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ABSTRACT

Detecting brain tumors in medical imaging is challenging, requiring precise and
rapid diagnosis. Deep learning techniques have shown encouraging results in this
field. However, current models require significant computer resources and are
computationally demanding. To overcome these constraints, we suggested a new
deep learning architecture named Lightweight-CancerNet, designed to detect brain
tumors efficiently and accurately. The proposed framework utilizes MobileNet
architecture as the backbone and NanoDet as the primary detection component,
resulting in a notable mean average precision (mAP) of 93.8% and an accuracy of
98%. In addition, we implemented enhancements to minimize computing time
without compromising accuracy, rendering our model appropriate for real-time
object detection applications. The framework’s ability to detect brain tumors with
different image distortions has been demonstrated through extensive tests combining
two magnetic resonance imaging (MRI) datasets. This research has shown that our
framework is both resilient and reliable. The proposed model can improve patient
outcomes and facilitate decision-making in brain surgery while contributing to the
development of deep learning in medical imaging.

Subjects Artificial Intelligence, Computer Vision
Keywords Brain tumor detection, MobileNet, NanoDet, Efficient diagnosis, Real-time object
detection

INTRODUCTION

A tumor, characterized by uncontrolled cell division and the formation of an abnormal
mass, can harm the brain, which consists of billions of cells. Cancer can develop either
within or outside of the brain. This disorder exhibits the highest rates of morbidity and
mortality compared to all other forms of cancer that affect both adults and children.
Diagnosing brain tumors is a complex task due to the elusive nature of their beginnings
and the challenge of accurately determining their growth rates (Kleihues et al., 2002).

Brain tumors are a significant health issue, with their occurrence rates consistently
increasing. The National Cancer Institute (NCI) confirms that brain tumors are most
commonly diagnosed in adults aged 50 or older (National Cancer Institute, 2024). By
gender, they are found more predominantly in males (Popat ¢» Patel, 2022). Unfortunately,
brain tumors have become the leading cause of death in individuals below the age of 20
(DeAngelis, 2001).

In medical literature, enhancing the accuracy and efficiency of brain tumor detection
has become a crucial factor. Intelligent diagnostic methods and treatment strategies are
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essential for addressing this issue. The utilization of deep learning techniques for detecting
brain tumors has received considerable interest, especially in the application of edge
computing for medical prioritization systems. Deep neural networks, a key component of
deep learning, have garnered the attention of researchers, engineers, and healthcare
professionals. For instance, convolutional neural networks (CNNs) are commonly
employed in medical image analysis, yielding promising results (Gupta, Gaurav & Arya,
2024; Qureshi et al., 2022a; Cen et al., 2019; Gao et al., 2019).

Magnetic resonance imaging (MRI) stands out as the go-to non-invasive technique
encouraged by radiologists for scanning (Ardan ¢ Indraswari, 2024; Kale & Gadicha, 2024;
Nawaz et al., 2021; Asiri et al., 2024). It is beneficial for detecting subtle structural changes
that might be difficult to detect with computed tomography (CT) scans (Simo et al., 2024;
Aamir et al., 2022). However, identifying the specific type of tumor can be challenging,
particularly when time is limited, as is often the case during the prediction stage of artificial
intelligence-based solutions.

Real-time detection could expedite the diagnostic process compared to traditional
methods (Mahmud, Mamun ¢ Abdelgawad, 2023). Moreover, real-time detection during
surgery could provide more precise information about the tumor’s boundaries and
location, allowing for accurate and potentially less invasive resections (Mohan et al., 2022).

While there have been significant advances in deep learning computing applications
and services, we still face challenges in achieving real-time human-computer interaction
with efficiency and the ability to detect unknown knowledge. In particular, clear
advancements in ultra-light deep learning frameworks have yet to be observed in medical
brain tumor diagnosis.

These challenges become even more critical during intraoperative brain surgery, where
quick decisions are crucial. We have developed an ultra-light deep learning framework to
address these gaps and provide an effective solution. This framework is intended to
streamline tumor identification and enhance decision-making during brain surgery,
ultimately improving patient outcomes.

