
Construction of a user-friendly software-
defined networking management using a
graph-based abstraction layer
Yufeng Jia1,2, Jiadong Ren2, Xianshan Li2, Haitao He2, Pengwei Zhang1,2

and Rong Li1

1 School of Information Science and Engineering, Xinjiang College of Science and Technology,
Korla, Xinjiang, China

2 School of Information Science and Engineering, Yanshan University, Qinhuangdao, Hebei,
China

ABSTRACT
The software-defined networking (SDN) paradigm relies on the decoupling of the
control plane and data plane. Northbound interfaces enable the implementation of
network services through logical centralised control. Suitable northbound interfaces
and application-oriented abstractions are the core of the SDN ecosystem. This article
presents an architecture to represent the network as a graph. The purpose of this
architecture is to implement an abstraction of the SDN controller at the application
plane. We abstract all network elements using a graph model, with the attributes of
the elements as the attributes of the graph. This virtualized logical abstraction layer,
which is not limited by the physical network, enables network administrators to
schedule network resources directly in a global view. The feasibility of the presented
graph abstraction was verified through experiments in topological display, dynamic
route, access control, and data persistence. The performance of the shortest path in
the graph-based abstraction layer and graph database proves the necessity of the
graph abstraction layer. Empirical evidence demonstrates that the graph-based
abstraction layer can facilitate network slicing, maintain a dependable depiction of
the real network, streamline network administration and network application
development, and provide a sophisticated abstraction that is easily understandable to
network administrators.

Subjects Computer Networks and Communications, Internet of Things
Keywords Software-defined networking (SDN), Graph model, Abstraction layer, Network
application management

INTRODUCTION
Software-defined networking (SDN) serves as an innovative network architecture that
decouples the data-forwarding logic from the control logic (Ahmad & Mir, 2021). The
management and decision-making logic for the whole network are transferred to the
control layer (the Controller). The data forwarding layer takes action based on the control
layer’s decision-making and is responsible for general data forwarding (the SDN
architecture is shown in Fig. 1) (Yan et al., 2021). This decoupling of the control plane
from the data forwarding layer resolves the tight coupling problem between the two planes
in traditional distributed network architectures. This “programmable network” approach
enables network functions to be implemented as controller applications on the application

How to cite this article Jia Y, Ren J, Li X, He H, Zhang P, Li R. 2025. Construction of a user-friendly software-defined networking
management using a graph-based abstraction layer. PeerJ Comput. Sci. 11:e2674 DOI 10.7717/peerj-cs.2674

Submitted 9 September 2024
Accepted 8 January 2025
Published 14 February 2025

Corresponding author
Jiadong Ren,
jiayufeng@stumail.ysu.edu.cn

Academic editor
Paulo Jorge Coelho

Additional Information and
Declarations can be found on
page 23

DOI 10.7717/peerj-cs.2674

Copyright
2025 Jia et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.2674
mailto:jiayufeng@�stumail.�ysu.�edu.�cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2674
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

plane. These applications enable the SDN controller to respond quickly to changes in the
data plane. The SDN paradigm, with its convenient management, scalability, flexibility,
and monitoring capabilities, has revolutionized the way networks are implemented and
managed, becoming one of the most important network architectures with a wide range of
applications in data centres, cloud computing, Internet of Things, security, and other areas
(Bhuiyan et al., 2023). SDN employs application programming interfaces (API) to facilitate
communication between planes (Latif et al., 2020). The southbound interface abstracts
hardware complexity, enabling seamless communication between the control and data
planes. The main protocols include OpenFlow (Open Networking Foundation, 2024),
NETCONF, OVSDB, and others. Among these, OpenFlow protocol has become the
defacto international industry standard (Xu, Wang & Xu, 2019). Unlike the southbound
interface, the northbound interface (which enables interaction between the control plane
and the application plane) still lacks an industry-recognized standard (Alghamdi, Paul &
Sadgrove, 2021; Jiménez et al., 2021). Additionally, the east-west interface used for
communication between controllers has not received sufficient attention from the industry
(Cox et al., 2017; Bannour, Dumbrava & Lu, 2022b). This application interface abstraction

Figure 1 The SDN architecture, abstraction layer, and graph model.
Full-size DOI: 10.7717/peerj-cs.2674/fig-1

Jia et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2674 2/25

http://dx.doi.org/10.7717/peerj-cs.2674/fig-1
http://dx.doi.org/10.7717/peerj-cs.2674
https://peerj.com/computer-science/

provides a helpful way to avoid writing network programs and policies at a lower level.
This article focuses primarily on the abstraction provided by the northbound interface.

In response to the challenges of northbound abstraction, Pyretic (Reich et al., 2013)
introduces simple, reusable high-level abstractions and proposes functional
modularization as an effective approach for constructing SDN control applications.
Ryuretic (Cox et al., 2016) provides an additional layer of abstraction on top of the Ryu
controller (Nippon Telegraph and Telephone Corporation, 2014) that couples multiple
modules with existing applications to forward, redirect, discard, or create packets, allowing
users to interact with packets actively and passively.

In recent years, Nepal (Jamkhedkar et al., 2018) has proposed a hierarchical network
model based on a graph database. This model enables the representation and inference of
network service topologies, as well as the reasoning of data flows within the network.
Leveraging these capabilities, it supports automated network application management
through a dynamically configurable, cloud-based virtual network. Similarly, SeaNet (Souza
et al., 2015) introduces a knowledge graph-driven approach designed to facilitate
autonomous network management in SDN environments.

Although there are various northbound abstractions with different purposes for
targeting different network strategies, the requirements of network policies are constantly
changing. As a result, network administrators need to combine the advantages of various
strategies to achieve their goals (Bhuiyan et al., 2023; Alghamdi, Paul & Sadgrove, 2021;
Bannour, Dumbrava & Lu, 2022b). Moreover, different abstractions use different data
structures and definitions, and in order to combine multiple abstractions, these data need
to be transformed, a transformation that becomes more and more complex as the amount
increases. This dramatically increases the complexity of management and also requires
higher levels of skill for network administrators. Consequently, this creates challenges for
advancing the universality of SDN.

In the early days of the development of SDN, it was necessary to manage complexity.
However, now it is necessary to extract simplicity to popularize and apply it better. Two
major challenges remain:

. The primary function of the northern interface is to facilitate the connection between a
lower-level interface and a higher-level junction. How can we propose an easy-to-write
high-level abstraction (or data structure) to express the inner workings of the network
while being able to cover a larger abstraction space?

. How can we make the advanced interface more efficient and in tune with the human
mindset, while still able to keep up with the changing network policies?

