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ABSTRACT
To realize the accurate identification of coal-gangue in the process of underground
coal transportation and the low-cost deployment of the model, a lightweight coal-
gangue detection model based on the parallel depth residual network, called P-RNet,
is proposed. For the problem of images of coal-gangue taken under complex
conditions, the feature extraction module (FEM) is designed using decoupling
training and inference methods. Furthermore, for the problem of the nearest
neighbor interpolation upsampling method being prone to produce mosaic blocks
and edge jagged edges, a lightweight upsampling operator is used to optimize the
feature fusion module (FFM). Finally, to solve the problem, the stochastic gradient
descent algorithm is prone to local suboptimal solutions and saddle point problems
in the error function optimization process, numerous experiments are carried out on
selecting the initial learning rate, and the Lookahead optimizer is used to optimize
parameters during backpropagation. Experimental results show that the proposed
model can effectively improve the recognition effect, with a corresponding low
deployment cost.

Subjects Algorithms and Analysis of Algorithms, Neural Networks
Keywords Deep learning, Lightweight model, Parallel deep residual networks, Coal-gangue
detection

INTRODUCTION
Coal preparation is an indispensable stage of coal production and an important part of
clean coal technology, which is considered the most effective and economically valuable
technology to reduce coal pollution to the environment (Wang, Wang & Li, 2023; Xue
et al., 2023a; Zhao et al., 2022). Manual sorting is the main method for pre-sorting coal
gangue, but it is inefficient and has many safety hazards. Mechanical sorting methods, such
as heavy media and flotation, pose pollution risks, adversely impacting the environment.
Automated sensor-based beneficiation technology can reduce downstream costs and
improve ore quality, but these methods are susceptible to interference and have poor
stability. Coal-gangue detection usually faces challenges, such as the target image being
susceptible to light, coal dust, and motion blurs, making it difficult to detect (Zhang et al.,
2024; Zou et al., 2020).

The method based on image processing has been widely used in the coal preparation
field, and it has witnessed remarkable progress in recent years (Wang et al., 2022b). Dou

How to cite this article Jiang S, Zhou X. 2025. A lightweight coal-gangue detection model based on parallel deep residual networks. PeerJ
Comput. Sci. 11:e2677 DOI 10.7717/peerj-cs.2677

Submitted 25 September 2024
Accepted 10 January 2025
Published 17 February 2025

Corresponding author
Shexiang Jiang,
sxjiang8888@163.com

Academic editor
Giovanni Angiulli

Additional Information and
Declarations can be found on
page 15

DOI 10.7717/peerj-cs.2677

Copyright
2025 Jiang and Zhou

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.2677
mailto:sxjiang8888@�163.�com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2677
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/


et al. (2019) employed color and texture feature extraction for gangue images, introducing
a relief-SVM based on image analysis. However, their research focused solely on four coal
properties, neglecting the complexity of multiple situations and imposing application
limitations. Similarly, Hu et al. (2019) studied the detection method of coal-gangue, which
is based on multispectral imaging and LBP feature extraction algorithm. Nevertheless, this
work only considers the classification of coal and coal-gangue under the strategy of
combining feature extraction and classifier, but different feature extraction methods and
classifiers will have a certain impact on the results. He et al. (2022) proposed a concave
point detection and segmentation method, adapted for multi-scale X-ray images of coal-
gangue, but encountered implementation complexities. Li et al. (2022) used binarized and
morphologically processed to obtain complete and clean gangue samples and analyzed
these samples by using morphological corrosion and expansion methods. Nevertheless, the
classification accuracy is lower. In fact, the implementation process of the method based on
image processing is complex, and the application scenarios are limited. Furthermore, it is
difficult to realize the further separation operation of coal-gangue only by studying the
identification of coal and coal-gangue.

