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With the development of Internet of Things (IoT) technology, the collection of sensor data
has become a vital aspect of big data acquisition. Traditional time series analysis methods
struggle with complex patterns and long-term dependencies, whereas deep learning
technologies oûer new solutions. This study introduces the U-TSS, a U-net-based
sequence-to-sequence fully convolutional network, speciûcally designed for one-
dimensional time series segmentation tasks. U-TSS maps input sequences of arbitrary
length to corresponding sequences of class labels across diûerent temporal scales. This is
achieved by implicitly classifying each individual time point in the input time series and
then aggregating these classiûcations over varying intervals to form the ûnal prediction.
This enables precise segmentation at each time step, ensuring both global sequence
awareness and accurate classiûcation of complex time series data. We applied U-TSS to
geomagnetic ûeld observation data for the detection of high-voltage direct current (HVDC)
interference events. In experiments, U-TSS achieved superior performance in detecting
HVDC interference events, with accuracies of 99.42%, 94.61%, and 95.54% on the
training, validation, and test sets, respectively, outperforming state-of-the-art models in
accuracy, precision, recall, F1-score, and AUC. Our code can be accessed openly in the
GitHub repository at https://github.com/wangmengyu1/U-TSS .
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30 Abstract: With the development of Internet of Things (IoT) technology, the collection of sensor 

31 data has become a vital aspect of big data acquisition. Traditional time series analysis methods 

32 struggle with complex patterns and long-term dependencies, whereas deep learning technologies 

33 offer new solutions. This study introduces the U-TSS, a U-net-based sequence-to-sequence fully 

34 convolutional network, specifically designed for one-dimensional time series segmentation tasks. 

35 U-TSS maps input sequences of arbitrary length to corresponding sequences of class labels 

36 across different temporal scales. This is achieved by implicitly classifying each individual time 

37 point in the input time series and then aggregating these classifications over varying intervals to 

38 form the final prediction. This enables precise segmentation at each time step, ensuring both 

39 global sequence awareness and accurate classification of complex time series data. We applied 
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40 U-TSS to geomagnetic field observation data for the detection of high-voltage direct current 

41 (HVDC) interference events. In experiments, U-TSS achieved superior performance in detecting 

42 HVDC interference events, with accuracies of 99.42%, 94.61%, and 95.54% on the training, 

43 validation, and test sets, respectively, outperforming state-of-the-art models in accuracy, 

44 precision, recall, F1-score, and AUC. Our code can be accessed openly in the GitHub repository 

45 at https://github.com/wangmengyu1/U-TSS.

46 Keywords: Time series segmentation; U-net; Artificial intelligence; Geomagnetic field 

47 observation data; High-voltage direct current interference event; 

48

49 1. Introduction 

50 As innovations in Internet of Things (IoT) technology advance, the scope and complexity of 

51 sensor data acquisition have grown, establishing it as a crucial aspect of big data technologies 

52 (Yin et al. 2020). An increasing number of devices and sensors can collect and transmit real-time 

53 data, typically in the form of time series (Silva et al. 2021). Time series data is widely applied 

54 across various fields, including finance, ecology, economics, neuroscience, and physics (Matias 

55 et al. 2021). In the era of big data, the growing volume of data has revealed significant 

56 limitations of traditional time series analysis methods in handling complex patterns and long-

57 term dependencies. The advancement of deep learning technologies provides new solutions for 

58 time series analysis. By employing Convolutional Neural Network (CNN) and Recurrent Neural 

59 Network (RNN), deep learning models can automatically extract latent features from time 

60 series data and capture complex temporal patterns. A growing body of research suggests that 

61 deep learning methods consistently outperform traditional approaches in time series forecasting, 

62 time series segmentation (TSS), time series classification and anomaly detection tasks.

63 Time series segmentation involves partitioning data into non-overlapping, automatically 

64 labeled segments. The primary objective of time series segmentation is to identify and delineate 

65 change points or event boundaries within the time series. This facilitates the organization of 

66 similar or related data segments while isolating dissimilar segments. To enable deep learning 

67 models to perform effective time series segmentation, it is essential to first label the data. Much 

68 like image segmentation tasks, where pixel-wise annotations aid in learning, properly labeled 

69 data plays a crucial role in training deep learning models for time series segmentation. The 

70 methods for labeling time series segmentation can be primarily categorized into two approaches: 

71 sliding window labeling and dense labeling (Gaugel & Reichert 2023). Figure 1 illustrates the 

72 distinction between sliding window labeling and dense labeling. Sliding window labeling 

73 involves dividing the time series data into several fixed-length subsequences, each of which is 

74 assigned a label. Although this method has produced satisfactory results in many applications, 

75 the accuracy of label prediction may be limited by both the size of the time window and the step 

76 size, especially when the lengths of the subsequences vary. In contrast, the dense labeling 

77 method provides a precise approach to time series segmentation that does not rely on sliding 

78 windows. By assigning labels to each time step in the time series, this method offers more 

79 detailed classification information.

Abstract

÷
÷

÷
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80 Similar to semantic segmentation in computer vision, effective time series segmentation 

81 depends on dense labeling and robust model architectures to ensure precise classification. In 

82 dense labeling, each individual data point, whether part of a time series or an image pixel, is 

83 assigned a specific category. A pivotal architecture in semantic segmentation is the fully 

84 convolutional network (FCN) (Long et al. 2015), which has significantly contributed to end-to-

85 end pixel-level predictions. Based on FCN, many advanced convolutional neural networks have 

86 been proposed, including U-net (Ronneberger et al. 2015), which has been widely used in 

87 various segmentation tasks. U-net�s symmetric contracting and expanding paths form a U-shape, 

88 and the network uses skip connections to combine positional and semantic information. Segnet 

89 (Badrinarayanan et al. 2017) is similar to the U-net network, but it uses indexing for up-sampling 

90 to better preserve the boundary feature information. Deeplab (Chen et al. 2017) used dilated 

91 convolution and fully connected conditional random fields to improve the segmentation accuracy 

92 for image segmentation. Recent research has shown that all of these methods have been quite 

93 successful in the field of image segmentation.