The SDN paradigm relies on decoupling the control and data plane and logically
centralizing control (Ahmad &Mir, 2021), thus enabling direct network programming via
open interfaces, which are the core and key. To address these challenges, we found that the
global view is the key advantage in solving the abstraction of the northbound interface
through detailed thought and analysis. Gavel (Barakat, Koll & Fu, 2019) is an SDN

Jia et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2674 3/25

http://dx.doi.org/10.7717/peerj-cs.2674
https://peerj.com/computer-science/

controller whose core is based on the graph database to represent the global network
topology. It leverages the graph database’s robust support for graph structures, delivering
significant performance improvements. Gavel served as a source of inspiration for us, and
we also found that the network is essentially a graph structure in which the applications in
the network deal with various relationships within the graph structure. Additionally,
queries and filtering in the network may be considered as a form of pruning graph. This
article proposes using the graph model to build a dynamic abstraction layer for network
representation and management, which significantly simplifies the development of
applications and policies. The abstraction layer is shown in Fig. 1 (to be more accurate, we
later call the abstraction layer a graph-based abstraction layer). Our concept was
successfully validated through experiments on the open-source Ryu controller.

Our abstraction adheres to the fundamental principles of SDN without altering the
current controller architecture; no additional equipment is needed, and it has excellent
universality and superior performance. In summary, the primary contributions of this
article are as follows:

. We envision that all the devices in the network have a logical counterpart, and we
abstract them with graph models, allowing real-time interaction between the physical
network and the virtual network. We also use the Neo4j graph database (Neo4j, Inc,
2024) for persistent interaction with the past states, and this logical abstraction can
support network slicing, enriching our network applications significantly.

. Based on the graph abstraction and utilizing the various graph algorithms provided by
the graph module, we verified different network applications to show how network
administrators can easily program previously complex network management
applications. We experimentally verified network topology visualization and shortest
path forwarding based on delay quality, access control, data persistence, and other
network management tasks. This novel abstraction pattern introduces new opportunities
for network management and automation.

. Our experiments demonstrate that the graph abstraction model (graph-based
abstraction layer) reliably represents the real network. It simplifies network management
and application development without requiring detailed knowledge of the controller. It
offers a high-level abstraction that matches human intuition.

The rest of the article is structured as follows: “Background and Related Work”
introduces the northbound interfaces and graph abstract layers. “Design and Solution”
includes construction principles and methods of network applications. “Results and
Discussions” verifies the feasibility of the graph abstract layer. At last, “Conclusion”
concludes our work and discusses the future.

BACKGROUND AND RELATED WORK
The data plane is comprised of various physical infrastructures such as host machines,
servers, switches, and routers interconnected with each other, which are mainly

Jia et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2674 4/25

http://dx.doi.org/10.7717/peerj-cs.2674
https://peerj.com/computer-science/

responsible for data forwarding. The control plane manages data forwarding in the data
plane and performs traffic control, statistical analysis, and other functions. Additionally, it
provides a unified network service API for the application plane and the network
abstraction to upper-layer applications, giving the network the capability of software
programming. The application plane uses the northbound API to control and define the
network, telling the network how to meet its business needs in a programmable way.

Suitable northbound interfaces and application-layer abstraction are the core of the
SDN ecosystem and key to popularization and development at the social level. To this day,
the suitable abstraction and neutral standards for various network manufacturers are still
in the early stages (Latif et al., 2020; Cox et al., 2017).

Northbound interface
The northbound interface of an SDN is an interface open to upper-layer applications via
the controller, the goal of which is to enable applications to invoke the underlying network
resources conveniently. Concerning the northbound interface of the SDN, the
implemented functionality is identical to the connection between two software entities.
That is, the northbound interface does not require any new protocols and communication
between the application and control layers can be implemented by writing simple socket
interface programming. Obviously, this is a lower-level, tedious, and time-consuming
programming process that often requires complex refactoring by network administrators.
Due to the lack of a standardized northbound interface, some controllers have proposed
custom northbound interfaces specific to the controller (Latif et al., 2020; Halder, Barik &
Mazumdar, 2017). Some controllers implement a northbound interface designed with a
RESTful architectural style. For instance, controllers like Floodlight, ONOS, and Ryu
utilize REST APIs to facilitate communication and management (Xu, Wang & Xu, 2019).
However, developers still need to learn new APIs, data structures, and specific conventions
of the controllers whenever they want to support a new controller or have new application
requirements. Moreover, these interfaces may become verbose when used frequently and
in large quantities. There are also specific requirements that need to be better supported
(Ryu lacks REST API for obtaining host information).

In this article, we only aim to verify the feasibility of the graph-based abstraction layer
and do not intend to replace the northbound interfaces of existing controllers. The
northbound interface and the graph-based abstraction layer are in a parallel relationship,
enriching the upper-layer applications invoke.

Graph-based abstraction layer
The programming logic for communication between the control plane and the application
plane is called the graph-based abstraction layer. The layer is designed directly to serve the
needs of applications, so its design needs to be closely aligned with business requirements
and have diverse features. How can network administrators control the resource state of
the entire network in a software-programmed way and schedule it consistently? This
abstraction requires a rethinking of the network architecture and management model.

Jia et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2674 5/25

http://dx.doi.org/10.7717/peerj-cs.2674
https://peerj.com/computer-science/

Many abstract and strategy frameworks have been proposed to simplify network
programming for different types of applications (Halder, Barik & Mazumdar, 2017)
proposed a graph-based SDN flow conflict detection method. Any abstraction involves
converting one representation to another. One challenge in creating effective abstractions
is ensuring that they accommodate reasonable network distribution, provide convenient
data representation, remain accessible for a wide range of network applications, and
support core operations such as addition, deletion, modification, and querying. By
addressing these challenges, abstractions enable users to express their goals at a higher
level, thereby simplifying network management.

In the SeaNet (Zhou, Gray &Mclaughlin, 2021) system, recursive algorithms are used to
read network records, extract semantic information, and store it in a knowledge base.
Expert knowledge and network management rules can also be formalized as knowledge
graphs. Through SPARQL automatic inference and network management API, SeaNet
enables researchers to develop semantic intelligent applications on their own SDN. An
autonomous network management system is implemented using the abstract approach of
knowledge graphs. However, this abstract approach relies heavily on expert intervention
during knowledge updates.

Ravel (Wang et al., 2016) implements the entire SDN network control infrastructure
using a standard SQL database. The network abstraction is represented by user-defined
SQL views, which are represented by SQL queries that can be dynamically added.
Application developers can request views based on database tables for different
applications. However, retrieving information that needs to be collected from many tables
will lead to severe delays. Its advantage is at the cost of performance.

Wu et al. (2020) proposed a method to import Network Markup Language (NML)
models into a scalable graph database (Neo4j) and use semantic modelling technology in
graph databases to enhance the state of SDN networks. This enables SDN controllers to
provide developer-friendly primitives, simplifying the design of SDN control applications.
However, the most easily understandable representation of the network is in fact a
structured graph.

GOX (Bannour, Dumbrava & Danduran-Lembezat, 2022a) is a proof-of-concept
controller that implements the SDN architecture in a graph database. Gavel (Barakat, Koll
& Fu, 2017, 2019) is the first controller to use a graph database to generate data
representations for an SDN. Gavel significantly reduces programming complexity,
improves efficiency, and scales well across large networks. However, they are controllers
and do not use graph models to achieve compatibility and joint management with existing
controllers.