Recently, using machine learning to sort coal-gangue plays an important role in the coal
field, which has been a research hotspot (Lv et al., 2021; McCoy & Auret, 2019; Yan et al.,
2022; Si et al., 2023). With the rise of deep learning, many detectors based on deep neural
networks (DNNs) have been proposed (Yan et al., 2022; Lai et al., 2022). To address the
challenges posed by gangue images under multi-scale and semi-occlusion conditions,
Wang et al. (2022a) introduced a semantic segmentation network based on a pyramid
scene interpretation network. However, the method’s training process exhibited
considerable loss, as indicated by experimental results. For fine-grained characteristics,
Xue et al. (2023b) studied the feature scaling and unstructured pruning of the model, and
proposed a gangue detection algorithm, called ResNet18-YOLO. However, this method
has not been tested in real environments, it is necessary to transplant it to the gangue
sorting robot to carry out the verification of the actual gangue detection effect. Zhang et al.
(2022) used the YOLOv4 algorithm based on deep learning for the detection of gangue,
however, the experiments were carried out in an ideal environment, and the influence of
potential impurities in the actual production environment was not considered, which led
to the poor robustness of the model. Lai et al. (2022) proposed an improved mask R-CNN
combined with the multispectral image gangue instance segmentation method, which
lightened the classical mask R-CNN model. However, the details were not described in the
experiments.

To address the above challenges effectively, a novel parallel deep residual network (P-
RNet) is specifically designed and implemented for coal-gangue detection. Inspired by the
residual learning principles of ResNet, P-RNet introduces an innovative component, the
ParallelBlock, which enhances feature extraction through parallel residual paths,
distinguishing it from standard ResNet architectures. This design not only achieves high
recognition accuracy but also maintains low computational and deployment cost by
incorporating lightweight techniques. The main contributions of this work are as follows:
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. A novel parallel deep residual block, named ParallelBlock, is proposed as the backbone
for the feature extraction module (FEM). Furthermore, a decoupled training and
inference method is applied to enhance efficiency in this module.

. A custom lightweight upsampling operator is introduced in the feature fusion module
(FFM) to amplify high-level features. This optimization significantly boosts the model’s
performance while keeping computational overhead minimal.

. The Lookahead optimizer is used for parameter learning during backpropagation.
Extensive experiments were conducted to determine the optimal initial learning rate,
ensuring stable and effective training.

The rest of the article is organized as follows. The proposed P-RNet is detailed in
“Methodology”. The experimental results and comparative analysis are illustrated in
“Experiments”. Finally, conclusions and prospects are drawn in “Conclusion and Future
Work”.

METHODOLOGY
Overview
Inspired by deep learning methods (e.g., YOLO, ResNet, MobileNet, etc.) (Sandler et al.,
2018; He et al., 2015), a lightweight coal-gangue detection model named P-RNet is
designed, which is based on a parallel deep residual network. The overall architecture of P-
RNet is illustrated in Fig. 1, and it mainly consists of four parts: Input, Backbone, Head,
and Output.

First, image enhancement, data augmentation, and letterbox are used to reprocess the
collected coal-gangue images. Next, the FEM serves as the backbone network to extract
features from the coal-gangue images. Feature pyramid networks (FPN) (Lin et al., 2017)
and path aggregation networks (PAN) (Liu et al., 2018) are used in the FFM. Specifically,
the FPN structure uses lightweight operators for upsampling from the top-down; the PAN
structure performs downsampling from the bottom-up. Finally, CIoU is introduced to
calculate loss, and the eventual result is obtained.

Feature extraction module
Actually, images of coal-gangue are taken under complex conditions, affected by many
factors, such as light and coal-dusty (Zhang et al., 2021). Existing methods do not meet the
requirements of practical applications. To extract more goal-gangue features, the
ParallelBlock module is proposed in this article for resource-constrained equipment.

The deeper the network, the more information and richer features can be obtained
(Samek et al., 2021; Li et al., 2021; Simonyan & Zisserman, 2015). However, experiments
have shown that as the network deepens, accuracy tends to saturate and then degrade
rapidly. Additionally, deeper networks are prone to gradient vanishing and exploding
problems. Consequently, adding more layers beyond an optimal depth increases training
errors (He et al., 2015; He & Sun, 2015).

To address the degradation problem, the module based on a deep residual learning
framework is introduced, and stacked layers are used to perform the residual mapping.
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However, many residual calculations will lead to increased model complexity. To this end,
in this article, expansion convolution is introduced for dimensionality ascension first, and
then depthwise convolution is used for feature extraction to obtain more information.
Finally, projection convolution is applied for dimensionality reduction. Note that in
depthwise convolution, the kernel only performs feature extraction on one channel, which
is less computational.