94 Despite the advancements in segmentation techniques for images data, the inherent 

95 complexity and unique characteristics of time series data in other fields necessitate specialized 

96 segmentation methods. For instance, sleep staging and human activity recognition (HAR) are 

97 two major areas of study within time series segmentation, offering a wealth of experimental 

98 results and research insights (Yu et al. 2019). Huy Phan et al. (Phan et al. 2019) introduced 

99 SeqSleepNet, a hierarchical RNN designed for sleep staging, which enables end-to-end training 

100 of the network and classifies each time step of the time series to generate an output label 

101 sequence. Akara Supratak et al. (Supratak et al. 2017) developed DeepSleepNet, a model that 

102 employs CNN to extract temporal features and utilizes bidirectional long short-term memory 

103 networks (BiLSTM) to automatically learn the transition rules between sleep stages from 

104 electroencephalogram signals. Perslev Jensen (Perslev et al. 2019) proposed U-Time, a fully 

105 feed-forward deep learning algorithm for studying physiological time series segmentation of 

106 sleep data. U-Time classifies each time point in the input signal and aggregates them at fixed 

107 intervals to produce a final prediction. U-Sleep (Perslev et al. 2021) is an extension of U-Time 

108 designed for physiological time series segmentation applications, such as sleep staging. U-Sleep 

109 enables the marking of sleep stages at shorter intervals and facilitates automatic sleep staging. 

110 Yasin Kaya (Zhang et al. 2024) developed a deep learning method based on 1D-CNN for human 

111 activity recognition, evaluating the model using three public datasets, all of which yielded 

112 satisfactory results. Nidhi Dua (Dua et al. 2021) employed an end-to-end model for automatic 

113 feature extraction and activity classification. This model, which combines CNN and gated 

114 recurrent units (GRU), demonstrated robust classification performance across three publicly 

115 available human activity recognition datasets. 

116 In the field of geomagnetism, geomagnetic field observation data provides robust support 

117 for enhancing earthquake prediction and advancing research on seismomagnetic relationships. 

118 For earthquake prediction, large-scale geomagnetic observation instruments generate substantial 

119 volumes of time series data, capturing the state of the geomagnetic field over time (Chen et al. 

PeerJ Comput. Sci. reviewing PDF | (CS-2024:10:108116:0:1:CHECK 2 Nov 2024)

Manuscript to be reviewedComputer Science

Ciaran Beggan
Sticky Note
no it doesnt.



120 2016; Zhang et al. 2016). As modern infrastructure expands, various sources of interference, 

121 including highways, subways, and high-voltage direct current (HVDC) transmission lines, have 

122 introduced significant undesired noise into geomagnetic data collection (Shen et al. 2005). If 

123 these interference events are not detected and preprocessed, geomagnetic field observation data 

124 cannot be applied to earthquake forecasting and seismomagnetic relationship research (Chen et al. 

125 2008; Lin et al. 2020). Among various interference events, HVDC interference events have a 

126 wide range of impacts and high frequency. When HVDC transmission lines are powered on or 

127 experience faults, unbalanced currents on the two high-voltage lines generate an uncompensated 

128 magnetic field, thereby affecting the geomagnetic field observation data (Gong & Yu 2000; Jiang 

129 & XiuXia 2014), as shown in Fig. 2. Because of the unequal magnitudes of unbalanced currents 

130 on the two HVDC transmission lines and the varying distances between the geomagnetic 

131 observation instruments and HVDC transmission lines, HVDC interference events exhibit 

132 staircase-like characteristics in the Z-component of the geomagnetic field observation data, with 

133 varying durations, amplitudes, and orientations, while showing less pronounced effects on the 

134 other observation components. The variability further complicates the time series analysis and 

135 accurate detection of interference events. HVDC interference events have become a focal point 

136 in the preprocessing of geomagnetic field observation data (Chen et al. 2010). Existing manual 

137 detection methods are not only time-consuming and labor-intensive, but also highly susceptible 

138 to human variability, with results differing significantly between individuals. This inconsistency 

139 leads to a lack of uniformity in data processing outcomes, reducing the reliability and overall 

140 quality of the processed geomagnetic field data. Therefore, there is an urgent need for a highly-

141 accurate and universally applicable automatic detection method for HVDC interference events.

142 In contrast to sleep staging and human activity recognition, the primary challenge in 

143 geomagnetic field observation data preprocessing is the precise detection of interference events. 

144 For earthquake prediction, accurately identifying and process these interference events is critical, 

145 as even minor errors in detection can significantly compromise the reliability of the data. To 

146 address these challenges, this study draws inspiration from advancements in time series 

147 segmentation and semantic segmentation and proposes a sequence-to-sequence time series 

148 segmentation model based on U-net. We apply this model to the detection of HVDC interference 

149 events in geomagnetic field observation data, enabling the segmentation of the entire time series 

150 and the identification of HVDC interference events of varying durations at any temporal scale. 

151 The key contributions of this study are as follows:

152 ü We proposed U-TSS, a novel time series segmentation model based on U-net. This model 

153 combines time series segmentation techniques with semantic segmentation to achieve high-

154 precision dense segmentation of interference events in geomagnetic field observation data. 

155 This innovative integration effectively leverages the advantages of the U-net architecture, 

156 thereby enhancing the ability to capture complex temporal features and patterns.