In summary, to make the existing controller and applications more compatible,
efficient, and scalable, we propose a novel abstraction method, that places an additional
abstract layer on the controller framework. The abstraction layer builds a real time
network in the form of a graph and then interacts with applications in real-time in the
form of graph mapping. Our goal is to simplify application development and create new
opportunities for both management and automation.

Jia et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2674 6/25

http://dx.doi.org/10.7717/peerj-cs.2674
https://peerj.com/computer-science/

DESIGN AND SOLUTION
Methodology
Modern network structures are dynamic, large-scale, cross-correlated, and constantly
emerging with various needs and technologies. To manage and maintain such networks, it
is necessary to understand network elements (such as servers, switches, virtual machines,
and network functions) and their associative interrelationships (such as querying,
analyzing, and modifying the flow of dynamic data between the different elements). So,
how can such a complex network situation be abstracted in a straightforward, natural, and
precise way? Common data structures such as arrays, stacks, linked lists, and tree
structures are all exceptional types of graph structures. Graphs are high-dimensional, and
the higher dimensions are downwardly compatible and represent lower dimensions, while
the reverse is not as easy. That means, expressing high-dimensional relationships using
low-dimensional relational data structures is a quite significant challenge. Analysis has
found that networks are naturally graphical structures, and their abstraction as graphs does
not require the re-implementation of complex data structures and algorithms, it is very
visual. It is intuitive to access the data of nodes in the network and also avoids creating new
dependencies between different structures. Therefore, abstracting the network as a graph
and using existing graph modules (graph algorithms) and graph databases to interact with
network applications, allows this graph abstraction to be used as the basic interface from
the control plane to the application. Naturally, all types of network management will be
carried out efficiently and easily.

System architecture
We already know the system architecture of SDN from the previous introduction. How do
we implement the idea of the “Methodology” section based on the SDN architecture by
taking advantage of the features of SDN without making any physical changes? We present
how to model physical and virtual resources in a graph G ¼ ðN; EÞ whereN(Nodes) is a set
of physical and virtual resources and E(Edges) is their relationship. Edges and nodes
provide different types of resources and services. We can define graph for nodes GðNÞ as
follows:

G Nð Þ ¼ Gp nð Þ
[

Gv mð Þ N � n (1)

where n is the number of physical nodes, m is the number of virtual nodes, p is a set of
physical resource mappings, and 8 is a set of virtual resources. Gp nð Þ is a graph for
representing physical nodes and physical networks mappings for the given node n,
whereas Gv mð Þ is a graph for representing virtual nodes and virtual networks. So, GðNÞ is a
union of both graphs Gp nð Þ and Gv mð Þ.

On the structure of the physical infrastructure (physical servers, physical switches,
physical routers, and other physical devices) comprise, we introduce a virtualization logical
abstraction layer with a one-to-one mapping based on the network topology (graph-based
abstraction layer is G Nð Þ ¼ Gp nð ÞSGv mð Þ N ¼ n) using the graph model. The
operation of physical infrastructure enables the logical network to be instantiated in the

Jia et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2674 7/25

http://dx.doi.org/10.7717/peerj-cs.2674
https://peerj.com/computer-science/

form of a graph. The instantiated graph network can decouple from the physical network,
thereby allowing for the virtualization and arbitrary combination of multiple logical
networks. This enables network slicing to take place (graph-based abstraction layer is
G Nð Þ ¼ Gp nð ÞSGv mð Þ N � n;m 2 8).

The graph-based abstraction layer as shown in Fig. 2.
Applications operating at the application plane can seamlessly integrate with established

third-party modules without the need to continually create fundamental functionalities.
The graph-based abstraction layer is mapped with a graph structure, which can naturally
call on existing graph modules (the graph module is shown in Fig. 1). The application
plane satisfies the needs of different businesses and network innovations through querying,
calculating, analyzing, and dynamically adjusting. Finally, it guides data forwarding in the
physical plane based on business requirements.

Implementation method
The following part will address the process of abstracting the physical network into a
graph-based abstraction layer, preserving all network element information and network
information flows. We treated the entire physical network as a graph, which is a set of
nodes and edges. Next, we solved how to abstractly map the nodes, edges, and their
attributes to the physical network, as shown in Eq. (1). The graph mapping of the

Figure 2 The graph-based abstraction layer. Full-size DOI: 10.7717/peerj-cs.2674/fig-2

Jia et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2674 8/25

http://dx.doi.org/10.7717/peerj-cs.2674/fig-2
http://dx.doi.org/10.7717/peerj-cs.2674
https://peerj.com/computer-science/

graph-based abstraction layer to the data plane and network slice is shown in Fig. 2.
Considering scalability and generality, we saved attribute data as a dictionary so that users
can easily add any necessary data. The graph-based abstraction layer is simplified to
include the following components:

Nodes: also known as vertices. They contain network elements (servers, switches,
network functions, and virtual machines) and are associated with a unique identifier of a
network device already maintained by the controller.

Attributes of nodes: attributes associated with each node, each expressed as a key-value
pair. Each node has multiple attribute fields. Attributes are optional and can be
dynamically added, deleted, or modified. The name and category are considered special
attributes.

To simplify the experimental model, we assumed that the attributes of a host included
name, category, DPID number, PORT number, IP address, and MAC address. The
attributes of a switch included name, category, source DPID number, destination DPID
number, source PORT number, and destination PORT number. Figure 3 is a simple
network model of our implementation method, and it includes node (switch and host),
edge (edge and its direction), and attributes of node and edge.

Figure 3 was created using code to implement the demo of our graph-based abstraction
layer, while also explaining what events and attributes are. The Ryu controller manages
and controls network behavior by responding to events through defined event handler
functions. When the controller detects a new switch connection in the network and the
switch completes the handshake (i.e., completes the initial OpenFlow protocol
communication), the EventSwitchEnter event is triggered. The graph abstraction layer
adds a switch node in this event function. Attributes of the switch node include name,
dpid, ports, and links. Below, we demonstrate this with an example code, which is labeled
as Code 2 (Eq. (2)) for reference:

SwitchGraph¼ nx:DiGraphðÞ
SwitcheGraph:add�nodeðname;dpid¼ dpid;ports¼ ports;links¼ fg (2)

When updating switch attributes:

SwitcheGraph:nodes½name�½0links0�:updateðvalueÞ

When we needed to add other nodes, such as adding a host. Here, mac, ip, and port are
the attributes of the host, we simultaneously updated the attributes:

HostGraph ¼ nx:DiGraphðÞ
HostGraph:add�nodeðname;dpid¼Hport:dpid;port¼Hport:port�no;
ip¼host:ipv4;mac¼host:macÞ
When querying host attributes:

Host ¼ nx:get�node�attributesðHostGraph; 0 dpid0Þ

Jia et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2674 9/25

http://dx.doi.org/10.7717/peerj-cs.2674
https://peerj.com/computer-science/

Add an edge between two switches, and update attributes such as latency, bandwidth,
and throughput at the same time:

SwitchGraph:add�edgeðsrc;dst;delay¼link�delay;
loss¼packet�loss;throughput¼link�throughput;
curr�speed¼CurrSpeedÞ

When you want to expand the graph-based abstraction layer, you can merge them
together. This could be a merger of switch and switch, a merger of switch and host, or a
merger of the graph-based abstraction layer and another graph-based abstraction layer, as
well as the merger of the graph-based abstraction layer with network slicing. An example
of the code implementation is shown below and is labeled as Code 3 (Eq. (3)).