The study of ultra-light deep learning frameworks (Qureshi et al., 2022b; Chinaev et al.,
2024) in the medical brain tumor diagnosis presents two major challenges. Firstly, resource
efficiency, i.e., Ultra-light deep learning frameworks, must handle large medical imaging
datasets efficiently, balancing real-time processing with limited computational resources.
Secondly, maintaining diagnostic accuracy while reducing model complexity is challenging
due to trade-offs between lightweight architectures and superior performance in brain
tumor diagnosis.

Furthermore, focusing solely on the intelligent diagnosis of brain tumors overlooks the
broader significance of how such technology can be integrated into medical triage
platforms or used by doctors on mobile or advanced Reduced Instruction Set Computer
(RISC) machine (ARM) devices.

Most of the research on brain tumor diagnostics has mainly concentrated on CNNs
within deep learning networks (Lee, Chae ¢» Cho, 2024; Vinod, Prakash ¢ Salman, 2024;
Tinu, Appathurai & Muthukumaran, 2024). A widely used deep learning network can be
employed to extract features from numerous medical images. Nevertheless, there is a lack
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of research examining the realistic implementation of lightweight models to diagnose brain
tumors (Chengwei, 2019; Howard et al., 2017; Qiang et al., 2021). Most of the deep learning
frameworks require substantial computational power and resources. Furthermore, deep
learning algorithms fail to achieve a balance between accuracy and speed. This research
presents a lightweight deep learning model called Lightweight-CancerNet as a solution to
address the existing challenges. This model is designed to be utilized by ARM devices.

It is suggested that the customized Lightweight-CancerNet be used with MobileNet as
the backbone, which will help extract the distinguished features from MRI images. The
NanoDet is used as a head for the detection of cancerous parts. We have demonstrated the
strength and reliability of our proposed model by conducting extensive experiments on
tumor samples.

The notable contributions of our work are as follows:

e An accurate method capable of computing reliable image features to enhance the
tumor’s detection is proposed.

* A robust framework is designed to improve the mAP and accuracy to detect the cancer,
tumor, or lesions.

¢ A comprehensive evaluation of the proposed framework is performed on a complex
dataset, and its effectiveness is confirmed through rigorous experimentation.

The remainder of the article is divided into four sections. “Literature Review” covers the
existing work; “Methodology” discusses the proposed methodology. In “Experimental
Setup and Results” and “Conclusion”, the results and the conclusion are presented.

LITERATURE REVIEW

This section has examined previous studies on detecting and categorizing cancers from
medical images. Additionally, we analyzed various object detection models, analyzing their
performance, strengths, and weaknesses. We have evaluated each model based on mean
average precision (mAP), precision, recall, and F1 score.

Brain tumor segmentation techniques based on machine learning typically rely on
voxel-based features extracted from the image’s volume of interest (VOI). Various
segmentation methods have been evaluated, demonstrating diverse performances (Kumar,
2023). Abdusalomov, Mukhiddinov & Whangbo (2023) employed You Only Look Once
(YOLO)v7 and transfer learning techniques to enhance brain tumor diagnosis in MRI
scans, achieving an exceptional 99.5% accuracy in detecting prevalent brain tumor types
like Glioma, Meningioma, and Pituitary. However, they recognize the need for further
investigation, especially in determining minor tumors. The methods ResNet (Aggarwal
et al., 2023) and CREF-RNN were employed to achieve precise segmentation outcomes.

The evaluation of performance was conducted utilizing the Multimodal Brain Tumor
Segmentation Benchmark (BraTS) dataset (BraTS, 2020). Similarly, Ghafourian et al.
(2023) integrated the results of SVM, Naive Bayes, and k-nearest neighbors (KNN). They
combined the outcomes of multiple models by averaging their values, thereby enhancing
tumor classification results.
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The BraTS dataset has a significant impact on brain tumor imaging studies. Menze et al.
(2015) introduced BraTS as a standardized dataset with MRI scans and tumor annotations.
Bakas et al. (2017) augmented BraTS$ by incorporating expert annotations and radiometric
characteristics. Further, Bakas et al. (2019) identified machine-learning algorithms for
tumor segmentation and prediction.

