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ABSTRACT
Natural language inference (NLI) is a subfield of natural language processing (NLP)
that aims to identify the contextual relationship between premise and hypothesis
sentences. While high-resource languages like English benefit from robust and rich
NLI datasets, creating similar datasets for low-resource languages is challenging due
to the cost and complexity of manual annotation. Although translation of existing
datasets offers a practical solution, direct translation of domain-specific datasets
presents unique challenges, particularly in handling abbreviations, metric
conversions, and cultural alignment. This study introduces a pipeline for translating
a medical NLI dataset into Turkish, which is a low-resource language. Our approach
employs fine-tuning the Llama-3.1 model with selected samples from the Medical
Abbreviation dataset (MeDAL) to extract and resolve medical abbreviations.
Consequently, NLI pairs are refined with extracted abbreviations and subjected to
metric correction. Later, the processed sentences are then translated using Facebook’s
No Language Left Behind (NLLB) translation model. To ensure quality, we
conducted comprehensive evaluations using both machine learning models and
medical expert review. Our results show that BERTurk achieved 75.17% accuracy on
TurkMedNLI test data and 76.30% on the normalized test set, while BioBERTurk
demonstrated comparable performance with 75.59% accuracy on test data and
72.29% on the normalized dataset. Medical experts further validated the translations
through manual assessment of sampled sentences. This work demonstrates the
effectiveness of large language models in adapting domain-specific datasets for low-
resource languages, establishing a foundation for future research in multilingual
biomedical NLP.

Subjects Artificial Intelligence, Computational Linguistics, Natural Language and Speech, Text
Mining, Sentiment Analysis
Keywords MedNLI, NLLB, BERT, Natural language inference, Natural language processing,
Language translation, LLM, Llama

INTRODUCTION
Natural language inference (NLI) is a fundamental task in natural language processing
(NLP) that involves determining the relationship between two sentences named premise
and hypothesis. These relationships are typically classified as entailment, contradiction, or
neutrality. These classes are defined based on the contextual relationship between the
premise and the hypothesis: entailment, where the premise supports and logically confirms
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the hypothesis; contradiction, where the premise refutes or negates the hypothesis; and
neutrality, where the premise and hypothesis are unrelated or lack a definitive logical
connection.

The success of NLI models depends heavily on the availability of large, annotated
datasets. While high-resource languages like English benefit from multiple datasets, such
as SNLI (Stanford Natural Language Inference) (Bowman et al., 2015), MultiNLI (Multi-
Genre Natural Language Inference) (Williams, Nangia & Bowman, 2017), and MedNLI
(Romanov & Shivade, 2018), the creation of similar resources for low-resource languages
has been significantly constrained by the time and the cost required for data collection and
manual annotation. Despite these constraints, a promising alternative to creating datasets
from scratch is the machine translation of existing datasets from high-resource languages
into low-resource ones.

Although dataset creation through translation is a viable solution, this approach
presents unique challenges in specialized domains like medical context. These challenges
include the complexity of medical terminology, abbreviation disambiguation, contextual
nuances, and metric conversions, which, combined with the domain’s highly specialized
vocabulary, add further complexity to NLI tasks. Despite these challenges, the growing
integration of AI and NLP technologies has increased the demand for high-quality medical
datasets. While datasets like the MedNLI (Romanov & Shivade, 2018) serve as valuable
resources for English language medical NLI development, comparable resources remain
scarce, leaving a significant gap for low-resource languages.

In this article, we address the critical gap in the availability of medical NLI datasets for
the Turkish language by introducing TurkMedNLI, the first Turkish medical NLI dataset.
Following the successful approaches demonstrated by recent studies such as RuMedNLI
(Blinov et al., 2022a) and ViMedNLI (Phan et al., 2022), which have shown the viability of
dataset creation through translation from high-resource languages, we propose a novel
pipeline that leverages large language models for dataset translation and refinement. Our
methodology begins with the fine-tuning of the Llama-3.1 (Dubey et al., 2024), a state-of-
the-art large language model, using the Medical Abbreviation Disambiguation Dataset for
Natural Language Understanding (MeDAL) (Wen, Lù & Reddy, 2020). This fine-tuning
process ensures accurate identification and expansion of medical abbreviations within
sentence pairs, addressing a fundamental challenge in medical text translation.
Subsequently, we employ Facebook’s No Language Left Behind (NLLB) (Costa-jussà et al.,
2022) translation model to translate the refined sentences from English to Turkish. The
quality of these translations is validated through a two-fold evaluation process: first, the
machine evaluation using gold labels from the MedNLI dataset, and secondly, manual
evaluation by medical experts. The machine evaluation involves fine-tuning pre-trained
language models BERT (Devlin et al., 2019), BERTurk (Schweter, 2020), BioBERT (Lee
et al., 2019), and BioBERTurk (Türkmen et al., 2023), while domain expert physicians
conduct manual evaluation on selected subsets of the translated dataset. This study makes
the following contributions:
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. We introduce TurkMedNLI, the first comprehensive Turkish Medical Natural Language
Inference dataset, addressing a critical resource gap in Turkish biomedical NLP research
and enabling the development of domain-specific language understanding models.

. We propose a novel end-to-end pipeline for translating domain-specific datasets into
low-resource languages, incorporating medical abbreviation disambiguation, metric
correction and context-aware translation mechanisms. This methodology effectively
addresses key challenges in medical text translation, including terminology
standardization and contextual preservation.

. We demonstrate the efficient use of large language models for dataset refinement and
normalization in the medical domain. Our experimental results demonstrate the
potential of large language models in medical dataset information extraction and
refinement, suggesting improvements over direct translation approaches while providing
insights for future cross-lingual dataset creation.

The structure of this article is as follows: The Introduction outlines the significance of
NLI research in the NLP field, explores the challenges in developing NLI datasets for low-
resource languages, and introduces the TurkMedNLI dataset. The Related Work section
reviews prior research on NLI, providing the contextual foundation for this study. The
Technical Background section provides an overview of the datasets and models employed,
including Llama-3.1 and the No Language Left Behind (NLLB) translation model. The
Research Methodology details the process of translating the MedNLI dataset into Turkish,
emphasizing the steps involved in refinement and quality control. The Evaluation section
presents both machine-based and human evaluations of the translations to assess their
quality and reliability. The Results section highlights the improvements and quality
achieved with the TurkMedNLI dataset. Finally, the Discussions and Conclusion
summarize the key contributions of the study, discusses potential implications, and
suggests directions for future research.

RELATED WORK
NLI is a foundational task in NLP, where the goal is to determine the contextual
relationship between a premise and a hypothesis. To support research in this area, datasets
like the Stanford Natural Language Inference (SNLI) dataset (Bowman et al., 2015) and the
Multi-Genre Natural Language Inference (MultiNLI) dataset (Williams, Nangia &
Bowman, 2017) were created. These datasets have become benchmarks for open-domain
NLI task. The construction of large annotated datasets through crowdsourcing is often
conducted in English, as it is considered ideal for achieving high-quality results. While
effective, this approach presents significant challenges in terms of both cost and time
investment. Recent advancements in natural language processing have enabled a practical
solution to dataset creation, adapting existing high-quality datasets into low-resource
languages through machine translation. A notable implementation of this approach is
demonstrated in the study (Budur et al., 2020). The research focused on adapting two
established datasets, SNLI (Bowman et al., 2015) and MultiNLI (Williams, Nangia &
Bowman, 2017) from English to Turkish. Their approach addressed the challenge of
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resource constraints by offering a cost-effective and efficient alternative to creating
annotated datasets from scratch. Rather than replicating the labor-intensive process of
creating SNLI and MultiNLI, they employed Amazon Translate, a commercial neural
machine translation service, to translate these datasets. The translation process was
completed in approximately five days at a cost of around $2,000, representing a significant
reduction compared to manual dataset creation. To ensure the quality and reliability of the
translated datasets, a comprehensive two-step verification process was implemented. In the
first step, a team of bilingual Turkish-English speakers conducted validation on the subset
of the translated texts, examining both translation accuracy and contextual relation to NLI
labels. The second phase employed machine verification through the BERTurk model
(Schweter, 2020), which achieved notable performance metrics: 85.84% accuracy for SNLI
translation, 75.16% and 75.60% for MNLI matched and mismatched sets, respectively.
This two-step verification approach demonstrated the effectiveness of the machine
translation system in maintaining contextual integrity while producing high-quality
translations.

