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ABSTRACT

Currently, the stock market is attractive, and it is challenging to develop an efficient
investment model with high accuracy due to changes in the values of the shares for
political, economic, and social reasons. This article presents an innovative proposal
for a short-term, automatic investment model to reduce capital loss during trading,
applying a reinforcement learning (RL) model. On the other hand, we propose an
adaptable data window structure to enhance the learning and accuracy of investment
agents in three foreign exchange markets: crude oil, gold, and the Euro. In addition,
the RL model employs an actor-critic neural network with rectified linear unit
(ReLU) neurons to generate specialized investment agents, enabling more efficient
trading, minimizing investment losses across different time periods, and reducing the
model’s learning time. The proposed RL model obtained a reduction average loss of
0.03% in Euro, 0.25% in gold, and 0.13% in crude oil in the test phase with varying
initial conditions.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Data Science
Keywords Stock market, Reinforcement learning, Data window structure, Actor-critic, Neural
network, Euro, Gold, Crude oil

INTRODUCTION

Stock market trading has been a fruitful area of research for exploring, analyzing, and
providing strategies aimed at reaching economic profits and minimizing risks when
investing in a market. In finance, a primary objective is to obtain higher profits by
allocating resources where they are most effective (Agarwal, Kumar ¢ Goel, 2019).
Investment management is based on the perception of the market’s current forecast state
and the investors’ experience, making it potentially inefficient and prone to losses caused
by the investors” decision-making (Bustos ¢ Pomares-Quimbaya, 2020).

In recent years, a variety of computational solutions have been proposed to improve
investment processes by applying machine learning (ML) methods (Khan et al., 2020).
Trading analysis is a process where decisions are made immediately, taking into account
market changes, which are highly variable and complex. Such solutions have several
advantages over human traders, including their faster execution and not being affected by
emotional factors (Charpentier, Elie ¢ Remlinger, 2021). The application of reinforcement
learning (RL) to investment modeling is motivated by its ability to address complex and
dynamic problems, such as those found in financial markets, where decisions must adapt
rapidly to constant fluctuations. As demonstrated in prior studies (Rouf et al., 2021;
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Kumbure et al., 2022), RL surpasses traditional machine learning approaches by enabling
agents to learn directly from interactions with their environment, thereby optimizing
investment policies to maximize profits while minimizing losses in real-time. Compared to
machine learning approaches, RL allows agents to learn directly from environmental
interactions, optimizing investment policies to maximize profits and minimize losses. One
of the most helpful ML approaches in financial markets has been RL, which determines the
actions that must be carried out to maximize profits from investments (Aboussalah, Xu ¢
Lee, 2021; Lussange et al., 2020). RL methods are frequently grouped into three types:
critic-only (Alibekov, Kubalik ¢» Babuska, 2018), actor-only (Wang et al., 2019), and actor-
critic (Soleymani & Paquet, 2021) methods.

In the critic-only method, we have many relevant studies such as Li ef al. (2019) where
researched Temporal difference (TD)-learning in computer science applications. Also, the
work published by Jeong ¢ Kim (2019) proposed a Deep Q-learning for stock trading,
trading strategy, and transfer learning. In these cases, the critic-only method was used to
solve broad optimization problems. Another recent example of the critic-only method in
finance can be found in Carta et al. (2021), which proposes a method for investment
analysis where preprocessing is carried out through hundreds of deep neural network
models; the authors’ approach trains a reward-based classifier to maximize profits,
ultimately integrating all decisions and obtaining efficient results. Furthermore, the study
published by Ma et al. (2021) details two models that extract information from stock
market transactions where fully connected (FC) and long short-term memory layers are
used to identify long-term market trends. Leer ¢ Kim (2020) proposes a model based on
deep Q-Networks (DQN) for online learning. The results provide an accumulated yield
higher than similar studies with a profit range of 16.6-82.8%, which is 39.1% on average.
Another Q-learning application is Chakole et al. (2021), in which two ways of representing
discrete states in the market environment are proposed. A Q-learning agent identifies the
best trading strategies in a dynamic financial market. A league championship algorithm is
proposed in Alimoradi ¢ Husseinzadeh Kashan (2018). It performs extraction of stock
trading rules for multiple market conditions by applying RL methods with backward Q-
learning. This hybrid of two approaches, Sarsa and Q-learning, is used to improve the
extraction of optimal trading rules for twenty companies. The results suggest that profits
tend to be better when price uptrends are sharp, compared to a genetic network
programming method with rule accumulation.

The actor-only method deterministically maps the state to a specific action by
parameterizing the actor function (neural network) and updating the actor parameters
following the gradient of the policy’s performance, which is called the policy gradient as
shown by Yoo et al. (2021). In the work published by Wu et al. (2020), various stock trading
dynamic strategies based on deep RL methods applying the actor-only method are
proposed. The study uses time series stock market data, and gated recurrent units are
applied to identify relevant financial market data features. In addition, autonomous agents
are trained to apply Gated Deep Q-learning and Gated Deterministic Policy Gradient
trading strategies. They obtained excellent experimental results, showing that their
networks have adapted to financial information with a satisfactory generation of financial
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investment strategies. In the research proposed by Lele ef al. (2020), they use a
Reinforcement learning-based applying actor-only method approach to develop a trading
agent. The method applied different on-policy reinforcement learning algorithms such as
Proximal Policy Optimization, Vanilla Policy Gradient, and Trust Region Policy
Optimization on the environment to obtain profits. The article published by Fenggian ¢
Chao (2020) proposed deep reinforcement learning applied actor-only method with a
candlestick-decomposing features algorithm to execute the high-frequency transaction
strategy in the stock market. The experimental results showed that the algorithm obtained
higher robustness and prediction accuracy during the test phase.

The actor-critic methods combine the previous methods: a critic estimates the value
function to maximize the rewards of the state (V value) or the action value (Q value),
whereas an actor updates the policy distribution in the direction suggested by the critic
(such as with policy gradients). An example of this actor-critic method is Troiano, Villa &
Loia (2018), which develops a robot applying deep RL with the actor-critic methodology
aimed at identifying technical indices and market behavior. The results show that the
proposal is viable and that the proposed model obtains efficient precision through simple
trading. Another example of the actor-critic is presented by Soleymani ¢» Paquet (2021),
which proposes a graph convolutional RL model called deeppocket, which identifies the
relationships between variables in the financial market using a graph of the pairwise
correlations between assets. The proposed model collects historical information to train an
RL actor-critical (AC) agent with two neural networks. The first one is the actor that learns
the investment policy; the second one evaluates the best action to optimize the expected
investment return. The results obtained are quite efficient over three different investment
test periods. In the study presented by Ma, Liu ¢» McAllister (2023), the authors, proposed
a Task-Context Mutual actor—critic (TC-MAC) algorithm for portfolio management,
which can learn not only the task but also the context of a portfolio. The algorithm uses a
mutual actor—critic model to calculate the relationships between local assets’ features and
global context embeddings by maximizing mutual information. The obtained results are
optimal in terms of multiple metrics and with different test datasets. Another article about
the actor-critic published by Schnaubelt (2022) proposed the application of deep
reinforcement learning to optimize execution at cryptocurrency exchanges. This proposal
uses the learning optimal limit order placement strategies that are highly relevant for both
professional asset managers and private investors. The data of this study was 18 months of
high-frequency data with more than 300 million trades. The actor-critic model learns
cryptocurrency execution strategies from established markets. The results obtained are
optimal and adaptable to each market. Nguyen ¢ Luong (2021) analyzed the automatic
stock trading problem where applied actor-critic method and a deep deterministic policy
gradient technique. The study compares two sets from the US and Vietnam markets, with
very different behaviors and trends. Their results suggest the efficiency of deep RL in
reducing investment losses. They also comment upon difficulties, such as the variability of
the market when the shares do not tend to increase their value. Along the same lines,
AbdelKawy, Abdelmoez ¢ Shoukry (2021) detail a deep RL model with multiple
autonomous investment agents and interacts with and identifies the behavior of the North
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Table 1 Qualitative and quantitative analysis of actor-critic RL models using real-time stock markets
test (RTSM), stock markets simulation test (SMST), and application of other methods (AOM) in the
investment area.