Graph ¼ nx:unionðSwitcheGraph;HostGraphÞ (3)

Edges: Usually called relationships, each edge connects a pair of nodes. There are two
types of edges: one represents physical connections between network elements: “Link”, and
the other represents application connections between network slices and the graph-based
abstraction layer: “Member”.

Attributes of edges: Each attribute is expressed as a key-value pair. Multiple attribute
fields can be stored. Attributes can be dynamically added, deleted, or modified. Name and
category are considered special attributes. The attributes of an edge include delay, loss,

Figure 3 Example of a simple network under our Implementation method.
Full-size DOI: 10.7717/peerj-cs.2674/fig-3

Jia et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2674 10/25

http://dx.doi.org/10.7717/peerj-cs.2674/fig-3
http://dx.doi.org/10.7717/peerj-cs.2674
https://peerj.com/computer-science/

throughput, bandwidth, and current rate. The connection between switches also includes
the correspondence between DPID and PORT. Attributes are optional and can be
dynamically added, deleted, or modified. The source code is shown in Fig. 4, and the
attributes of the edges are updated.

Direction of edges: To simplify the experimental model, our edges have direction. For
example: h1 ! s1 and s1 ! h1.

Network slices: In the graph model, the definition of network slices occurs after the
graph abstraction object is created, and the objects contained in each slice can be
dynamically adjusted. Distinct slicing patterns (application) can be defined for nodes and
edges individually.

Graph update: The data of the graph, nodes, edges, and their attributes can be added,
deleted, or modified dynamically. We updated the graph information (creation,
modification, deletion, execution of algorithms, and data retrieval in the graph) by
listening to the corresponding events. The source code in Fig. 4 shows how to add edge
attributes.

Flow Setup:Wemodified the traditional flow setup to significantly reduce the traffic on
the control channel. This improved flow setup was implemented in our subsequent
experiments and is illustrated in Fig. 5 (with the path 0 ! 1 ! 2 ! 3). When the ingress
switch receives a packet, it attempts to match the packet against its flow table using the
specified match field. If no match is found, the switch encapsulates the packet header in a
“PacketIn” message and forwards it to the controller (Xu, Wang & Xu, 2019). The
controller, leveraging the global view of the network topology, responds by generating
multiple flow rules. These flow rules are then installed on all switches along the path using

Figure 4 The edges update attributes of delay, loss, throughput, bandwidth, current rate, and
correspondence between DPID and PORT. Full-size DOI: 10.7717/peerj-cs.2674/fig-4

Jia et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2674 11/25

http://dx.doi.org/10.7717/peerj-cs.2674/fig-4
http://dx.doi.org/10.7717/peerj-cs.2674
https://peerj.com/computer-science/

a “FlowMod” message. By installing the flow rules directly on the switches, the need for
frequent communication between switches and the controller is reduced, thereby
enhancing overall network performance.

Network slice
The activation of the network slice occurs after the graph-based abstraction layer has been
created. Because the graph abstraction is virtualized, various forms of logic can naturally be
provided. This virtualized logic can be seen as the network slice. These virtual logics can
meet different business requirements because the nodes in a virtual network can belong to
a complex classification and belong to different applications. The network slice is shown in
Fig. 2, from the high-level network functions in the abstract (such as Firewall) to the
properties of nodes (such as PORT), we can dynamically adjust the nodes contained in
each slice. Nodes and edges can be defined with their own application affiliations. It is,
therefore, essential to classify and label these nodes and edges so that network operators
and management systems can query and manage network elements at the appropriate level
of abstraction.

The graph is a distributed structure that can be easily embedded in another graph or
easily create a new node. The different classifications of nodes can be easily represented as
instances of an application, and the application will be composed of nodes of the same
type. The network application has a relationship “Member” with the node. This modular
and hierarchical architecture allows network managers to customize the network and
provide highly flexible virtual network services. Currently, in the application of network
slice, except for the graph structure, other data structures cannot be so flexible.

RESULTS AND DISCUSSIONS
As a proof-of-concept, the experiment aims to validate and evaluate the feasibility of the
graph-based abstraction layer. We tested basic functions on networks with different
topologies and scales, and we wrote network applications that followed graph abstraction.
We will explain network topology structure, delay-based shortest path forwarding, data
persistence, and access control:

Figure 5 An improved Flow Setup model was used in our experiment.
Full-size DOI: 10.7717/peerj-cs.2674/fig-5

Jia et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2674 12/25

http://dx.doi.org/10.7717/peerj-cs.2674/fig-5
http://dx.doi.org/10.7717/peerj-cs.2674
https://peerj.com/computer-science/

Experimental environment
Our experiment used an Intel(R) i7-7500U CPU operating at 2.70 GHz and a 16 GRAM
PC running Ubuntu 20.04 LTS. In our experiment, Mininet 20 was used to build the
underlying network, Ryu was used as the controller, NetworkX21 was used for the graph-
based abstraction layer, and the Neo4j database was used for data persistence. The
controller Ryu, simulation tool Mininet, and graph database Neo4j all have strong
authenticity and can be applied in real-word scenarios without modifying the code.

To simulate the traffic of real networks, a more comprehensive evaluation of system
efficiency and scalability was provided. In “Network Topology Verification”, “Graph
Module Verification”, and “Data Persistence”, we evaluated the system using randomly
generated traffic of varying sizes from random hosts. In “Network Slice Verification”, we
evaluating with stable traffic generated by random hosts. Lastly, no traffic was involved in
“Network Latency Discussion”. Specifically, the size range of random traffic is as follows:

Mouse flows = [‘100K’, ‘200K’, ‘300K’, …, ‘9000K’, ‘10000K’, ‘1000K’].
Elephant flows = [‘10M’, ‘20M’, ‘30M’, …, ‘800M’, ‘900M’, ‘1000M’].

Network topology verification
One of the characteristics of SDN is the ability to obtain a global network view. The global
network view is important, as network administrators often need to use it to select and
implement settings when writing network applications. The graph-based abstraction layer
not only obtains the global network view but also presents it in a What You See Is What
You Get (WYSIWYG) manner. The experiments in “Network Topology Verification”,
GraphModule Verification, “Data Persistence”, and “Network Slice Verification” are based
on this topology, as shown in Fig. 6A. We treat all network elements as nodes and the
connections between them as edges in our model. The attributes of these nodes and edges
are dynamically modified in real-time based on events occurring within the controller.
This leads to a one-to-one correspondence between the attributes and the graph structure,
allowing us to accurately represent the network topology.

