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ABSTRACT
Multi-task optimization (MTO) algorithms aim to simultaneously solve multiple
optimization tasks. Addressing issues such as limited optimization precision and
high computational costs in existing MTO algorithms, this article proposes a multi-
task snake optimization (MTSO) algorithm. The MTSO algorithm operates in two
phases: first, independently handling each optimization problem; second,
transferring knowledge. Knowledge transfer is determined by the probability of
knowledge transfer and the selection probability of elite individuals. Based on this
decision, the algorithm either transfers elite knowledge from other tasks or updates
the current task through self-perturbation. Experimental results indicate that,
compared to other advanced MTO algorithms, the proposed algorithm achieves the
most accurate solutions on multitask benchmark functions, the five-task and 10-task
planar kinematic arm control problems, the multitask robot gripper problem, and the
multitask car side-impact design problem. The code and data for this article can be
obtained from: https://doi.org/10.5281/zenodo.14197420.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Optimization Theory and
Computation
Keywords Multi-task optimization, Snake optimization, Multitask snake optimization algorithm,
Planar kinematic arm control problem, Intelligence algorithm

INTRODUCTION
Nowadays, multi-task optimization (MTO) has emerged as a new research direction in the
field of optimization. MTO aims to simultaneously solve multiple optimization problem
(Osaba et al., 2022), with each problem corresponding to a task. In real-life scenarios, there
exists a variety of optimization problems, some of which are almost unrelated, while others
have more or less intrinsic connections. Can the information between interrelated tasks be
leveraged to achieve better results than individual optimization? In response to such
questions, MTO algorithms have been developed. MTO focuses on how to simultaneously
address multiple optimization problems, assuming similarities between problems, such as
sharing the same optimal domain, landscape trends, etc. It harnesses the inherent
parallelism of a population to solve a series of tasks simultaneously, thereby creating
pathways for skill transfer between them (Gupta et al., 2022). Since its inception, MTO has
been applied in various domains (Gupta et al., 2022), including multitask high-
dimensional function optimization (Gupta, Ong & Feng, 2015), multitask large-scale
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multi-objective optimization (Liu et al., 2022), multitask constraint optimization (Xing,
Gong & Li, 2023), multitask engineering optimization (Cheng et al., 2017), multitask
vehicle routing optimization (Cai, Wu & Fang, 2024), multitask multi-objective pollution-
routing problem (Rauniyar, Nath & Muhuri, 2019), multitask power system scheduling
(Qiao et al., 2022), and others.

Gupta, Ong & Feng (2015) initially proposed a multifactorial evolutionary algorithm
(MFEA) for addressing multitask problems. Xing, Gong & Li (2023) introduced an archive-
based adaptive MFEA. Cai, Wu & Fang (2024) proposed a dual-assisted evolutionary MTO
algorithm. Xu, Qin & Xia (2021) introduced an adaptive evolutionary MTO algorithm
(AEMTO) with adaptive knowledge transfer. Jiang et al. (2023) presented a block-level
knowledge transfer multitask evolutionary algorithm. Li, Gong & Li (2023a) proposed an
evolutionary MTO algorithm utilizing knowledge-guided external sampling strategies.
Yang et al. (2023) employed surrogate models to assist knowledge transfer (KT) between
tasks, effectively alleviating negative KT. Jiang et al. (2022) proposed a dual-objective KT
framework in evolutionary multitask optimization algorithms, effectively utilizing
knowledge between tasks. Ji et al. (2021a) introduced a dual-surrogate-assisted cooperative
particle swarm optimization (PSO) algorithm. Ji et al. (2021b) proposed a multi-surrogate-
assisted multitask PSO algorithm. Wu & Tan (2020) introduced a multitask genetic
algorithm (GA) for fuzzy system optimization. Tuo et al. (2023) proposed a multitask
harmony search (HS) algorithm. Li, Gong & Li (2023b) introduced an adaptive solver
multitask evolutionary framework. Ma et al. (2023) enhanced evolutionary multitask
optimization by utilizing KT between tasks and improved evolutionary operators. Li et al.
(2024) proposed a multitask, multi-objective differential evolution (DE) gene selection
algorithm for tumor identification. Yuan et al. (2016) utilized permutation-based unified
representation and level-based selection to enhance the original MFEA. Bali et al. (2017)
proposed a linearized domain-adaptive MFEA. Liaw & Ting (2017) introduced a symbiotic
evolutionary bio-community algorithm. Ding et al. (2017) proposed a generalized MFEA.
Feng et al. (2018) used autoencoders in evolutionary multitasking to explicitly transfer
knowledge across tasks. Wen & Ting (2017) proposed a MFEA with resource reallocation.
Dao, Tam & Binh (2024) proposed an evolutionary multitask algorithm to maximize the
network lifetime of wireless sensor networks. Li, Gong & Li (2022) proposed an
evolutionary constrained multitasking optimization algorithm.