While creating datasets through translation successfully adapts general-domain NLI
datasets like SNLI and MultiNLI, specialized domains such as healthcare require more
tailored approaches. The medical domain, in particular, presents unique challenges,
including the need for precise interpretation of complex terminologies, specialized
vocabulary, and nuanced contextual relationships. Recognizing this need, researchers
introduced MedNLI, the first large-scale, physician-annotated clinical language inference
dataset. MedNLI specifically addresses the limitations of general-domain datasets such as
SNLI and MultiNLI, which lack the complexity and contextual relationships needed for
medical applications. MedNLI (https://physionet.org/content/mednli/1.0.0/) established a
foundation for domain-specific NLI research by focusing on issues like medical
terminology, abbreviations, and expert interpretation. The dataset is available on
PhysioNET (Goldberger et al., 2000), with CITI Program certification, and requires
credentialed approval access. The creation of MedNLI followed a systematic three-phase
methodology to ensure quality. The development process follows premise extraction,
expert annotation, and quality verification, as detailed below.

Premise sampling: In the initial phase of premise sampling, clinical text were extracted
from the MIMIC-III database (Johnson et al., 2016), focusing on the Past Medical History
sections of deidentified clinical records. These texts were then processed using a
biomedical sentence splitter to identify suitable premise candidates, ensuring the selection
of clinically relevant content.

Annotation process:Once the premises were extracted, clinicians generated hypotheses
for each premise that were contextually entailed, neutral, or contradictory. This annotation
process followed the standard methodology established by the SNLI dataset, which has
become a widely adopted framework for NLI dataset creation.

Quality assurance: Quality assurance was implemented through a detailed two-step
verification process. The human verification involved clinical experts examining the
hypothesis statements for both annotation consistency and medical accuracy. Physicians
effectively identified and removed examples containing artifacts or insufficient contextual
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information. The reliability of these annotations was quantitatively assessed using Cohen’s
kappa coefficient. To further assess the dataset’s quality, machine verification was
conducted using models such as Bag of Words (Zhang, Jin & Zhou, 2010), InferSent
(Conneau et al., 2017), and ESIM (Chen et al., 2017). Machine evaluation steps achieved
accuracy of 51.9%, 71.9%, and 76.0%, respectively. These results validated the reliability of
the annotations and the overall quality of the dataset.

Following the advancements in adapting NLI datasets to new languages, researchers
have explored the feasibility of extending domain-specific datasets like MedNLI to low-
resource languages. While the Turkish adaptations of SNLI and MultiNLI showed the
potential of translation-based methods for general-purpose datasets, the RuMedNLI study
(Blinov et al., 2022a) demonstrated a similar approach tailored to the medical domain.
Addressing the scarcity of Russian medical text resources, particularly in natural language
inference, the RuMedNLI project translated the MedNLI dataset into Russian, creating the
first Russian medical NLI dataset. This work has become part of RuMedBench (Blinov
et al., 2022b), a benchmark for Russian medical language understanding. The RuMedNLI
creation process employed multiple processes to ensure consistency and correctness.
MedNLI was translated independently using two automatic translation services, Google
Translate and DeepL, and then manually reviewed for quality. The review process included
Russian-English bilingual contributors, consulted by a medical team with extensive
experience in Russian clinics and the medical domain. The review procedure included
picking the best translation and making the required changes to correct the issues, as
shown below.

. Translation inaccuracies: Errors from incorrect interpretation of medical contexts
when using direct translation processes.

. Abbreviation misinterpretations: Instances where medical abbreviations or terms were
mistranslated, leading to loss of intended meaning.

. Unit conversion errors: Errors in translating measurements, such as converting “feet” to
“meters,” resulting in inconsistencies.

To ensure the quality of the translated dataset, the researchers developed a
comprehensive evaluation approach using both human and machine evaluation methods.
Human evaluation analyzed a detailed review of a subset of the dataset by bilingual experts,
while machine assessment employed NLP models such as ESIM (Chen et al., 2017) to
evaluate the contextual and semantic alignment of the translated pairs. Notably, only
32.3% of the automatically translated texts were acceptable without changes, while the rest
of the sentences required revisions. This highlights the inherent challenges in accurately
translating medical terminology and context across languages. RuMedNLI has utilized
various architectures, including BERT-based models. For instance, the RuBERT model, a
BERT adaptation for the Russian language, achieved an accuracy of 77.64% on the
RuMedNLI dataset. Another model, RuPoolBERT, attained an accuracy of 77.29%. The
RuMedNLI was the first research to successfully transfer a medical context NLI dataset
into another language.
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Following a similar approach to RuMedNLI, researchers developed ViMedNLI (Phan
et al., 2022) to address the scarcity of Vietnamese medical language resources. Their work
similarly adapted the MedNLI dataset through a structured translation and validation
pipeline. The process began with the application of state-of-the-art English-Vietnamese
neural machine translation models, followed by a systematic evaluation framework. The
evaluation process incorporated both human expertise and machine learning methods,
which is a standard approach. Domain experts, specifically Vietnamese pre-medical
students, refined the translations following comprehensive guidelines that emphasized
precise medical terminology and contextual accuracy. This process also addressed similar
issues to those encountered in RuMedNLI, including direct translation errors, medical
abbreviations, measurement standardization, and cultural adaptations necessary for the
Vietnamese medical context.

To further evaluate the ViMedNLI dataset, machine verification was conducted using
advanced language models tailored to Vietnamese biomedical text, including
ViHealthBERT (Nguyen et al., 2022) and ViPubmedT5 (Phan et al., 2022). The
ViPubmedT5 model, a T5-style encoder-decoder Transformer pretrained on synthetic
biomedical data, achieved state-of-the-art accuracy of 81.65%, while ViHealthBERT
attained 79.04% accuracy on the translated dataset. These results highlight the effectiveness
of domain-specific pretrained language models, particularly ViPubmedT5, for natural
language inference in Vietnamese medical texts. The results demonstrate that ViMedNLI
successfully enriches Vietnamese biomedical NLP research by providing a robust and
high-quality resource for further studies.

Beyond NLI, recent advancements in multilingual medical NLP emphasize the
development of language resources for non-English languages. Recent surveys outline the
creation of datasets and models tailored to various languages and medical domains
(Shaitarova et al., 2023). The democratization of large language models, combined with
their increasing accessibility, has opened new possibilities (Grouin & Grabar, 2023).
Furthermore, specialized models such as ClinicalGPT (Wang et al., 2023), designed and
optimized for clinical scenarios, showed how large scale fine-tuning with domain-specific
medical data can address challenges like reasoning and dialogue generation in healthcare
settings. These efforts collectively highlight the transformative potential of NLP in
addressing diverse challenges within medical research and practice.