Our graph-based abstraction layer is depicted using a drawing tool, as shown in Fig. 6B.
This layer provides applications with the ability to access topological information, track
changes in the topology, and load network statistics data efficiently. When new network
elements arrive, we simply add a new node to the graph structure and establish the
corresponding edges with its neighboring nodes. This process is triggered by specific
events, such as “event.EventSwitchEnter” and “event.EventLinkAdd.” Similarly, when
network elements are removed, the abstraction layer updates the graph by deleting nodes
and edges, responding to events like “event.EventSwitchLeave” and “event.
EventLinkDelete.” Furthermore, if there are changes in the attributes of network elements
or links, the attribute values within the graph structure are updated accordingly. These
updates are also event-driven, triggered by events such as “event.EventPortAdd” and
“event.EventPortDelete”.

The graph-based abstraction layer is done using the NetworkX module. During the
experiment, we tested the proposed scheme based on two different random traffic patterns,

Jia et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2674 13/25

http://dx.doi.org/10.7717/peerj-cs.2674
https://peerj.com/computer-science/

elephant flow and mouse flow, in order to make it more realistic. We provided programs
that can generate random flow of elephants and mice at any time. We also tested the
performance of linear, mesh, and data-centre topologies (Fattree topologies). We
successfully demonstrated the network topology structure through experiments, which
provides information needed by SDN applications, such as topology, network statistics,
and real-time topology updates. The graph-based abstraction indeed reduces the extra
understanding and relationship conversion costs, which allows a network manager to write
SDN applications without requiring mastery of low-level details.

Graph module verification
NetworkX and Neo4j’s ALGO extension both offer a variety of well-performing built-in
graph algorithms. To demonstrate the use of these graph modules, we implemented
shortest path forwarding based on link latency by leveraging the built-in weight-based
shortest path functions. We obtained real-time latency for each link through delay
detection and updated this latency as the edge weights in the graph abstraction layer. The
graphical abstraction layer provides a global view, where we could use it to query the
shortest path between two nodes by invoking built-in functions from the graph module.
Once the path was determined, we queried the input and output ports for each hop along
the path (port information is an attribute of the switch nodes). With this port information,
we know how to deploy flow tables to guide packet transmission (refer to Fig. 5 for flow
setup methods). In this way, shortest path forwarding based on link latency is achieved. As
shown in Fig. 6A, there are multiple shortest reachable paths from node h1 to h2, such as
h1 ! s1! s2 ! s3 ! h2 and h1 ! s1 ! s6 ! s3 ! h2. After the call graph module
completes its calculations, the path h1 ! s1 ! s6 ! s3 ! h2, which had the shortest
delay, was selected.

Based on other algorithms in the graph module, we could also perform a K-shortest
path based on traffic flow; multi-path can be used for dynamic load balancing and can also

Figure 6 The global network view. (A) Network structure. (B) Network topology of the graph-based abstraction layer. (C) Network element
connection relationship in Neo4j. Full-size DOI: 10.7717/peerj-cs.2674/fig-6

Jia et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2674 14/25

http://dx.doi.org/10.7717/peerj-cs.2674/fig-6
http://dx.doi.org/10.7717/peerj-cs.2674
https://peerj.com/computer-science/

be used as a backup path for fault recovery. A network loop detection feature is available in
the graph module to provide early notice of network loops. When a loop is detected, the
minimal spanning tree of the graph can be used to choose a transmission path. We could
also perform maximum flow detection, domain affiliation detection, and node importance
judgment (PageRank algorithm).

Through experiments, we found that the graph-based abstraction layer has the
following advantages when interacting with third-party modules:

. Simplicity: All data and attribute queries and modifications in the graph-based
abstraction layer are intuitive and directly map network devices (Digital Twins), as
shown in Code 2 (Eq. (2)).

. Flexibility: The graph-based abstraction layer is fully compatible with the Ryu
architecture and third-party modules, as illustrated in Fig. 1, making it seem like an
integral part of the system. This ensures great flexibility, allowing us to directly invoke
built-in functions from the third-party module NetworkX to calculate the shortest path:

path¼ nx:shortest�pathðself:Graph;source;target;weight¼ delayÞ

. Scalability: The graph itself is distributed. A node can be added to the graph, a graph can
be added to another graph, and it can be infinitely extended. Similarly, deleting and
updating sub-graphs is very convenient. Distributed processing can also be performed
simultaneously. This shows that the graph-based abstraction layer is scalable, as shown
in Code 3 (Eq. (3)).

Data persistence
The graph-based abstraction layer manages the real-time state of the network, while data
persistence in Neo4j accounts for its historical state. We chose the Neo4j graph database
over a traditional relational database because it offers enhanced capabilities for storage,
computation, and rapid relationship queries, which significantly enrich the abstraction
layer. This choice allowed us to efficiently store and manage the corresponding network
elements and their status within Neo4j as the graph-based abstraction layer is established.
As illustrated in Fig. 6C, Neo4j effectively represents the relationships among network
elements. The primary purpose of maintaining historical data is to enable network queries
based on past time snapshots or intervals, facilitating an understanding of how network
elements and status information have evolved over time. For instance, in scenarios such as
network troubleshooting and service quality management, querying these time snapshots
allows us to analyze the paths associated with network faults and observe their evolution.

In an SDN environment, we ran data persistence as a network application in the
controller, which is essentially the same as other applications, such as access control and
load balancing. It is a very special and important application. We use this method for data
persistence, with time nodes as the initial nodes. The attributes to be recorded for each
time node include timestamp, date, storage frequency, and note. “Time-to” and “time-
from” relationships are used as edges between time nodes. “backup” is used as an edge
between time nodes and network topology nodes. For how to import graphs from

Jia et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2674 15/25

http://dx.doi.org/10.7717/peerj-cs.2674
https://peerj.com/computer-science/

NetworkX to Neo4j or, in other words, how to use Neo4j like NetworkX, refer to this link:
https://github.com/jbaktir/networkx-neo4j.

Graph abstraction and graph databases are used to store data from the network. We can
observe, predict, and learn using virtual networks in the past, present, and future. Then,
interaction between the physical and virtual network, and the scenarios related to the
network will be verified. This is an area that requires further research in the future.

Network slice verification
In the architecture of this article, the graph abstraction was virtualized, and elements in the
network can belong to a complex hierarchical classification. Here, we used access control
to verify the feasibility of network slicing. Access control is also a commonly used
controller application that determines which device is allowed to access and which is not.
When implementing access control, the links that control the device’s access also control
the access request, and we used different flow table rules to restrict access from specific
hosts or network interfaces.

In the design of the access control module, we stored the access control list (ACL) in the
Neo4j. The ACL can be viewed as a whole network slice, with each row of the ACL being a
node in the slice plane. The content of the node is stored as key-value pairs. The design
quantifies access control into three steps: identifying a match, obtaining permission, and
distributing the flow table.