Articles Result RTSM SMST AOM
Troiano, Villa & Loia (2018) Precision > 98% v v
Soleymani & Paquet (2021) Profit = 4.47% v v
Ma, Liu & McAllister (2023) Profit = 47.72% v v
Schnaubelt (2022) shortfalls < 37.71% v v
Nguyen & Luong (2021) Profit = 8.15% v v
AbdelKawy, Abdelmoez & Shoukry (2021) Profit = 20.7% v v
Pham, Luu ¢ Tran (2021) Profit <= 30% v v
Azhikodan, Bhat & Jadhav (2019) Profit <= 1% v v

American stock market based on a large amount of historical information. The results are
very efficient in performance (CPU and GPU) and stock trading. Pham, Luu & Tran
(2021) presents the development of a market simulator with multiple agents applying RL
with the actor-critic methodology. The agents learn to determine an optimal investment
policy and reduce losses by a considerable percentage in a market as dynamic as that of
Vietnam.

The article presented by Azhikodan, Bhat & Jadhav (2019) proposes an actor-critic RL
model to automate swing trading, applying a deterministic policy gradient. The proposed
model aims to maximize the gain in asset value by executing investment actions in the
stock market. The study developed a sentiment analysis model using a recurrent
convolutional neural network to predict stock trends from financial news across various
communication channels. The results obtained by combining the two models showed a
96% precision in prediction and a 1% profit with the RL model.

Table 1 compares numerous studies utilizing the actor-critic RL model, yielding optimal
results and profits exceeding 4%. Additionally, three of these studies were implemented in
real-time stock markets, while four were laboratory simulations using historical market
data. These works represent noteworthy contributions that have enhanced investment and
artificial intelligence through the application of various mathematical theorems and
techniques.

The study published by Moradi, Weng ¢» Lai (2022) applied an actor-critic
reinforcement learning model and stochastic game theory to monitor and maintain the
security of electrical network systems. This study identifies the critical sections of the
electrical network and develops an efficient strategy to prevent cyberattacks. The RL model
proposed uses a deep Q-learning-based stochastic zero-sum Nash strategy solution to
reduce the timings of cascading failures in the reward function. The results obtained by the
proposed RL model were optimal, with a reduction in cyberattacks of 13.41%.

The article proposed by Razavi et al. (2022) describes a solution for solving the optimal
regulation problem for a discrete-time linear time-invariant system using the actor-critic
RL model. The RL model, known as the linear quadratic regulation (LQR) problem,
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Table 2 Qualitative and quantitative analysis of actor-critic RL models using real-time stock markets
test (RTSM), stock markets simulation test (SMST), and application of other methods (AOM) in
different science areas.

Articles Results RTSM SMST AOM
Moradi, Weng & Lai (2022) Ciberattacks: {13.41% v v
Razavi et al. (2022) o = 0.80 and s = 0.02 v v
Yun et al. (2023) Presicion: 85.97% v v
Kasaura et al. (2023) Average reward = 19.70 v v

guarantees the convergence rate of the state for a system with known dynamics, where the
associated Riccati equation is derived. This solution employs the policy iteration (PI)
method to solve the LQR problem with a guaranteed convergence rate. The results
obtained during the simulations were optimal, with a reduced time guaranteeing a
convergence rate of approximately 0.02 s.

Yun et al. (2023) developed a quantum multiagent reinforcement learning (QMARL)
algorithm for centralized training and decentralized execution, utilizing an internet
connection to control and manage autonomous robots in a smart factory. The proposed
algorithm applies the actor-critic RL model, yielding optimal average precision results:
88.4% in phase 1, 72.4% in phase 2, and 97.1% in phases 3 and 4.

The article by Kasaura et al. (2023) presents a comparative analysis between actor-critic
RL algorithms, where each action taken by the learning model must comply with specific
constraints based on the real-world environment. The study evaluates different variants of
RL algorithms for robot control with constraints. The results focus on three main
conclusions: First, training the critic RL model with pre-projected actions serves as an
optimal baseline for improving performance, especially when penalty terms are
considered. Second, using optimization layers and Neural Frank-Wolfe Policy
Optimization comes with significant runtime overheads. Finally, mapping techniques are
valuable alternatives to optimization layers in the RL model.

Table 2 compares four studies in various scientific fields that applied the actor-critic RL
model, including electrical engineering, cybersecurity, and robotics. The results were
optimal, showing high precision, reduced processing time, and a high reward rate. These
works contribute to different knowledge areas, enhancing the automation of various tasks
and processes with excellent results. For this reason, we have selected the actor-critic RL
model as the optimal option for our study.

Research motivation

The complexities of stock market investment have prompted the widespread application of
machine learning techniques to enhance profitability and mitigate global capital loss across
financial institutions. Traditional investment models predominantly rely on technical or
fundamental analysis, employing predefined rules that often lack the flexibility to adapt to
dynamic market conditions. In contrast, the proposed RL model utilizes an actor-critic
architecture, enabling it to learn directly from interactions with the market environment.
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This approach facilitates continuous adaptation and decision-making informed by
historical patterns and real-time market behavior. The contemporary investment
landscape is characterized by significant volatility, frequent disruptions driven by political
and economic factors, and heightened competition in global markets. Addressing these
challenges necessitates the development of models capable of dynamic adaptation and
rapid, accurate decision-making, such as the one proposed in this study. For this reason,
we have developed an intelligent model to reduce risk during market trades involving gold,
the Euro, oil, and the Dow Jones.

This article proposes a model applying actor-critic RL with an efficient neural network
topology. Our proposal determines optimal investment actions in the stock market to
maximize profits when the price market is up and avoid capital losses when the market is
down. Having analyzed the information in stock time series from different markets, we
propose a new temporal data window scheme that identifies the optimal size of the training
sale in the actor-critic model. This scheme improves the performance of each agent during
the investment and reduces training and processing time. In this way, the obtained results
reduce the number of unnecessary investment policies during learning and the losses in
investment capital. The intended contributions of this article are:

1) Creating an adaptable data structure for a specific period of time to enhance the learning
and accuracy of investment agents.

2) Generating specialized investment agents for each stock market and time period to
minimize capital loss.

3) Applying the multi-agent actor-critic RL method to improve investments in various
time periods and reduce the model’s learning time.

The article is structured as follows. “Materials and Methods” presents the materials that
describe the stock market databases used in this research. Also, this section presents the
methods applied as the structure of the reinforcement learning actor-critic model.
“Reinforcement Learning Model Proposed” describes our solution approach and the data
sets used, detailing the structure of the neural networks in optimizing policies and rewards.
“Experiments and Results” shows the RL model’s experiments and results obtained in
various markets. In addition, we compare and discuss the results with relevant works and
buy and hold strategy to determine the efficiency of the proposed model. Finally,
conclusions and future research lines are presented.