Our study builds on previous research in the field of NLI, leveraging the advances made
by earlier studies. Creating NLI datasets from scratch requires significant time, effort, and
resource. However, adapting these datasets into another language using translation
methods presents a feasible solution, as demonstrated by SNLI-tr and MultiNLI-tr.
Although translation adaptation has been effective, domain-specific NLI datasets face
unique challenges, as addressed by RuMedNLI and ViMedNLI. Following prior research,
our study introduces a novel pipeline that uses large language models not only for
translation but also for systematically resolving previously identified issues in adapting
datasets for low-resource settings.
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TECHNICAL BACKGROUND
In this section, we start by giving an overview of the datasets used in our study, such as
SNLI, MultiNLI, and MeDAL, which form the core resources for our analysis. We then
explain the technical background of the language models used, focusing on their key
principles and how they align with the goals of our research.

NLI datasets
The lack of a large annotated dataset affected the development of models capable of
precisely understanding semantic relationships between text pairs. The Stanford Natural
Language Inference SNLI corpus was developed to address these issues and provided a gold
standard. SNLI is composed of 570,152 sentence pairs that have three classification labels.
These labels are identified as entailment where sentences are complementary to each other,
contradiction where sentences reject each other, or a state where sentence pairs are neutral
to each other. An example of the dataset is given in Table 1 providing standard NLI dataset
structure.

The sentence pairs in the SNLI dataset were generated through a detailed
crowdsourcing process using Amazon Mechanical Turk (Buhrmester, Talaifar & Gosling,
2018). Contributors were provided with image captions and instructed to create sentences
that were categorized as entailment, neutral, or contradiction relative to the original
sentence. With this approach original sentences are based on real-world observations and
enriched the dataset with authentic and diverse examples. To ensure label accuracy and
annotator agreement, each sentence pair’s initial label was reviewed by four additional
annotators. The final gold label was determined by majority vote, reflecting the most
reliable consensus among the five annotations. This validation process resulted in a 98%
consensus rate with high label reliability. The creation of SNLI not only provided a critical
resource for semantic comprehension difficulties, but it also set new standards for dataset
size and annotation quality in the field of NLI.

Although SNLI is a profound source for the NLI task, the dataset primarily consists of a
single text source, which lacks a broad spectrum of genre information. The MultiNLI
(Williams, Nangia & Bowman, 2017) aimed to address these limitations. To propose a
solution to these issues, the MNLI corpus expands on context diversity and complexity by
including a wider range of textual genres. The goal of the multi genre dataset is to better
represent the wide range of linguistic backgrounds that reflect real life. This will help build
strong bases for NLI models. MultiNLI includes sentences from a wide range of written
and spoken English genres, such as face-to-face conversations, government reports, letters,
travel guides, fiction, magazine articles and various texts from the Open American
National Corpus. The diversity of the data sources creates a broad spectrum of language
occurrences, increasing the complexity and difficulty of the inference tasks compared to
SNLI. The variable data source structure of MultiNLI indicates that it is more challenging
than SNLI, highlighting its potential to improve the field of the NLI research area.

While general purpose NLI datasets such as SNLI and MultiNLI have laid the
foundation for advancements in natural language inference, domain specific datasets like
MedNLI are essential for addressing the unique complexities of the medical field. It is
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tailored for clinical applications and provides general linguistic resources and the
specialized needs of medical text processing. MedNLI stands out from SNLI and MultiNLI
in terms of size and structure, as shown in Table 2, highlighting the challenges of
developing annotated datasets in the medical domain. Unlike general domain NLI
datasets, MedNLI incorporates medical terminology and abbreviations, which often have
multiple meanings depending on their position and the context, creating unique challenges
for machine learning models and cross domain adaptation. Having more than one
meaning also makes dictionary based solutions impractical. To address this issue and
propose a solution, we also utilized the MeDAL (Wen, Lù & Reddy, 2020) dataset, which is
derived from PubMed abstracts and focuses on medical abbreviation disambiguation.
MeDAL provides high-quality annotations to clarify the meaning of ambiguous terms that
enhance the capacity of a model and interpret complex representations.

The MeDAL dataset was derived from PubMed abstracts, using a systematic approach
to ensure both scale and quality. This process began with the collection of articles from
PubMed. Later, to generate accurate labels without manual annotation, the team employed
the reverse substitution technique, replacing full terms with their corresponding
abbreviations using the ADAM database (Zhou, Torvik & Smalheiser, 2006). To manage
the dataset’s scale while maintaining balanced representation, a strategic sampling method
was applied to create computationally feasible training, validation, and test sets.

Table 3 illustrates the structure of the MeDAL dataset and three key fields. The text field
contains sentences or paragraphs with abbreviated terms. The location indicates the word
index where the abbreviation occurs. Finally, the label field provides the expanded version

Table 1 SNLI corpus sample (source: Bowman et al., 2015).

Premise Label Hypothesis

A black race car starts up in front of a crowd of people. Contradiction A man is driving down a lonely road.

An older and younger man smiling. Neutral Two men are smiling and laughing at the cats playing on the floor.

A soccer game with multiple males playing. Neutral A happy woman in a fairy costume holds an umbrella.

Table 2 Comparison of dataset characteristics for SNLI, MultiNLI, and MedNLI.

Characteristic SNLI MultiNLI MedNLI

Dataset size

Training pairs 550,152 392,702 11,232

Development pairs 10,000 10,000 (Matched) 1,395

Test pairs 10,000 10,000 (Mismatched) 1,422

Average sentence length (Tokens)

Premise 14.1 22.3 20.0

Hypothesis 8.3 10.6 5.8

Maximum sentence length (Tokens)

Premise 82 401 202

Hypothesis 62 70 20
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of the abbreviation within the given context. While the training, development, and test
splits offer a single abbreviation per example, the complete raw dataset includes examples
with multiple abbreviations. This detailed structure of the dataset preserves multiple
abbreviations per entry, offering a more comprehensive resource for abbreviation
disambiguation.

Language models
The language models used in our study are primarily based on transformer networks,
which are designed around the self-attention (Bahdanau, Cho & Bengio, 2014) mechanism.
Transformer networks differed greatly from previous sequential algorithms such as LSTM
(Hochreiter & Schmidhuber, 1997), which rely on recurrent neural networks. Unlike
sequential processing, transformer architecture eliminates recurrent structures, which
results in improved parallelization and reduced computational cost. Transformers’
structure consists of stacked encoders and decoders, each incorporating a multi-head self-
attention mechanism and a fully connected feed-forward network (Vaswani et al., 2017).
The multi-head attention mechanism enables the model to capture long-range
dependencies, leading to a comprehensive understanding of context for natural language
processing tasks. The success of the transformer architecture was quickly adopted by the
community and paved the way for pre-trained NLP models such as BERT (Devlin et al.,
2019), GPT (Brown et al., 2020), and large language models such as the Llama model
family (Dubey et al., 2024).

Meta Llama-3.1: Meta has made great contributions to the open-source LLM
community with the Llama model family, which presented a significant advancement over
its predecessor. Llama-3.1 preserves the foundational architectural design of Llama-2 while
integrating key enhancements that expand its capacity and capability. Their new approach
introduces an expanded vocabulary of up to 128,000 tokens, which enables the model to
handle more extensive contexts and improve multilingual capabilities. This improvement
is complemented by the sophisticated Grouped Query Attention mechanism (Ainslie et al.,
2023), which allows for efficient handling of sequences with up to 128k tokens in context
length.

The model’s quality is also determined by the quality and content of the training
datasets (Budach et al., 2022). To achieve quality, Meta carefully assembled a pre-training
dataset of 15 trillion tokens, a seven-fold increase in corpus size compared to Llama-2. This
dataset not only enhanced the linguistic variety by including texts from 30 languages but
also prioritized the high quality of multilingual assistance. In order to guarantee the

Table 3 MeDAL dataset example (source: Wen, Lù & Reddy, 2020).