157 ü The model employs a sequence-to-sequence framework, utilizing one day's geomagnetic 

158 field observation data as input. It implicitly classifies each individual time point in the input 

159 data and aggregates these classifications into time series segments of varying lengths to 
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160 produce the final predictions. This design enables the model to accurately classify each time 

161 step, significantly improving the accuracy and robustness of the dense segmentation.

162 ü By employing the Particle Swarm Optimization (PSO) algorithm (Kennedy & Eberhart 1995) 

163 to optimize the model's hyperparameters, the model's performance is further enhanced. The 

164 introduction of the PSO algorithm not only accelerates the model's convergence speed but 

165 also optimizes the selection of hyperparameters, allowing U-TSS to demonstrate higher 

166 efficiency and accuracy when processing geomagnetic field observation data.

167 In the remainder of the paper, we outline the overall structure. Section 2 formalizes the 

168 problem. 

169 Section 3 provides an overview of the U-TSS architecture and its modules. Section 4 details 

170 the data sources and the sample production process. Section 5 presents a series of tests conducted 

171 with state-of-the-art time series segmentation models. Section 6 describes the results of the 

172 experiment. Section 7 makes a discussion, and Section 8 concludes this essay.  

173 2. Problem formalization

174 U-TSS is a sequence-to-sequence fully convolutional network designed specifically for one-

175 dimensional time series segmentation tasks. Built upon the U-Net architecture, this model 

176 effectively addresses the limitations of traditional segmentation models when handling complex 

177 time series data. U-TSS processes time series data of arbitrary length as input, efficiently 

178 mapping the complete sequence to dense outputs in a single forward pass using fully 

179 convolutional layers. This design enhances the model's capacity to capture global patterns in 

180 long sequences while ensuring precise segmentation at each time step, enabling accurate 

181 classification of complex temporal signals.

182 The problem of time series segmentation can be formally defined as follows: Let ÿÿ *
183  represent the multivariate time series data for a specific time interval, ýÿ × ÿ

= [ÿ1,ÿ2,ï,ÿÿ]

184 where T denotes the number of time steps and C represents the different features of the time 

185 series data. In this study, we focus on a univariate case, thus . Consequently, the univariate ÿ = 1

186 time series data can be expressed as a one-dimensional array . To ÿ * ýÿ × 1
= [ý1,ý2,ï,ýÿ]

187 address the segmentation problem, each time step  is associated with a label , which T ýÿ * ýÿ × 1

188 indicates the category to which the time step belongs. This labeling approach constitutes a dense 

189 annotation method, which is essential for the segmentation task, as it enables the precise 

190 categorization of each time point according to its respective class.

191 In the context of geomagnetic field observation data, the input data  for the U-TSS model ÿ
192 consists of one-dimensional time series data with the shape ,corresponding to the ýÿ × 1

193 measurements of a specific component across  time steps. The primary task is to map this input ÿ
194 data to a sequence of predicted labels ,producing an output for each time step. The ýÿ * ýÿ × 1

195 objective is to accurately identify and localize HVDC interference events in the geomagnetic 

196 observation data, resulting in a label sequence where HVDC events are marked as 1 and the 

197 BACKGROUND is marked as 0.
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198 This flexibility in assigning labels to every time point is a key feature of U-TSS, allowing it 

199 to handle fine-grained temporal segmentation tasks effectively. U-TSS implicitly classifies each 

200 time point in the input data and aggregates these classifications into time series segments of 

201 varying lengths. This approach enables the accurate detection of HVDC interference events in 

202 geomagnetic field observation data, thereby enhancing the accuracy and efficiency of time series 

203 segmentation methods. 

204 3. Method

205 3.1 U-TSS Model Overview 

206 To achieve the precise detection of HVDC interference events in geomagnetic field 

207 observation data, U-TSS is an adaptation of the U-Net model, originally designed for biomedical 

208 image segmentation. The U-Net model is structured with both a contracting path and an 

209 expanding path, enabling effective feature extraction and reconstruction. As illustrated in Fig. 3, 

210 the left side of the network represents the contracting path, comprising four contraction stages. 

211 Each contraction stage includes two 3×3 convolutional layers and one 2×2 max pooling layer. 

212 After each contraction stage, the number of feature maps doubles while the feature maps are 

213 halved in size. The expanding path is located on the right side of the network structure and is 

214 made up of four stages. Each expansion stage includes one 2×2 Up-convolutional layer and two 

215 3×3 convolutional layers. The number of feature maps is reduced by half through deconvolution, 

216 and then connected to the symmetric feature maps from the contracting path on the left side. 

217 Because of the difference in size between the contracting and expanding path feature maps, the 

218 U-Net model crops the contracting path feature maps to match the size of the symmetric feature 

219 maps on the right side. The final output is obtained by applying a 1×1 convolutional layer to the 

220 entire model.

221 Figure 4 illustrates the network structure of the U-TSS model, comprising three primary 

222 modules: the contracting path, the expanding path, and a dense segmentation classifier. The 

223 contracting path focuses on feature extraction by progressively down-sampling the input time 

224 series. It captures relevant temporal patterns through convolutional operations and reduces the 

225 temporal resolution via pooling layers. The expanding path is designed to up-sampling the 

226 feature maps obtained from the contracting path, restoring the original resolution of the input. By 

227 incorporating skip connections, the model combines coarse and high-level features with fine 

228 details, which enhances its capacity for accurate time series segmentation. The dense 

229 segmentation classifier assigns a label to each time step of the input sequence. It leverages the 

230 outputs from the expanding path to produce a dense output, generating class probabilities for 

231 every time step in the time series. The design of these three modules enables the U-TSS model to 

232 effectively achieve precise segmentation and classification of time series.