MATERIALS AND METHODS

In this section, we will describe the materials, which consist of financial datasets, and the
methods employed, specifically neural networks, to develop the proposed reinforcement
learning model.

Materials
The data utilized in this study were sourced from Yahoo Finance (2024) and encompass
historical records for the Crude oil, Gold, and Euro markets, covering the period from 2015

Guevara (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2690 6/35


http://dx.doi.org/10.7717/peerj-cs.2690
https://peerj.com/computer-science/

PeerJ Computer Science

Table 3 Example of stock exchange data structure.

Datasets Date Open High Low Close Adj.Close
Crude oil 02/01/15 53.76 55.11 52.023 52.69 52.69
Gold 02/01/15 1,184.00 1,194.50 1,169.50 1,186.00 1,186.00
Euro 06/01/15 1.19 1.19 1.19 1.19 1.19

to 2021. These datasets were meticulously preprocessed to ensure completeness,
consistency, and suitability for simulations in a realistic experimental environment. The
information available includes the date (registration date), open (opening value of market
shares), high (highest value), low (lowest value), close (value at closing), and adj close
(closing price adjusted for splits and distributions of dividends and/or profit) for each day.
Table 3 shows an example of the three stocks (USD).

The crude oil, gold, and Euro markets were selected for their distinct characteristics and
their critical roles in global financial systems. Crude oil represents a highly volatile
commodity market, frequently shaped by geopolitical events. Gold, in contrast, serves as a
traditional safe-haven asset, characterized by relatively stable price trends. The Euro
exemplifies the dynamics of a major currency market, reflecting regional economic policies
and global financial interactions. Together, these diverse attributes create a comprehensive
and challenging testing environment for assessing the adaptability and effectiveness of the
proposed reinforcement learning model.

Data preprocessing and visualization data

We used the data markets between 01/01/2015 and 31/12/2021, where each market has
1,772 records and in total 5,316 records. In this dataset, we preprocessed the data by
correcting numerous errors with negative values, converting the decimal format from
point to comma, and changing the date format from month/day/year to day/month/year.
Figure 1 illustrates the performance of the Euro market, which comprises 1,772 records.
The minimum opening price is $1.04, while the closing price is $1.13. Additionally, it
features maximum and average opening and closing prices of $1.25 and $1.14, respectively.
Over the past year, there has been a downward trend attributed to political and social
changes worldwide.

Figure 2 illustrates the performance of the gold market, which includes 1,772 records.
The minimum opening price is $1,062.00, while the closing price is $1,050.80.
Furthermore, it exhibits a maximum opening price of $2,063.00 and a closing price of
$2,051.50, with an average opening price of $1,421.36 and a closing price of $1,414.64.
Over the past 2 years, price stability has prevailed in the market, largely influenced by
gold’s value within the global economy.

Figure 3 illustrates the performance of the crude oil market, which encompasses
1,772 records. The minimum opening price is $13.69, while the closing price is $10.01.
Additionally, it features a maximum opening price of $85.41 and a closing price of $84.65,
with an average opening price of $54.13 and a closing price of $53.26.
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Methods

Reinforcement learning actor-critic

In this section, we describe the environment (stock market), the reward, and the actor-
critic neural network of the RL model. The model RL aims to support a financial entity X in
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investing in stock market (environment) shares to maximize profits G and avoid capital
investment losses C. The structure of the proposed actor-critic RL model within its
environment presents an agent that can execute three investment operations in the market
environment: sell, buy, and hold a stock based on its price. Each stock has four values in the
market: open value (the first price of the day), close value (the last price of the day), high
value (the maximum price of the day), and low value (the minimum price of the day) as
shown in “Materials”. The set of possible actions A; is the combination of the number of
operations vs the number of the values of each stock, where we obtained 27 actions A;.
With the information on the stock value (three values: close, high, and low), the agent will
analyze seven control points of the historical prices of the stocks in the environment. The
first control point is stocks owned that the agent currently has (three values). The second
control point is the stock value on the day it was bought (three values). The third one is the
capital for investment that the agent has (one value). The fourth one is the stock price of
the previous day of the current date (three values). The fifth one is the stock value of the
last week (workweek), where we can determine the behavior of values in the market in the
previous 5 days (three values). The sixth one is the stock value during the last 8 days,
through which we can determine the market values in the previous week and a half (three
values). Finally, the seventh one is the mean of the stock values in the last 8 days, where we
define a threshold of the historical values in the market (three values). With all this
information, the agent analyzes 19 observations Oy in its RL model. The model
incorporated features derived from historical stock values, including opening, closing,
high, and low prices, as well as computed indicators such as moving averages and
percentage changes in price.
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The agent is trained with daily historical values of the shares of interest. At each period
t, the agent receives observations O; referring to stock values and market rewards R;;
consequently, it submits an action A; concerning buying or selling stocks. The reward
assesses the eventual success of the previous action A(;_;) concerning whether a correct
investment has obtained profits.

Rewards
To determine the reward R;, the AC agent calculates the price rate of change (ROC)
indicator (Gupta, Bhattacharjee ¢ Bishnu, 2022), applying the equation

Oy — O

Roc; = —— =4 1
oc; ) (1)

thus measuring the percentage of change in price between times ¢ and ¢ — 1. A positive
reward R; = 1 is declared when the agent performs an investment action A; = Buy
resulting in a profit (Roc; > 0), which occurs whenever the agent sells the shares when
prices begin to fall, avoiding capital losses, or when a stock is held and, as a result, increases
its capital. In this study, capital loss refers to the decrease in the total portfolio value
resulting from suboptimal investment decisions, such as selling stocks during a price
increase or buying during a price decline, as presented by Guo & Ching (2021). This
measure is quantified using the negative percentage change in the rate of change (ROC)
indicator. However, a negative reward R, = —1 is declared when the agent performs a Buy
or Sell action A, resulting in a capital loss (Roc; < 0). This occurs whenever the agent sells,
and the prices rise or buy when prices fall; it also happens whenever the agent performs a
Hold action resulting in a portfolio value decrease. Finally, when the agent preserves the
stock value (Roc¢; > 0), the reward is R, = 0.

We applied the shaping rewards (Dong, Tang ¢ Yuan, 2020), where the basic idea is to
provide small intermediate rewards to the algorithm, aiding it in converging more quickly.
The agent learns incrementally, adjusting its behavior based on the intermediate rewards
received in subtasks, which facilitates global learning. The shaping rewards
implementation in reinforcement learning for stock market investing can help agents learn
more effectively by clearly indicating which actions are considered positive for investment
success.

Actor-critic networks
The core of the RL model is a pair of fully connected (FC) neural networks represented in
Figs. 4 and 5.

The actor-network chooses an action A, at each time step ¢; in turn, the critic network
assesses the decision quality based on the input O;. As this network learns which states are
better or worse, the actor-network uses this information to teach the agent to look for good
states and avoid bad ones. The actor-network learns and updates the weights w,, w,, and
w;, of the neural network based on the probabilities 7(A;|O;; 0), as shown by Soleymani ¢
Paquet (2021).

The actor-network uses 19 inputs (corresponding to the O; 19 states mentioned above)
and three hidden layers for the resulting actions A;. For the hidden layers, we found the
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best parametric choices for the activation functions and the number of neurons in each
layer using a genetic algorithm. The actor-network maps each state O, generates an output
that will be the optimal action A; to invest in the market. Figure 4 shows the scheme of the
actor neural network.

