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ABSTRACT
In industrial environments, slurry density detection models often suffer from
performance degradation due to concept drift. To address this, this article proposes
an intelligent detection method tailored for slurry density in concept drift data
streams. The method begins by building a model using Gaussian process regression
(GPR) combined with regularized stochastic configuration. A sliding window-based
online GPR is then applied to update the linear model’s parameters, while a
forgetting mechanism enables online recursive updates for the nonlinear model.
Network pruning and stochastic configuration techniques dynamically adjust the
nonlinear model’s structure. These approaches enhance the mechanistic model’s
ability to capture dynamic relationships and reduce the data-driven model’s reliance
on outdated data. By focusing on recent data to reflect current operating conditions,
the method effectively mitigates concept drift in complex process data. Additionally,
the method is applied in industrial settings through collaborative computing,
ensuring real-time slurry density detection and model adaptability. Experimental
results on industrial data show that the proposed method outperforms other
algorithms in all density estimation metrics, significantly improving slurry density
detection accuracy.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Real-Time and Embedded
Systems, Neural Networks
Keywords Concept drift, Slurry density, Sliding window, Forgetting mechanism, Stochastic
configuration network

INTRODUCTION
The mineral processing workflow comprises several stages, including raw ore
transportation, crushing and screening, grinding and classification, beneficiation, and
dewatering (Hodouin et al., 2001). Among these, grinding and classification serve as a
critical link between crushing and beneficiation, significantly influencing the overall
workflow. Key equipment in grinding operations includes ball mills and hydrocyclones,
whose performance directly affects grinding efficiency (Mukhitdinov et al., 2024; Bradley,
2013). The hydrocyclone feed density is a vital parameter impacting its overflow particle
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size. Higher feed density increases slurry viscosity and resistance, resulting in coarser
overflow particles and reduced classification efficiency. On the other hand, lower feed
density improves classification efficiency but reduces throughput while increasing water
and power consumption. Therefore, accurate monitoring and control of hydrocyclone feed
density are essential for optimizing grinding and classification efficiency (Reddy et al.,
2023).

Slurry density is a key metric in grinding and classification, directly influencing metal
recovery rates, concentrate grades, production efficiency, and process stability (Whitworth
et al., 2022). Current detection methods primarily rely on manual laboratory techniques
and densitometers, with limited exploration of artificial intelligence (AI) applications. The
pycnometer method is the most common manual technique, where a pycnometer is filled
with slurry, weighed, and its density calculated using a formula. Densitometers, on the
other hand, use precise instruments to determine material density based on physical
principles. Recently, advances in AI technologies have enabled some innovative
approaches for slurry density detection. For example, the combination of Prompt Gamma
Neutron Activation Analysis (PGNAA) technology and artificial neural networks (ANN)
has been proposed for online detection (Huang et al., 2024). Similarly, an approach based
on closed-loop input error and deep learning offers a novel method for real-time slurry
concentration prediction (Han et al., 2024).

In mineral processing, operational fluctuations such as variations in feed rate and water
addition often lead to concept drift, causing slurry density detection models to degrade in
performance (Bayram, Ahmed & Kassler, 2022). To address this issue, researchers have
developed methods to enhance model adaptability to changing data distributions. These
include selecting training samples that represent recent data distributions (Fan, 2004),
employing online learning algorithms to update model parameters continuously,
dynamically adjusting model structures for new data features (Yang & Fong, 2015), and
applying weighted updates to reduce the influence of outdated data (Sen, 2014; Martínez-
Rego et al., 2011). These techniques ensure model accuracy and adaptability in dynamic
environments. This study investigates a modeling approach that combines mechanistic
and data-driven methods to address the challenges of concept drift and meet the demands
for accurate, real-time slurry density detection in mineral processing (Cui et al., 2024). We
propose an online intelligent detection method for slurry density in concept drift data
streams, leveraging collaborative computing. This approach is not limited to slurry density
detection and can be extended to monitor other industrial process variables, enhancing the
accuracy of industrial parameter detection and improving production efficiency
(Wang et al., 2023).

PROCESS DESCRIPTION AND CHARACTERISTICS
ANALYSIS
Grinding and classification are among the most critical stages in mineral processing (Yuan
et al., 2020). These stages typically involve a closed grinding circuit comprising ball mills,
hydrocyclones, and slurry pumps. The primary grinding circuit includes a ball mill and a
spiral classifier, while the secondary circuit consists of a ball mill, hydrocyclone, and pump
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sump. In the primary circuit, ore is mixed with water and ground in the ball mill, after
which the slurry is classified by the spiral classifier. Coarse particles are returned to the ball
mill for further grinding, while finer particles proceed to the secondary circuit. In the
sump, additional water is added, and the slurry is pumped into the hydrocyclone. The
hydrocyclone uses centrifugal force to separate the slurry, discharging coarse particles for
further grinding and sending finer particles to subsequent beneficiation processes (Wang
& Chai, 2019).

The mechanistic analysis of slurry flow in pipelines focuses on selecting auxiliary
variables and building a comprehensive model for slurry density detection (Ma, Wang &
Peng, 2024). Resistance losses are categorized based on boundary conditions. For smooth
boundaries, frictional resistance arises from boundary-fluid interactions and fluid
viscosity. Local resistance losses occur due to sudden boundary changes, such as pipe
bends, valves, or cross-sectional variations, which can alter flow paths and velocities,
potentially causing vortices. Since slurry density detection is performed in vertical
pipelines, local resistance losses are negligible, and only frictional resistance losses are
included in calculations (Peet, Sagaut & Charron, 2009).