Text Location Label

velvet antlers vas are commonly used in traditional Chinese medicine and invigorant… [63] [”transverse aortic constriction”]

the clinical features of our cases demonstrated some of the already known… [85] [”hodgkins lymphoma”]

ceftobiprole bpr is an investigational cephalosporin with activity against… [90] [”methicillininsusceptible”]
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accuracy and dependability of the dataset, Meta incorporated an extensive range of data
filtering techniques, such as heuristic filters, filters for NSFW material, semantic
deduplication algorithms, and powerful text classifiers. The classification process has been
improved by utilizing the existing capabilities of Llama-2 to generate and categorize high-
quality textual input.

In addition, Meta has improved its post-training procedures to enhance Llama-3.1’s
performance in interactive applications, particularly in chat-based contexts. The model
goes through a precise procedure for adjusting its instructions and alignment, which
involves Supervised Fine Tuning (SFT) (Ouyang et al., 2022), Rejection Sampling,
Proximal Policy Optimization (PPO) (Schulman et al., 2017), and Direct Preference
Optimization (DPO) (Rafailov et al., 2023). These methods have played a crucial role in
improving the model’s performance in reasoning and responding (Dubey et al., 2024).

The choice of the Llama-3.1 8B model over alternative LLMs was driven by its
exceptional reasoning capabilities. The model achieved competitive scores in tasks
requiring advanced reasoning and comprehension, such as 69.4% accuracy on MMLU and
73.0% on MMLU (CoT, Chain-of-Thought). Moreover, its extensive and diverse pre-
training dataset, coupled with sophisticated post-training fine-tuning methodologies,
ensures consistently high quality performance across a wide range of tasks. These metrics
and design choices collectively highlight Llama-3.1’s capacity for precise and reliable
language understanding, making it an optimal choice for tasks requiring sophisticated
contextual reasoning.

Facebook NLLB (No Language Left Behind): Machine translation has traditionally
focused on high-resource languages due to the availability of large training datasets. In
contrast, low-resource languages, which make up the majority of global languages, have
often been left behind due to data scarcity and challenges in data preparation. The NLLB
(Costa-jussà et al., 2022) model can translate between 200 languages, supporting both low
and high resource languages. The project aimed to improve linguistic equity more
effectively than traditional methods by employing advanced data curation techniques and
an encoder-decoder transformer architecture. This approach enabled the creation of a
sequence-to-sequence translation model designed to handle both low-resource and high-
resource languages. To achieve high quality performance, the NLLB model relied on a
carefully curated dataset. Thus, the Flores-200 dataset (Costa-jussà et al., 2022) was
developed as an extended and enhanced version of the earlier Flores-101 dataset (Goyal
et al., 2021). Flores-200 not only significantly increases the number of languages covered
but also ensures that translations are culturally appropriate and accurate.

Evaluation of the NLLB uses both automatic and human-assisted metrics to assess
translation quality, focusing on safety and precision. Conventional metrics, such as BLEU
(Papineni et al., 2002), are typically inappropriate for low-resource languages because of
the absence of large parallel datasets and the challenges associated with tokenization. In
order to address these limits, the NLLB project utilizes ChrF++ (Popovic, 2015) and
spBLEU (Costa-jussà et al., 2022) scores. To provide a more comprehensive quality
assessment, the ChrF++ score considers character-level n-grams, as well as word uni-
grams and bi-grams. Furthermore, spBLEU, which aims to reduce tokenization bias, is
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used in conjunction with the SentencePiece (Kudo & Richardson, 2018) model. In addition
to machine evaluation, the NLLB team used human assessment based on a variety of
criteria, such as fluency, adequacy, and translation accuracy. This comprehensive
evaluation provided a holistic assessment of machine translation performance and
presented a state-of-the-art language translation model. Considering the advancement that
the model brings and its ability to support low-resource languages with high quality
translation, the NLLB model offered a balanced and reliable solution for our translation
step.

The BERT model fundamentally changed natural language processing by allowing for
the contextual representation of a word based on the words that come before and after it.
Following BERT’s success, researchers created various specialized adaptations for specific
topics and languages. For instance, BioBERT trained on massive biomedical datasets to
process biomedical texts, significantly enhancing its capacity to interpret and analyze
complex medical language. Similarly, BERTurk was built to handle Turkish’s distinct
language qualities, including its morphological and syntactic aspects. BioBERTurk adapts
the pre-training methodology of BioBERT with BERTurk’s linguistic optimizations to
improve the efficiency and accuracy of biomedical text analysis in Turkish.

BERT: The development of BERT presented a significant advancement in the NLP
world. It introduces a revolutionary model that effectively captures a document’s
contextual information. The model achieves the ability to express the context of a word by
considering the surrounding words, resulting in a more comprehensive understanding of
language syntax and semantics. This model is trained employing the masked language
model technique, which involves masking individual words inside a sentence and
predicting them based on their context. BERT was pre-trained on a large amount of text
material, such as the English Wikipedia and BookCorpus, allowing it to gain
comprehensive and contextual language knowledge. As a result, BERT showed exceptional
performance on a variety of NLP tasks, including question answering, sentiment analysis,
and language inference. Its adaptability had allowed other BERT-based models to be
tailored to individual languages and specialized topics.

BioBERT: BioBERT is a domain-specific adaptation of the BERT model that improves
the performance of biomedical natural language processing tasks. BioBERT builds on the
pre-trained BERT model, expanding its training to include large biomedical corpora such
as PubMed abstracts and PMC full-text articles. These sources include a vast amount of
biological knowledge, with PubMed abstracts comprising around 4.5 billion words and
PMC full-text articles adding approximately 13.5 billion words. BioBERT has been tested
on a variety of common biomedical text mining applications, including named entity
recognition, relation extraction, and question answering. In these tests, BioBERT beat
baseline models, establishing new state-of-the-art benchmarks and demonstrating its
ability to comprehend and analyze complicated biomedical literature.

BERTurk: The BERTurk model is a modified version of the original BERT model that
addresses the Turkish language’s unique linguistic characteristics. Using the BERT model
architecture, BERTurk is trained on a large Turkish corpus. Thus, it allows the model to
adapt to the unique syntactic and semantic complexities of Turkish. The training data
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includes a filtered and sentence-segmented version of the Turkish OSCAR (Abadji et al.,
2022) corpus, as well as a Wikipedia dump, which provide a solid foundation for
understanding and processing Turkish text.

BioBERTurk: BioBERTurk is a specialized language model that improves the analysis
of biomedical text in Turkish, a language known for its complex morphology. The model
was trained on a large dataset, which included Turkish medical publications and radiology
theses obtained from Dergipark and the Turkish Council of Higher Education’s database.
BioBERTurk aims to improve comprehension of domain specific language, which is
critical for resource constrained NLP tasks. The model’s performance was evaluated
through a classification task on radiology reports, where it demonstrated better results
compared to generic language models and baseline approaches. These findings highlight
BioBERTurk’s ability to effectively capture the context of Turkish biomedical language and
provides essential solution for biomedical research and practical applications.

While recent advancements in transformer-based models have introduced more
complex architectures, the decision to use BERT and its domain-specific adaptations, such
as BioBERT and BERTurk, was driven by several critical factors. First, the availability of
pre-trained models specifically tailored to Turkish language and biomedical text is limited.
As of now, to our knowledge, BERT-based models, including BERTurk and BioBERT,
remain the most robust and accessible options for research involving Turkish datasets.
These models allow us to evaluate each stage of our research using a unified model
architecture, ensuring consistency and comparability throughout the process.
Additionally, their proven performance across diverse NLP tasks, coupled with the
flexibility to adapt them to specific domains, provides a solid foundation for addressing the
challenges in Turkish biomedical NLP. While exploring more advanced models may be a
consideration for future work, the use of BERT-based models was a practical and effective
choice given the scope and objectives of this study.