233 The U-TSS model modifies the conventional U-Net architecture, which was originally 

234 developed for two-dimensional image data, to effectively accommodate one-dimensional time 

235 series data. Specifically, the U-TSS employs 1-dimensional convolutions to effectively extract 

236 features related to HVDC interference events in geomagnetic field observation data. In contrast 

237 to 2-dimensional convolution, where a sliding window operates over the feature map in both 

PeerJ Comput. Sci. reviewing PDF | (CS-2024:10:108116:0:1:CHECK 2 Nov 2024)

Manuscript to be reviewedComputer Science

Ciaran Beggan
Sticky Note
This figure is not required, as it focuses on images rather than 1D time series like Figure 4.



238 width and height directions, the 1-dimensional convolution focuses solely on the width direction. 

239 This approach allows for efficient processing of the time series data, as it multiplies and sums 

240 values at corresponding positions within a single dimension. The mechanics of 1-dimensional 

241 convolution are illustrated in Fig. 5. To ensure that the input feature maps of the convolution 

242 process are consistent with the output feature maps and to avoid the cropping operation during 

243 feature fusion, the U-TSS model uses SAME convolution. The convolution kernel size in Fig. 5 

244 is three and it moves across the input sequence in fixed steps. At each step, the convolution 

245 kernel computes the output value by multiplying and summing the elements corresponding to its 

246 current position in the input region. Afterwards, the convolution kernel shifts by one step, 

247 repeating this operation until the entire input sequence is traversed. Each convolution calculation 

248 produces a point in the output feature map, resulting in a new feature map after the convolution 

249 process. Assuming that n is the current convolutional layer, the 1-dimensional convolutional 

250 operation formula for this layer is shown in Eq. (1):ýÿÿ =

ÿ3
i = 1

ý ÿ 2 1ÿ + ÿ 2 1 × ÿÿÿÿ + ÿÿÿ ÿ1ÿ

251 Where  represents the output at the position  after the -th convolutional layer,  is the ýÿÿ ÿ ÿ ÿ
252 size of the convolutional kernel,  is the convolution kernel index, and  represents the position ÿ ÿ
253 index in the output feature map of the -th layer.  denotes the convolutional operation,  ÿ × ÿÿÿÿ
254 represents the weight of the convolution kernel at the -th position for the -th output in the -th ÿ ÿ ÿ
255 layer, and  is the bias corresponding to the output features at position  in layer .ÿÿÿ ÿ ÿ
256 Following the convolution operation, each output value is often transformed nonlinearly by 

257 using an activation function in order to improve the network model's non-linear features. The 

258 activation function used in U-TSS is ReLu, which can be represented as Eq. (2):ÿÿÿ = ÿ(ýÿÿ) = max {0,ýÿÿ} = {ýÿÿ ,  ýÿÿ g 0

0,  ýÿÿ < 0 � ÿ2ÿ

259 Where  represents the input value at location  to the activation function from the ýÿÿ ÿ
260 convolution operation,  denotes the output value at location  after the activation function is  ÿÿÿ ÿ
261 applied in the -th layer.ÿ
262 3.2 Contracting path 

263 The contracting path consists of four stages, each including a max pooling layer with a 

264 pooling size of 2 and two 1-dimensional convolutional layers. Max pooling preserves the most 

265 salient features by selecting the maximum value in a local region as the output value. Figure 6 

266 illustrates the max pooling process. The pooling window in the figure is 2, moving in steps of 2 

267 across the inputs and selecting the maximum value to pass to the next layer. Additionally, 

268 dropout layers are applied to the first and second convolutional layers in the first two contraction 

269 stages. With each contraction stage, the number of feature maps doubles while the feature maps 

270 are halved in size. The contracting path continuously performs convolution and pooling 

271 operations to obtain deep semantic information. As the data are pooled several times, the 
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272 resulting low-resolution feature maps reflect the time-point semantic information, that is, each 

273 individual time-point of the geomagnetic field observation data is assigned a label. 

274 3.3 Expanding path 

275 In the expanding path, there are four expansion stages, each involving an up-sampling 

276 operation with a factor of 2, followed by two 1-dimensional convolutional layers. In the first 

277 expansion stage, a dropout layer is introduced between the two convolutional layers. Similarly, 

278 in the third and fourth expansion stages, a dropout layer is added to each of the two 1-

279 dimensional convolutional layers. After four expansion stages, the feature maps are equal in size 

280 to the input. Throughout the continuous up-sampling process, the network can obtain deep 

281 feature information about the data. In each expansion stage, the high-resolution features of the 

282 contracting path are transferred and mixed with the up-sampled features, resulting in a doubling 

283 of the feature maps, which is the skip connection. Subsequent convolutions are then performed to 

284 capture contextual information in the encoded representations. The skip connection helps the 

285 model to successfully fuse deep semantic information with shallow positional information, 

286 achieve effective fusion of multi-scale HVDC interference events and overcome the issues of 

287 positional loss and segmentation inaccuracy in the segmentation process. 

288 3.4 Dense segmentation classifier 

289 The final module of the U-TSS model is the dense segmentation classifier, which assigns a 

290 label to each time step in the input sequence. Utilizing the output of the expanding path, this 

291 head constructs a probability distribution over the classes using softmax activation. This process 

292 results in the final predictions , where represents the number of time steps. By ý * ýÿ × 1 ÿ 
293 constructing this probability distribution, the dense segmentation classifier quantifies the 

294 likelihood that each observed value in the input data corresponds to an HVDC event or the 

295 BACKGROUND. This mechanism not only ensures dense segmentation by providing a label for 

296 each time step but also aggregates these classifications into segments of varying lengths, thereby 

297 allowing the U-TSS model to accurately detect HVDC interference events in the geomagnetic 

298 field observation data and pinpoint the start and end times of these events.