In an ideal scenario without resistance losses, the pressure difference is given by:

Dp ¼ qgDH: (1)

In Eq. (1), q is the slurry density, g is gravitational acceleration, and DH is the height
difference of the liquid surface. During slurry flow, frictional resistance losses occur, which
are described by:

Hf ¼ c
L
D
V2

2g
: (2)

In Eq. (2), c is the frictional resistance coefficient, L is the pipe length, D is the pipe
diameter, V is the average flow velocity, and g is gravitational acceleration. In actual
industrial processes, the total pressure difference Dp ¼ qgDH � Hf can be expressed as:

q ¼ Dpþ Hf

gDH
: (3)

In industrial production, density measurement commonly relies on pressure differential
signals from sensors placed at different heights. However, directly using these signals as
inputs for detection models may reduce accuracy (Li et al., 2020). According to Bernoulli’s
principle, the total pressure in a fluid remains constant; as flow velocity increases, static
pressure decreases. Slurry pressure meters, however, measure only static pressure.

As inlet velocity rises, the dynamic pressure difference between two points also
increases. Traditional pressure sensors convert pressure into electrical signals by inducing
deformation in a force-sensitive element, which changes resistance in a Wheatstone bridge
and generates a potential difference output (Xu et al., 2018). While effective for measuring
static pressure differences, this method cannot capture dynamic pressure changes,
potentially reducing measurement accuracy if differential signals are used directly in
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density models. Additionally, system and random errors in pressure measurements
necessitate corrections to the high-pressure side absolute pressure pH and the low-pressure
side absolute pressure pL. The pressure difference DpðtÞ ¼ pHðtÞ � pLðtÞmeasured at time
t is adjusted as follows:

DpðtÞ ¼ ApHðtÞ � BpLðtÞ þ C þ l1ðpHðtÞ; pLðtÞÞ: (4)

In Eq. (4), A and B are correction coefficients for high pressure and low pressure,
respectively; C is the offset term, and l1ð�Þ represents unknown nonlinear errors in pressure
measurement. The average flow velocity V has a nonlinear relationship with the slurry
pump current i and frequency f:

VðtÞ ¼ l2ðf ðtÞ; iðtÞÞ: (5)

This relationship can be expressed as follows:

qðtÞ ¼ q0ðtÞ þ DqðtÞ: (6)

In Eq. (6),

q0ðtÞ ¼ k1pHðtÞ þ k2pLðtÞ þ k3
DqðtÞ ¼ l pHðtÞ; pLðtÞ; f ðtÞ; iðtÞð Þ
k1 ¼ A

gDH
; k2 ¼ � B

gDH
; k3 ¼ C

gDH
ðgDH>0Þ

lð�Þ ¼ l1 pHðtÞ; pLðtÞð Þ
gDH

þ cLl22 f ðtÞ; iðtÞð Þ
2g2DDH

where lð�Þ includes measurement errors and unknown nonlinear terms in the slurry flow
process.

MECHANISM AND DATA-DRIVEN ONLINE INTELLIGENT
DETECTION METHOD FOR SLURRY
Classification and handling methods of concept drift
In industrial environments, slurry density detection models face the challenge of concept
drift, which refers to dynamic changes in data distribution or characteristics over time.
Concept drift often arises from external factors such as variations in raw material
properties, production processes, or equipment aging. To maintain prediction accuracy,
detection models must adapt continuously to these evolving conditions.

Concept drift is generally categorized as follows:

1) Sudden drift: This involves rapid and significant changes in data features over a short
time, often caused by abrupt shifts in raw material properties, equipment failures, or
emergency adjustments. Such changes can lead to sudden prediction errors, requiring
models to quickly adapt.

2) Gradual drift: Gradual drift occurs when data features evolve slowly over time, such as
equipment aging or long-term fine-tuning of process parameters. Although these
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changes may not immediately affect data distribution, model performance will degrade
if left unaddressed. Dynamic update mechanisms are commonly used to adapt to these
gradual changes.

3) Incremental drift: This refers to stable, cumulative changes in data distribution, such as
progressive variations in slurry concentration across production batches. While each
change is small, the cumulative effect can shift the data distribution, necessitating
models capable of incremental learning.

4) Recurrent drift: Recurrent drift arises from cyclical factors like periodic equipment
cleaning or routine production adjustments. Handling this type of drift requires models
to recognize and leverage cyclical patterns to make appropriate adjustments.

In industrial slurry density detection, concept drift is common and often involves
multiple drift types coexisting, placing high demands on model robustness and
adaptability. In this study, the dataset primarily exhibits sudden and gradual drift. Sudden
drift arises from abrupt changes in raw material properties, equipment failures, or
emergency operational adjustments, leading to rapid shifts in data features. Gradual drift,
in contrast, involves slow changes over time due to equipment aging or minor adjustments
in process parameters. To address these drift types, the proposed detection model
incorporates a sliding window mechanism and a forgetting mechanism to dynamically
update model parameters. For sudden drift, the sliding window mechanism focuses on
recent data, discarding outdated information to enable quick adaptation to abrupt changes.
The window size is dynamically adjusted to promptly capture new feature distributions
during drift events. Recursive formulas are also used to update key parameters online,
ensuring the model responds without delays. For gradual drift, the forgetting mechanism
reduces the weight of historical data over time, enhancing the model’s sensitivity to current
data. By dynamically adjusting the forgetting factor, the model ensures smooth updates for
gradual changes while avoiding overreactions to short-term fluctuations. By combining
these mechanisms, the proposed model effectively handles diverse types of concept drift in
complex industrial environments, significantly improving the accuracy and stability of
slurry density detection.