The critic network maps each state O; (19 inputs O;) to its corresponding action A;
value, assessing its quality. This critic network generates the value
TDrarger = Ry + 7 + V(O,') at each learning step, where TDyyyg is the predicted
value of all future rewards given the current state O, and V(O,’) represents the
critical-network assessing the next state value O,". The advantage function is
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TDgyror = TD7arger — V(Oy), which can be interpreted as a prediction error of the AC agent
(Singh et al., 2022).

The advantage function describes whether an Oy state is better or worse than expected. If
an action A; in a state O; is better than expected (advantage greater than 0), the actor-
network is encouraged to keep on performing similar actions A;. However, if it is worse
than expected (advantage less than 0), the actor-network is encouraged to adopt other
actions. If an action performs exactly as expected (advantage equals 0), the actor-network
learns nothing from that action A;.

The critic network (Fig. 5) consists of three FC layers with Tanh and ReLu activation
functions. Its output is TD g, Optimized using the mean squared error loss function. Its
weights wy,, w,, and w, are adjusted (updated) to the new value TDry,g;, after each time
step t. Rectified linear unit (ReLU) neurons were chosen due to their computational
efficiency and their effectiveness in mitigating the vanishing gradient problem. This
property is particularly critical for optimizing deep neural networks in reinforcement
learning applications, where frequent and rapid updates are essential for model
performance. To address overfitting, regularization techniques, dropout applied to hidden
layers, and temporal cross-validation were employed to enhance the model’s ability to
generalize to unseen markets.

The actor-critic method integrates two complementary components: the actor, which
determines the optimal action to take in a given state, and the critic, which assesses the
quality of these actions by estimating a value function. These components operate in
tandem to refine the decision-making policy through the policy gradient and the advantage
function, ultimately aiming to maximize long-term cumulative rewards. An actor-critic
agent during training estimates probabilities of taking each action A; in the action space
and randomly selects actions based on the probability distribution. The agent interacts
with the environment for multiple steps using the current policy before updating the actor
and critic properties. An actor-critic agent maintains two function approximators to
estimate the policy and value function; first, actor ©(A;|Oy; 0) with parameters 0, outputs
the conditional probability of taking each action A; when in state O; as a discrete action
space where the sum of these probabilities across all actions is 1. Second, critic V(O, ¢),
with parameters ¢, takes observation O, and returns the corresponding expectation of the
discounted long-term reward. However, during training, the agent adjusts the parameter
values in 0. At the end of the training, the parameters remain tuned, and the trained actor
function approximator is stored in 7(A;|Oy; 0).

Actor-critic agents use the following training process by applying nine configuration
steps. In the first step, we initialize the actor n(A;|Oy; 0) with random parameter values 6.
In the second step, we initialize the critic V(O, ¢) with random parameter values ¢. The
third step generates N episodes by following the current policy, defined as

Oto; At07 R(to+l)7 ERS) O(to+N—1); A(to+N—1) ) R(to+N)a O(to+N) (2)

where Oy is a state observation, A, is an action taken from that state, O; + 1 is the next
state, and Rt + 1 is the reward received for moving from O; to O; + 1. In state O, the agent
computes the probability of taking each action in the action space using n(A;|O; ) and
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randomly selects action A; based on the probability distribution. The starting-time step of
the current set of N episodes is fo, where the beginning of the training episode is ts = 1 and
the terminal state is O(;,4x). For each following set of N episodes in the same training
episode, to = to + N.

In the fourth step for each episode step t = ¢, + 1,¢, + 2, ..., t, + N, the return is
computed according to

t,+N

G =Y (" R) + byNIV(Oq, n) 0), (3)
k=t

which is the sum of the reward for that step and the discounted future reward. If O, ) is
not a terminal state, the discounted future reward includes the discounted state value
function, computed using the critic network V. However, b is 0 if O(,+n) isa terminal state
and 1 otherwise. The discount factor is defined as 7.

The fifth step computes the advantage function Dy = G; — V(Oy, ¢). In the sixth step, it
accumulates the gradients for the actor-network by following the policy gradient to
maximize the expected discounted reward, as

N
d0 = " V0,Inn(AO; 0)D; (4)
t=1

In the seventh step, it accumulates the gradients for the critic network by minimizing
the mean squared error loss between the estimated value function V(Oy, ¢) and the
computed target return Gt across all N episodes, as

N
do = ZV(P(Gt — V(Os (P))z- (5)
=1

In the eighth step, it updates the actor parameters by applying the gradients, defined as
0 = 0 4 ad0, where « is the learning rate of the actor. The ninth step updates the critic
parameters by applying the gradients as ¢ = ¢ + fdg, where f is the critical learning rate.
Finally, this process is repeated from step 3 to step 9 for each training episode until training
is complete, as presented by Mnih et al. (2016).

REINFORCEMENT LEARNING MODEL PROPOSED

This section describes the relevant contributions of the investment area applying RL.
Actor-only, critic-only, and actor-critic methods were evaluated for this study. The
actor-critic approach was selected due to its capacity to balance action evaluation and
state assessment, thereby optimizing both the policy and the expected rewards. To
generate the RL proposed model, it was necessary to identify the appropriate data sets for
achieving optimal performance in training and testing. With this goal in mind, we
generated agents depending on the specific time series; that is, we trained each agent

for specific periods named adaptable data structure (semester, trimester, 4-month
period, efc.).
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Figure 6 Adaptable data structure proposed for a specific period.
Full-size ] DOT: 10.7717/peerj-cs.2690/fig-6

Adaptable Data Structure for RL Agents

Full Dataset

Yearly Data Semiannual Data Quarterly Data
Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Agent 6
Figure 7 Adaptable data structure proposed. Full-size K&l DOI: 10.7717/peerj-cs.2690/fig-7

The data set D has historical information on a product or sector of the stock market.
Each data set contains several groups of data a with a defined number # of years in the
historical data, where the data set is D = {ay, gy, ..., a, }. Each data year a, can be divided
into different periods, named dynamic data windows tw, that divide the year into 2, 3, 4, 6,
or 12 parts, where a, = {twy, tw,, ..., tw,,;} and mt is the number of parts. As shown in
Fig. 6, we train an actor-critic agent through the adaptable data structure tw at a specific
period based on Guevara, Santos & Lopez (2017) which is the first contribution of the
research.

Figure 7 illustrates the adaptive data window structure utilized in the RL model. The
dataset is partitioned into annual, semi-annual, and quarterly subsets, with specialized
agents assigned to each time window. This approach enhances the agents’ ability to capture
and learn patterns specific to individual periods, thereby improving their overall
performance.
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Algorithm 1 Pseudocode for adaptive data structure in RL agents.

1: Input: Full dataset D, window configurations windows = {yearly, semiannual, quarterly}
2: Output: Trained agents for specific time periods
3:

4: Function TrainRLAgnets (D, windows):

5: data_splits — SplitDataset(D, windows)

6: agents — {} {Initialize empty dictionary for storing agents}

7: for each window_type in windows:

8: for each segment in data_splits[window_type]:

9: agent < InitializeRLModel ()

10: Train(agent, segment.data) {Train agent on data segment}
11: agents[segment| «— agent

12: return agents

13:

14: Function SplitDataset(D, windows):

15: data_splits — {}

16: for each window_type in windows:

17: if window_type == “yearly™:

18: data_splits[window_type] — SplitByYear(D)

19: if window_type == "semiannual":

20: data_splits[window_type] — SplitBySixMonths(D)
21: if window_type == "quarterly":

22: data_splits[window_type] — SplitByThreeMonths(D)
23: return data_splits

24:

25: Main Program:

26: D « LoadMarketData()

27: windows «— {yearly, semiannual, quarterly}
28: trained_agents < TrainRLAgents(D, windows)

29: Print(“Agents trained:", trained_agents.keys())

The pseudocode 1 outlines the implementation of an adaptive data window structure for
training RL agents specialized in specific time periods. The complete dataset D is
partitioned into dynamic subsets defined by temporal configurations, such as annual,
semi-annual, and quarterly, which serve as inputs to the algorithm. For each configuration,
the data is further segmented into specific time windows and assigned to independent
agents. Each agent is trained exclusively on the data corresponding to its designated time
window, enabling it to capture period-specific patterns and enhance its decision-making
capabilities. This modular approach effectively addresses changing market dynamics, as
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specialized agents are better equipped to adapt to the unique characteristics of their
respective time segments.