Furthermore, segmentation and diagnosis studies using MR images were conducted.
This research employed a search algorithm to apply a thresholding technique.
Morphological operations and connected component analysis were employed to minimize
image noise and enhance brain tumor identification. Comparisons with CNN algorithms
revealed high success rates in the obtained results (Aleid et al., 2023).

The concept of lightweight models has emerged in recent years, aiming to address
model size and speed issues. Unlike working with pre-trained models, designing
lightweight models offers an alternative approach. Shelatkar et al. (2022) introduced a
novel way of diagnosing brain tumors using a lightweight deep-learning model with a fine-
tuning methodology. The dataset acquired from the RSNA-MICCAI brain tumor
radiogenomic classification was utilized in this investigation. The preprocessed data is
partitioned into several subsets for testing and training the model. The accuracy of the
YOLOV5 model is reported to be 88% (Shelatkar et al., 2022).

MobileNetV1 introduces a significant advancement in depth-wise separable
convolution. The network forgoes conventional standard convolutions. The tumor
detection accuracy of MobileNet has been reported to be 82.61% (Ullah et al., 2022).

Single Shot Detector (SSD) is a scanner that detects a single event. The proposed
network does not include a region proposal; instead, it predicts the bounding boxes and the
classes directly from feature maps in a single run. SSD incorporates small convolutional
filters to enhance precision and predict object classes and offsets to the default bounding
boxes (Cen et al., 2019). The SSD has an accuracy rate of 82.7% in detecting cancer on
endoscopic images.

Ronneberger, Fischer & Brox (2015) proposed the U-Net architecture, which has now
become a standard for medical image segmentation tasks, specifically in brain tumor
detection. The U-Net model accomplished a precision rate of 93.4% when evaluated on the
BraTS 2013 dataset, as reported by Menze et al. (2015) in 2015. However, the system’s
computational complexity and memory constraints hinder its implementation on devices
with limited resources.

To overcome this constraint, Howard et al. (2017) introduced MobileNet, a CNN design
that is less resource-intensive yet achieves similar accuracy to U-Net. MobileNet employs
depthwise separable convolutions to decrease computational complexity and memory
consumption, resulting in a 91.2% accuracy rate on the BraTS$ 2017 dataset (Howard et al.,
2017).

In 2018, Zhang et al. (2017) presented ShuftleNet, a lightweight CNN architecture with
enhanced efficiency and accuracy. ShuffleNet employs group convolutions and channel
shuffle operations to decrease computational complexity and memory consumption,
resulting in an accuracy of 92.5% on the BraTS 2013 dataset.
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In 2017, Iandola et al. (2016) introduced SqueezeNet, a very efficient CNN design that
offers cutting-edge performance while demanding minimal computational resources. The
SqueezeNet utilizes knowledge distillation to train a compact model that emulates the
functionality of a pre-existing, more intricate model, resulting in 94.1% accuracy on the
BraTS 2017 data.

Additional research has investigated the application of deep learning models for the
identification of brain tumors, such as DeepMedic (Kamnitsas et al., 2016), 3D U-Net
(Cigek et al., 2016), U-Net++ (Zhou et al., 2018), and VGG-16 (Simonyan ¢ Zisserman,
2015). These models have attained different levels of precision. However, it frequently
requires substantial computer resources and memory.

Despite achieving a reasonable level of accuracy, there remains a possibility for further
enhancement in detecting brain tumors. Although techniques have potential, their ability
to analyze various datasets and clinical settings may need to be revised. Furthermore,
further improvements are required to enhance accuracy and ensure reliable diagnosis in
real-world situations.

METHODOLOGY

Efficient and effective automated localization and detection of cancer from medical images,
i.e., CT, endoscopy, MRI X-rays, efc., is still a complex task because of the vast slight
variations in the size, color, and position of lesions. Moreover, medical investigations
require lightweight models that can be used through mobile or arm devices. In this work,
we tried to overcome the challenges above by fine-tuning an efficient model. The proposed
method is robust and lightweight, providing better mAP detection for cancer and lesions in
medical images.