Establishing and calibrating the comprehensive model for slurry
density
In dynamic data environments, concept drift occurs when the statistical properties of data
change over time, posing challenges for density detection models. This article proposes an
intelligent detection algorithm for streaming data, combining a mechanistic model based
on Gaussian process regression (GPR) and a data-driven model (Wei et al., 2022) based on
a regularized stochastic configuration (RSC) Network for offline learning (Zhang &Wang,
2021). Initially, a subset of the data is selected to establish the initial model. Subsequently,
the linear and nonlinear models are updated with streaming data, and the results of both
models are combined to obtain the final slurry density detection value (Zhang et al., 2024).
As new samples arrive, the linear model parameters are updated online using a recursive
formula, yielding a linear model estimate q̂0 and its variance r2. The nonlinear model’s
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output weights are updated online using the teacher signal D�q D�q ¼ q� q̂0ð Þ and the
variance of the linear estimate r2 as labels, without altering the model structure. This
provides the nonlinear model’s density estimate Dq̂. If the estimate falls outside the
confidence interval ½D�q� 3r;D�qþ 3r�, the nonlinear model structure is dynamically
adjusted to improve generalization performance. Otherwise, the overall model is updated.

Mechanism-based model using online Gaussian process regression
The mechanistic model, representing the linear component, is based on the physical
principles of slurry flow in pipelines (Lui, Liu & Xie, 2022). Using Gaussian process
regression with a sliding window mechanism (OGPRSWM), the linear model updates its
parameters in real-time. This approach reduces the influence of outdated data, improves
parameter estimation, and ensures the model remains accurate and up-to-date (Gu, Fei &
Sun, 2020).

Initially, GPR is employed to identify the linear component of slurry density (Cao et al.,
2023). When input data x0aðkÞat time t ¼ k is provided, the probability distribution of the
mechanism model’s output can be obtained as follows:

P ŷaðkÞjx0aðkÞ;X0
aðk� 1Þ;Yaðk� 1Þ� �

¼ N r�2
n x0aðkÞA�1X0

aTðk� 1ÞYaðk� 1Þ; x0aðkÞA�1x0aTðkÞ
� �

:
(7)

In Eq. (7), A ¼ ��1 þ r�2
n X0

aTðk� 1ÞX0
aðk� 1Þ, Nt represents the total number of

training samples in the data pool. Xaðk� 1Þ and Yaðk� 1Þ denote the input and output
data used for training the linear model up to a given time, respectively. xaðk� i1Þand
yaðk� i1Þ represent the input and output data for training the linear model at a specific
time; q̂0ðkÞ ¼ ŷaðkÞ ¼ r�2

n x0aðkÞA�1X0
aTðk� 1ÞYaðk� 1Þ is the estimated result of the

linear model, r2ðkÞ ¼ x0aðkÞA�1x0aTðkÞ is the variance estimated by the Gaussian process
regression.

Subsequently, an online Gaussian process regression with a sliding window mechanism
is applied. During the initialization phase, dataset fXbðk� 1Þ;Ybðk� 1Þg is used to
construct the initial linear model, and the posterior distribution of parameters is estimated
using N0, the number of training samples in the data pool. Xbðkþ i2Þ and Ybðkþ i2Þ
denote the input and output data for training the linear model up to time kþ i2, while
xbðkþ i2Þ and ybðkþ i2Þ represent the input and output data at time kþ i2:

P ĥðk� 1ÞjYbðk� 1Þ;X0
bðk� 1Þ

� �
¼ N 1

r2n
A�1ðk� 1ÞX0

bTðk� 1ÞYbðk� 1Þ;A�1ðk� 1Þ
� �

:
(8)

In Eq. (8),
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X0
bðk� 1Þ ¼ ½x0bTðk� N0Þ; . . . ; x0bTðk� 2Þ; x0bTðk� 1Þ�T

x0bðkþ i2Þ ¼ ½pHðkþ i2Þ; pLðkþ i2Þ; 1�
Aðk� 1Þ ¼ ��1 þ r�2

n X0
bTðk� 1ÞX0

bðk� 1Þ:

After adding new samples and discarding older historical data, dataset

fX0
bðk� 1Þ;Ybðk� 1Þg is updated to fX0

b
0ðkÞ;Y 0

bðkÞg, The newly added sample is

fx0bðkÞ; ybðkÞg, and the discarded sample is denoted as fX0
drop;Ydropg; Following the update

of the data samples, r�2
n is updated to r

0�2
n . The key issue in updating the linear model is to

update A�1ðk� 1Þ to A�1ðkÞ, where AðkÞ is:

AðkÞ ¼ ��1 þ r
0�2
n X0

b
0TðkÞX0

b
0ðkÞ

¼ ��1 þ r
0�2
n r2n Aðk� 1Þ � ��1

� �þ r
0�2
n x0bTðkÞx0bðkÞ � X0

dropTX
0
drop

� �
:

(9)