Currently, there are mainly two types of multitask algorithm frameworks. One type is
based on multi-factor approaches. The other type is based on multi-population approaches
(Wei et al., 2021). Most multi-task optimization approaches are based on evolutionary
algorithms, though some utilize swarm intelligence (SI) methods such as PSO.

The snake optimization (SO) algorithm is a recently proposed population-based bio-
inspired algorithm. It has been applied to a variety of optimization problems, such as
disease diagnosis (Khurma et al., 2023), real-world engineering problems (Yao et al., 2023),
feature selection (Al-Shourbaji et al., 2022), DDoS attack detection (Aljebreen et al., 2023),
complex signal analysis (Li et al., 2023a), workflow scheduling in cloud computing (Li
et al., 2023b), fingerprint localization (Zheng et al., 2023), filter optimization design
(Janjanam, Saha & Kar, 2022), load change response in photovoltaic (Mohammed &
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Mekhilef, 2023), neural network optimization (Yan & Razmjooy, 2023), photovoltaic
parameter extraction (Belabbes et al., 2023), energy optimization in hybrid energy storage
systems (Wang et al., 2023) and other complex optimization problems. The SO algorithm
has achieved promising results in these optimization problems, demonstrating its
effectiveness in handling complex optimization challenges.

The main contributions of this article are as follows:
1. A new multi-task SO (MTSO) algorithm is proposed.
2. The effectiveness and accuracy of the MTSO through numerical experiments and

comparisons with other advanced MTO algorithms.
3. The MTSO algorithm was applied to planar kinematic arm control problems

(PKACP), robot gripper design problem, and car side-impact design problems. Its superior
performance was demonstrated through comparisons with other advanced MTO
algorithms.

The structure of this article is as follows: “Preliminary” primarily introduces
background knowledge of multitask optimization problem and the fundamental SO
Algorithm. “The Proposed Algorithm” outlines the proposed algorithm framework.
“Experimental Results and Analysis” is to discuss and analyze the experimental results.
“Testing with Real-World Engineering Problems” focuses on the application of the MTSO
algorithm to real-world engineering problems. Finally, “Conclusion” provides a summary
and outlines future work.

PRELIMINARY
Multitask optimization problem
Assuming the need to concurrently optimize K tasks, this article posits that all K tasks are
minimal optimization problems. Let Ti (i = 1, 2, … , K) denote the i-th task. An MTO
problem can be defined as follows:

x1; x2;…; xKf g ¼ argmin f1 xð Þ; f2 xð Þ;…; fK xð Þf g
xi 2 �i; i ¼ 1; 2;…;K

�
(1)

where, fi represents the fitness function of task Ti, xi denotes the solution of task Ti, and Ωi

denotes the search space for task Ti.

Snake optimization algorithm
The SO algorithm is a recently proposed population-based bio-inspired algorithm. The
quantity of food serves as the boundary between exploration and exploitation. In the
exploration stage, when the food is scarce, snakes search the entire search space for
sustenance. As the food quantity reaches a threshold, the algorithm transitions into the
exploitation stage, further divided into three modes: consuming existing prey, combat, and
mating. The key factor determining the mode is the temperature. For detailed information
about the algorithm, please refer to Hashim & Hussien (2022).