The presented work is composed of two main components. The first is ‘Data
Preparation’, and the second is a deep learning-based model for cancer detection. The first
module assembles two datasets to locate the exact region of interest, while the second
module of the new model presents a cancer/lesion detection model. This module consists
of two sub-modules: the first is the study of different lightweight models used for cancer
detection, and the second will be the training component, which performs training using
the critical points computed from the model. Figure 1 illustrates the flow diagram of the
proposed methodology, and Fig. 2 presents the overview of the proposed work.

The steps for a lightweight cancer detection model are depicted in the flow diagram. It
starts by taking an input image dataset, cleaning and preparing it, and then extracts key
feature vectors using a MobileNet backbone. These features are further processed by a path
aggregation network (PAN) before reaching the NanoDet detection head, which identifies
and locates objects in the image. Finally, the trained model is used to analyze detection
results for inference.

Datasets

For training the model, we have used two different publicly available datasets. One is the
Multimodal Brain Tumor Segmentation Benchmark (BraTS) (Bakas, 2018) with 1,140
images. It is a publicaly available brain tumor dataset that contains four MRI modalities,
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Figure 1 A visual overview of the Lightweight-CancerNet framework’s methodological flow,
illustrating each stage from data preprocessing to model training and evaluation.
Full-size K&l DOT: 10.7717/peerj-cs.2670/fig-1

Depthwise separable convolution

Depthwise Convolution

Pointwise Convolution

\ N 1x1 Conv N
o ‘ Ninnzz o 1)
| N

‘ Classification Branch

Boundary Box +
Regression Branch

"""""""""" lbéié&""'"”

peay uonalaq 1a3lqo
adels auQ paidauuo) Ajng

Input 320x320x3 - m————m— e mm———— e — oo !

MobileNet Backbone

Figure 2 Proposed lightweight cancernet with three modules feature extraction by using MobileNet backbone, PAN for the fusion of feature
maps, and NanoDet head as prediction module. Full-size K&l DOT: 10.7717/peerj-cs.2670/fig-2

having T1, Tlce, T2, and Flair. BraTS is used extensively by researchers (Ardan ¢
Indraswari, 20245 Bakas et al., 2019; Kumar, 2023). The other one is RSNA-MICCAI
competition data (Roberts, 2021) having 400 images. The dataset is also publically available
and has images in various resolutions, colors and modalities. The dataset has been
expanded 1,131 images using horizontal and vertical flip augmentation. We ensured that
the augmented images would not be part of test data so that they could not effect the test
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Figure 3 Displays example MRI slices with cancerous regions, offering insight into the dataset and
visual characteristics used for training and testing the model.
Full-size K&l DOT: 10.7717/peerj-cs.2670/fig-3

results of the model. Both datasets were merged to enhance the accuracy and robustness of
the findings.

Furthermore, combining datasets increases the diversity and sample size, leading to
reliable conclusions. The images in the collection have a resolution of 320 x 320. Figure 3
shows the sample images from the dataset.

Annotation

In this work, first, we used the dataset’s images as input images and annotated the regions
of interest using the coordinates given with the datasets. Annotation is done manually
using the annotation tool available at https://www.makesense.ai/. In the annotation
process, positive labels and bounding box coordinates were indicated. After annotation,
the images were forwarded to the MobileNet backbone for feature extraction.

MobileNet

The MobileNet architecture is commonly employed as the basis for object detection
algorithms because of its exceptional efficiency and accuracy. Therefore, it is used as the
backbone of the proposed framework. The backbone network of MobileNet is composed of
fully connected (FC) layers followed by many depth-wise separable convolution layers.
According to Eq. (1), the MobileNet backbone network can accept an input image, W x H
x D as input size.

Imgsize=W x Hx D (1)
The MobileNet backbone network produces a feature map with dimensions H x W x D,

where W is the width, H is height, and D is the number of feature channels. The Region
Proposal Network (RPN) and object detector utilize this feature map as input to recognize
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and accurately identify items in the picture. The RPN produces a sequence of region
suggestions. Then, the feature map obtained from the MobileNet backbone network is
passed via Region of Interest (ROI) pooling to extract a feature vector of a consistent size
for each suggestion. The ROI pooling method involves applying a max-pooling operation
to each rectangular region of the feature map that corresponds to the region suggestions.