The computational complexity of AðkÞ primarily stems from matrix multiplication,
with the original expression having a complexity of OðN2

w � 3Þ. Let Nw represent the
sliding window size; the complexity of the recursive computation isO N2

drop þ 1
� �

� 3
� �

.
Based on N2

w >> N2
drop þ 1, the derived recursive formula is used for online updates of the

linear model to reduce computational load and improve efficiency. By performing matrix
inversion on AðkÞ, the updated parameters are obtained, and the estimated density
value and variance for the new incoming data sample x0on;linðkþ 1Þ are calculated as
follows:

q̂bðkþ 1Þ ¼ r�2
n x0bðkþ 1ÞA�1ðkÞX0

b
0TðkÞY 0

bðkÞ
r2ðkþ 1Þ ¼ x0bðkþ 1ÞA�1ðkÞx0bTðkþ 1Þ: (10)

Data-driven model based on online regularized stochastic
configuration networks
This article presents a novel learning algorithm, the Forgetting Mechanism Regularized
Stochastic Configuration (FMRSC) algorithm, to address concept drift and enable online
learning for data-driven models based on Regularized Stochastic Configuration (RSC)
Networks (Luo et al., 2022). Unlike the Online Sequential Stochastic Configuration (OSSC)
algorithm (Chen & Li, 2022), the proposed FMRSC method processes streaming data
without requiring the retraining of the entire historical dataset. It achieves this by
integrating regularization and forgetting mechanisms into the OSSC algorithm.
Additionally, FMRSC dynamically adjusts the model structure using network pruning and
stochastic configuration to handle concept drift effectively. This approach leverages recent
data, minimizes reliance on outdated information, and enhances processing efficiency and
adaptability (Dai, Liu & Wang, 2024).

Online parameter update strategy
The RSC algorithm, used as the data-driven method in this study, is an improved version
of the Stochastic Configuration Network (SCN) (Wang & Li, 2017). By incorporating
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regularization techniques, RSC effectively mitigates overfitting, producing more robust
and generalized neural network models.

The output hL of the hidden layer node L and the supervision mechanism nL;q, q = 1, 2
are defined as follows:

hL ¼ gL xT
L xcðk� 1Þ þ bL

� �
; gL xT

L xcðk� 2Þ þ bL
� �

;
�

. . . ; gL xT
L xcðk� NÞ þ bL

� �	T
(11)

nL;q ¼
eTL�1;qhL
� �2

c
� 1� r � lLð ÞeTL�1;qeL�1;q; q ¼ 1; 2: (12)

In Eqs. (11) and (12), c ¼ ðhTL � hL þ 1=CÞ2=ðhTL � hL þ 2=CÞ. Given 1� e < r < 1, let
lL ¼ ð1� rÞ=ðLþ 1Þ and C be the regularization coefficients. Then, perform Tmax

stochastic configurations. In each configuration, randomly select the input weights xL and
bias ti for the Lth hidden layer node within a certain range, and compute nL;q; q ¼ 1; 2. If
min nL;1; nL;2 � 0 is satisfied, store xL, ti, nL;q; if none of the nL;q configurations meet the

condition, choose a larger r value and reconfigure. After completing the random
configurations, select the xL and bL corresponding to the largest

P2
q¼1 nL;q as the input

weights and bias for the Lth node.
The estimated value of the data-driven model at time t ¼ k is expressed as:

Dq̂ðkÞ ¼
XL
j¼1

bjgj xT
j xcðkÞ þ bj

� �
: (13)

Next, the parameters are updated online using a forgetting mechanism. Given dataset
fXdðkþ Nstr � 1Þ;Ydðkþ Nstr � 1Þg, during the initialization phase of the nonlinear
model, fXdðk� 1Þ;Ydðk� 1Þg is used to construct the initial nonlinear model. Here,
Xdðkþ i2Þ and Ydðkþ i2Þ denote the input and output data for training the nonlinear
model up to time kþ i2, and xdðkþ i2Þ and ydðkþ i2Þ represent the input and output data
at time kþ i2. If a regularized random configuration network with L hidden layer nodes is
constructed based on these N0 sets of training data, the optimization objective for the
output layer weights bk�1 is as follows:

bk�1 ¼ argmin
bk�1

Hk�1bk�1 � Ydðk� 1Þk k2 þ 1
C

bk�1k k2
� �

: (14)

Let Hk�1 represent the output of the hidden layer nodes of the nonlinear model
initialized with training data from Group N0. Let C denote the regularization term
coefficient. The solution can be obtained as follows:

bk�1 ¼ Hk�1
THk�1 þ E

C

� ��1

Hk�1
TYdðk� 1Þ: (15)

When data from Group ðN0 þ 1Þth reaches the model, it is necessary to update the
weights with the latest data. To mitigate the influence of past data on the model parameter
updates, a forgetting mechanism has been introduced. Given the fixed structure of the
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neural network and the constant weights of the input layer, the optimization objective for
obtaining new output layer weights bk is as follows:

bk ¼ argmin
bk

hk Hk�1bk � Ydðk� 1Þk k2 þ hkbk � ydðkÞk k2 þ 1
C

bkk k2
� �

: (16)

Let hk represent the forgetting factor, hk represent the hidden layer node outputs
calculated from the ðN0 þ 1Þth Group dataset, and Hk ¼ ½HT

k�1; h
T
k �T be given.