Additionally, the training and inference process is designed, respectively. Specifically,
high-precision multi-branch topology is used for weight learning during training, and a
low-latency single-branch topology is used during inference. Finally, the weights of the
multi-branch topology are transferred to the single-branch topology. Accordingly, the
proposed module reaches a balance between speed and performance. For the specific task
of coal-gangue detection, two ParallelBlock structures are proposed. Schematic
visualization of different blocks is shown in Fig. 2.

In this article, y can be implemented by a feedforward neural network (Svozil, Kvasnicka
& Pospichal, 1997; Wei et al., 2018). Since the identity mapping operation can add the
input of a convolution operation directly to the output, it does not add additional
parameters and computational complexity (He et al., 2015, 2016). In summary, the
ParallelBlock structure designed and implemented in this article is suitable for the coal-
gangue detection model, and the corresponding deployment cost of the model is low.

Note that identity mapping can make training easier, but in real cases, it may not be
optimal. In this study, we address this problem by reformulating.

Generally, as a backbone module, the FEM has several advantages. (1) Using identity
mapping gives the model a multi-branch structure, facilitating multi-scale fusion. (2) The
parallel structure is beneficial in conveying context information, which improves the
performance of the model.

Feature fusion module
To better utilize the features of coal-gangue extracted by the backbone network and make
predictions, the FPN+PAN structure is used in the FFM. In the FPN structure, a
lightweight upsampling operator Content-Aware ReAssembly of Features (CARAFE)
(Wang et al., 2019), which can guide the reassembly process according to the input
characteristics used. The structure of the FFM is shown in Fig. 3.
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Figure 1 Pipeline of P-RNet. Full-size DOI: 10.7717/peerj-cs.2677/fig-1
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Specifically, the design of the FPN structure adopts a top-down architecture, which
builds high-level semantic feature mappings at all scales. This structure transfers and fuses
high-level information through upsampling to obtain predictive feature maps. In the PAN
structure, a bottom-up architecture enhances the feature hierarchy by utilizing precise
signals at lower levels. Furthermore, a fully connected operation connects the feature mesh
and all feature layers, allowing semantic information to propagate directly to the
subnetwork.

CARAFE comprises two key components: the upsampling prediction module and the
feature reassembly module. To reduce computation, a 1 � 1 convolutional layer is used to
compress the feature map channel. Then, a convolutional layer with kernel size kencoder is
used to predict the upsampled kernel. The softmax function is used to normalize the
reorganized kernel of kup � kup, where kup is the size of the recombinant kernel,
kencoder ¼ kup � 2.

In the feature reassembly module, the features in the local area are reassembled using
the weighted sum operator f, and the positions in the output feature map are mapped back
to the input. Further, a dot product between the area of kup � kup centered on this position
and the predicted upsampling kernel to obtain the output.

Intuitively, FFM has several advantages. (1) FPN+PAN structure conveys one low-level
localization feature while passing high-level semantic features, which is beneficial to utilize
the feature. (2) Due to the application of CARAFE, it can significantly improve the model’s
performance while obtaining a small amount of computation.

Dynamic adjustment strategy of learning rate
Learning rate is one of the most critical hyperparameters for training deep neural
networks, which can control the amplitude of each change of the parameter vector of deep
neural networks. Moreover, it affects the performance of neural network classifiers to a
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Figure 2 The network architectures of inverted residual block and ParallelBlock. (A) The inverted
residual block. (B) and (C) the ParallelBlock. The function F(x) represents the stacked nonlinear fitted
layer, expressed as F(x) = H(x) − x, where H(x) is the underlying mapping. Ultimately, the original
mapping is reshaped to y = F(x) + x, where y is output. Full-size DOI: 10.7717/peerj-cs.2677/fig-2
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certain extent (Smith, 2017; Breuel, 2015). An oversized learning rate will cause the weight
update to fail, and the loss function will produce oscillations or even fail to converge. When
the learning rate is too small, the convergence of the loss function will be slow. In
particular, the network parameters may fall into the saddle point, or the local minimum
value cannot be updated, limiting neural network performance improvement.

To this end, an optimization algorithm is used to adjust the learning rate dynamically.
In deep neural networks, the optimizer is primarily responsible for updating the model
parameters to approach or reach the optimal value. Stochastic gradient descent (SGD) is
the most commonly used optimizer. However, this optimizer can cause the model to easily
fall into numerous local suboptimal solutions and saddle points during the error function
optimization process. Moreover, SGD performs frequent updates with high variance, often
requiring expensive hyperparameter tuning to achieve better performance in the neural
network (Ruder, 2017).