1. Identify match: The program obtains host information from the abstract layer. Based
on the source IP, destination IP, destination PORT, and other information, the program
performs a record query in Neo4j to check if access permission exists. The list of
permissions is shown in Table 1.

2. Access control: After the system program and the database have been matched up, it
can be concluded whether the device has permission to access the resources it wants to
access, and the permissions include Yes, No, and Exception (return exception
information). If the permission is granted, a flow table is output to the SDN switch to allow
the requested data from this device to be forwarded; if the permission is not granted, a flow
table is output to the SDN switch to disallow (drop) the forwarding of the requested data
for this device; if the permission is abnormal, the flow table is output to the SDN switch,
and no processing is performed. The data distributed are shown in Fig. 7.

3. Distribute flow table: After the module is running, it will actively distribute the
corresponding flow table rules according to the access permissions in the database. When
the access permissions change in the database records, the flow table rules will be updated
again. The system assigns a higher priority to ensure new flow table entries supersede
previous ones within the validity period. When the flow table items expire, they are
automatically removed. The terminal must re-acquire authorization to reaccess the
resource server. We take advantage of the global nature of the topology to directly
distribute the flow tables that need to be updated.

Due to the fact that access control involves frequent queries, we stored the ACL in Neo4j
and verified the data persistence during network slice verification. The essence of access
control is to implement the function of a packet-filtering firewall. With the flexibility of the

Jia et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2674 16/25

https://github.com/jbaktir/networkx-neo4j
http://dx.doi.org/10.7717/peerj-cs.2674
https://peerj.com/computer-science/

SDN and the efficiency of the graph database queries, the final access control mechanism
also has flexibility and high efficiency.

Although we have easily implemented the function of controlling access through
network function virtualization, when various network functions are intertwined, network
demand becomes more complex and dynamic. Further research is required for the
functional verification of network slicing, which will be challenging. However, no matter
which method is used, the way of managing network applications will change.

Network latency discussion
Experiment 1: Shortest path performance for various topology types in the
graph-based abstraction layer.

The reason for the existence of the network is for traffic forwarding, and the main
objective of traffic forwarding is to carry out the management of traffic forwarding paths.

Table 1 Permission record form.

no src_ip dst_ip dst_port acc_auth

1 10.0.0.1 10.0.0.4 8001 NO

2 10.0.0.1 10.0.0.4 8002 YES

3 10.0.0.1 10.0.0.4 8003 UNKNOWN

… … … … …

Figure 7 Distribute flow table data. Full-size DOI: 10.7717/peerj-cs.2674/fig-7

Jia et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2674 17/25

http://dx.doi.org/10.7717/peerj-cs.2674/fig-7
http://dx.doi.org/10.7717/peerj-cs.2674
https://peerj.com/computer-science/

We experiment on the selection of the shortest path in different topological networks to
verify the availability of the graph-based abstraction layer. In order to better compare the
experiment, we carefully selected three topologies that are very classic and can meet our
special comparison requirements: linear, mesh, and fat-tree topology. We assume the
following:

1) All topologies K = 2, 8, 14, 20, …, 512 with a step size of 6. In linear and mesh
topologies, K denotes the number of switches. In the fat-tree topology, K refers to the
number of core layer switches. Given that the fat-tree topology consists of three layers of
switches, we selected even numbers to meet the structural requirements of the topology.

2) In all topologies, we seek the shortest path from the first node to the last node. For
example, for linear topology, when K = 512, we seek the shortest path between node h1
to h512.

3) According to the implementation method of the graph abstraction layer, the edges of
the topology must be bidirectional (have direction).

Linear topology is the simplest topology that can be complex; when K = 512, there are
1,024 nodes and 2,046 edges, and querying the shortest path took 922.4414 µs, indicating a
high query efficiency. According to the results in Fig. 8. the linear topology shows that the
number of network hops increases synchronously as K increases. Its shortest path delay is
also steadily increasing, indicating that there is a positive correlation between the delay of
the shortest path and the number of hops.

The mesh topology is a complex topological structure where each switch node is
connected to all other switches, meaning that each switch can be directly connected. When
K = 512, it has the same number of 1,024 nodes as linear topology but has 262,656 edges.
From the results in Fig. 9, it can be seen that although each node has 1,023 paths to reach
the destination, the number of hops in a mesh topology network consistently remains at 1
regardless of how K increases. The average computation time is 151.6231 µs, indicating
that the shortest path can always be found quickly. Its shortest path delay has a slight but
insignificant increase as the network scale increases. The results indicate that the number
of edges in the topology has a negligible impact on the shortest path latency, and the
experimental results support our intuitive understanding.

Fat-tree topology has extensive applications in high-performance networks, data
centers, enterprise networks, and campus networks. We need its complexity, as the
network parameters increase exponentially with the growth of K, making it more complex
than real-world network environments. When K = 512, there are a total of 4,608 nodes and
1,056,768 edges. According to the results in Fig. 8, the fat tree topology has a fixed network
hop count of 6 as K increases, and querying the shortest path took 167.1951 µs. Its shortest
path delay increases slightly with the increase of the network scale, but not significantly.
This suggests that the increase in the number of nodes and edges does not significantly
impact the delay of the shortest path when the number of hops is fixed. The shortest delay
of the 1-hop mesh network and the 6-hop fat tree network is almost the same, indicating
that the impact of network hops on the delay is negligible.

Jia et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2674 18/25

http://dx.doi.org/10.7717/peerj-cs.2674
https://peerj.com/computer-science/

The graph-based abstraction layer has advantages in relationship lookup for
professional details. Traditional relational database queries become increasingly difficult
beyond the third level, and the difficulty coefficient starts to increase geometrically.
Through program development, we have empirically examined these hypotheses,
demonstrating the advantage of graph-based abstract approaches in the task of

Figure 8 Shortest path performance for various topology types in the graph-based abstraction layer.
Full-size DOI: 10.7717/peerj-cs.2674/fig-8

Figure 9 Shortest path performance for various topology types in Neo4j.
Full-size DOI: 10.7717/peerj-cs.2674/fig-9

Jia et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2674 19/25

http://dx.doi.org/10.7717/peerj-cs.2674/fig-8
http://dx.doi.org/10.7717/peerj-cs.2674/fig-9
http://dx.doi.org/10.7717/peerj-cs.2674
https://peerj.com/computer-science/

relationships lookup. This advantage becomes more pronounced when dealing with
complex and highly connected data. They can directly store and traverse relationships
between nodes, avoiding the multiple JOIN operations in traditional relational databases,
thereby potentially increasing efficiency.

Experiment 2: Shortest path performance for various topology types in Neo4j.
The abstract representation of graphs not only facilitates network understanding but

also simplifies the formation of logical business combinations. However, this raises
important questions: with the current trend towards integrating storage and computing in
graph databases, is the graph abstraction layer becoming redundant? Given that all systems
require data persistence, could a graph database itself serve as a replacement for the graph-
based abstraction layer? In other words, why not incorporate the concept of a graph-based
abstraction layer directly within the graph database? To address these questions, we
conducted experiments to verify the necessity of maintaining a separate graph abstraction
layer.