The solution can be obtained as follows:

bk ¼ Hk
T�T

k�kHk þ E
C

� ��1

Hk
T�T

k�kYdðkÞ: (17)

In Eq. (17), �k ¼ diagf ffiffiffiffiffi
hk

p
;
ffiffiffiffiffi
hk

p
; . . . ;

ffiffiffiffiffi
hk

p
;
ffiffiffiffiffi
hk

p
; 1g.

Let Pk�1 ¼ HT
k�1Hk�1; Pk ¼ h2kH

T
k�1Hk�1 þ hTk hk ¼ h2kPk�1 þ hTk hk, then we obtain:

bk ¼ Pk þ E
C

� ��1

h2k Pk�1 þ E
C

� �
bk�1 þ hTk ydðkÞ

� �

¼ bk�1 þ Pk þ E
C

� ��1 h2k � 1
C

bk�1 þ hTk ydðkÞ � hkbk�1ð Þ
� �

:

(18)

From this, we can derive the recursive formula for the output weights that incorporates
a forgetting mechanism. Similarly, when the ðN0 þ i2Þth dataset is fed into the model, we
have:

bkþi2 ¼ HT
kþi2�

T
kþi2�kþi2Hkþi2 þ

E
C

� ��1

Hkþi2
T�T

kþi2�kþi2Ydðkþ i2Þ: (19)

In Eq. (19),

�kþi2 ¼ diagf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQi2
s¼0

hkþs

s
; ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQi2
s¼0

hkþs

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQi2
s¼1

hkþs

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQi2
s¼2

hkþs

s
; � � � ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiQi2
s¼i

hkþs

s
; 1g.

The recursive formula for bkþi2 is:

bkþi2 ¼ bkþi2�1þ Pkþi2 þ
E
C

� ��1 h2kþi2 �1

C
bkþi2�1þhTkþi2 ydðkþ i2Þ�hkþi2bkþi2�1

� � !
(20)

In Eq. (20), Pkþi2 ¼ h2kþi2H
T
kþi2�1Hkþi2�1 þ hTkþi2

hkþi2 ¼ h2kþi2Pkþi2�1 þ hTkþi2
hkþi2 .

Dynamic adjustment strategy for model structure

Online adjustment of output layer parameters helps the model adapt to new data.
However, as operational conditions change and data distributions shift, the neural network
may struggle to handle new data characteristics. To address this, a dynamic structural
adjustment strategy based on network pruning is proposed. This strategy optimizes the
model structure and parameters, enhancing the adaptability of Stochastic Configuration
Networks.
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Assuming that a regularized stochastic configuration network with L hidden layer nodes
has been constructed based on the training data set N0, the output of the neural network is
given by:

FT
L;0 Xdðk� 1Þð Þ ¼

XL
j¼1

bj;0gj;0ðxT
j;0X

T
d ðk� 1Þ þ bj;0Þ: (21)

In Eq. (21), FT
L;0 Xdðk� 1Þð Þ represents the output of a regularized stochastic

configuration network without network structure adjustment, while bj;0; gj;0;xj;0; bj;0; j
represents the output weight of the hidden node j, the activation function of the hidden
node j, the input weight of the hidden node j, and the bias of the hidden node j,
respectively. When new data flows into the model and the accuracy remains unsatisfactory
after updating the parameters of both the linear and nonlinear models, an adjustment of
the structure of the nonlinear model is necessary. The adjustment criterion can be
described as follows:

FT
L;0 xdðkÞð Þ � D�qðkÞ

��� ���>3rðkÞ: (22)

When the difference between the estimated values of the nonlinear model and the
nonlinear labels exceeds three standard deviations, the model structure requires a dynamic
adjustment. After pruning the Ith hidden node, the model output is:

F
0T
L�1;1 xdðkÞð Þ ¼

XL
j¼1

bj;0gj;0ðxT
j;0x

T
d ðkÞ þ bj;0Þ � b

0
I;1g

0
I;1ðx

0T
I;1x

T
d ðkÞ þ b

0
I;1Þ: (23)

Thus, the change in network residual can be expressed as:

DFI ¼ YdðkÞ � F
0T
L�1;1 xdðkÞð Þ

��� ���: (24)

By comparing the impact of each hidden layer node on the change in model output
residuals and sorting them by DFð1Þ<DFð2Þ< � � � <DFðLÞ, we select and prune theNprun nodes
with the least impact. The value of Nprun satisfies DFðNprunÞ= FT

L;0 xdðkÞð Þ
��� ���<rp=L and

DFðNprunþ1Þ= FT
L;0 xdðkÞð Þ

��� ���>rp=L, where rp is the pruning coefficient that determines the

number of nodes to be pruned. After pruning, the output of the nonlinear model is
represented as F

0T
L�Nprun;1 XdðkÞð Þ, and the current network residual is as follows:

e
0
L�Nprun

¼ F
0T
L�Nprun;1 XdðkÞð Þ � YdðkÞ ¼ e

0
L�Nprun;1; e

0
L�Nprun;2

h i
: (25)

Incorporating new nodes based on the supervision mechanism. Subsequently, compute
the output weights as follows:
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bk;L�Nprunþ1 ¼ H0
k;L�Nprunþ1T �H0

k;L�Nprunþ1 þ
E
C

� ��1

H0
k;L�Nprunþ1T�kYdðkÞ: (26)

H0
k;L�Nprunþ1 ¼ ½h0k;1; h0k;2; . . . ; h0k;L�Nprunþ1�, hk;L�Nprunþ1 denotes the hidden layer output

of the nonlinear model at the ðL� Nprun þ 1Þth hidden node trained using dataset N0 þ 1.
After incorporating the new nodes, the network output is:

FT
L�Nprunþ1;1 XdðkÞð Þ ¼

XL�Nprunþ1

j¼1

bj;1gj;1ðxT
j;1X

T
d ðkÞ þ bj;1Þ: (27)

Next, determine if the network output error meets the predefined error criteria. If the
criteria are satisfied, the model construction is complete; otherwise, new hidden layer
nodes will be added based on a supervisory mechanism to minimize the output error until
the termination condition is met.