To effectively address these issues and further improve the performance of P-RNet, the
Lookahead (Zhang et al., 2019) optimizer is used in this study for hyperparameter
optimization. First, copy the model parameters into two copies, defined as fast weights h
and slow weights f. Second, standard optimization algorithms (e.g., SGD and Adam) and
linear interpolation are used for updating fast and slow weights, respectively. Finally, after
each f update, h is reset to the current f value. Pseudocode for Lookahead is provided in
Algorithm 1.

The Lookahead optimizer is less sensitive to suboptimal hyperparameters and can
reduce the need for extensive hyperparameter tuning. Its use improves generalization
while maintaining robustness to hyperparameter updates.

Figure 3 The structure of feature fusion module. Full-size DOI: 10.7717/peerj-cs.2677/fig-3
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EXPERIMENTS
Settings
This study uses the PyTorch framework to design a neural network model, implemented in
Python 3.9. The experimental environment includes a Windows 10 64-bit operating
system, an Intel Xeon E5-2670 @ 2.60 GHz processor, 32 GB of RAM, and an NVIDIA
GeForce RTX 2080Ti GPU with 12 GB of memory. The model parameters are configured
with a depth of 0.33, a width of 0.50, a learning rate momentum of 0.937, 500 epochs, a
batch size of 16, and the cross-entropy loss function for error evaluation.

Coal-gangue dataset
In this article, coal–gangue images were collected from surveillance video at a coal
preparation plant in Anhui Province, China. The training and validation dataset consists of
1,500 conveyor belt coal transport images. Due to issues with the acquired images being
susceptible to light, coal dust, and blurring caused by the fast running speed of the
conveyor, linear transformation and deblurring algorithms are used to preprocess the data.
Data augmentation techniques are employed to improve the generalization ability of the
model and enhance the robustness of the algorithm. A total of 1,000 images are used as
training samples, and 430 images are randomly selected as test samples.

Evaluation metrics
In this work, positive and negative samples will be used to label coal-gangue and non-
gangue targets, respectively, and the classification is shown in Table 1.

There are several commonly used quantitative metrics for evaluating an object detection
model. In this article, to assess the recognition performance of the proposed model, mean
Average Precision (mAP), Precision, and Recall were selected as the evaluation metrics.
These can be defined as follows:

Algorithm 1 Lookahead optimizer.

Input: parameters f0, objective function L, dataset D, synchronization period k, slow weights learning rate
a, optimizer A (which is Adam)

Output: ϕ

1: for t=1,2,… do

2: Synchronize parameters ht;0  ft�1

3: for i=1,2,…,k do

4: sample mini-batch of data d � D

5: end for

6: Perform update hi;t  ht;i�1 þ AðL; ht;i�1; dÞ
7: end for

8: return φ
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mAP ¼ 1
Q

XQ

q¼1

XN

k¼1
p kð Þ � Dr kð Þ (1)

Precision ¼ TP
TP þ FP

(2)

Recall ¼ TP
TP þ FN

(3)

Learning rate analysis
In this work, the Lookahead optimizer is used to dynamically adjust the learning rate,
where the initial learning rate (lr0) significantly affects the model’s performance. As shown
in Table 2, comparison experiments using both the SGD and Lookahead optimizers with
different lr0 values were conducted. The results indicate that the values obtained with the
Lookahead optimizer are more stable than those with SGD. Both optimizers achieve the
best performance when lr0 = 0.007.

In addition, to more intuitively illustrate the impact of the optimizer on model
performance, the training curves are shown in Fig. 4. The results indicate that the curve
begins to converge around 50 epochs when using the Lookahead optimizer, demonstrating
a faster convergence speed compared to the SGD optimizer. As shown in Figs. 4A, 4B and
4D, the convergence rate increases with higher lr0 values, but stability gradually
deteriorates. Figure 4C shows that when lr0 is 0.003, 0.005, 0.007, or 0.009, the curves
initially rise and then fall, indicating serious overfitting. When lr0 is set to 0.001, the curve
rises stably as it converges with no overfitting observed.

In summary, the Lookahead optimizer achieves better generalization results than the
SGD optimizer and converges faster. In addition, the Lookahead optimizer is more stable
and robust during training. The Lookahead optimizer is used in this article to adjust the
learning rate dynamically. The lr0 of subsequent experiments is set to 0.001 to prevent
overfitting during training.