299 4. Dataset

300 4.1 Data Source

301 The data used in this study were obtained from the Geomagnetic Network Center of China, 

302 the Institute of Geophysics, China Earthquake Administration. In this paper, the geomagnetic 

303 field observation data and manual preprocessing logs of HVDC interference events between 

304 January 1, 2014, and December 31, 2018, were selected for the experiments. The manual 

305 preprocessing log of HVDC interference events contains the station code, instrument code, item 

306 code, and the start and end time of each HVDC event. Each station may deploy multiple 

307 geomagnetic instruments. The HVDC interference events mainly affect the Z-component of the 

308 geomagnetic field observation data, characterized by a step-like pattern (Bao et al. 2020; Yang & 

309 Dong 2020). Therefore, in this study, we used the Z-component of the geomagnetic field 

310 observation data to detect HVDC interference events automatically. 

311 4.2 HVDC sample production
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312 The detection of HVDC interference events has primarily relied on manual inspection 

313 methods, which are often characterized by substantial time requirements and a susceptibility to 

314 human error. Furthermore, the absence of a standardized dataset for these events presents 

315 significant challenges for the advancement and validation of automated detection algorithms. 

316 Consequently, we produced a dataset specifically for the detection of HVDC interference events 

317 in geomagnetic field observation data. In this subsection, we describe the process of sample 

318 production in detail. Figure 7 illustrates the sample production process.

319 Firstly, we selected all HVDC interference events from January 1, 2014, to December 31, 

320 2018, from the manual preprocessing log and recorded the date, start time, end time, and affected 

321 instrument of each HVDC event. 

322 Before generating samples, we combined all HVDC events in one day for each instrument into a 

323 single record. The observation data is then normalized using the Z-score, formulated as:ýÿ =
ÿÿ 2 ÿÿ ÿ3ÿ

324 where  is the raw observation at time ,  is the mean of the observation data, and  is the ÿÿ ÿ ÿ ÿ
325 standard deviation. The normalized data is saved as a data file for the HVDC sample, named 

326 'station_code-instrument_code�date .npy '.

327 Finally, similar to the sample generation method in semantic segmentation, the U-TSS 

328 model needs to label each time point value in the geomagnetic field observation time series 

329 sample as BACKGROUND or HVDC. If a time point value is an HVDC interference event, it is 

330 labeled as 1, otherwise, it is labeled as 0. After the above operation, we get a label file with the 

331 same name as the data file of the HVDC sample, which is stored in the label folder. Therefore, 

332 each HVDC sample contains one data file and one label file, and has a consistent length. 

333 Figure 8 shows an HVDC sample from station 12005, instrument 1, on July 3, 2017. The 

334 top half of the figure shows geomagnetic field observation data after normalization. The black 

335 line represents the background, and the red line indicates the HVDC interference events that 

336 occurred on that day. The bottom half of the figure shows the labels corresponding to the data, 

337 where 1 indicates HVDC, and 0 indicates the background.

338 A total of 9255 samples were generated, covering 126 affected observation stations. To 

339 improve the generalization ability of the model, the 9255 samples were randomly shuffled and 

340 divided into three sets: 7405 samples for training, 925 samples for validation, and 925 samples 

341 for testing, in an 8:1:1 ratio.

342 5. Experiments

343 5.1 Experiment setting

344 The U-TSS model proposed in this paper was developed using Python with Keras for the 

345 model design and construction. TensorFlow was chosen as the underlying deep learning library 

346 (Abadi et al. 2016). Training the model employed two NVIDIA Tesla V100 FHHL 16G GPU 

347 cards, with two Intel(R) Xeon(R) Silver 4116 CPUs @ 2.10GHz processors and 256GB of 

348 memory. The Adam optimizer was used (Diederik & Ba 2014), with a batch size of 64 for the 

349 training set and a batch size of 2 for the validation set. The number of epochs was set to 300. 
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350 Throughout the training process, we incorporated the early stopping mechanism, monitoring the 

351 accuracy of the model on the validation set. The PATIENCE value was set to 20, meaning that if 

352 there was no consecutive improvement in the validation set accuracy over 20 epochs, training 

353 would be immediately halted. Each epoch took approximately 16 seconds to train.

354 The model aims to minimize the loss function , which represents the distance ÿ(ý,ý)

355 between the predicted labels  and the true labels . The categorical cross-entropy loss function ý ý
356 was employed in this experiment to address the binary classification task, defined by the 

357 following formula: ÿ(ý,ý) =2 1ÿ ÿ3ÿ = 1

ýÿ 7 log ( ýÿ) ÿ4ÿ

358 where  represents the predicted result of the sample and  represents the true calculated ýÿ ýÿ
359 result.

360 5.2 Evaluation metrics

361 Whether a time point value is an HVDC interference event can be viewed as a binary 

362 classification problem. In this study, evaluation metrics were accuracy, precision, recall, F1-

363 score, and AUC. Table 1 presents the confusion matrix for predicting whether a time point value 

364 is an HVDC interference event using the U-TSS model.

365 HVDC is considered as the positive class, while BACKGROUND is considered as the 

366 negative class. True positive (TP) and true negative (TN) represent correct predictions, where the 

367 true label value and the predicted label value are the same. False positive (FP) and false negative 

368 (FN) represent incorrect predictions, where the true label value and the predicted label value are 

369 different.

370 Accuracy is defined as the proportion of correctly classified samples, including both HVDC 

371 and BACKGROUND data, to the total number of samples. It is calculated using the Eq. (5).

