation of all participants, a post hoc analysis was performed to find
differences between sighed and blind people. As a result, the highest difference was found
in Test 3, which evaluates the ability to maintain balance while standing on one leg. This
result was also pointed out by Rutkowska et al. (2015) for visually impaired children, and
also stated by Blomqvist & Rehn (2007). In contrast, as indicated by Kümmel et al. (2016),
this generic one-leg stance test is specific enough to identify differences between blind and
sighted individuals. However, as the authors suggest, each study needs its own specific test
to evaluate balance, and this might be the case for the present study.

Figure 7 Clustering blindness in mini-BESTest. Full-size DOI: 10.7717/peerj-cs.2695/fig-7
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These findings emphasize that standing on one leg is a critical exercise for
differentiating between blind and sighted individuals, as it directly measures static balance
capacity. This insight supports the idea that focusing on this specific test could streamline
the assessment process by reducing the need to perform the entire mini-BESTest. This
approach aligns with the findings of Pennell et al. (2024), who demonstrated that a reduced
version of the mini-BESTest that focusses on key elements, including static balance tasks, is
effective for assessing youth with visual impairments.

The analysis of signal duration revealed that the average duration of the exercise for
blind individuals was lower than that of sighted individuals, and the agreement between
expert evaluations and the re-evaluation by time was moderate. This discrepancy impacts
the modeling of automatic classification of the score using supervised learning algorithms.
Future work will address this factor to improve the reliability of automated assessments.

AI-driven classification analysis
Machine learning
Most research that includes balance tests and ML does not consider people with visual
impairments and uses other balance tests. Lin et al. (2022), predict the Berg Balance Scale
(BBS) score of a participant without professional supervision using Machine Learning
regression and IMUs. Bao et al. (2019) analyze the feasibility of using trunk sway data and
ML techniques to automatically assess balance, providing accurate assessments at home.

Deep learning

It has been confirmed that by employing DL models it is possible to treat IMU data as a
time series, thereby enabling the classification of the punctuation given by a professional
for a balance test. Thus, a binary classification has been determined as the most
appropriate method to predict whether a participant has good or bad balance when
performing Test 3 of the mini-BESTest. A similar procedure was followed by Gil-Martín
et al. (2021) in founding the scores for the Y-Test, which was treated as a regression
problem. This was in contrast to the desire to obtain the normalized reach distance (NRD)
per each leg.

Figure 8 Clustering metrics for IMU data, for the best set of features: ‘torso_ay_mean’, ‘torso_ay_energy’. All metrics suggest that there are only
two evaluation scores. Full-size DOI: 10.7717/peerj-cs.2695/fig-8
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Regarding the number of sensors in the body for this experiment, information from 12
parts of the body was recorded and also analyzed to determine the minimum number of
sensors to obtain acceptable performance in the classification of Test 3. The number of
sensors was reduced from 12 to six sensors. In contrast, other studies included one, two or
eight sensors depending on the activity. It could be because only with one sensor they
could obtain one activity in their study, but ours included 14 different activities, and it was
the first time a database was created with valuable information that takes into account
blind people.

In addition, in this study four types of DL architectures were tested: CNN-1D, LSTM,
GRU and CNN-LSTM being the hybrid model, the most accurate in classifying accuracy
and F1-score. Kim et al. (2021) used a CNN-ID and GRU ensemble model to assess clinical
balance using BBS. They compared it with previous work that used ML instead of DL and
obtained 98.4% as the best accuracy of the model. Also, El Marhraoui et al. (2023) utilized a
CNN to train and extract weights after training to predict fall events using the Balance Test
Score.

Furthermore, in this work, data augmentation was used to improve classification
performance and increase data for each class (mini-BESTest score), but the results did not
exceed 60%, so it was discarded. As well as us Wei, McElroy & Dey (2020) used this
technique to create more variable data from the Center of Mass (CoM) varying the
position of x and z, and this with a Balance Evaluation Test to estimate the balance level of
each subject if it has or does not fall risk.

Finally, when binary classification was tested using acceleration as input data, it was
possible that labels 2 and 1 could be confused in the prediction due to a discrepancy in the
evaluation process. To enhance the reliability of the results, it would be advisable to
perform further tests with a larger number of data cases, including the evaluation of 0, 1,
and 2 (to include a greater number of participants) and to retest the system. This approach
could potentially lead to an improvement in system performance.

This study proposes an innovative methodology for classifying the mini-BESTest using
IMU data, offering a promising approach to this field. However, it is imperative to
acknowledge the limitations of the study. One key challenge is that only two professional
evaluators participated in the initial classification, which can introduce bias into the
metrics used. Including additional evaluators in future work could refine these metrics and
subsequently improve the training and performance of the classification models.

Future work will focus on assessing the specific impact of exercises 3, 11, and 14, where
significant differences in balance were observed for blind individuals. In addition, the
development of new exercises and evaluation methods will be explored, emphasizing more
accessible and widely practiced activities such as pilates, yoga, or taichi (Wang et al., 2021).
These alternatives could provide complementary approaches to the mini-BESTest for
assessing and improving balance in diverse populations.

CONCLUSIONS
This study revealed notable discrepancies in the balance levels between blind and non-
blind individuals, as reflected in the mini-BESTest score. The findings indicated that
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standing on one leg corresponding to Test 3 is the most pronounced exercise, effectively
differentiating between blind and sighted individuals.This item has to do with the person’s
static balancing capacity. This insight allows professionals to prioritize this exercise, which
may reduce the need to perform the entire mini-BESTest.

In addition, our analysis of the acceleration data indicates a discrepancy between the
evaluations made by the two experts and the established test criteria. However, AI models
demonstrated potential, achieving an F1-score of 85.6% in binary classification contexts to
predict scores evaluated by the mini-BESTest. This suggests that AI has the potential to
provide a relatively accurate and objective measure of balance performance.

Furthermore, we investigated the possibility of alternative groupings of participants and
scores using unsupervised clustering techniques. Cluster analysis demonstrated that IMU
data alone were insufficient to effectively distinguish between the three levels of evaluation.
However, the insights gained from the clustering can still inform the development of more
nuanced and accurate classification models in the future.

Finally, the findings of this study can significantly help physiotherapists in conducting
more objective evaluations of their patients’ balance. Additionally, the results support the
development of tele-rehabilitation systems tailored for blind individuals, enhancing the
accessibility and effectiveness of rehabilitation programs.
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