Li et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2688 3/15

http://dx.doi.org/10.7717/peerj-cs.2688
https://peerj.com/computer-science/


Abbreviations of professional nomenclature and their meanings
This section mainly summarizes the abbreviations of professional nomenclature
mentioned in the article and their meanings, as shown in Table S1.

THE PROPOSED ALGORITHM
Motivation
There is a relative scarcity of multitask algorithms based on SI. The SO algorithm is a
recently proposed bio-inspired optimization algorithm based on SI. It exhibits excellent
performance in solving high-dimensional, nonlinear complex optimization problems.
Therefore, introducing a multitask version of the SO algorithm to address multitask
optimization problems holds considerable research value.

The algorithm framework
The multitask algorithm proposed in this article is based on multi-population approaches
and consists of two phases: the independent optimization phase using the SO algorithm,
and the knowledge transfer (KT) phase.

Independent optimization phase: For an optimization problem with n tasks, a separate
sub-population is assigned to each task. Each task is independently optimized, and the top
1/5 elite individuals based on fitness are selected and stored in the elite repository. Random
numbers r1 and r2 are generated.

Knowledge transfer phase: KT is primarily controlled by the knowledge transfer
probability (RMP) and elite individual selection probability (R1). RMP is set as a constant
value of 0.5, and R1 is set as a constant value of 0.95. Knowledge transfer is divided into
two parts: KT between different tasks and self-knowledge transfer within tasks, namely,
random perturbation of the solution. (Note: Normalization of individuals is performed
before knowledge transfer).

The normalization process is outlined in Eq. (2). The pseudo code of the algorithm is
provided in Table S2.

X�
ij ¼

Xij � Lbj
Ubj � Lbj

(2)

where X�
ij and Xij are, respectively, the normalized and original j-th dimension of the i-th

individual, and Lbj and Ubj are, respectively, the lower and upper bounds of the j-th
dimension.

If random number r1 is less than RMP and random number r2 is less than R1, inter-task
knowledge transfer occurs. A random task is selected as the source task, and knowledge is
transferred from elite individuals of the source task to the target task. If r1 is less than RMP
and r2 is greater than R1, random perturbation is applied to the worst-performing
individual of the target task. If r1 is greater than RMP, the reverse learning through lens
imaging strategy is used to evaluate and select the best-performing individuals among the
reversed individuals of the target task. These selected individuals are retained for the next
iteration. The principle of reverse learning through lens imaging is as follows:
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x
0�
j ¼ Lj þ Uj

2
þ Lj þ Uj

2k
� x�j

k
(3)

where k ¼ 1þ t
T

� �0:5
� �10

x
0�
j and x�j are the j-th dimensional components of x

0� and x�,

and Uj and Lj are the j-th dimensional upper and lower bounds of the decision variables.

Algorithm complexity analysis
Computational complexity
Assume K is the number of tasks, T is the number of iterations, N is the population size for
each task, and d is the maximum dimension of decision variables. The solution phase of
the algorithm consists of two stages: the independent solving stage and the knowledge
transfer stage. Independent solving stage: The overall time complexity for the independent
solving stage is O(K * N * d). Knowledge transfer stage: The time complexity for this stage

is O(K * N/5 * d). Combining both stages, the total time complexity of the algorithm is: T *

[O(K * N * d) + O(K * N/5 * d)] = O(T * K * N * d).

Space complexity
The space complexity of the algorithm primarily depends on four factors: the number of
tasks K, the population size N, the dimensionality of each individual d, and auxiliary data
structures. The space requirements for these components are as follows: 1. Storing the
individuals: O(K * N * d). 2. Storing the fitness values: O(K * N). 3. Storing elite

knowledge: O(K * N/5 * d). 4. Storing normalized individuals: O(K * N * d). Adding these

together, the total space complexity is: O(K * N * d).

Detection and prevention of negative knowledge transfer
Negative knowledge transfer occurs when the optimization results after knowledge transfer
are worse than those achieved without it. To detect and prevent negative knowledge
transfer, a comparison mechanism is implemented during the knowledge transfer stage.
This mechanism compares the fitness values before and after knowledge transfer. If the
results obtained after transferring knowledge from other tasks degrade, the transfer is
discarded. Instead, the solution from the independent optimization stage is chosen as the
optimal solution for that iteration.