The process begins by loading the historical market dataset and defining the dynamic
data window configurations. The dataset is then segmented into subsets according to the
selected temporal configuration. For each segment, an RL model is initialized and trained
using the actor-critic method with the data corresponding to the specific time period. The
trained agents are stored as independent units, ready for deployment in real-world
scenarios. This methodology not only improves training accuracy and efficiency but also
reduces computational requirements by limiting the data processed by each agent.

As an example, suppose the RL model has been trained with three (n = 3) years of data
split into 6-month periods (f,—;). The first agent is trained with
Dypy—y = 1921 1922 1922 1923 "as shown in Fig. 6 (blue). The second agent is trained with
Dpyp = 1224 1972 1273 1973 1923 "as shown in Fig. 6 (orange).

With these datasets Dy,, ,, the agents require only a small amount of current data to
enhance their training and performance. Market variability was addressed using an
adaptive data structure, enabling the training of specialized agents for specific periods. This
approach reduced the model’s sensitivity to abrupt changes in market conditions. The
advantage of an adaptable data structure is that it increases accuracy in decision-making
because dataset usage allows for the definition of agents with more specific information.
The data structure utilizes an additional data window (=2 and #*=3) preceding the last
historical data period, providing more up-to-date information on current market behavior.
Furthermore, with this contribution reduces training time and the utilization of
computational resources. The adaptive data window structure was developed by
partitioning the historical datasets into specific periods (e.g., semi-annual, quarterly). This
approach enabled the identification of optimal configurations through iterative testing
applying a genetic algorithm, which aimed to maximize accuracy while minimizing
training time.

Finally, the third proposed contribution allows the definition of multi-agents with more
specific information in the actor-critic RL model (Fig. 8), whose investment behavior
reduces the loss of capital C during trading. These agents work sequentially and only learn
within a specific period tw, reducing the model’s learning time, based on the adaptable data
structure proposed for each stock market.

The adaptive data window structure leverages dynamically divided periods (e.g., semi-
annual or quarterly) to train specialized agents on distinct market behavior patterns. As
illustrated in Fig. 6, earlier periods provide valuable historical context, while more recent
periods enable adaptation to current market trends. This approach improves the agents’
capacity to recognize both short- and long-term patterns, thereby enhancing the
effectiveness and precision of investment decisions.

EXPERIMENTS AND RESULTS

In this section, we will conduct numerous experiments by applying the actor-critic RL
model and the contributions outlined in “Reinforcement Learning Model Proposed”.
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Figure 8 Specialize agents to each period of time for RL model.
Full-size K&l DOT: 10.7717/peerj-cs.2690/fig-8
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Table 4 Dynamic data windows tw in annual an, semiannual sm, and quarterly qu setups for AC

agents.
Window tw Dy,
_ a az as a4 5
Annual tWan=1 Dy, = {tWohy, tWet_y tWe tWoE w2, 1}
. _ a; a a3 a4 a4 5
Semiannual tWom—1 Du,,_, = {tWo 1 twe Wy Wi Wl twl, )
_ ai a2 as 4 ) 5
Wsm=2 Dthm:z - {twsm:27 twsm:27 twsm:2> thmzZ’ twsm:17 twsmzZ}
— a1 a2 a3 A4 a4 5
Quarterly tWau=1 Dty = (Wt Wy tWg 1, Wiy, tWas 3, tWo,
_ a1 az a3 4 ) 5
tw‘luzz Dquuzz - {twqu:27 thuzZ’ twqu:27 twqu:27 twquzl7 twquzz}
_ a a as 4 5 5
twqu=3 Dthu:S - {twq;d:& tquu:3’ twqu:?ﬂ thu::),, twqu:27 twqqu}

Table 5 Parameter configuration of the actor-critic neural networks and agent.

Parameter Actor network Critic network
X; Input layer size 19 19
Hidden layer L, 150 150
Activation function L, Tanh Tanh
Hidden layer L, 150 150
Activation function L, Tanh Tanh
Hidden layer L; 100 100
Activation function L3 ReLu ReLu
Y; Output layer 27 1

AC agent parameters

Number of steps to look ahead 70 70
Learning rate 0.001 0.001
Entropy loss weight 0.25 0.25
Gradient threshold 1 1
Discount factor 0.91 0.91
Max number of episodes 5,000 5,000
Max steps per episode 4,000 4,000

Experiments settings
For these experiments, we will start with an initial capital of $20,000. Additionally, to
identify the best version of the proposed model, we will utilize several dynamic data
windows, denoted as tw. These windows will include annual (an) data sets (one data set),
semiannual (sm) data sets (two data sets with 6 months per year each), and quarterly (qu)
data sets (three data sets with 4 months per year each). Referring to the scheme presented
in Fig. 6, we have obtained the corresponding data sets for each stock as listed in Table 4.
To carry out the training of the agents, we needed to configure the structure of their
neural networks using the parameters in Table 5. The input and output layers have a
number of neurons defined by the observations O, the actions A;, and the update of
TDrapger (described in “Actor-critic networks”) for both actor-critic neural networks. The

Guevara (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2690 18/35


http://dx.doi.org/10.7717/peerj-cs.2690
https://peerj.com/computer-science/

PeerJ Computer Science

selection of the number of hidden neurons and layers was the optimal configuration after
many experiments. The structure of this neural network (Figs. 4 and 5) contains three
hidden layers, with 150 neurons in the Tanh layer and one hidden layer with 100 neurons
in the ReLu layer. The Tanh and ReLu activation functions were selected based on earlier
studies concerning the multilayer neural networks training for RL (Carapuco, Neves ¢
Horta, 2018; Pham, Luu & Tran, 2021).

The model hyperparameters are described in Table 5, such as the parameter Number of
steps to look ahead represents the number of steps the agent interacts with the
environment before learning from experience, which was finally fixed at 70. The Entropy
loss weight is a value that promotes agent exploration by applying a penalty (between 0 and
1) for being too sure about which action A; to take; this variable facilitates avoiding local
optima. Gradients are calculated during training, and an extra gradient component is
computed to minimize this loss function. Mnih et al. (2016) suggests a value of 0.25. The
Discount factor is applied to future rewards during training, with a value between 0 and 1.
In our experiment, we used 0.91 in Learning rate to define the learning during training: if
close to zero, it leads to a very long training time, whereas a value near one may lead to
premature convergence; typical values in the literature range between 0.001 and 0.002, and
we used 0.001 (Mnih et al., 2016). The Gradient threshold enables networks to be trained
quickly, usually not impacting the learned task accuracy (Pascanu, Mikolov ¢ Bengio,
2013); we used a value of 1. The Maximum number of episodes is the maximum number of
training cycles for the agent, after which training terminates. The “maximum number of
steps” used was 5,000 for the first parameter and 4,000 for the second parameter, based on
AbdelKawy, Abdelmoez & Shoukry (2021).