Adaptive intelligent detection method for slurry density based on
collaborative computing
With the rapid advancement of Internet of Things (IoT) technology, we have entered an
era of ubiquitous connectivity. Innovations such as cloud computing, big data, and
artificial intelligence are transforming industrial applications through Internet platforms.
In this context, edge-cloud collaboration has emerged as a crucial technology. Unlike
traditional frameworks, edge computing enhances data processing by performing initial
tasks near the data source (e.g., equipment or sensors). Edge devices handle data
acquisition and preliminary analysis, while edge control systems conduct initial data
processing. This reduces the burden on central cloud servers, improving processing speed
and efficiency. By addressing the limitations of traditional edge-cloud collaboration in real-
time data processing, this approach enables efficient, real-time analysis and decision-
making (Zhou et al., 2021). Edge-cloud collaboration has advanced industrial automation
and intelligence, laying a strong foundation for Industry 4.0.

As illustrated in Fig. 1, the proposed online intelligent detection method for slurry
density uses an edge-cloud collaborative framework to enhance real-time monitoring and
intelligent analysis. Edge devices acquire and preprocess data, ensuring system stability
and responsiveness. The edge control system processes data, runs online detection models,
and allows operators to monitor key parameters such as slurry pump current, frequency,
pressure, and density in real time. Operators can also input manual assay values via an
interactive interface for model updates. The edge system’s low latency and real-time
capabilities meet the demands of industrial environments. Meanwhile, the cloud platform
provides centralized computing power, managing databases and running slurry density
detection software. It updates the initial model offline or online and deploys the updated
model back to the edge for real-time detection. This architecture leverages the cloud’s
robust resources for iterative model optimization and centralized data management.
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EXPERIMENTAL ANALYSIS
The process data in this study were collected from the grinding and classification stages of
an actual mineral processing operation using industrial instruments. High-pressure
sensors, low-pressure sensors, motor current, and motor voltage transmitted data via
4-20 mA signals to a Siemens S7-1500 PLC. The PLC used the Modbus-RTU protocol to
communicate with edge servers, transferring real-time field data. These data captured

Figure 1 Collaborative computing-based pulp density intelligent detection system structure diagram.
Full-size DOI: 10.7717/peerj-cs.2683/fig-1
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various operating conditions, such as changes in raw ore properties, equipment aging, and
fluctuations in process parameters. Manual data were obtained through periodic on-site
assays, covering slurry densities ranging from 1,000 to 1,500 kg/m3. Variations were
influenced by operational changes, such as the addition of ore or water. Measurement
errors, caused by instrument limitations and environmental factors, were inevitable. To
improve model performance, significant outliers were removed by cross-referencing with
manual assay results. The cleaned dataset contained 800 samples, split in a 1:3 ratio for
initial model training and streaming data. Min-Max Normalization was applied to remove
dimensional unit interference and standardize the data for model training. Let
X ¼ ½PH ;PL; f ; I�, and the data were processed using Eq. (28):

X
0 ¼ X �minðXÞ

maxðXÞ �minðXÞ : (28)

The dataset exhibited both sudden and gradual concept drift. Sudden drift resulted from
abrupt changes, such as ore property variations, equipment failures, or emergency
operational adjustments. Gradual drift arose from factors like equipment aging or long-
term parameter fine-tuning. During the evaluation phase, the dataset was fed sequentially
into the model as a data stream, maintaining the chronological order of collection. After
processing each data point, the estimation error was calculated, and the model was
updated. RMSE and MAE were computed cumulatively to compare different models’
performance, demonstrating the proposed method’s robustness under various drift
scenarios.

The initial model was trained using two offline learning methods: GPR for the
mechanistic model and RSC Network for the data-driven model. Once trained, the model
is not further updated. The model estimates’ results are shown in Fig. 2, with absolute
errors in Fig. 3 and relative errors in Fig. 4. In the first 180 samples, conditions were
relatively stable, and the model achieved high accuracy, with most absolute errors under 10
and relative errors below 1%. However, for samples 180–200, significant operational
changes led to poor estimates, suggesting the model failed to capture new data distribution
features. In the remaining dataset, the model’s performance deteriorated further,
highlighting the need for continuous learning to address frequent changes in operational
conditions. This degradation reflects a concept drift phenomenon. To mitigate this, we
propose an algorithm enabling online updates to adapt quickly to new distributions,
ensuring high performance in industrial applications.

To demonstrate the effectiveness and superiority of the proposed intelligent detection
method for concept drift data streams, we compared our method, OGPRSWM-FMRSC,
with several other models. The linear model used is the online Gaussian process regression
with sliding window mechanism (OGPRSWM), and the nonlinear model is a Regularized
Stochastic Configuration Network (RRCN) with a forgetting mechanism. The alternative
models evaluated include OGPR-FMRSC, which uses a standard Online Gaussian Process
Regression (OGPR) without the sliding window, retaining historical data. The key
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parameter update formula is shown in Eq. (29), and the nonlinear model is the same as our
proposed algorithm.