Ablation study
Our proposed detector has two components: FEM and FFM. In order to analyze the
effectiveness of each part, an ablation study is conducted in Table 3, and visualization and
quantitative are carried out subsequently.

Table 1 Confusion matrix for classifying coal-gangue and non-gangue samples.

Forecast category Actual category

Coal-gangue Non-gangue

Coal-gangue True Positive (TP) False Positive (FP)

Non-gangue False Negative (FN) True Negative (TN)
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Feature extraction module
To verify the effect of the ParallelBlock on the proposed detector, experiments were
conducted using both the InvertedBlock and ParallelBlock in the backbone. The
experimental results were analyzed using four indicators (i.e., mAP_0.5, mAP_0.5:0.95, obj
loss, and box loss). Figure 5 compares the performance of the detector with different
backbones. As shown in Fig. 5, the curve begins to converge around 100 epochs.

Further analysis of Fig. 5 reveals that the two ParallelBlock structures have different
effects on the detector. ParallelBlock_1 combines inverse residuals, convolution, and
identity mapping in parallel at different locations. As seen in Fig. 5B, the curve for the
model using this structure rises steadily and achieves higher values compared to models
using other structures. ParallelBloc_2 combines double inverted residuals and identity
mapping in parallel. The detector using this structure exhibits advantages in terms of box
loss and object loss (Figs. 5C and 5D).

Feature fusion module
The feature fusion with different upsampling methods (i.e., nearest and CARAFE) is tested
to evaluate the influence of the FFM, and the loss curves are shown in Fig. 6. According to
the visualization results, as lr0 increases, the degree of model loss gradually decreases, with
the curves beginning to converge around 100 epochs. Figures 6A and 6B show that the
object loss initially increases, then gradually decreases after reaching a peak. In the five sets
of experiments with different lr0, the loss degree with the CARAFE operator is lower than
that with the nearest neighbor. Figures 6C and 6D indicate that in all five groups of
experiments, the object loss shows a downward trend as the number of epochs increases.

To further demonstrate the effectiveness of the proposed detector, lr0 is set to 0.001
(Learning Rate Analysis), and the results obtained with different upsampling methods are
shown in Fig. 7. It can be observed that the detector using CARAFE for upsampling shows
a significant increase in mAP_0.5 and mAP_0.5:0.95 compared to the nearest neighbor
method (Figs. 7A and 7B). As shown in Figs. 7C and 7D, when using CARAFE, the
Precision and Recall curves begin to converge and stabilize around 100 epochs. In contrast,

Table 2 Experimental results between SGD and Lookahead with different lr0.

Optimizer lr0 mAP_0.5" mAP_0.5:0.95"
SGD 0.001 0.9950 0.5712

0.003 0.9950 0.6092

0.005 0.9950 0.6764

0.007 0.9950 0.6781

0.009 0.9778 0.6333

Lookahead 0.001 0.9950 0.6780

0.003 0.9950 0.6561

0.005 0.9950 0.6808

0.007 0.9950 0.6824

0.009 0.9950 0.6419

Jiang and Zhou (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2677 9/18

http://dx.doi.org/10.7717/peerj-cs.2677
https://peerj.com/computer-science/


Figure 4 (A–D) Training curve comparison between SGD and Lookahead with different lr0. Full-size DOI: 10.7717/peerj-cs.2677/fig-4

Table 3 Ablation study of each component.

Setting FEM FFM mAP_0.5:0.95"
A1 ✓ 0.63196

A2 ✓ ✓ 0.69141
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when using the nearest neighbor method, the curves oscillate, fail to converge, and the
detector’s robustness is poor.

In summary, the detector using CARAFE outperforms the one using the nearest
neighbor in terms of loss degree, mAP, Precision, and Recall, demonstrating stronger
generalization ability. This experiment fully verifies the effectiveness of the proposed FFM.