EXPERIMENTAL RESULTS AND ANALYSIS
The simulation environment for this experiment is MATLAB 2018a (The MathWorks,
Natick, NY, USA) running on an Intel Core i3-6100 computer with a CPU frequency of
3.700 GHz and 8 GB of RAM. The algorithm parameters are set as shown in Table 1. In the
experiments, each task corresponds to a population, and each population is randomly
generated within the predefined upper and lower bounds of the respective task. To ensure
that the performance of the algorithm is not affected by the initial population, the same
initial population is used for each task across all comparison algorithms.
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Benchmark function testing
In this section, the effectiveness of the MTSO algorithm is tested using nine sets of
multitask problems constructed from seven multi-modal functions, sourced from
literature (Yang et al., 2023). To highlight the performance of the MTSO algorithm, the
following algorithms are selected for comparison: multi-factor evolutionary algorithm
(MFEA) (Gupta, Ong & Feng, 2015), surrogate assisted evolutionary multitasking
optimization algorithm (SAMTO) (Yang et al., 2023), multi-task evolutionary algorithm
(MTEA) (Wu& Tan, 2020), multi-factor evolutionary algorithm with level-based selection
(MFEALBS) (Yuan et al., 2016), linearized domain adaptive multi-factor evolutionary
algorithm (LDAMFEA) (Bali et al., 2017), evolutionary bio-community symbiotic multi-
task algorithm (EBSGA) (Liaw & Ting, 2017), generalized multi-factor evolutionary
algorithm (GMFEA) (Ding et al., 2017), evolutionary multitasking via explicit
autoencoding (EMTEA) (Feng et al., 2018), and multi-factor evolutionary algorithm with
resource reallocation (MFEARR) (Wen & Ting, 2017). Each algorithm is independently
run 20 times for comparison. The optimal values for the seven multi-modal functions
selected in this article are all 0, with a dimensionality of 30. Basic information about the test
functions is shown in Table S3, and the nine sets of multitask optimization problems and
their task similarities are presented in Table 2.

Results of benchmark function testing
In this section, all experiments were independently run 20 times, and the mean and
standard deviation (Std) were used as evaluation criteria. The best-performing results are
indicated in bold. The experimental results for the benchmark functions are shown in
Table S4, where “run time” represents the time taken to solve a set of tasks simultaneously,
and the “p-value” is the result of the Wilcoxon rank-sum test. A p-value less than 0.05
indicates a significant difference between the algorithms. The convergence curve plots for
the nine sets of experiments are shown in Fig. S1, the error bar chart is shown in Fig. S2.

Discussion and analysis of benchmark function testing
Based on Table S4 and Fig. S1, the MTSO algorithm achieved the optimal value of 0 in
seven out of nine experiments. Only the third and ninth experiments showed suboptimal
performance. Due to the no free lunch theorem, no algorithm can solve all optimization
problems. MTSO performs poorly on Task 2 of Test Cases 3 and 9, particularly in solving

Table 1 Parameter settings.

Symbol Meaning Parameters value

popSize Population size popSize = 100

nGen = 500 Number of generations nGen = 500

RMP Knowledge transfer probability RMP = 0.5

nRepeat Number of repeats nRepeat = 20

dim Dimension of the problem dim = 30

R1 Elite individual selection probability R1 = 0.95
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the Schwefel function, where it fails to find the global optimum. This is due to the
function’s characteristic of having numerous local optima, making it difficult to find the
global optimum. Additionally, due to the low similarity between tasks (Wu & Tan, 2020),
the knowledge from Task 1 is not effective in assisting Task 2. As a result, the algorithm
becomes trapped in a local optimum, leading to poor performance of MTSO in solving
Test Cases 3 and 9. The experimental results demonstrate that compared to other
advanced MTO algorithms, the MTSO algorithm exhibits stronger competitiveness in
handling multitask problems.