The rationale behind the selection of MobileNet as the backbone is the selection of
MobileNet as the backbone network is a well-reasoned choice that balances the need for
computational efficiency, model performance, and adaptability to various mobile and
embedded vision applications (Howard et al., 2017).

Path aggregation network (PAN)

PAN is used to fuse different features received from different paths from the MobileNet
backbone. The fusion is done using the concept of element-wise addition. Equation (2)
shows the simplified working of PAN.

Ffused = Fi+ Fi" ¢ RH x W x C (2)

Fi € R H x W x C are the feature maps from the i path, where H, W, C are the
height, width, and number of channels, respectively. The final output of the PAN module is
the fused feature map Fpyeeq, which is then passed to the next network stage.

Then, the fine-tuning of hyperparameters like learning rate, hidden layers, neurons, and
batch sizes is carried out. After that, we trained the NanoDet model and tested the final
lightweight model against the hold-out dataset.

NanoDet

NanoDet is an advanced object detection model that does not require anchors and has
various remarkable features. As an anchor-free model in the Fully Convolutional One-
Stage Object Detection (FCOS) technique (RangiLyu, 2021). FCOS consists of three main
branches. The three branches of FCOS are:

Classification Branch: It consists of a series of convolutional layers responsible for
predicting the class object at each location on the feature map. The output layer employs
softmax or sigmoid function to predict the class probabilities. Furthermore, it does not
only predict a single class but also provides probability scores for the classes that allow it to
handle multiclass problems.

Bounding Box Branch: It is responsible for the offset prediction for the bounding box
coordinates relative to each location of the feature map. It predicts the distances to the
sides of the bounding box that encapsulates the detected object. These distances are later
transformed into absolute bounding box coordinates in the original image space.

Center-Ness Branch: This cognitive function differentiates the position of an object and
its central point. The model aids in reducing the impact of low-quality bounding boxes that
are distant from the object’s center by calculating a centeredness score for each feature
level. Greater normalized values indicate closer proximity to the center of the object. The
center-ness score is high if the location is near the object’s centre and low if it is near the
edges.
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In addition, NanoDet is exceptionally lightweight, with a model file size of either 980 KB
(INT8) or 1.8 MB (FP16). Its lightning-fast speed of 97 fps (10.23 ms) on mobile ARM
CPU, in addition to this, makes it an excellent option for real-time object identification
apps (RangiLyu, 2021). The current article features a straightforward network layout and
reduced network parameters, facilitating its portability and deployment.

NanoDet is used as a head, and convolutional layers for classification and regression
were used. Each convolution layer comprises a Convolutional Layer, Norm Layer, and
Activation Layer. These are applied to the output of the backbone, i.e., input feature maps
in parallel. Then, the output is generated using Eqgs. (3) and (4).

cls_feat = a((Wcls x x) + bcls) (3)
reg feat = o((Wreg  x) + breg) (4)

where x is the input feature map, Wcls and Wreg are the weights of the convolutional layers
for classification and regression, respectively. bcls and breg are the convolutional layers
biases for classification and regression. Here, o is the activation function (LeakyReLU) and
* denotes the convolution operation.

The modified NanoDet Head maintains the fundamental architecture of the initial
model, consisting of a Convolutional Module (ConvModule) followed by two distinct
convolutional layers (conv_cls and conv_reg) for classification and regression tasks,
respectively. However, we present the subsequent enhancements:

1) Reduced number of channels: We have decreased the number of channels in the
ConvModule from 256 to 128, reducing computational costs while maintaining
essential features.

2) Depthwise separable convolutions: We replace the standard convolutional layers with
depthwise separable convolutions, which factorize standard convolutions into
depthwise and pointwise convolutions, reducing the number of parameters and

computations.

The optimized convolutional layer can be represented as:

Y = Conv(F, K, P, C, G) = o(X(Gi = F)) (5)

Let F be the input feature map, K be the kernel size, P be the padding, C be the number
of channels, and G be the number of groups. Y is the output feature map, Gi is the group
convolutional kernel, § is the activation function (ReLU), and X denotes the summation
over the groups.

The model significantly reduces computational time by introducing these
optimizations, making NanoDet more suitable for real-time object detection applications
while maintaining accuracy.