AðkÞ ¼ ��1 þ r
0�2
n X0

bTðkÞX0
bðkÞ

¼ ��1 þ r
0�2
n r2n Aðk� 1Þ � ��1

� �þ r
0�2
n x0bTðkÞx0bðkÞ:

(29)

OGPRSWM-OSSC uses OGPRSWM for the linear model and an Online Sequential
Stochastic Configuration Network (OSSC) for the nonlinear model. OGPRSWM-OSRSC
utilizes OGPRSWM for the linear model and an Online Sequential Regularized Stochastic
Configuration Network (OSRSC) for the nonlinear model. The output weights are updated
online as follows:

bk ¼ bk�1 þ Pk þ E
C

� ��1

hTk ydðkÞ � hkbk�1ð Þ: (30)

In Eq. (30), Pk ¼ HT
k�1Hk�1 þ hTk hk ¼ Pk�1 þ hTk hk; OGPRSWM-FWRSC incorporates

OGPRSWM for the linear model and updates the output weights of the nonlinear model
using the proposed online update method without dynamic structural adjustments. We
evaluated the models using metrics such as R2, minimum error frequency, Pd<1:0%, MAE,
RMSE, true positive rate (TPR), true negative rate (TNR), and mean relative error (MRE).

Figure 2 Offline learning model estimation results. Full-size DOI: 10.7717/peerj-cs.2683/fig-2
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Figure 5 compares R2, minimum error frequency, TPR, TNR, and A across different
models, while Fig. 6 compares RMSE and MAE. Overall, OGPRSWM-FMRSC
outperformed the other models in all metrics. Specifically, the sliding window mechanism
in OGPRSWM-FMRSC proved effective in handling concept drift, as evidenced by its
superior performance compared to OGPR-FMRSC. The comparative performance of
OGPRSWM-FMRSC, OGPRSWM-FWRSC, OGPRSWM-OSRSC, and OGPRSWM-
OSSC sequentially declined, highlighting the importance of dynamic structure adjustment
and the combination of the forgetting mechanism with regularized least squares in
enhancing model performance.

Table 1 presents the performance evaluation metrics of the five models for slurry density
detection. The initial condition of the test dataset is labeled as Condition 1, with
subsequent significant density changes due to sample addition labeled as Conditions 2, 3,
and 4. Condition 5 begins around sample number 680, reflecting multiple sample
additions over a short period. Table 2 shows the MRE of each model under different
conditions. OGPRSWM-FMRSC demonstrated superior performance, with the lowest
MAE and RMSE of 6.11 and 7.56, respectively. Its R2 value reached 99.40%, indicating a
high fit between the model’s estimates and actual data. The OGPRSWM-FMRSC model

Figure 3 Absolute error estimation of offline learning model.
Full-size DOI: 10.7717/peerj-cs.2683/fig-3
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also had 91% of samples with a relative error below 1.0%, and its TPR and TNR were
75.88% and 76.39%, respectively, outperforming the other models.

Figure 7 presents the probability density function of estimation errors for the five
models. The error distribution for OGPRSWM-FMRSC is centered around zero and
exhibits a unimodal peak consistent with Gaussian distribution characteristics,
suggesting that the error sequence approximates randomness. Figure 8 presents the
autocorrelation function of OGPRSWM-FMRSC’s error, indicating that it approaches
white noise levels, with errors primarily attributed to random factors rather than poor
model generalization. This suggests that OGPRSWM-FMRSC has superior estimation
and generalization capabilities, making it more suitable for dynamic industrial
environments and potentially more stable under specific conditions compared to the
other models.

INDUSTRIAL APPLICATION ANALYSIS
In industrial applications, the Siemens S7-1500 PLC interfaces with edge devices via the
RS485 bus and Modbus-RTU protocol to collect and transmit real-time field data. Edge
devices utilize TIAV16 and Modscan32 software to simulate Modbus communication,

Figure 4 Relative error estimation of offline learning model.
Full-size DOI: 10.7717/peerj-cs.2683/fig-4
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enabling remote monitoring and control of field equipment. The edge data is transmitted
to the cloud for analysis and storage using a proprietary cloud protocol, as illustrated in
Fig. 9. To enable online slurry density detection and provide a intuitive interface, a
software application based on Vue, Spring Boot, and Flask frameworks was developed.
This software supports data visualization, storage, and query functions. It has been
deployed for over 5 months at a beneficiation plant in Shenyang. The interface design and
human-machine interaction prioritize efficiency and ease of use, optimizing operational
procedures, reducing operational difficulty, and significantly reducing the frequency of
operator errors, thereby enhancing operational safety and production efficiency. As shown
in Fig. 10, the real-time slurry density detection module displays the slurry density trend
calculated by the intelligent detection model alongside scatter points representing
manually obtained density values. By hovering the mouse over any data point reveals the
specific slurry density value at that point. Figure 11 illustrates a table from the software
interface, showing the most recent nine sets of comparison values obtained through
random sampling and testing post-system deployment. In these nine sets, the relative error

Figure 5 Comparison of different models in terms of R2, minimum estimation error frequency,
TPR, TNR and Pδ<1.0%. Full-size DOI: 10.7717/peerj-cs.2683/fig-5
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between the estimated slurry density and the actual test results did not exceed 1%.
Figure 12 illustrates a bar chart distribution of the slurry density estimation errors over the
5 months of operation, and Table 3 details the corresponding error analysis data. With an
acceptable relative error threshold of less than 2%, all months showed a qualification rate
above 95%, indicating that the proposed adaptive intelligent detection system based on
collaborative computing performed effectively in industrial settings, significantly
enhancing production efficiency.