RESEARCH METHODOLOGY
This study employed large language models (LLMs) in a systematic sequence to translate
the MedNLI dataset into Turkish, establishing a comprehensive and robust pipeline. As
illustrated in Fig. 1, the initial phase involved acquiring appropriate datasets for translation
task. The MedNLI dataset contains domain-specific abbreviations and terminology, which
require careful handling during information extraction and translation. To address this
challenge, the Medical Abbreviation Dataset (MeDAL) was utilized to fine-tune Llama-3.1.

The selection of an appropriate language model capable of handling complex tasks was a
crucial step. Our research decided to use the Llama-3.1 model for its advanced reasoning
capabilities, specifically fine-tuning it with the MeDAL dataset to extract medical
abbreviations and their expanded forms from clinical sentences. This approach leveraged
the model’s sophisticated language understanding abilities, as discussed in our previous
analysis of the Llama architecture. Following the abbreviation extraction and sentence
refinement phase, we employed the NLLB-200 model for Turkish translation. To evaluate
our entire pipeline, the BERT model and its variants, BioBERT, BERTurk, and
BioBERTurk, were employed to assess the viability of the refined and translated sentence

Oğul et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2662 12/33

http://dx.doi.org/10.7717/peerj-cs.2662
https://peerj.com/computer-science/


results. Domain-specific datasets, especially in the medical domain, require careful
assessment. In addition to machine evaluation, human evaluation was conducted on a
statistically significant subset of the dataset to validate the overall translation quality and
feature extraction accuracy.

Preprocessing
The MedNLI dataset is created using the MIMIC-III (Johnson et al., 2016) corpus, which is
compiled from real patient records. Using patient records to create an open source dataset
requires extensive de-identification steps to prevent access to information such as real
patient names, doctor names, or hospital names. The de-identification steps use tags like
[**Person Name**] to conceal personal information in the sentences. These tags do not

hold any meaning for NLI tasks and can affect the quality of models developed using this

dataset. To maintain the optimal quality of the models, these tags have been cleaned from

the MedNLI using an advanced regex text matching system. This preprocessing step

ensures that all tags within [** **] were removed from the dataset. Thus, the MedNLI

dataset became suitable for feature extraction and translation.

Before translating the MedNLI, there are several issues that need to be addressed, such
as abbreviations, measurement differences like lengths from feet to meters, and weights
from pounds to kilograms. In our work, we approached abbreviations as an information
extraction opportunity since they can convey meaning and influence the alignment of two
sentences. Therefore, we proposed a solution that utilizes LLMs to extract abbreviations
and their expanded forms while taking context into account. Given the significant
computational resources required for fine-tuning large language models, careful curation

Figure 1 MedNLI translation pipeline materials and methodology. Full-size DOI: 10.7717/peerj-cs.2662/fig-1
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of training examples from MeDAL was essential to ensure both quality and efficiency
before fine-tuning Llama-3.1. Although the MedNLI dataset consists of longer sentences
compared to the SNLI dataset, it is worth noting that the average sentence length in
MedNLI is 20 tokens, with a maximum length of 202 tokens, as represented in Table 2.
This implies that abbreviation extraction will be the task of retrieving information from
short sentences. Given this, we employed fundamental analytical steps to create
meaningful training examples.

To ensure both computational efficiency and training effectiveness, we implemented a
systematic approach to select appropriate training examples from the MeDAL dataset. Our
methodology began with establishing three fundamental metrics for each example: word
count, abbreviation count, and abbreviation density. The abbreviation density
measurement AD is defined by:

AD ¼ A
W

(1)

where AD represents the abbreviation density measurement bounded by ½0; 1�, A denotes
the total number of abbreviations in the example A 2 Zþ, andW represents the total word
count W 2 Zþ. Abbreviation density was calculated as the ratio of abbreviation count to
word count. We then employed box plot analysis to identify and remove outliers in both
abbreviation density and word count distributions. Examples that exceeded the IQR range
for both metrics are pruned from the selection process. Lastly, we constructed boundaries
for word counts and abbreviation density, examples longer than 40 words and with
abbreviation density higher than 0:5 are pruned.

This simple and effective filtering approach yielded approximately 800,000 training
examples. The decision to maintain an abbreviation density threshold of 0:5 was
strategically chosen to prevent overwhelming the model with abbreviation-heavy examples
while maintaining a balanced representation of medical text patterns. Additionally, our
focus on shorter sentences aligns with both computational efficiency requirements and the
characteristics of our target dataset. MedNLI exhibits relatively short average token
lengths. In a way we ensure that our model learns to extract information from contexts
similar to the one it will encounter later.

One of the key considerations when fine-tuning language models is to employ a versatile
training approach that includes both positive and negative examples. This enables the
model to learn effectively from a diverse range of scenarios. Training the model exclusively
with positive examples would condition it to assume every input sentence contains an
abbreviation, leading to incorrect responses. To address this, we split the samples into 60%
positive and 40% negative examples. The divide ratio is calculated heuristically, since the
RuMedNLI study corrected 10,110 examples, indicating that there are numerous examples
of abbreviations and metric differences. This approach ensures that the model can learn to
correctly resolve any detected abbreviations, and if there are none, remain the sentence
unchanged.
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Training examples
After pretraining, LLMs, like Llama-3.1, undergo a process known as instruction tuning.
This process enables the raw model to interact with users in a structured conversational
format. Instruction tuning involves fine-tuning the model on a large optimization dataset
and defining specific conversational roles. This role-based fine-tuning allows the model to
effectively learn and understand the structure of the conversation with users.

Llama-3.1 uses three distinct roles within its conversational framework: system, user,
and assistant. The system role issues prompts to the model, defining the task for the
model’s responses. The user role represents the input from the user. The assistant role
constitutes the model’s response, generated based on the given commands and user input.

The system role expects a prompt that provides clear instructions for the model.
Creating a single prompt for all examples could potentially overfit the model, leading it to
memorize the task instead of understanding it. To alleviate this issue, we have created 40
different prompts for positive examples and 30 different prompts for negative examples.
Positive prompts instruct the model to find abbreviations in the text, whereas negative
prompts instruct the model to leave the sentences as they are.

To ensure uniform training representation, we implemented a cyclic distribution
method where 40 distinct prompts were assigned sequentially to examples in a fixed order.
This systematic approach prevented prompt frequency imbalance by restarting the
sequence from the first prompt after reaching the 40th prompt, continuing until all
examples received a prompt assignment. This balanced approach was critical for
preventing any one of the prompts from skewing the learning process. Following the same
logic, 30 negative prompts were iterated through non-abbreviated examples. We have
created a chat template for a positive example using MeDAL, as demonstrated in Table 4.

During the later stages of the fine-tuning phase, we realized that assigning a specific role
to the AI at the beginning of the prompt resulted in a reduction of 0.10 in the training loss.
For instance, we assigned the role, “As a medical examiner, your task is to analyze and
clarify medical texts with precision and accuracy. Ensure your responses adhere to this
guideline.” This simple instruct suggests that LLMs perform more effectively when fine-
tuned for a specific task with a clearly defined role.

Fine tuning Llama-3.1
Due to the nature of the LLMs and their large parameter space, it is not quite possible to fit
an 8 billion parameter model into a single GPU. To mitigate this, optimization techniques
such as quantization have gained importance in recent years. Quantization reduces the
model’s weights from 32� bit precision to as low as 4� bit precision with the aim of
minimal loss of the model quality. This process saves a significant amount of GPUmemory
and enables the training phase to process longer context sizes with large batches. For
example, quantization of 32� bit floating point information to int8 using the c
quantization constant with a range ½�127; 127� is calculated as:

Oğul et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2662 15/33

http://dx.doi.org/10.7717/peerj-cs.2662
https://peerj.com/computer-science/


Xint8 ¼ round
127

absmaxðXFP32Þ � X
FP32

� �
¼ roundðcFP32 � XFP32Þ (2)

In our research we’ve employed QLora (Quantized Low Rank Adapters) (Dettmers
et al., 2023), which leverages NF4 NormalFloat4 quantization to significantly reduce GPU
memory requirements. NF4 quantization involves estimating the quantiles of a normal
distribution and mapping the values to a 4�bit format. This ensures more efficient
utilization of quantization bins, particularly for data with a zero-mean normal distribution.
As a result, we managed to fit a model such as the Llama-3.1 with 8 billion parameters into
the Nvidia RTX 4090 GPU.