The pseudo-code of the proposed Lightweight-CancerNet algorithm is listed in
Algorithm 1.
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Algorithm 1 Lightweight-CancerNet (Proposed).
Input:
1. D = {(Xi,yi)}Y,, where Xi € R""™3 js the i input image and yi € {0,1} is the corresponding label
A, Steps:
2. Feature Extraction
o F — MobileNet(D), Extract features from the annotated images in D using MobileNet to form F
3. Path Aggregation Network (PAN)
o F' — PAN(F), Apply the Path Aggregation Network (PAN) to the features F to form F'
4. NanoDet Model

e M — NanoDet(F', optimized = True), Train the NanoDet model with the optimized parameter settings using the features F' and the
annotated dataset D* to form the trained model M

5. Training
o M — Train(M, D*, hyperparameters), Train the model M with the hyper parameters and the annotated dataset D*
Output:
M, a trained Lightweight-CancerNet model

EXPERIMENTAL SETUP AND RESULTS

The experiments utilize the Pytorch deep learning framework, built in Python. The
algorithm training environment is a Windows 10 operating system, running on an Intel(R)
Core (TM) i5-1235U@ 2.64 GHz and an NVIDIA UHD Graphics 630 Ti 08 GB. Based on
the 7:2:1 ratio, the dataset is randomly partitioned into the training, test, and validation
sets. The training begins with an initial learning rate of 0.11 and is set at 0.14 after some
attempts. Before training, warm-up training is conducted with a step size of 5.
Simultaneously, one-dimensional linear interpolation (Hung ¢» Hung, 2014) is employed.
The cosine annealing algorithm (Zhang et al., 2023) adjusts the learning rate dynamically
during the training process.

Moreover, a training step count of 300 and a batch size of 32 based on the specific
computer configuration were employed for the training process. The model’s input image
size during training is 320 x 320. The detection model’s robustness to object size is
enhanced to a certain degree by training on photos of varying scales. It took 7 h for
training. Table 1 exhibits the training parameters used in this study.

Figure 4 depicts the accuracy and learning curve of the model throughout 300 epochs. It
exhibits an initial drop in the first 20 epochs. It is possibly due to initialization. It then
shows an increase throughout the training process, which achieved an accuracy of 98%.

Evaluation parameters

We employed the precision and recall rates as fundamental metrics regarding recognition
accuracy. The precision rate assesses the correctness of the prediction, while the recall rate
examines the completeness of the search. Equations (6) to (9) calculate the precision rate,
recall rate, accuracy, and F1 score, respectively. The mAP is subsequently computed as the
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Table 1 Training parameters for Lightweight-CancerNet model. Detailed parameter settings used
during the training phase of the Lightweight-CancerNet model, including batch size, learning rate, and
number of epochs, offering insight into the experimental setup for reproducibility.

Framework parameter Value

Epochs 300

Batch size 32

Learning rate 0.14

Image size 320 x 320
Optimization function AdamW

Loss function Huber loss (IOU loss)
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Figure 4 The model’s training and validation accuracy over 300 epochs, highlighting trends that
indicate the model’s learning stability and generalization capability across epochs.
Full-size K&l DOT: 10.7717/peerj-cs.2670/fig-4

final evaluation index of accuracy, relying on the precision rate and recall rate. The mAP
metric is employed to assess the overall performance of the trained model across all
categories. The threshold for determining detection success is set at 0.5, determined by the
intersection and union ratio.

Precision = TP/(TP + FP) (6)
Recall = TP/(TP + FN) (7)
Accuracy = (TP + TN)/(TP + TN + FP + FN) (8)
F1=(2 x TP)/(2 x TP + EN + FP) 9)

In the formula, true positive (TP) denotes the total of predicted positive and actual
positive samples, false negative (FN) denotes the total of predicted negative and actual
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positive samples, true negative (TN) refers to the total number of instances that were
correctly predicted as negative, and false positive (FP) denotes the total of projected
positive and actual negative samples.

The equation for calculating the mAP is presented in Eq. (10), where AP represents the
average accuracy of each group, t refers to the analyzed image, and T represents the total
number of test photographs.