According to the statistics in Fig. 9, the linear topology shows a concurrent increase in
the number of network hops as K increases. The shortest path latency also increases
proportionally. This indicates that the number of hops completely determines the latency,
and when K = 512, the shortest path query time is 17,603.67 ms.

Mesh topology increases as K increases. Its shortest path is unchanged with the increase
in network scale. This shows that the number of edges in the topology does not affect the
shortest path’s latency. When K = 512, the shortest path query time is 185.28 ms.

Fat tree topology as K increases. Its shortest path barely changes with the increase in
network size. This shows that the increase in the number of nodes and edges, with a fixed
number of hops, has no effect on the latency of the shortest path. When K = 512, the
shortest path query time is 310.44 ms.

After comparing Figs. 8 and 9, we found that the latency of the graph-based abstraction
layer is significantly smaller than that of Neo4j. We averaged the shortest path
computation time for different topologies ranging from K = 1 to 512 in our experiments
and found that the average computation time for Neo4j (3,183,508.6 ms) is 9,121.81 times
greater than that of the graph-based abstraction layer (348.9996 µs). The graph-based
abstraction layer is computed in memory, which is naturally faster than querying data
stored in a database. The abstraction layer acts as a cache between the CPU and the
database. In practical network management, we need to frequently access the current state
in memory, which also highlights the necessity of the graph abstraction layer. Historical
data is stored in the graph database Neo4j, and it is not appropriate to completely replace
the graph-based abstraction layer with the graph database.

Overload analysis
In this experiment, we measured the overhead of graph-based abstraction layer, mainly
referring to CPU utilization and memory usage. We confirmed in our experiment that the
graph-based abstraction layer indeed consumes minimal system resources. For the CPU
utilization of the graph abstraction layer, we tested the overhead with and without the

Jia et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2674 20/25

http://dx.doi.org/10.7717/peerj-cs.2674
https://peerj.com/computer-science/

graph abstraction layer. Figure 10 shows that the average CPU utilization increased from
6.22% to 7.99% over 120 s, without introducing significant CPU utilization. It was also
found that there was a spike in utilization only at the initial loading phase, while at other
times the increase in utilization might be due to computational overhead caused by
updates to nodes and attributes.

Figure 10 CPU utilization with a graph-based abstraction layer.
Full-size DOI: 10.7717/peerj-cs.2674/fig-10

Figure 11 Memory occupancy. Full-size DOI: 10.7717/peerj-cs.2674/fig-11

Jia et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2674 21/25

http://dx.doi.org/10.7717/peerj-cs.2674/fig-10
http://dx.doi.org/10.7717/peerj-cs.2674/fig-11
http://dx.doi.org/10.7717/peerj-cs.2674
https://peerj.com/computer-science/

We also measured memory usage, and Fig. 11 shows that the memory usage grows very
gradually under different traffic sizes and network structures. From K = 2 to 512, it can be
observed that the linear topology shows no growth, the mesh topology grows by 0.9%, and
the fat-tree topology grows by 4.5%. This indicates that the size and variation of traffic in
the network do not affect memory usage. On the other hand, we can also see that memory
growth is only related to the number of network nodes and edges. When K is fixed,
memory is allocated directly based on the number of nodes and edges. Subsequent changes
in traffic only alter edge attribute values without affecting memory. However, the addition
or removal of nodes, edges, and attributes may slightly influence memory usage.

CONCLUSION
Upon investigation, there have been few studies on the SDN graph-based abstraction layer
in the existing literature. We propose a virtual architecture based on the characteristics of
SDN. Graph abstraction makes good use of programmable and virtualized features. It can
be well summarized and used in more complex scenarios, which is a high-level abstraction
that conforms to human intuition. Our graph-based abstraction layer implementation
provides network topology, network resources, and network information flows (delay, loss,
throughput, bandwidth, current rate) to the SDN control plane and application plane. This
intuitive, natural, real-time representation, with good readability and reusability, is very
conducive to universal development.

Existing SDN controllers lack a standard data model. Interoperability between
heterogeneous SDN controllers and applications can only be achieved through the
standard northbound and east-west interfaces. The graph-based abstraction layer allows
applications to only update the graph itself without having to update a large number of
tables. The complexity and latency can be significantly reduced when the query data of
network applications has a correlation and more jumps.

We have demonstrated the feasibility of graphical abstraction in topological display,
dynamic route, access control, and data persistence. There is no need to change the
controller’s source code.

The graph-based abstraction layer can extend the virtualization of SDN and lay the
foundation for future work. Data persistence can be observed, predicted, and learned using
virtual networks in the past, present, and future. An analysis will be conducted to validate
the network possibilities. This work can be easily extended to other controllers or adapted
to other types of applications, leaving such extensions for future work. For others to try, the
core graph-based abstraction layer source code is open source (https://github.com/
Jyfeng2021/SDN-graph-based-abstraction-layer.git) to facilitate various SDNAPP
extensions based on this work.

ACKNOWLEDGEMENTS
The authors are grateful for the valuable comments and suggestions of the reviewers.

Jia et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2674 22/25

https://github.com/Jyfeng2021/SDN-graph-based-abstraction-layer.git
https://github.com/Jyfeng2021/SDN-graph-based-abstraction-layer.git
http://dx.doi.org/10.7717/peerj-cs.2674
https://peerj.com/computer-science/

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This research was funded by the Foundation of Xinjiang College of Science and
Technology (2024-GGYX03). The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Foundation of Xinjiang College of Science and Technology: 2024-GGYX03.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
. Yufeng Jia conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables, and
approved the final draft.

. Jiadong Ren conceived and designed the experiments, performed the experiments,
authored or reviewed drafts of the article, and approved the final draft.

. Xianshan Li analyzed the data, authored or reviewed drafts of the article, and approved
the final draft.

. Haitao He analyzed the data, authored or reviewed drafts of the article, and approved the
final draft.

. Pengwei Zhang performed the computation work, prepared figures and/or tables, and
approved the final draft.

. Rong Li analyzed the data, prepared figures and/or tables, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code is available in the Supplemental Files, GitHub, and Zenodo:
- https://github.com/Jyfeng2021/SDN-graph-based-abstraction-layer.git
- Jyfeng2021. (2025). Jyfeng2021/SDN-graph-based-abstraction-layer: graph-based

abstraction layer v1.0 (1.0). Zenodo. https://doi.org/10.5281/zenodo.14683957.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.2674#supplemental-information.

REFERENCES
Ahmad S, Mir AH. 2021. Scalability, consistency, reliability and security in SDN controllers: a

survey of diverse SDN controllers. Journal of Network and Systems Management 29(1):9
DOI 10.1007/s10922-020-09575-4.