Comparison with other detection methods
In this section, to further analyze the performance of the proposed method, we compare it
with other detection methods, such as YOLOv5s, YOLOv3 (Redmon & Farhadi, 2018),
YOLOv5-RepVGG (Ding et al., 2021), and YOLOv5-Ghost (Han et al., 2020). For
YOLOv5 and YOLOv3, we use the official open-source code provided. For YOLOv5-

Figure 5 (A–D) Training curve comparison with different blocks. Full-size DOI: 10.7717/peerj-cs.2677/fig-5
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RepVGG and YOLOv5-Ghost, we integrate the RepVGG Block and Ghost modules as the
backbone, respectively, and test them under the same conditions. These models represent
the optimal solutions frommultiple experiments. The experimental results for the different
methods on the coal-gangue dataset are shown in Table 4.

From an overall perspective, the proposed method demonstrates stable performance.
Compared with YOLOv5s, YOLOv3, and YOLOv5-RepVGG, our method achieves a
significant reduction in model volume by 80.29%, 97.71%, and 73.47%, respectively.
Although YOLOv5-Ghost achieved better volume reduction, its mAP_0.5:0.95 is 12%
lower than that of our method.

Figure 6 (A–D) Loss curve comparison between nearest and CARAFE with different lr0. Full-size DOI: 10.7717/peerj-cs.2677/fig-6
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Figure 7 (A–D) Training curve comparison with different upsampling methods. Full-size DOI: 10.7717/peerj-cs.2677/fig-7

Table 4 The experimental results of different methods on the coal-gangue dataset.

Method mAP_0.5" mAP_0.5:0.95" Params# GFLOPs# Volume (M)#
YOLOv5s 0.9950 0.6756 7,022,326 127.57 13.60

YOLOv3 0.9950 0.6286 61,523,734 1,242.08 117.00

YOLOv5-RepVGG 0.9950 0.6114 5,189,502 74.30 10.10

YOLOv5-Ghost 0.9950 0.6064 5,088,078 85.82 2.41

Ours 0.9950 0.69141 986,758 67.67 2.68
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An in-depth analysis reveals that the lower volume of the proposed method can be
attributed to three main factors:

. First, the use of depthwise convolution, where the kernel performs feature extraction on
a single channel, effectively reduces computational load.

. Second, the identity mapping operation allows the input of the convolution operation to
be added directly to the output, without introducing additional parameters or
computational complexity.

. Third, during upsampling, the lightweight operator compresses the feature map
channels, further reducing the volume.

In terms of parameters and GFLOPs, the proposed method achieves a marked reduction
in both metrics. Specifically, compared to YOLOv5s, YOLOv3, and YOLOv5-RepVGG, the
number of Parameters is reduced by 85.95%, 98.40%, and 81.02%, respectively. Similarly,
the GFLOPs are reduced by 46.95%, 94.56%, and 8.94%, respectively. These reductions
underscore the efficiency of the proposed model, which significantly reduces
computational complexity while maintaining high performance. This efficient model
design is crucial for ensuring both practical feasibility and deployment cost-effectiveness,
especially in resource-constrained environments.

In summary, the proposed method offers specific advantages: It effectively improves the
detection performance for coal-gangue detection while addressing limitations in existing
methods. By utilizing the feature extraction module (FEM) and the feature fusion module
(FFM), the model not only enhances accuracy but also ensures low-cost deployment,
thereby improving its potential for industrial application.

CONCLUSION AND FUTURE WORK
In this article, we propose P-RNet for coal-gangue detection. The FEM is utilized to extract
features of coal-gangue, addressing the complex background that complicates context
information retrieval. FFM is introduced to improve prediction accuracy and improve
robustness against complex backgrounds. Additionally, the Lookahead optimizer is
employed to dynamically adjust the learning rate. Experiments on the coal-gangue dataset
demonstrate that the proposed method achieves excellent performance and has low
deployment costs, with each component (i.e., FEM and FFM) proving to be practical.
Overall, the proposed method achieves performance comparable to existing coal-gangue
detectors and shows strong generalizability in coal gangue detection tasks.

In future work, we plan to explore two key directions. First, we aim to optimize the
proposed algorithm to meet the standards of industrial production safety, advancing coal
mine intelligence by focusing on enhancing real-time detection capabilities and
minimizing error rates. Second, we intend to leverage generative adversarial networks
(GANs) for image deblurring, which is anticipated to further improve the performance of
the detector and support more robust decision-making in complex environments.

Additionally, while some components of the current work, such as the Lookahead
optimizer, are well-established methods, our future efforts will emphasize unique
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architectural improvements and advancements in self-supervised learning. These efforts
aim to address the identified gaps and further enhance the novelty of the proposed
approach.
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