T
mAP: = S AP(t)/T (10)
i=0

Detection results on BraTS dataset

The proposed framework is compared with other state-of-the-art models on the BarTS
dataset. Table 2 shows that the proposed Lightweight-CancerNet model demonstrates
higher performance than state-of-the-art models on the BraTS dataset, obtaining an
accuracy of 97.3% on BraTS§. Significantly, this surpasses the 93.4% accuracy attained by U-
Net, the 91.2% accuracy of MobileNet, the 92.5% accuracy of ShuffleNet, and the 94.1%
accuracy of SqueezeNet. The substantial enhancement in precision showcases the
effectiveness of the proposed model on the BraTS dataset. Figure 5 illustrates the detection
results of BraTS dataset.

Comparison of the lightweight CancerNet with other state-of-the-art
the art deep learning models

An accurate and nominative set of features is required for effective object detection.
Therefore, we evaluated the results of Lightweight-Cancernet with other deep learning
feature extractor frameworks including YoloV5 (Shelatkar et al., 2022), MovileNet (Ullah
et al., 2022), SSD (Cen et al., 2019), U-Net (Ronneberger, Fischer ¢» Brox, 2015), ShuffleNet
(Zhang et al., 2017), SqueezNet (landola et al., 2016), DeepMedic (Kamnitsas et al., 2016),
3D-UNet (Cicek et al., 2016) and VGG-16 (Simonyan & Zisserman, 2015). The results of
the merged dataset are used for comparison to enhance the generalizability and robustness.
The proposed model was inference by using the same conditions and hardware, i.e., used
for the training. Figure 6 represents cancer detection results using the proposed framework
Lightweight-Cancernet framework. Moreover, Table 3 presents the analyses of various
object detection models, including their respective accuracy, mAP ratings, and time taken
to detect a single image.

YOLO earns an accuracy of 88% and takes 0.05 s, demonstrating its efficacy in detecting
objects in real time. ShuffleNet, recognized for its effectiveness on mobile devices, attains a
marginally superior accuracy of 92.5%. The MobileNet, with one instance achieving an
accuracy of 82.61% and another earning a far higher score of 91.2%. This highlights how
specific implementation details or dataset characteristics influence the performance. The
U-Net demonstrated an accuracy of 93.4%, suggesting there may be compromises between
accuracy and speed.
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Table 2 The proposed Lightweight-CancerNet framework’s performance with other state-of-the-art

models, highlighting accuracy, to illustrate its competitive efficacy.

Model Dataset Accuracy
U-Net BraT$S 93.4%
MobileNet BraT$ 91.2%
ShuffleNet BraT$S 92.5%
SqueezeNet BraTS 94.1%
Proposed BraTS 97.7%

Figure 5 Lightweight-CancerNet framework on BraTS. Full-size Kal DOI: 10.7717/peerj-cs.2670/fig-5

Nevertheless, the Lightweight-CancerNet stands out as the top performer in the chart,
presenting an amazing mAP of 93.8%, indicating notable progress in precision and

effectiveness, resolving the compromises observed in earlier models.
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Figure 6 Presents sample outputs showing successful detection of cancerous regions.
Full-size k] DOT: 10.7717/peetj-cs.2670/fig-6

Moreover, the experimental results also demonstrate the exceptional effectiveness of the
proposed Lightweight-CancerNet model for segmenting brain tumors. The suggested
model surpasses previous state-of-the-art models, such as YoloV5, MobileNet, SSD,
U-Net, ShuffleNet, SqueezNet, DeepMedic, 3D-UNet, and VGG-16, with an accuracy of
98% and an mAP of 93.8%. The suggested model attains remarkable accuracy and mAP
while using considerably less computational effort, averaging around 0.003 s per image.
This model is far more efficient than previous models, such as U-Net, which has a
processing time of 3.33 s per image. Figure 7 represents a graphical view of performance
evaluation concerning different threshold values.