Fully fine-tuning large language models presents significant computational challenges,
especially with limited GPU power. To address this constraint, we implemented the Low-
Rank Adaptation (LoRA) (Hu et al., 2021) technique, which offers a more efficient
alternative by placing small trainable adapter layers between the model’s existing layers.

LoRA modifies the neural network architecture through a systematic decomposition of
the weight update process. This approach utilizes two key components: a pre-trained
weight matrix W 2 Rd�d that remains frozen during training, and a LoRA weight matrix
DW that is decomposed into two low-rank matrices A and B. The matrix A is initialized
with a normal distribution Nð0;r2Þ, while B is initialized as zero. During fine-tuning, only
the matrices A and B are subjected to training, creating a low-rank update to the original
weights. This design enables task-specific adaptation while preserving the model’s core
knowledge.

Combining quantization with low rank adapters, it is now possible for a single GPU to
fine tune a model for a specific task. To train efficiently with a minimal memory footprint,
we used mixed precision training. Mixed precision training uses Float16 or BFloat16 for
newer systems. In our work, we used the parameters demonstrated in Table 5.

The LoRA rank parameter was set to 32, with an alpha scaling factor of 8, while
maintaining default values for dropout and bias parameters. To optimize memory
utilization during training, we employed gradient checkpointing through the Unsloth
library, which strategically stores selective activations in the forward pass while
recalculating others during backpropagation. Additionally, we standardized our training

Table 4 Llama-3.1 fine tuning instruction format.

{“role”: “system”,

“content”: “Detect all abbreviations present in the text and produce two lists: one for the abbreviations and another for

their full expansions.”},

{“role”: “user”,

“content”: “the nutcracker esophagus a primary motor disorder is frequently associated with noncardiac CP” },

{“role”: “assistant”,

“content”: “**abbreviations**: [CP] **abbreviations_extended**: [chest pain]”}
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process with a random seed of 42 and constrained the maximum sequence length to 2,048
tokens.

Table 6 outlines our training parameters for the supervised fine-tuning trainer. To
ensure efficient training, we used BFloat16 precision for both training and evaluation.
After careful testing of our GPU memory capacity, we set the batch size to 8. Every 100
steps, we evaluate and checkpoint the model. We set our learning rate to 2e−4, with a
maximum gradient normalization of 0.3 and a warm-up ratio of 0.03. We used a linear
learning rate scheduler for efficiency. As highlighted in the NEFTune (Jain et al., 2023)
article, introducing noise to the training procedure can positively impact accuracy; thus,
we set NEFTune noise alpha to 5. A key aspect that accelerated the training process was
using the group by length parameter, which merges training examples up to 2,048 tokens.
Since we use short examples up to 40 words, this procedure of packing examples reduced
the training time nearly tenfold. Lastly, we used an eight-bit Adam optimizer and fine-
tuned the Llama-3.1 model. We trained our model with three epochs and approximately
5,000 steps.

Llama-3.1 inference and MedNLI translation
The MedNLI dataset translation process consists of three carefully orchestrated sequential
steps, forming our comprehensive medical inference dataset translation pipeline. At the
core of our approach is the novel treatment of medical abbreviations as valuable
information rather than obstacles. The pipeline begins with our fine-tuned Llama-3.1
model performing automated abbreviation extraction and expansion. In the first phase, we
addressed a key structural characteristic of the MedNLI dataset: each premise appears
three times, paired with different hypotheses. Recognizing this pattern, we optimized our
processing by grouping identical premises together. This strategic grouping served two
crucial purposes: it significantly reduced computational overhead and ensured consistent
abbreviation handling across related sentence pairs. Thus, our fine-tuned Llama-3.1 model
processed each premise group systematically and identified and expanded all medical
abbreviations. Following the premise processing, we applied the same methodical
approach to the hypothesis statements. This process ensured that both components of each
premise-hypothesis pair received consistent abbreviation processing, maintaining
coherence throughout the dataset.

Table 5 Parameters used for Lora adapters.

Parameter Value

r (rank) 32

lora_alpha 8

lora_dropout 0

bias None

use_gradient_checkpointing Unsloth

random_state 42

max_seq_length 2,048
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In the second stage of our pipeline, we leveraged Llama-3.1’s inherent capabilities rather
than using its fine-tuned version. The model demonstrated robust performance in
handling both mathematical computations and context-aware tasks through advanced
prompting techniques and one-shot learning approaches. To address the previously
identified challenges in medical text processing, we developed a comprehensive prompt
structure that systematically handles abbreviations, metric conversions, and contextual
nuances. This prompt includes previously extracted abbreviations, detailed instructions,
and a carefully crafted example to guide the model’s responses. Table 7 illustrates this
prompt structure and demonstrates how it effectively guides the model in processing
medical text. As a result, we achieve restructured and normalized medical sentences where
abbreviations are expanded and metric conversions corrected for the target language.

In addition to the positive examples where abbreviations have been identified, we also
addressed negative examples where no abbreviations are present. For these cases, we
constructed a similar prompt that focuses solely on metric conversions. If no changes are
required, we prompt the model to return the exact same sentence without any
modifications.

In the final phase of our pipeline, we implemented Facebook’s NLLB model to perform
English to Turkish translation of the processed sentence pairs, extended abbreviations, and
base sentences. NLLB provides a state-of-the-art translation system with the capability to
handle 200 different languages through its language tag architecture. The translation step
followed the same design as for the premises, where we grouped sentences to reduce

Table 6 Supervised fine tuning training parameters.

Parameter Value

per_device_train_batch_size 8

gradient_checkpointing True

num_train_epochs 3

optim Adamw_8bit

bf16 True

bf16_full_eval True

eval_steps 100

logging_steps 20

save_steps 100

per_device_eval_batch_size 4

learning_rate 2e−4

max_grad_norm 0.3

warmup_ratio 0.03

lr_scheduler_type Linear

seed 42

weight_decay 0.01

neftune_noise_alpha 5

group_by_length True
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computational demand and increase consistency. After we finished translating the
premises, we translated all of the hypotheses. Additionally, we translated the expanded
forms of the abbreviations we had previously extracted. This method not only adapted the
dataset into Turkish but also laid the groundwork for future natural language processing
tasks, such as named entity recognition, by including medical abbreviations, their
expanded forms, and their Turkish equivalents.

Evaluation
The MedNLI translation consisted of multiple steps, and each step provided new aspects
and information from the dataset. To be able to assess the quality and reliability, our study
employed a two-stage evaluation process.

Our evaluation methodology began with a comprehensive machine learning assessment
using multiple BERT-based models. We established a systematic evaluation pipeline
consisting of four distinct stages. First, we utilized the standard BERT model to establish
baseline performance metrics on the MedNLI dataset. Second, we leveraged BioBERT, a
medically fine-tuned variant of BERT, to evaluate the domain-specific aspects of the
MedNLI sentence pairs. Third, we assessed our Turkish translations using both BERTurk
and BioBERTurk models, which are specifically optimized for Turkish language
processing. This multi-model approach enabled us to conduct a thorough comparative
analysis between the original English MedNLI dataset and our Turkish translations. To
enhance the robustness of our evaluation, we augmented the training process by

Table 7 LLama inference prompt example.