Figure 6 Comparison of RMSE and MAE among different models.
Full-size DOI: 10.7717/peerj-cs.2683/fig-6

Table 1 Model evaluation results.

Model Estimate the minimum frequency of error MAE RMSE TPR% TNR% R2% Pδ<1.0%

OGPRSWM-FMRSC 22.17% 6.11 7.56 75.88% 76.39% 99.40% 91.00%

OGPR-FMRSC 18.83% 7.00 8.70 73.63% 73.26% 99.20% 86.33%

OGPRSWM-OSSC 18.33% 7.22 9.04 73.95% 70.49% 99.14% 85.16%

OGPRSWM-OSRSC 19.00% 6.91 8.64 74.28% 70.64% 99.22% 85.83%

OGPRSWM-FWRSC 21.67% 6.55 8.27 75.24% 73.96% 99.28% 86.16%
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Table 2 Model evaluation for MRE under different operating conditions.

Model Operating conditions
1

Operating conditions
2

Operating conditions
3

Operating conditions
4

Operating conditions
5

Offline Model 0.7983% 1.3347% 1.6825% 2.0699% 2.4299%

OGPRSWM-
FMRSC

0.5269% 0.5072% 0.4656% 0.4383% 0.4507%

OGPR-FMRSC 0.6253% 0.4927% 0.5720% 0.4864% 0.5691%

OGPRSWM-OSSC 0.6276% 0.5428% 0.5614% 0.5315% 0.5499%

OGPRSWM-OSRSC 0.5975% 0.5076% 0.5694% 0.5087% 0.5133%

OGPRSWM-
FWRSC

0.5439% 0.6166% 0.5499% 0.4394% 0.4954%

Figure 7 Comparison of estimation error PDFs for different models.
Full-size DOI: 10.7717/peerj-cs.2683/fig-7
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Figure 8 Self-correlation function of estimation error for the OGPRSWM-FMRSC model.
Full-size DOI: 10.7717/peerj-cs.2683/fig-8

Figure 9 Hardware platform framework. Full-size DOI: 10.7717/peerj-cs.2683/fig-9

Figure 10 Pulp density real-time monitoring module demonstration.
Full-size DOI: 10.7717/peerj-cs.2683/fig-10
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Figure 11 Sampling inspection result table. Full-size DOI: 10.7717/peerj-cs.2683/fig-11

Figure 12 Bar chart of the pulp density estimation error after more than 5 months of operation.
Full-size DOI: 10.7717/peerj-cs.2683/fig-12
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CONCLUSION
This study addresses concept drift in slurry density detection models within industrial
environments and proposes an intelligent detection algorithm for concept drift data
streams. Operational changes over time often lead to a gradual decline in model
performance. To address this, a sliding window mechanism is incorporated into the linear
model, with recursive formulas derived for real-time parameter updates. This approach
minimizes the impact of outdated data on current model accuracy. For nonlinear models, a
forgetting mechanism is introduced, with recursive formulas developed for online
updating of output weights, reducing the influence of historical data on new detections.
Additionally, network pruning and stochastic configuration methods are used to optimize
the model structure, enhancing its adaptability to new data distributions. Weighted least
squares and regularization methods are integrated during the stochastic configuration
process to evaluate output weights, improving the model’s generalization capabilities.
Experimental results show that the proposed method achieves superior accuracy and
stability when handling concept drift, significantly improving the reliability of slurry
density detection. This research has both academic significance and industrial value. The
real-time update algorithm enhances slurry density detection precision and stability,
providing an efficient monitoring tool for production processes. Accurate slurry density
detection is vital for optimizing process parameters, improving coal preparation accuracy,
and minimizing resource waste. By quickly responding to operational changes, the
proposed method prevents fluctuations in concentrate quality caused by detection errors,
improving production controllability. Its low computational cost makes it suitable for
real-time industrial applications, while also reducing resource waste and the need for
frequent manual adjustments or shutdown maintenance in high-frequency production
scenarios. Beyond slurry density detection, the proposed model framework is versatile and
can be applied to other industrial domains. For example, it can be used for sensor data
monitoring in equipment fault prediction and dynamic load regulation in energy
management. By addressing concept drift effectively, this method adapts to various
complex industrial scenarios, providing robust support for intelligent manufacturing in the
Industry 4.0 era.

Table 3 Analysis of the pulp density estimation error after more than 5 months of operation.

Month Monthly Laboratory
Tests

Average Density
(Manual Laboratory
Test)

Average Absolute
Error

Maximum Absolute
Error

Pδ<1.0% Pδ<2.0%

(Satisfactory
Rate)

2023.07 92 1,311.52 7.32 30.04 89.13% 97.82%

2023.08 33 1,295.63 6.98 27.43 84.85% 96.97%

2023.09 58 1,310.46 7.54 34.76 86.20% 98.27%

2023.10 76 1,255.34 6.91 25.78 90.79% 98.68%

2023.11 55 1,287.64 7.11 19.94 92.73% 100.00%

2023.12 9 1,234.58 3.98 6.73 100.00% 100.00%
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