As mentioned, in the training phase, data windows of annual, semiannual, and quarterly
data were used for each market. Figure 9 presents an example of the progress of the
learning curve during training until the trained model obtained 5,000 episodes in the gold
market. The yellow line represents the optimal threshold limit of learning, whereas the
orange line represents the reward per episode during training. In addition, the blue points
are the reward episodes during training, having obtained successful results between 1,500
and 5,000 episodes. This training allowed for generating a model more accurate for a price
variation in the stock market through RL.

Evaluation method

To evaluate the performance of an RL actor-critic model applied to neural networks, we
used a time series validation approach based on a financial context in which the data
exhibited temporal dependence. The historical data of the gold, Euro, oil, and Dow Jones
markets were divided into a training dataset containing the first 5 years for each market
and a testing dataset with the last 2 years for each market to evaluate the model’s
performance. The RL model’s agent was trained to reduce capital loss over time by
considering investment actions (sell, buy, and hold). The model observes the accumulated
reward at the end of each trading episode. The simulation environment was developed
with all financial variables to resemble a realistic trading environment as much as possible.
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Figure 9 Reward evolution in the gold market in 5,000 episodes.
Full-size K&l DOT: 10.7717/peerj-cs.2690/fig-9

Additionally, a rolling window approach was applied, where the RL model was trained
with a dynamic data window to evaluate future data in each iteration.

The model’s performance was validated using a time-series validation approach, where
the dataset was divided into training and testing subsets. Furthermore, a rolling window
technique was employed to iteratively evaluate the model’s predictions on future data,
ensuring robustness and reliability across diverse market scenarios.

Selection method

Fine-tuning of the RL model was conducted through a hyperparameter search using
genetic algorithm optimization. This process aimed to refine critical parameters, including
the learning rates of the actor and critic networks, the gamma discount factor—which
determines the reward time horizon—and the neural network architecture, defined by the
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number of layers and neurons per layer. These tests were made by applying genetic neural
networks to 10% of the data set to determine optimal parameter settings.

The final model was selected based on its performance in time series cross-validation, its
optimization of cumulative reward (maximizing profit or minimizing losses), and its
stability across different time windows. The model architecture was tested with various
network sizes and configurations, ultimately choosing the one that offered the best
performance with the lowest reward volatility.

Assessment metrics
In this article, the performance of the agent was assessed using metrics including average
profit (AverageProfit), average loss (AverageLoss), and the stability of cumulative rewards
across various time periods and data window configurations. We used the following
evaluation metrics to measure the performance of the RL actor-critic model in reducing
capital loss and managing risk in the gold, euro, oil, and Dow Jones markets:

The average profit, AverageProfit;(n), refers to the average profit obtained by the agent
in the n episodes where it makes successful transactions. This is a fundamental metric in a
financial context, as it indicates how much capital the agent generates on average when
making the right decisions (buying at a low price and selling at a high price). The
AverageProfit;(n) is relevant because the agent’s main objective is to maximize profits in
the long run while trading in volatile environments across different markets. RL seeks to
optimize the agent’s policy to increase rewards over time. A high average profit suggests
that the agent is learning to identify profitable buy/sell opportunities and is making
consistent decisions to maximize the return on each transaction.

The average loss, AverageLoss;(n), measures the average losses incurred by the agent in
n episodes where it makes erroneous decisions (buying at high prices and selling at low
prices). This is crucial for assessing whether the agent is successfully minimizing losses
over time, which is one of the main objectives of this research. The AverageLoss,(n) is a key
metric in financial risk management. In this environment, trading errors can lead to
significant capital losses, so it is vital that the trader not only maximizes profits but also
minimizes the impact of incorrect decisions. A low AverageLoss;(n) indicates that the
trader is better at managing risks and avoiding trades that could result in large losses.
Minimizing the average loss helps preserve capital and avoid large drawdowns, which is
critical to the stability of an investment strategy.

Experiments results
Experimental results, as shown in Figs. 10, 11, and 12A, present simulations conducted
over the training (5 years) and testing (2 years) periods. These simulations utilize the RL
model and 1-year window data for the Euro, gold, and crude oil stock markets. The figures
depict investment actions in the market, including selling stocks (red cross), buying stocks
(green star), and holding (no marker) stocks.

The case of the Euro market (Fig. 10) presents the investment simulation, where the
model RL carried out 553 sell actions, 697 buy actions, and 573 hold actions. Figure 10
shows the investment price progress from $20,000 to $19,834 and a loss capital of $166.
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Figure 10 Investment actions (buy and sell) in Euro stocks (between 2015 and 2021). Full-size K&] DOT: 10.7717/peerj-cs.2690/fig-10

Figure 11 presents the investment experiment in the gold market using RL. There were
437 sell actions, 437 buy actions, and 886 hold actions in the simulation. The profit from
applying RL in the simulation amounted to $1,624.19, increasing from $20,000 to
$21,624.19, as depicted.

In contrast, Fig. 12A shows the investment experiment in the crude oil market, where it
carried out 313 sell actions, 320 buy actions, and 1,128 hold actions. The profit was $1.06,
where the investment price process was from $20,000 to $20,001.06, applying the RL
model.

A notable finding was the model’s ability to achieve higher profits in the crude oil
market, particularly when utilizing semi-annual data windows. Despite the market’s high
volatility, the profits exceeded expectations, highlighting the effectiveness of the adaptive
data structure in managing rapid price fluctuations.

The results were obtained for each market over a test period of 2 years with annual,
semiannual, and quarterly windows. To assess the proposed policies, the model computes
the investment value, using the initial Initial,, and current Current,,;., investment price
in equitation 6, where the value is more than 0 profit = value and if value is less than 0
loss = value.

Currentpyice — Initialyice

(6)

value = —
Initialyic
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Figure 11 Investment actions (buy and sell) in gold stocks (between 2015 and 2021). Full-size K&l DOT: 10.7717/peerj-cs.2690/fig-11

The values of profit and loss obtained in this experiment are calculated with
AverageProfit,(n) and AverageLoss;(n). Average profit is the total profit divided by the
number of transactions 7 in t time, as shown in Eq. (7). This value measures how much
profit an investor makes on average per trade.

_ AverageProfit; (n)(n — 1) + profit;

AverageProfit,(n) (7)
n
On the other hand, the average loss is the total loss divided by the number of
transactions # in time ¢, as shown in Eq. (8).
A Profit,_ —1)+1
AverageLoss,(n) = verageProfit,_1(n)(n — 1) + loss (8)

n

Tables 6 and 7 present the AverageProfit, obtained after applying the dynamic data
window for each market. For crude oil, we obtained an annual average profit of 4.01%,
smaller than the semester of 5.01% (4.78% and 5.24%) and the quadrimester one of 4.48%
(4.18%, 4.59% and 4.66%). Similar results were obtained for the gold market, with higher
profits in the semester of 4.61% (4.35% and 4.87%) and quarterly 4.24% (4.03%, 4.21% and
4.48%) windows than in the annual one of 4.11%. Finally, for the Euro market, we obtained
an annual average profit of 2.37%, a semi-annual profit of 2.40% (2.39% and 2.41%), and a
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Figure 12 Investment actions (buy and sell) in crude oil stocks (between 2015 and 2021). Full-size K&] DOT: 10.7717/peerj-cs.2690/fig-12

quarterly profit of 2.30% (2.22%, 2.17%, and 2.50%). Thus, in this experiment, the best data
window seemed to be the semiannual one, which obtained better profit in every period in
the stock market. Globally, the model generated significant profits in approximately
70.83% of tests and losses in only 29.16% of them.