Jia et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2674 23/25

http://dx.doi.org/10.7717/peerj-cs.2674#supplemental-information
https://github.com/Jyfeng2021/SDN-graph-based-abstraction-layer.git
https://doi.org/10.5281/zenodo.14683957
http://dx.doi.org/10.7717/peerj-cs.2674#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2674#supplemental-information
http://dx.doi.org/10.1007/s10922-020-09575-4
http://dx.doi.org/10.7717/peerj-cs.2674
https://peerj.com/computer-science/

Alghamdi A, Paul DJ, Sadgrove EJ. 2021. A restful northbound interface for applications in
software defined networks. In: Proceedings of the 17th International Conference on Web
Information Systems and Technologies, WEBIST 2021. October 26-28, 2021. Setúbal, Portugal:
SCITEPRESS, 453–459.

Bannour F, Dumbrava S, Danduran-Lembezat A. 2022a. GOX: towards a scalable graph
database-driven SDN controller. In: 8th IEEE International Conference on Network
Softwarization, NetSoft 2022. June 27–July 1, 2022. Piscataway: IEEE, 278–280.

Bannour F, Dumbrava S, Lu D. 2022b. A flexible graphql northbound API for intent-based SDN
applications. In: 2022 IEEE/IFIP Network Operations and Management Symposium, NOMS
2022. April 25–29, 2022. Piscataway: IEEE, 1–5.

Barakat OL, Koll D, Fu X. 2017.Gavel: software-defined network control with graph databases. In:
20th Conference on Innovations in Clouds, Internet and Networks, ICIN 2017. March 7–9,
2017. Piscataway: IEEE, 279–286.

Barakat OL, Koll D, Fu X. 2019. Gavel: a fast and easy-to-use plain data representation for
software-defined networks. IEEE Transactions on Network and Service Management
16(2):606–617 DOI 10.1109/TNSM.2019.2903440.

Bhuiyan ZA, Islam S, Islam MM, Ullah ABMA, Naz F, Rahman MS. 2023. On the (in)security of
the control plane of SDN architecture: a survey. IEEE Access 11:91550–91582
DOI 10.1109/ACCESS.2023.3307467.

Cox JH, Chung J, Donovan S, Ivey J, Clark RJ, Riley G, Owen HL. 2017. Advancing software-
defined networks: a survey. IEEE Access 5:25487–25526 DOI 10.1109/ACCESS.2017.2762291.

Cox JH Jr, Donovan SP, Clark RJ, Owen HL III. 2016. Ryuretic: a modular framework for Ryu. In:
2016 IEEE Military Communications Conference, MILCOM 2016. November 1–3,
2016. Piscataway: IEEE, 1065–1070.

Halder B, Barik MS, Mazumdar C. 2017. A graph based formalism for detecting flow conflicts in
software defined network. In: 2017 IEEE International Conference on Advanced Networks and
Telecommunications Systems (ANTS). Piscataway: IEEE.

Jamkhedkar PA, Johnson T, Kanza Y, Shaikh A, Shankaranarayanan NK, Shkapenyuk V. 2018.
A graph database for a virtualized network infrastructureIn: Proceedings of the 2018
International Conference on Management of Data, SIGMOD Conference 2018. June 10–15,
2018. New York: ACM, 1393–1405.

Jiménez MB, Fernández D, Rivadeneira JE, Bellido L, Cárdenas A. 2021. A survey of the main
security issues and solutions for the SDN architecture. IEEE Access 9:122016–122038
DOI 10.1109/ACCESS.2021.3109564.

Latif Z, Sharif K, Li F, Karim MM, Biswas S, Wang Y. 2020. A comprehensive survey of interface
protocols for software defined networks. Journal of Network and Computer Applications
156(1):102563 DOI 10.1016/j.jnca.2020.102563.

Neo4j, Inc. 2024. Neo4j graph database. Available at https://neo4j.com/.

Nippon Telegraph and Telephone Corporation. 2014. Ryu controller. Available at https://ryu.
readthedocs.io/en/latest/#.

Open Networking Foundation. 2024. Openflow. Available at https://opennetworking.org/.

Reich J, Monsanto C, Foster N, Rexford J, Walker D. 2013. Modular SDN programming with
pyretic. login Usenix Mag 38(5):40–47.

Souza TDPCD, Rothenberg CE, Santos MAS, de Paula LB. 2015. Towards semantic network
models via graph databases for SDN applications. In: Fourth European Workshop on Software
Defined Networks, EWSDN 2015. September 30–October 2, 2015. Piscataway: IEEE Computer
Society, 49–54.

Jia et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2674 24/25

http://dx.doi.org/10.1109/TNSM.2019.2903440
http://dx.doi.org/10.1109/ACCESS.2023.3307467
http://dx.doi.org/10.1109/ACCESS.2017.2762291
http://dx.doi.org/10.1109/ACCESS.2021.3109564
http://dx.doi.org/10.1016/j.jnca.2020.102563
https://neo4j.com/
https://ryu.readthedocs.io/en/latest/#
https://ryu.readthedocs.io/en/latest/#
https://opennetworking.org/
http://dx.doi.org/10.7717/peerj-cs.2674
https://peerj.com/computer-science/

Wang A, Mei X, Croft J, Caesar M, Godfrey B. 2016. Ravel: a database-defined network. In:
Proceedings of the Symposium on SDN Research, SOSR 2016. March 14–15, 2016. New York:
ACM, 5.

WuD, Nie X, Asmare E, Arkhipov DI, Qin Z, Li R, McCann JA, Li K. 2020. Towards distributed
SDN: mobility management and flow scheduling in software defined urban IoT. IEEE
Transactions on Parallel and Distributed Systems 31(6):1400–1418
DOI 10.1109/TPDS.2018.2883438.

Xu J, Wang L, Xu Z. 2019. Efastlane: toward bandwidth-efficient flow setup in software-defined
networking. In: 2019 IEEE Wireless Communications and Networking Conference, WCNC 2019.
April 15–18, 2019. Piscataway: IEEE, 1–7.

Yan B, Liu Q, Shen J, Liang D, Zhao B, Ouyang L. 2021. A survey of low-latency transmission
strategies in software defined networking. Computer Science Review 40(6):100386
DOI 10.1016/j.cosrev.2021.100386.

Zhou Q, Gray AJG, Mclaughlin S. 2021. Seanet—towards a knowledge graph based autonomic
management of software defined networks. ArXiv DOI 10.48550/arXiv.2106.13367.

Jia et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2674 25/25

http://dx.doi.org/10.1109/TPDS.2018.2883438
http://dx.doi.org/10.1016/j.cosrev.2021.100386
http://dx.doi.org/10.48550/arXiv.2106.13367
http://dx.doi.org/10.7717/peerj-cs.2674
https://peerj.com/computer-science/

	Construction of a user-friendly software-defined networking management using a graph-based abstraction layer
	Introduction
	Background and related work
	Design and solution
	Results and discussions
	Conclusion
	flink6
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