.ÿýýÿÿÿýÿ =
ÿÿ + ÿýÿÿ + ýÿ + ÿý + ýý ÿ5ÿ

372 The precision is utilized to evaluate the model's accuracy in predicting HVDC samples, 

373 which is defined as the proportion of correctly predicted HVDC samples to the total predicted 

374 HVDC samples. It can be calculated using Eq. (6).

.ýÿÿýÿýÿýÿ =
ÿÿÿÿ + ýÿ ÿ6ÿ

375 The recall, which is the percentage of samples predicted to be HVDC among all actual 

376 HVDC samples, is used to assess the model's capacity to identify HVDC samples. It is calculated 

377 using Eq. (7).

.ÿÿýÿýý =
ÿÿÿÿ + ýý ÿ7ÿ

378 A harmonic mean of recall and precision is the F1-score. It gives a fair assessment by taking 

379 recall and precision into account. It is defined as shown in Eq. (8).

.ý1 2 ýýÿýÿÿ =
2 7 ýÿÿýÿýÿýÿ 7 ÿÿýÿýý ýÿÿýÿýÿýÿ + ÿÿýÿýý 

ÿ8ÿ
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380 The area under the receiver operating characteristic (ROC) curve, which is a plot of the true 

381 positive rate (TPR) against the false positive rate (FPR) for different threshold values, is referred 

382 to as the AUC (Area Under the Curve). AUC is utilized to evaluate a classifier's performance, 

383 particularly in situations with sample imbalance. The TPR and FPR are calculated as follows, 

384 according to Eq. (9) and Eq. (10). ÿÿýÿýÿ =
ÿÿÿÿ + ýý ÿ9ÿ

ýÿýÿýÿ =
ýÿýÿ + ÿý ÿ10ÿ

385

386 5.3 Hyperparameter optimization

387 As the accuracy of deep learning models heavily relies on hyperparameters such as the 

388 learning rate and convolution kernel size, selecting the optimal values for these hyperparameters 

389 is a challenging task. Due to their straightforward logic structures, excellent optimization quality 

390 and efficiency, and low computational costs, numerous enhanced meta-heuristic techniques have 

391 been created in recent decades for resolving challenging optimization problems (Wang et al. 

392 2023). In this paper, the primary hyperparameters of the U-TSS model were optimized using the 

393 particle swarm optimization algorithm. PSO is a stochastic search algorithm based on swarm 

394 collaboration, which was developed by simulating bird foraging behavior, and is now commonly 

395 used in hyperparameter optimization in deep learning models (Band et al. 2020; Elmasry et al. 

396 2020; Qolomany et al. 2017). The learning rate, convolution kernel size, and dropout size were 

397 selected as the hyperparameters to be optimized, with the value of the 1-F1-score set as the 

398 fitness function. In the PSO optimization algorithm, the hyperparameters to be optimized were 

399 continuously updated within the upper and lower bounds set, and the particle swarm iteratively 

400 searched for the minimum value of the fitness function, returning the final optimized results for 

401 all hyperparameters when this minimum value was achieved. In the optimization process, the 

402 lower and upper bounds of the convolution kernel size were set from 16 to 128, while the lower 

403 and upper bounds of the learning rate were set from 0.000001 to 0.01. The dropout sizes in the 

404 first and second compression stages of the compressed path, as well as the third and fourth 

405 expansion stages of the expansive path, were referred to as dropout1. The dropout size in the first 

406 expansion stage of the expansive path was referred to as dropout2. Both dropout1 and dropout2 

407 were bounded within the range of 0 to 0.6. The parameter settings for PSO optimization of the 

408 hyperparameters experiment are presented in Table 2.

409 The values of the fitness function (1-F1-score) obtained at each iteration in the optimization 

410 process are illustrated in Fig. 9. The x-axis represents the iteration number, and the y-axis 

411 represents the value of the fitness function (1-F1-score). It can be observed that the value of the 

412 fitness function gradually decreased with an increasing number of iterations and eventually 

413 reached stability. This indicates a progressive improvement of the F1-score of the U-TSS model 

414 during the optimization process. Ultimately, the optimal values of the hyperparameters are as 
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415 follows: the learning rate is 0.00005, the convolution kernel size is 64, and dropout1 and dropout2 

416 are 0.1 and 0.4, respectively. 

417 6. Results

418 The accuracy and loss curves of the U-TSS model are shown in Fig. 10. During the training 

419 process, the accuracy on both the training and validation sets gradually increased, eventually 

420 reaching 99.42% and 94.61%, respectively. The U-TSS model achieved 95.54% accuracy, 88.65% 

421 precision, 76.07% recall, and an F1-score of 0.8188 on the testing set.

422 To evaluate the performance of U-TSS, we selected several typical time series segmentation 

423 methods for comparison. Although there is limited literature specifically applying deep learning 

424 algorithms to detect HVDC interference events, we drew on the similarities between 

425 geomagnetic field observation data and time series data in biomedical fields, such as 

426 electrocardiogram (ECG) and electroencephalogram (EEG). Therefore, we compared U-TSS 

427 with several established segmentation algorithms commonly used in these fields, including the 

428 CNN (Acharya et al. 2017), CNN-LSTM (Oh et al. 2018), TinySleepNet (Supratak & Guo 2020), 

429 and U-Time models. In addition, considering that geomagnetic field observation data are 

430 classical time series data, we also included several traditional time series classification methods 

431 in our comparison. These methods encompass the Encoder model (Serra et al. 2018), FCN 

432 (Wang et al. 2017), ResNet, and Inception model (Ismail Fawaz et al. 2020). All models were 

433 trained and tested on the same datasets to assess their generalization ability.