The proposed RL model obtained an AverageProfit of Euro 2.35%, gold 4.32%, and
crude oil 4.50% in simulations tests. The obtained results had a Crude Oil profit between
4.01 and 5.01 in tests with an earned capital of $802 (annual), $1,002 (semester), and $896
(quarter). On the other hand, we have obtained the crude oil average loss between 0.01%
and 0.21% with $2 (annual), $42 (semester), and $36 (quadrimester). The highest
AverageProfit values were obtained with the crude oil and gold market’s 6-month version,
where the two first markets received profits, although the third market losses were
primarily reduced by more than 1%, as shown in Table 7.

These results were favorable in the simulations compared with related studies and buy-
and-hold strategy (B&H) (Atsalakis et al., 2019). In the Euro case, we compared with
Chakraborty (2019), with the following results. First, the annualized loss of our RL model
was 0.03% vs 9.81%, which decreased the AverageLoss close to zero. In contrast, our model
obtained is similar to Chakraborty (2019), with an average profit of 2.37 % vs 2.88% in the
annual period. The results obtained through the B&H strategy showed an AverageProfit of
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Table 6 Experiment profit results for annual, semiannual, and quadrimester data windows.

Metrics Periods Crude oil Gold Euro

AverageProfit,(n) Annual 4.01 4.11 2.37
Semester 1 4.78 4.35 2.39
Semester 2 5.24 4.87 241
Quadrimester 1 4.18 4.03 2.22
Quadrimester 2 4.59 421 2.17
Quadrimester 3 4.66 448 2.50

AverageLoss;(n) Annual 0.01 0.02 0.03
Semester 1 0.21 0.32 0.03
Semester 2 0.22 0.42 0.05
Quadrimester 1 0.18 0.36 0.02
Quadrimester 2 0.16 0.41 0.01
Quadrimester 3 0.21 0.33 0.03

Table 7 Average profit and loss results of simulations in the 2-year testing period.

Periods Crude oil Gold Euro
AverageProfit;(n) Annual 4.01 4.11 2.37
Semester 5.01 4.61 2.40
Quadrimester 448 4.24 2.29
AverageLoss;(n) Annual 0.01 0.02 0.03
Semester 0.21 0.37 0.04
Quadrimester 0.18 0.37 0.02

0.007% and an AverageLoss of 0.004% over a span of 2 years as shown in Fig. 13. These
findings validate the optimal performance of our RL model.

The reduction in average loss achieved by the model reflects its capacity to minimize
financial risks and enhance investment stability. For example, during the test phase, the
model successfully reduced losses in the Euro market to 0.03%, demonstrating its
effectiveness in managing risk. This metric underscores the model’s ability to mitigate
suboptimal decisions and preserve capital, even in volatile market conditions.

The proposed RL model obtained optimal results in the crude oil case, where the
average profit was 5.01% and Chakraborty (2019) study was 4.09%. The market behavior
maintained a downward trend over long periods of time. In the market, many similar
investment operations were made where it was easier to learn for the agent. The results
obtained through the B&H strategy (Fig. 14) showed an average profit of 0.074% and an
average loss of 0.068% where our RL model obtained higher results.

In the Gold case, we compared the following results with Hirchoua, Ouhbi ¢ Frikh
(2021). The annualized average profit of our RL model was 4.11% vs 4.93%. Second, our
model in the semester obtained 4.61%. Thus, our RL model had optimal profit in this
period due to the adaptable data structure proposed more than Hirchoua, Ouhbi ¢ Frikh
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(2021). Finally, the results obtained through the B&H strategy in the gold case were higher
and showed an average profit of 0.064% and an average loss of 0.068% as shown in Fig. 15.

Transaction costs in the stock market depend on each broker in the U.S., where we have
analyzed the fees of four brokers. These fees include stock commission ($0), Section 31 fees
(ranging from $0.01 to $0.003 per $1,000), and Trading Activity fees (for selling, buying,
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Table 8 Section 31 (S31), trading activity (TA) and stock commission (SC) fee in the United States of
America of crude oil, gold, and Euro market applying actor-critic RL model proposed.

S31 fee TA fee SC fee Total
Crude oil $0.03 $0.01 $0 $70.88 (0.35%)
Gold $0.03 $0.02 $0 $88.60 (0.44%)
Euro $0.03 $0.05 $0 $141.76 (0.71%)

and holding stocks, ranging from $0.03 to $0.05 per transaction). On the other hand,
investment analysis costs range from $45 to $65 per transaction; however, this expense is
not necessary in our proposal. Table 8 presents the fee commissions for each market
during the tests of the RL model proposal, with crude oil at $70.88, gold at $88.60, and
Euro at $141.76. These values represent less than 1% of the investment capital, making the
involvement of an expensive investment analyst unnecessary.

Distinct patterns were identified in the behavior of the three assets. The crude oil market
exhibited pronounced volatility and frequent short-term price spikes, necessitating rapid
adjustments by the agents. In contrast, the gold market demonstrated relative stability,
characterized by gradual trends primarily driven by macroeconomic factors. The Euro
market displayed intermediate volatility, reflecting the interplay between regional
economic policies and global currency dynamics. These observations underscore the
model’s ability to adapt effectively to diverse and dynamic market conditions. The model
adapts to sudden market changes through the actor-critic framework, which facilitates
real-time policy updates based on observed rewards. The integration of an adaptive data
window structure ensures that agents are trained using both historical and recent data,
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enhancing their ability to respond effectively to abrupt shifts resulting from geopolitical
events or economic shocks.

The single-agent model exhibited its poorest performance in the crude oil market, with
a significantly lower cumulative gain of $449.57 compared to its performance in the gold
and Euro markets. This disparity is evident in Fig. 16, which illustrates a clear divergence in
cumulative rewards between the multi-agent and single-agent models in this market.

To validate the effectiveness of the proposed multi-agent model, a comparative analysis
was conducted against a single-agent model across three financial markets: Gold, crude oil,
and Euro. The results, presented in Table 9, consistently demonstrate the superior
performance of the multi-agent approach in terms of final cumulative rewards, absolute
differences, and percentage improvements.

The multi-agent model outperformed the single-agent model across all markets. In the
gold market, it achieved a 236.53% improvement, underscoring its capability to make
efficient decisions in less volatile conditions. Similarly, in the Euro market, the multi-agent
approach demonstrated a 276.63% improvement, further highlighting its adaptability and
precision in moderately volatile environments.

The crude oil market presented the largest performance gap, with the multi-agent model
outperforming the single-agent model by an extraordinary 1,348.64%. The single-agent
model achieved only a modest cumulative reward of $449.57, reflecting the challenges
posed by the high volatility of this market. In contrast, the multi-agent model
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Table 9 Comparison of multi-agent (M-A) and single-agent (S-A) model performance across

markets.
Market M-A final reward ($) S-A final reward ($) Difference ($) Improvement (%)
Gold 12,273.12 3,646.93 8,626.19 236.53
Crude oil 6,512.58 449.57 6,063.02 1,348.64
Euro 9,402.83 2,496.58 6,906.25 276.63

demonstrated remarkable adaptability and robustness, achieving a cumulative reward of
$6,512.58. These results emphasize the multi-agent system’s ability to manage rapid price
fluctuations and navigate complex market dynamics effectively.

The superior performance of the multi-agent model can be attributed to its modular
design, which leverages specialized agents trained on specific time windows. This approach
enables the model to capture market-specific patterns, reduce training time, and enhance
decision-making precision. Consequently, the multi-agent system excels at risk
management and mitigates the impact of suboptimal actions, as demonstrated by the
substantial performance differences across all markets.