Noisy perturbed benchmark function testing
To better evaluate the stability and effectiveness of the proposed algorithm, this section
constructs nine sets of perturbed benchmark functions based on the functions from
“Benchmark Function Testing”. The construction method involves adding 10 to each
function, i.e., f = f + 10. The task construction follows the same setup as in Table 2. The
optimal value of each task has become 10.

Perturbed benchmark function testing results
All experiments in this section were run independently 20 times. The experimental results
for the benchmark functions are shown in Table S5. The convergence curves for the nine
sets of experiments are presented in Fig. S3, and the error bar chart is shown in Fig. S4.

Population size analysis
This section analyzes the population size of the proposed algorithm. The selected
population sizes are 30, 50, and 100. The experiments are conducted using the multitasking
test functions constructed earlier, with each population size independently run 20 times.
The algorithm’s parameters, except for the population size, remain the same across all
experiments. The results are then analyzed using the Friedman test to obtain the average
ranking. A smaller average ranking indicates a better algorithm performance. The
Friedman ranking of different population sizes are shown in Table S6.

Table 2 Multitask problem construction.

Test combinations Task 1 Task 2 Inter-task similarity

1 1 (Griewank) 2 (Rastrigin) 1.000

2 3 (Ackley) 2 (Rastrigin) 0.2261

3 3 (Ackley) 4 (Schwefel) 0.0002

4 2 (Rastrigin) 5 (Sphere) 0.2154

5 3 (Ackley) 7 (Rosenbrock) 0.8670

6 3 (Ackley) 6 (Weierstrass) 0.0725

7 2 (Rastrigin) 7 (Rosenbrock) 0.9434

8 1 (Griewank) 6 (Weierstrass) 0.3669

9 2 (Rastrigin) 4 (Schwefel) 0.0016
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Based on the results in Table S6, we observe that the average rankings are identical for
certain test cases, indicating that population size has minimal impact on the relative
performance of the algorithm. However, considering all test cases comprehensively, the
algorithm achieves the best results when the population size is set to 100. Therefore, we
select a population size of 100.

Parameter sensitivity analysis
This section analyzes the parameters of the proposed algorithm. Twelve different
parameter combinations were tested using the multitasking test functions constructed
earlier. Each combination was independently run 20 times. The results were then analyzed
using the Friedman test to obtain the average ranking, where a smaller average ranking
indicates better algorithm performance. Friedman ranking with different parameter
settings in Table S7.

Based on the results in Table S7, we observe that the average rankings are identical for
certain test cases, indicating that the values of the RMP and R1 parameters have minimal
impact on the relative performance of the algorithm. However, considering all test cases
comprehensively, the algorithm achieves the best results when RMP = 0.5 and R1 = 0.95,
followed by RMP = 0.3 and R1 = 0.85.

Analysis of knowledge transfer scale
This section analyzes the scale of knowledge transfer in the proposed algorithm,
specifically examining how much knowledge is transferred from the source task to the
target task. The selected knowledge transfer scales are set as 1/10, 1/5, and 1/2 of the
population size. Experiments were conducted on the multi-task test functions constructed
earlier, with each population running independently 20 times. The obtained results were
evaluated using Friedman tests to calculate average rankings, where a smaller average
ranking indicates better algorithm performance. Friedman ranking of different knowledge
transfer scale in Table S8.

Based on the results in Table S8, we observe that the average rankings are identical for
many test cases, indicating that the scale of knowledge transfer has minimal impact on
algorithm performance. This is because only the optimal knowledge is transferred, and
transferring the knowledge of the best individual is sufficient to guide optimization in the
target task. However, when considering all test cases comprehensively, we find that the
total average ranking is smallest when the knowledge transfer scale is 1/5 of the population
size, resulting in the best algorithm performance. Therefore, we select 1/5 of the population
as elite individuals for knowledge transfer.