Lightweight-CancerNet performance: threshold analysis
This section presents a comprehensive evaluation of the performance metrics of
Lightweight-CancerNet for brain tumor detection. The results illustrate the method’s
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Table 3 Detailed performance comparison of Lightweight-CancerNet with alternative models.
Expands on performance metrics across different state-of-the-art models, presenting accuracy, and
computational efficiency to assess Lightweight-CancerNet’s suitability for efficient and accurate cancer

detection.
Method MAP Accuracy Inference time (S) per image
YoloV5 - 88% 0.05
MobileNet - 82.61% 0.007
SSD 77.2% 82.7% 0.016
U-Net - 93.4% 3.33
MobileNet - 91.2% 0.01
ShuffleNet - 92.5% 0.0074
SqueezNet - 94.1% 0.0071
DeepMedic 74.4% - -
3D-UNet 75.1% - -
VGG-16 71.8% - -
Lightweight-CancerNet 93.8% 98% 0.003
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Figure 7 A visual representation of how different classification thresholds affect performance metrics.
Full-size K&l DOT: 10.7717/peerj-cs.2670/fig-7
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Table 4 Performance metrics for brain tumor segmentation at various thresholds. Presents seg-
mentation performance across multiple thresholds, showing variations in accuracy, recall, precision and
F1 score to assess the model’s robustness in different scenarios.

Threshold Accuracy Recall Precision F1 score

0.1 0.99 1.00 0.98 0.94

0.2 0.98 1.00 0.98 0.94

0.3 0.97 0.99 0.97 0.94

0.4 0.97 0.99 0.97 0.94

0.5 0.96 0.98 0.96 0.93
1004 ® —— Accuracy

~&— Precision
—8— Recall
—&— F1 Score

o \
098 1 - —
| \
\“

0.97 14— ® =
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Figure 8 Plots the four key performance metrics against threshold values, helping visualize trade-
offs between metrics and guiding threshold selection for the most balanced performance.
Full-size k] DOT: 10.7717/peerj-cs.2670/fig-8

reliability in detecting brain tumors, considering the balance between accuracy and the
choice of threshold (Kumar, 2018). Here the threshold is the value or boundary that used
to determine that the input will be categorized in positive or negative with respect to
defined value.

Table 4 exhibits that Lightweight-CancerNet attains a high level of accuracy (between
97% and 99%) consistently over a range of thresholds, proving that it is a reliable method
for identifying brain cancers. Additionally, there is a trade-off between precision and
threshold, beginning at a high of 98% for a 0.1 threshold and dropping to 96% for a 0.5
threshold. This indicates that CancerNet is better at detecting cancers at low levels,
although it may miss some crucial instances due to this. Meanwhile, recall remains high
against all threshold values, decreasing between 98% and 1.0. Therefore, CancerNet can
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find all pertinent brain tumor instances. A plot with precision, recall, accuracy, and F1
score curves plotted against thresholds is depicted in Fig. 8.

The F1 score shows a slight drop as the threshold increases. Starting at a threshold of
0.1, it approaches 94%; at 0.5, it hits 93%. CancerNet has great potential in accuracy and
recall, implying that it can accurately identify and capture many brain cancers. Setting the
threshold correctly requires examining the context, as there is a trade-off between accuracy
and threshold. If the aim is to minimize false positives, then reducing the threshold would
be the most effective approach. However, opting for a more significant threshold may be
the best option if the main objective is to detect all potential cancers.

CONCLUSION

This article presents Lightweight-CancerNet, a new deep-learning framework that
provides excellent accuracy and efficiency in the diagnosis of brain tumor. Our model
surpasses existing models in terms of accuracy and efficiency, utilizing the capabilities of
MobileNet and NanoDet. The proposed Lightweight-CancerNet is designed to manage
extensive medical imaging datasets using minimal computer resources, making it highly
suitable for instantaneous processing. This study has significant implications for
improving patient outcomes and decision-making in brain surgery. It also illustrates the
potential of using lightweight models to detect objects in medical imaging quickly.

The proposed model’s performance heavily depends on the training dataset’s diversity
and quality. Biased or limited datasets may result in suboptimal performance. Another
limitation of the model is that it may not generalize well to unseen data and require more
parameter training.

In our future research, we will explore more improvements and extensions to our
framework and apply it to other medical imaging applications. Furthermore, we intend to
evaluate the application of our system in real-world clinical settings by examining its
effectiveness in practical scenarios and its potential to improve patient outcomes.
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