These findings provide compelling empirical evidence supporting the claim that the
multi-agent model represents a more effective approach to financial trading, particularly in
volatile market conditions. Its dynamic adaptability and ability to optimize investment
strategies make it a valuable tool for modern financial systems.

The actor-critic model’s adaptive data windowing enables effective navigation of volatile
financial markets, such as crude oil, characterized by rapid price fluctuations due to
geopolitical and economic factors. This adaptability allows the model to dynamically
adjust its training data windows, identifying short-term patterns crucial in such
environments. Consequently, the actor-critic model achieves superior average gains,
notably 5.0% in crude oil, while minimizing losses more effectively than traditional
methods like DQN, which consistently underperform across various markets (Table 10).

Quantitatively, as Table 10 shows, the actor-critic model demonstrates faster
convergence, requiring only 950 to 1,200 episodes across all markets, compared to DQN’s
extended convergence time of up to 2,000 episodes. Additionally, it exhibits enhanced
stability, indicated by a lower standard deviation in rewards per episode, underscoring its
reliability in volatile scenarios where traditional models often falter.

These findings highlight the actor-critic model’s proficiency in adjusting to dynamic
market conditions through adaptive data windowing. This leads to improved financial
performance and computational efficiency. The model’s robustness and stability make it a
valuable tool for automated trading in complex and rapidly changing financial markets.

Limitations/validity

Limitations of this approach, such as reliance on historical data, risks of overfitting, and
simplifications in operating costs, are factors that could influence the model’s performance
in real market conditions. However, validation methods such as time-splitting and
comparisons with traditional strategies provide credibility to the results and demonstrate
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Table 10 Performance comparison of reinforcement learning methods across markets.

Metric Market Actor-Critic PPO DQN
Average gains (%) Euro 2.4 2.1 1.8
Gold 4.6 4.2 3.8
Crude oil 5.0 48 4.2
Average losses (%) Euro 0.03 0.05 0.07
Gold 0.37 0.42 0.48
Crude oil 0.21 0.25 0.31
Convergence time (episodes) Euro 1,200 1,500 2,000
Gold 1,000 1,300 1,800
Crude oil 950 1,200 1,700
Stability (Standard deviation) Euro 0.8 1.2 1.5
Gold 0.6 1.0 1.4
Crude oil 0.5 0.9 1.2

that the model can be effective in reducing losses in market scenarios with moderately
predictable behaviors.

The proposed model offers significant practical applications for financial institutions
and individual investors. By minimizing losses and optimizing profits in volatile markets, it
can be effectively integrated into portfolio management strategies, serving as an automated
tool for real-time investment decision-making. Furthermore, its adaptive capabilities
enable it to respond to market fluctuations, making it particularly well-suited for dynamic
and unpredictable global financial environments. The model demonstrates robust
performance in both bull and bear markets, owing to its dynamic adaptability to changing
market conditions. By leveraging short-term patterns through the adaptive data window
structure, the model maintains consistent performance, effectively reducing losses during
downward trends and capitalizing on upward momentum in bull markets.

CONCLUSIONS AND FUTURE WORK

Stock market trading deals with dynamic environments affected by speculation and other
external factors, including the impact of sociopolitical changes on the markets. A
significant problem in efficiently investing in a specific market is knowing more
profoundly the market behavior in a particular season (period) when the prices of stocks
go up or down according to demand. Frequently, banks and companies create and train a
unique investment model with all historical information on markets, which may lead to
investment actions with higher error rates and fewer gains. Our model proposes a dynamic
data window structure to train each investment agent to improve the AverageProfit. The
data window could change over time and adapt to a specific period, better detecting the
market behavior. A key distinguishing feature of our model is the integration of an
adaptive data window structure, which optimizes learning for specific time periods, in
contrast to traditional approaches that rely on fixed data windows. This methodology
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enables investment agents to adapt their learning processes to the temporal dynamics of
the market, thereby enhancing both accuracy and learning efficiency. This adaptability is
particularly advantageous in dynamic financial environments, where market patterns can
shift rapidly.

Our approach demonstrates significant advantages over established RL methods, such
as deep Q-networks (DQN) and proximal policy optimization (PPO). For instance, while
DQN models are designed for discrete action spaces and often face challenges in
continuous market environments, our actor-critic framework is well-suited for handling
dynamic decision-making. Additionally, unlike PPO, which relies on conservative
strategies to explore new policies, our model employs an advantage-based policy that
facilitates more efficient learning by effectively balancing exploration and exploitation.

The multi-agent approach assigns individual agents to specific data windows, enabling
specialized and more efficient learning. In contrast, a single agent trained across all time
periods risks overgeneralization, potentially reducing accuracy in capturing specific market
dynamics. By allowing each agent to develop optimal policies tailored to its assigned time
range, this design enhances the overall robustness and adaptability of the model.

The results showed that the proposed RL seems an exciting option for implementation
in the stock market due to its profit rate and efficient adaptation to a changing
environment. An essential characteristic of our proposal was defining the optimal data
window size for each market, which was executed in the experimental phase with moderate
profits. This data window, combined with RL, facilitates better results and improves
investment performance with low risks. This combination allows knowing the best
configuration of the neural networks for the training of the RL model proposed, the
number of agents for implementation, and the optimal size of the data windows for each
market (environment). In addition, the technological resources used are lower due to the
reduced data for each agent learning and in all experiment phases.

Political and economic factors significantly influence the performance of the model by
introducing variability in market trends and volatility. Geopolitical conflicts, regulatory
changes, and economic crises can profoundly affect price behavior, necessitating dynamic
adaptation by the model. Through the use of an adaptive data window structure and the
actor-critic reinforcement learning approach, the model effectively mitigates risks
associated with abrupt market shifts, thereby enhancing decision-making in unpredictable
and volatile conditions.

Automated trading systems inherently carry risks, including biases in historical data
and unforeseen outcomes in low-liquidity markets. The proposed model addresses
some of these challenges by minimizing exposure to erroneous decisions through rigorous
cross-validation and comprehensive robustness evaluations. From an ethical perspective,
we emphasize the importance of responsible implementation, ensuring adherence to
financial regulations and explicitly discouraging the use of algorithms for market
manipulation.

In future work, we intend to use other data related to the stock market, industry, and
social networks to identify future market changes. We also intend to apply the game theory
and Bayesian models to optimize decision results. Future research directions may involve
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the integration of advanced macroeconomic indicators and the adoption of hybrid
methodologies, such as game theory, to further enhance decision-making processes in
highly competitive and dynamic environments. Additionally, the RL model could be
expanded to incorporate complex market indicators by extending its input feature space to
include variables such as economic indices, geopolitical event data, and sentiment analysis
derived from news and social media. The inclusion of these features is expected to augment
the model’s ability to detect nuanced patterns, thereby improving its accuracy and
robustness in decision-making. The model can be extended to encompass additional asset
classes, such as cryptocurrencies and tokenized real estate, to evaluate its applicability in
alternative markets.

One of the most challenging aspects of this research was the design of the adaptive data
window structure, which necessitated extensive experimentation to determine optimal
configurations under varying market conditions. Additionally, achieving a balance
between computational efficiency and model accuracy presented a significant challenge.

Future research efforts should prioritize understanding the unique dynamics of
financial markets while exploring advanced machine learning methodologies, such as
reinforcement learning. Emphasis should also be placed on developing robust validation
frameworks and addressing ethical considerations to ensure the creation of reliable and
impactful financial models.
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