Analysis of knowledge utilization rate
This section introduces quantitative metrics to measure the quality and effectiveness of
knowledge transfer. A counter is implemented in the algorithm to track the fitness values
before and after knowledge transfer in each iteration. If the fitness value of the individual
improves (decreases for minimization problems) after knowledge transfer, the transfer is
considered effective, and the counter is incremented by 1. Instances without knowledge
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transfer are marked as −1. Let the total number of iterations be N, the effective transfer
count be a, and the count of no transfer occurrences be b. The knowledge utilization rate is
then calculated using the formula shown in Eq. (4).

The knowledge utilization rates for various test functions are presented in Table S9. We
define each iteration of knowledge transfer as effective (1), ineffective (0), or not performed
(−1), and plot the knowledge transfer results for each iteration as shown in Fig. S5.

From Fig. S5, it can be observed that knowledge transfer is effective during the early
stages of iteration, aiding rapid convergence of the optimization task. However, in the later
stages, knowledge transfer provides limited assistance in solving the optimization task.

R ¼ a=ðN � bÞ (4)

Convergence analysis of the algorithm
The proposed algorithm belongs to the category of swarm intelligence optimization
algorithms, which are rooted in experimental science. Proving the convergence of swarm
intelligence algorithms is often a complex and challenging task, making it difficult to
analyze using traditional mathematical methods. Therefore, this study investigates the
convergence and performance of the algorithm through numerical simulations and
experimental validation. First, we define the objective functions, which are the benchmark
test functions constructed earlier, and set the initial and termination conditions of the
algorithm. In the numerical experiments, a counter is employed: if the result of the next
iteration is the same as that of the previous iteration, the counter increments by one. When
the counter reaches 100, the algorithm is considered to have reached a stable state and is
deemed to have converged. The algorithm was tested under different parameter settings,
and noise was added to the test functions. Through extensive experiments, we
demonstrated that the proposed algorithm consistently reaches a stable state within a finite
number of iterations. This is particularly evident in the algorithm’s convergence curves
and error bar plots, where the stable state of the algorithm is clearly observed.

TESTING WITH REAL-WORLD ENGINEERING PROBLEMS
Planar kinematic arm control problem
This section primarily focuses on applying the MTSO algorithm to solve the planar
kinematic arm control problem (PKACP). The PKACP can be described as a practical
industrial application. In our context, the robotic arms are viewed as components in an
assembly line, performing precise and efficient tasks such as part assembly. Specifically, in
body welding and component installation processes, multiple robotic arms need to
accurately position parts on a vehicle body at designated locations for precise welding or
installation. Each robotic arm represents a task, and the optimization of multiple robotic
arms simultaneously delivering parts to specific locations constitutes a multi-task
optimization problem. Figure S6 illustrates the schematic diagram of the PKACP for two
tasks. This image is from Jiang et al. (2023). To better evaluate the performance of the
MTSO algorithm in solving real-world engineering problems, this article utilizes the
algorithm to solve a PKACP with 5 and 10 tasks.
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Problem definition: The multitask PKACP requires finding the optimal angles for all
joints for each task (i.e., a1, a2,… , ad) to minimize the Euclidean distance between the arm
tip (i.e., PD) and the target (i.e., T) (Jiang et al., 2023). The objective function for the i task is
defined as follows:

fi a1; a2;…ad; Li ; ai;max
� �	 
 ¼ PD � Tk k (5)

where Li and ai,max represent, respectively, the total length of the arm and the maximum
range of angles for the i-th PKACP. Different tasks are created by taking different values of
Li and ai,max. The values of Li and ai,max are determined as follows: first, two-dimensional
random samples are generated, then, according to the number of tasks ntasks, K-means
clustering is used to cluster the samples into ntasks classes, where the first dimension of the
cluster centers represents the value of Li, and the second dimension represents the value of
ai,max. The target position is set to [0.5, 0.5]. To better test the performance of the multi-
task snake optimization algorithm in solving real-world problems, this article establishes
multi-task PKACP with 5 and 10 tasks and solves them using the multi-task snake
optimization algorithm. The number of joints (i.e., dimensions) for each task is set to 5, 10,
and 20, resulting in a total of six experimental groups.