434 In the comparative experiments, all hyperparameters were configured based on the original 

435 papers of the aforementioned models. Consistent with the training approach of the U-TSS model, 

436 an early stopping mechanism was implemented with a maximum of 300 iterations and a patience 

437 of 20.

438 Table 3 presents comparative experimental results on the test set, illustrating that the U-TSS 

439 model achieves the best performance on all metrics, including accuracy 95.54%, precision 

440 88.65%, recall rate 76.07%, F1-score 0.8188, and AUC 0.9637. In comparison, the first-order 

441 difference method achieves 73.04% accuracy, 24.29% precision, 48.78% recall, and 0.3243 F1-

442 score. It is unable to compute its AUC due to differing data input formats. The CNN model 

443 achieves an accuracy of 90.03%, with precision at 70.19%, recall at 43.13%, an F1-score of 

444 0.5343, and an AUC of 0.8995. The CNN-LSTM model achieves 91.21% accuracy, 75.45% 

445 precision, 49.99% recall, an F1-score of 0.6013, and an AUC of 0.7405. The TinySleepNet 

446 model achieves 90.11% accuracy, 83.98% precision, 68.00% recall, and an F1-score of 0.7257. 

447 The TinySleepNet could not calculate its AUC due to data format issues. The U-Time model 

448 achieves 86.22% accuracy, 29.52% precision, 32.99% recall, an F1-score of 0.3116, and an AUC 

449 of 0.7130. The Encoder model achieves 87.99% accuracy, 85.71% precision, 11.37% recall, an 

450 F1-score of 0.2007, and an AUC of 0.4870. The FCN model achieves 86.74% accuracy, 63.06% 

451 precision, 0.14% recall, an F1-score of 0.0027, and an AUC of 0.6706. The Inception model 

452 achieves 85.03% accuracy, 23.91% precision, 5.90% recall, an F1-score of 0.0946, and an AUC 

453 of 0.3968. The Resnet model achieves 86.76% accuracy, 56.67% precision, 0.90% recall, F1-

454 score of 0.0177, and AUC of 0.8985.
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455 The results from the experiment indicate that the proposed U-TSS model achieves the 

456 highest scores across all evaluation metrics, demonstrating superior overall performance. It 

457 surpasses both traditional statistical methods and state-of-the-art deep learning approaches in 

458 detecting HVDC interference events.

459 Figure 11 depicts the ROC curves for all models except the first-order difference method 

460 and the TinySleepNet model. The AUC in the figure represents the performance metric, where a 

461 larger area indicates better model performance. From the figure, it is evident that the U-TSS 

462 exhibits the highest performance.

463 Figure 12 illustrates the detection results of various models for HVDC interference events 

464 on geomagnetic observation data recorded on May 7, 2023, from station code 14014 and 

465 instrument code 1. The U-TSS model excels in both detection accuracy and overall precision 

466 compared to other models. While the CNN model also detects the interference, it shows lower 

467 precision with some misclassifications outside the true event period. The CNN-LSTM model 

468 presents greater variability, especially near the boundaries of the interference event, indicating 

469 less stable predictions. Both U-Time and Encoder models exhibit reduced accuracy, with lower 

470 detection probabilities and higher false positive rates in non-interference regions. FCN and 

471 Inception perform relatively well, though they have minor misclassifications near the boundaries 

472 of the event. The ResNet model shows the weakest performance, with scattered predictions and a 

473 higher rate of false positives. Overall, U-TSS outperforms the other models in both detection 

474 accuracy and precision for HVDC interference events, while ResNet demonstrates the highest 

475 rate of misclassification.

476 7. Discussion

477 Even in some complex cases, the U-TSS model still shows excellent detection performance. 

478 Figure 13 shows an example of HVDC interference events detection. The X-axis represents the 

479 corresponding time of the observation data on that day. The blue curve is the background data 

480 after the Z-score standardization, and the red curve is the HVDC events detected manually after 

481 the Z-score standardization. The green and orange curves represent the probability that the U-

482 TSS model predicts as the HVDC and BACKGROUND. Although the duration, direction, 

483 amplitude, and shape of each HVDC interference event are different, the U-TSS model can 

484 accurately detect all HVDC interference events, and accurately locate the start and end time of 

485 each HVDC interference event.

486 To validate the detection ability of the U-TSS model in actual HVDC interference events, 

487 we randomly selected two days of unused geomagnetic field observation data for 

488 experimentation. These days are from instrument 1 at station 14014 on May 6, 2023, and 

489 instrument 1 at station 42009 on May 28, 2023. We used the trained U-TSS model to detect 

490 HVDC interference events.

491 As shown in Fig. 14, there is only one HVDC interference event marked by the red curve. 

492 The U-TSS model successfully detected this HVDC event and accurately identified the start time 

493 and end time of the HVDC event. 
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494 Figure 15 shows the detection results of the U-TSS model for the data from instrument 1 at 

495 station 42009 on May 28, 2023. There are four HVDC interference events on that day, indicated 

496 by the red curves and labeled as 1, 2, 3, and 4. The U-TSS model successfully detected events 1 

497 and 3, while events 2 and 4 were not detected correctly. The main reason should be that only 

498 HVDC events with a duration of more than 5 minutes were used for training in this paper, so the 

499 U-TSS model is not suitable for HVDC events with extremely short duration such as events 2 

500 and 4.

501 Compared to the existing manual detection technologies for HVDC interference events, the 

502 U-TSS model, as a time series segmentation method, presents several significant advantages.

503 ü This model can realize the automatic detection of HVDC interference events, does not 

504 rely on the experience of experts, and does not need manual intervention, which can 

505 greatly save labor costs.

506 ü It supports the detection of HVDC interference events of different durations, varying 

507 amplitude levels, and different directions.