Task description:

As a specialized assistant in medical text refinement, your task is to enhance the readability and precision of the given text without changing its
essential content. Perform the following specific tasks carefully:

Abbreviations expansion: Identify and expand all medical abbreviations in the text. For example, change ‘HTN’ to ‘hypertension’. To assist you, we
have identified some abbreviations in the text along with their extended meanings.

Here are the abbreviations that we could find in the text: {abbreviations}

Here are the longer forms of the abbreviations: {extended_abbreviations}

Unit conversions: Convert all relevant units while preserving the original numerical values:

– Temperatures from Fahrenheit to Celsius.

– Lengths from feet to meters.

– Weights from pounds to kilograms.

– Speeds from miles to kilometers.

– AM and PM to 24-h format.

Some sentences may be short and simple, while others may be long and complex.

Example:

. Original: ‘The patient has HTN, weighs 180 lbs, and their temperature was 101 �F.’

. Refined: ‘The patient has hypertension (HTN), weighs 81.65 kg, and their temperature was 38.33 �C.’
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incorporating SNLI and MultiNLI datasets, along with their Turkish counterparts. This
comprehensive evaluation framework allowed us to investigate whether cross-domain
knowledge from different NLI datasets could enhance the overall performance on medical
language inference tasks.

For our second evaluation phase, we implemented a systematic human assessment
protocol utilizing medical residents with proficiency in both English and Turkish. We
developed a comprehensive evaluation survey where medical professionals rated multiple
quality aspects on a 10-point scale. Given resource constraints, we employed the Raosoft
sampling methodology (Rao & Rao, 2009) to determine an optimal sample size. We used a
95% confidence level and a 2% margin of error; as a result, 2,052 examples were carefully
selected. While our dataset’s overall quality could be assessed with gold labels from NLI
relations, the evaluation of abbreviation handling required specialized medical expertise.
Our selection of 2,052 examples was strategically driven by the distribution of medical
abbreviations in our adapted dataset, ensuring comprehensive coverage of all abbreviation
patterns and their translations. To systematically evaluate these examples, we developed a
five dimensional evaluation framework focusing on

. Quality of abbreviations derived from sentences.

. Quality of expanded forms of abbreviations.

. Quality of normalized sentences which are reconstructed with abbreviation information
along with metric correction.

. The Turkish translations of the normalized sentences.

. The Turkish translations of the expanded forms of the abbreviations.

The resulting statistical analysis, including means and standard deviations across all
evaluation dimensions, provided robust validation of both our abbreviation handling
methodology and the overall dataset quality.

RESULTS
Our analysis integrates quantitative performance metrics from state-of-the-art language
models BERT, BioBERT, BERTurk, and BioBERTurk with qualitative insights gathered
through expert human evaluation by medical residents. We first examine the model-based
performance metrics, followed by detailed human evaluation results, and conclude with an
analysis of the dataset’s strengths and areas for potential enhancement. This multi-faceted
evaluation approach provides a thorough understanding of TurkMedNLI’s effectiveness in
capturing medical language inference patterns while identifying specific opportunities for
future improvements.

Machine evaluation
To create a meaningful baseline for our Turkish translations, we first fine-tuned the
original BERT model on English MedNLI sentences. A key innovation in our approach
was the integration of extracted abbreviation information to restructure sentences,
incorporating both expanded abbreviations and standardized measurements. This
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restructuring process effectively served as a normalization step, creating two distinct
versions of the NLI pairs for evaluation: the original and the normalized form. To ensure
thorough validation, we evaluated BERT’s performance on both versions. We further
enriched our evaluation by incorporating SNLI and MultiNLI datasets alongside MedNLI
to see how the diversity could affect the overall solutions. This comprehensive approach
allowed us to assess all aspects of the NLI pipeline while leveraging the benefits of
additional high-quality training data.

The results from Table 8 demonstrate the effectiveness of various BERT model
configurations across different training combinations and testing scenarios. When trained
exclusively on MedNLI, BERT achieves a solid baseline performance with 79.21% training
accuracy and 78.19% test accuracy. However, the model’s performance on the normalized
MedNLI dataset (containing expanded abbreviations and standardized measurements)
shows a notable decline to 76.27% training and 72.64% test accuracy, suggesting initial
challenges in processing the enhanced contextual information. A significant performance
improvement emerges when incorporating SNLI data alongside MedNLI. The BERT +
MedNLI + SNLI configuration achieves an impressive 89.03% training accuracy while
maintaining a robust 78.76% test accuracy on the original MedNLI dataset. More
importantly, this combination shows enhanced performance on the normalized dataset,
reaching 80.23% test accuracy. This improvement indicates that the additional linguistic
patterns learned from SNLI help the model better understand the expanded contexts.

Further augmentation with MNLI data (BERT + MedNLI + SNLI + MNLI)
demonstrates consistent performance, achieving 86.25% training accuracy and
maintaining 78.19% test accuracy on the original MedNLI dataset. This configuration
shows particular strength on the normalized dataset, reaching 79.25% test accuracy.
Notably, models trained exclusively on general-domain datasets (BERT + SNLI, BERT +
MNLI, or their combination) show significantly reduced performance when tested on
MedNLI, with test accuracies ranging from 60.47% to 62.79%. This performance gap
clearly demonstrates that general language understanding, while valuable, is insufficient
for medical domain inference tasks. The results emphasize the crucial importance of
domain-specific training data for achieving accurate medical language understanding.
These findings reveal that while normalization initially poses challenges for the model, the
integration of diverse NLI datasets helps overcome these difficulties, ultimately leading to
improved performance on both original and normalized medical texts. The results also
underscore the value of combining domain-specific and general-domain training data for
optimal performance in specialized NLI tasks.

In Table 9, BioBERT demonstrates exceptional performance in medical domain tasks,
achieving impressive baseline metrics with 83.51% training accuracy and test accuracies of
82.63% and 83.26%. This performance substantially exceeds standard BERT results,
highlighting BioBERT’s enhanced capabilities in processing medical text. When examining
the model’s performance on normalized MedNLI data independently, it maintains strong
results with 83.72% training accuracy and 80.30% test accuracy, and 83.40% accuracy on
normalized test results, suggesting that BioBERT’s biomedical pre-training enables
effective processing of detailed medical terminology and expanded abbreviations. The
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integration of SNLI data with MedNLI enhances BioBERT’s capabilities, with the BioBERT
+ MedNLI + SNLI configuration achieving 88.11% training accuracy and 82.34% test
accuracy on the original dataset. When this same configuration is applied to normalized
data (BioBERT + MedNLI Normalized + SNLI), it achieves 81.50% test accuracy and
84.88% normalized test accuracy. These results indicate that combining medical domain
knowledge with general language patterns helps maintain strong performance across both
original and normalized medical texts. The addition of MNLI data to create the complete
configuration (BioBERT + MedNLI + SNLI + MNLI) demonstrates consistent
performance, achieving 82.20% test accuracy on the original dataset and improving to
83.12% on the normalized version. Models trained exclusively on general-domain datasets
(BioBERT + SNLI, BioBERT + MNLI, or their combination) show notably lower
performance on MedNLI, with test accuracies ranging from 68.42% to 71.87%. However,
these results still surpass standard BERT’s performance on similar configurations,
indicating BioBERT’s inherent advantage in medical domain tasks.