Experimental results of the PKACP
In this article, multi-task PKACP with five and 10 tasks were constructed, where the values
of Li and ai,max are randomly generated. For comparison purposes, the optimal values
obtained for all tasks were averaged and compared with other advanced MTO algorithms.
The selected comparison algorithms include: MFEA (Gupta, Ong & Feng, 2015), MTEA
(Wu & Tan, 2020), EBSGA (Liaw & Ting, 2017), GMFEA (Ding et al., 2017), EMTEA
(Feng et al., 2018), and MFEARR (Wen & Ting, 2017). Note that all the parameters for the
comparison algorithms are sourced from their respective literature, and no modifications
have been made in this article. All algorithms are independently run 20 times, and mean
and Std are used as evaluation criteria. The experimental results are shown in Table S10.
The convergence curves and error bars are illustrated in Figs. S7 to S12.

Discussion and analysis of the PKACP
Based on Table S11 and Figs. S7 to S12, it can be concluded that the MTSO algorithm
proposed in this article is more competitive in terms of both accuracy and convergence
speed compared to other advanced multitask algorithms. As the number of tasks increases,
the error decreases, demonstrating that the multi-task algorithm is suitable for handling a
large number of tasks. However, as the dimensionality increases, the error also increases,
indicating that the multi-task algorithm still has some shortcomings in handling high-
dimensional problems. Although the MTSO algorithm achieves the smallest error in the
PKACP, it does not have the best standard deviation, ranking third among all algorithms.
The best standard deviation is achieved by the EMTEA. Overall, the MTSO algorithm
performs the best when considering both accuracy and convergence speed.
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Robot gripper design problem
The objective of this optimization problem is to minimize the difference between the
maximum and minimum forces exerted by the gripper, subject to the range of gripper end
displacement (Yin, Luo & Zhou, 2022). There are seven continuous design variables (a, b, c,
d, e, f, δ). Each robotic gripper represents a task, and this article addresses the simultaneous
solution of two robotic gripper problems. The robotic gripper problem is subjected to
seven distinct constraint conditions. Please refer to Yin, Luo & Zhou (2022) for detailed
mathematical formulas.

The statistical results of MTSO and other comparison algorithms on the two-task
robotic gripper problem are shown in Table S11. The convergence curves and error bars
are illustrated in Fig. S13. According to Table S11 and Fig. S13, it can be concluded that our
proposed algorithm achieved the best results.

Car side impact design problem
The objective of the side-impact collision problem for automobiles is to minimize the total
weight of the car using 11 mixed variables while maintaining standard safety performance
(Zhang et al., 2023). Variables 8 and 9 are discrete, while the rest are continuous. It can be
viewed as a mixed discrete and continuous mechanical optimization problem. Since the
8th and 9th variables are discrete, different tasks can be constructed by assigning different
values to these variables. For Task 1, the 8th and 9th variables are set to 0.192, while for
Task 2, the 8th and 9th variables are set to 0.345. Please refer to Zhang et al. (2023) for
detailed mathematical formulas.

The statistical results of MTSO and other comparison algorithms on the two-task car
side impact design problem are shown in Table S12. The convergence curves and error
bars are illustrated in Fig. S14. According to Table S12 and Fig. S14, it can be concluded
that our proposed algorithm achieved the best results.

CONCLUSION
This article proposes a multitask version of the SO algorithm, based on the original SO
algorithm, to simultaneously address multiple optimization problems. The MTSO
algorithm determines whether to transfer elite knowledge from other tasks or to update the
task’s own perturbation through preset knowledge transfer probabilities RMP and elite
individual selection probability R1. Through numerical experiments, the planar kinematic
arm control problem, the robot gripper design problem, and the car side impact design
problem have demonstrated the effectiveness of the MTSO algorithm and its ability to
solve real-world engineering problems.

The MTSO algorithm proposed in this article is single-objective. Future work could
focus on developing a multi-objective version. Additionally, while this article addresses
negative knowledge transfer by discarding harmful knowledge, it does not fundamentally
resolve the issue of negative knowledge transfer. Future research will aim to tackle the root
causes of negative knowledge transfer. Improving the performance of the algorithm on
high-dimensional problems is also a focus for future research.
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