508 ü It can accurately locate the start time and end time of HVDC interference events.

509 ü It exhibits high detection accuracy and strong generalization capability, making it 

510 suitable for all stations without requiring separate training or optimization for each 

511 station. 

512 Of course, the U-TSS still has some room for improvement, including:

513 ü The recall of the U-TSS model still needs to be further improved, therefore, the network 

514 structure of the U-TSS model can be further optimized, such as introducing LSTM or 

515 attention mechanism.

516 ü In practical applications, subway, light rail, and HVDC interference events may occur at 

517 the same time, which may reduce the accuracy of the U-TSS model.

518 8. Conclusions

519 With the proliferation of IoT devices and an increasing reliance on sensor networks for real-

520 time monitoring, the necessity for efficient processing of time series data has become paramount. 

521 As the deployment of geomagnetic field observation instruments expands and HVDC 

522 transmission lines grow, the cost and complexity associated with the manual detection of HVDC 

523 interference events are rising. To address these challenges, this paper introduces U-TSS, a novel 

524 time series segmentation model based on the U-net architecture, and apply it to the automatic 

525 detection of HVDC interference events in geomagnetic field observation data.

526 U-TSS employs a fully convolutional sequence-to-sequence architecture to perform dense 

527 segmentation on one-dimensional time series data, ensuring precise labeling of each time step, 

528 and addressing the challenges posed by complex and lengthy temporal dependencies in IoT-

529 driven applications. By implicitly classifying each time point and aggregating these 

530 classifications across varying intervals, U-TSS effectively detects events of different durations, 

531 enabling fine-grained segmentation even in the presence of complex temporal patterns. 

532 Additionally, the PSO algorithm was employed to optimize U-TSS's hyperparameters, further 

533 enhancing its performance. Experiments demonstrate that U-TSS outperforms state-of-the-art 
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534 models with accuracy, precision, recall, F1-score, and AUC values of 95.54%, 88.65%, 76.07%, 

535 0.8188, and 0.9637, respectively, on the test set. 

536 The key contribution of U-TSS is its ability to accurately segment and detect HVDC 

537 interference events in geomagnetic field observation data. This not only significantly reduces the 

538 labor cost and time involved in manual detection but also provides an efficient and scalable 

539 solution for handling vast amounts of time series data generated by IoT systems. In the future, 

540 we plan to extend its application to detect other types of interference events, such as those caused 

541 by subways and vehicles.
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Figure 1
An illustration of the comparative analysis between sliding window labeling and dense
labeling for time series segmentation.

The upper section displays a one-dimensional time series data, represented by blue and red
curves, along with the corresponding ground truth. The lower section contrasts the two
labeling approaches: the sliding window labeling identiûes the most frequent class (red)
within each window, while the dense labeling assigns labels to every individual time step,
providing a detailed representation of the segment classiûcations.
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Figure 2
An example of HVDC interference events on instrument 1 at station 14228 on April
12th, 2017.

The red curve marked with a dotted box represents HVDC interference events. The Z-
component is signiûcantly aûected by HVDC interference events, while the D and H
components show no impact.
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Figure 3
The network architecture of the U-Net model.
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Figure 4
The network structure of the U-TSS model.
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Figure 5
An example of 1- dimensional convolutional operation.

The blue region on the left side represents the input feature map, where the time point
values selected by the curly brace are the elements participating in the ûrst convolutional
operation. The gray region represents the padding time points. The pink region represents
the 1-dimensional convolution kernel in a time series, which slides along the input feature
map, performs dot-multiplication operations with the values at corresponding positions, and
sums them up to end up with the green region on the right, the output feature map.
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Figure 6
An example of 1-dimensional max pooling.
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Figure 7
The ûowchart of the HVDC sample production process.
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Figure 8
An example of HVDC sample.
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Figure 9
The ûtness curve of the PSO algorithm.
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Figure 10
The accuracy and loss curves of the U-TSS: (a) The accuracy curve; (b) The loss curve.
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Figure 11
The ROC curves of diûerent models.
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Figure 12
Comparison of the performance of various models for detecting HVDC interference
events in geomagnetic ûeld data.
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Figure 13
An example of the detection result of the U-TSS.
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Figure 14
The detection results of the U-TSS model for the data from instrument 1 at the station
14014 on May 6, 2023.
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Figure 15
The detection results of the U-TSS model for the data from instrument 1 at the station
42009 on May 28, 2023.
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Table 1(on next page)

Confusion matrix.
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     Prediction

Actual
1ÿHVDCÿ 0ÿBACKGROUNDÿ

1ÿHVDCÿ TP FN

0ÿBACKGROUNDÿ FP TN

1
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Table 2(on next page)

The parameters settings to be optimized in PSO.
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Kernel Size range Learning rate range Dropout1 range Dropout2 range

16 to 128 0.000001 to 0.01 0 to 0.6 0 to 0.6 

1
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Table 3(on next page)

Experimental results of diûerent models on the test set.
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EvaluationMetrics

Method
Accuracy Precision Recall F1-Score AUC

U-TSS 95.54% 88.65% 76.07% 0.8188 0.9637

CNN 90.03% 70.19% 43.13% 0.5343 0.8995

CNN-LSTM 91.21% 75.45% 49.99% 0.6013 0.7405

TinySleepNet

U-Time

Encoder

FCN

Inception

Resnet

90.11%

86.22%

87.99%

86.74%

85.03%

86.76%

83.98%

29.52%

85.71%

63.06%

23.91%

56.67%

68.00%

32.99%

11.37%

0.14%

5.90%

0.90%

0.7257

0.3116

0.2007

0.0027

0.0946

0.0177

-

0.7130

0.4870

0.6706

0.3968

0.8985

1
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