Table 8 MedNLI accuracy results with the BERT model

Model Train
accuracy

MedNLI
test

MedNLI normalized
test

SNLI
test

MNLI
matched

MNLI
mismatched

Bert + MedNLI 79.21 78.19 78.34 38.91 48.01 49.45

Bert + MedNLI + SNLI 89.03 78.76 80.23 90.03 72.06 72.00

Bert + MedNLI + SNLI + MNLI 86.25 78.19 79.25 90.36 82.78 82.96

Bert + MedNLI Normalized 76.27 70.25 72.64 38.43 47.09 46.61

Bert + MedNLI Normalized + SNLI 89.57 76.93 80.09 90.57 72.62 72.96

Bert + MedNLI Normalized + SNLI +
MNLI

86.94 78.27 80.37 90.16 83.51 83.77

Bert + SNLI 90.14 60.47 61.67 89.80 71.93 72.28

Bert + MNLI 82.61 62.79 63.50 76.12 82.35 82.97

Bert + SNLI + MNLI 87.66 61.25 63.64 90.65 83.67 84.10

Table 9 MedNLI accuracy results with the BioBERT model.

Model Train
accuracy

MedNLI
test

MedNLI normalized
test

SNLI
test

MNLI
matched

MNLI
mismatched

BioBert + MedNLI 83.51 82.63 83.26 43.17 53.79 55.03

BioBert + MedNLI + SNLI 88.11 82.34 82.77 88.75 72.50 73.18

BioBert + MedNLI + SNLI + MNLI 85.41 82.20 83.12 88.68 82.07 83.45

BioBert + MedNLI Normalized 83.72 80.30 83.40 42.13 50.66 51.68

BioBert + MedNLI Normalized + SNLI 88.91 81.50 84.88 89.03 72.90 73.44

BioBert + MedNLI Normalized + SNLI +
MNLI

86.18 81.22 84.31 89.33 82.42 83.78

BioBert + SNLI 89.62 68.42 71.87 88.94 72.49 73.59

BioBert + MNLI 82.46 68.77 71.80 74.37 82.05 83.27

BioBert + SNLI + MNLI 85.53 69.83 72.85 88.81 81.97 82.90
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The Table 10 shows BERTurk’s performance on Turkish language medical inference
task and demonstrates both the challenges and opportunities in cross-lingual medical NLP.
When trained exclusively on TurkMedNLI, the model achieves a baseline performance of
76.20% training accuracy and 75.17% test accuracy on the original dataset. The model’s
interaction with normalized data shows an interesting pattern, achieving slightly higher
training accuracy of 78.99% and test accuracy of 76.30%. This initial performance suggests
that BERTurk not only effectively processes Turkish medical text, but actually shows
improved performance when handling normalized medical terminology, indicating that
the standardization of medical terms may facilitate better understanding in the Turkish
language context. The integration of SNLI-Tr data with TurkMedNLI yields notable
improvements in the model’s capabilities. The BERTurk + TurkMedNLI + SNLI-Tr
configuration achieves 86.53% training accuracy and 75.94% test accuracy on the original
dataset. When this same configuration is tested on the normalized dataset (BERTurk +
TurkMedNLI Normalized + SNLI-Tr), it shows improved performance with 78.34% test
accuracy. This enhancement in performance suggests that exposure to additional Turkish
language patterns from SNLI-Tr helps the model better process both standard and
normalized medical text.

Further augmentation with MNLI-Tr data demonstrates the value of comprehensive
training data. The complete configuration (BERTurk + TurkMedNLI + SNLI-Tr + MNLI-
Tr) achieves 77.98% test accuracy on the original dataset and maintains strong
performance. When the same process is repeated with the normalized dataset, we achieve a
slightly higher 78.55% test accuracy on the normalized version. This consistent
performance across both original and normalized datasets indicates that the combination
of medical and general language understanding in Turkish creates a more robust model for
medical inference tasks. The performance pattern of models trained exclusively on general
domain datasets provides important insights: BERTurk + SNLI-Tr, BERTurk + MNLI-Tr,
and their combinations show significantly reduced performance on TurkMedNLI, with
test accuracies ranging from 60.33% to 62.09%. These results align with patterns observed

Table 10 TurkMedNLI accuracy results with the BERTurk model.

Model Train
accuracy

MedNLI
test

MedNLI
normalized test

SNLI-Tr
test

MNLI-Tr
matched

MNLI-Tr
mismatched

BertTurk + TurkMedNLI 76.20 75.17 76.44 36.95 50.47 51.18

BertTurk + TurkMedNLI + SNLI-Tr 86.53 75.94 76.86 87.22 69.06 69.56

BertTurk + TurkMedNLI + SNLI-Tr + MNLI-Tr 83.25 77.98 79.32 87.57 79.38 79.68

BertTurk + TurkMedNLI Normalized 78.99 74.05 76.30 38.17 50.47 51.65

BertTurk + TurkMedNLI Normalized + SNLI-Tr 86.81 75.38 78.34 87.66 69.49 70.28

BertTurk + TurkMedNLI Normalized + SNLI-Tr
+ MNLI-Tr

83.12 77.63 78.55 87.10 79.01 79.82

BertTurk + SNLI-Tr 87.29 60.47 60.82 87.48 69.83 70.71

BertTurk + MNLI-Tr 79.22 60.33 63.22 72.88 78.98 80.56

BertTurk + SNLI-Tr + MNLI-Tr 83.22 62.09 64.20 87.36 79.24 80.63
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in English BERT models, suggesting that the challenges of medical domain adaptation are
consistent across languages.

The Table 11 presents BioBERTurk’s performance on the Turkish medical inference
task, revealing interesting patterns in the intersection of domain-specific knowledge and
language-specific challenges. When trained exclusively on TurkMedNLI, the model
achieves a baseline performance of 77.63% training accuracy and 75.59% test accuracy.
However, when processing normalized data, the performance shows a notable decline with
74.12% training accuracy and 72.29% test accuracy. This initial performance pattern
suggests that while BioBERTurk effectively handles basic Turkish medical text, the
additional complexity introduced by normalized medical terminology presents specific
challenges that warrant further investigation. The integration of SNLI-Tr data with
TurkMedNLI demonstrates the model’s potential for enhancement through diverse
training data. The BioBERTurk + TurkMedNLI + SNLI-Tr configuration achieves 83.39%
training accuracy and 75.24% test accuracy on the original dataset. When evaluated on the
normalized dataset, this configuration maintains relatively stable performance with 73.41%
test accuracy. This pattern indicates that while additional Turkish language patterns from
SNLI-Tr contribute to the model’s overall capabilities, the challenges of processing
normalized medical text persist.

The addition of MNLI-Tr data to create the complete configuration (BioBERTurk +
TurkMedNLI + SNLI-Tr + MNLI-Tr) shows mixed results in the model’s performance.
While this configuration achieves 75.24% test accuracy on the original dataset, the
performance decreases to 72.92% when using the normalized dataset configuration. These
results indicate that while the combination of multiple datasets can enhance the model’s
general capabilities, the handling of normalized medical terminology presents particular
challenges that require further optimization. The performance trends across different
configurations highlight both the strengths and areas for improvement in BioBERTurk’s
medical language understanding capabilities. Models trained exclusively on general

Table 11 TurkMedNLI accuracy results with BioBERTurk model.

Model Train
accuracy

MedNLI
test

MedNLI
normalized test

SNLI-Tr
test

MNLI-Tr
matched

MNLI-Tr
mismatched

BioBertTurk + TurkMedNLI 77.63 75.59 76.23 37.92 46.09 47.24

BioBertTurk + TurkMedNLI + SNLI-Tr 83.39 75.24 75.31 83.92 62.47 63.35

BioBertTurk + TurkMedNLI + SNLI-Tr +MNLI-Tr 79.86 75.24 76.44 84.34 75.66 76.34

BioBertTurk + TurkMedNLI Normalized 74.12 71.72 72.29 37.98 41.10 41.74

BioBertTurk + TurkMedNLI Normalized + SNLI-
Tr

81.84 71.94 73.41 82.45 62.09 63.66

BioBertTurk + TurkMedNLI Normalized + SNLI-
Tr + MNLI-Tr

80.01 76.37 72.92 84.46 75.62 76.25

BioBertTurk + SNLI-Tr 83.04 57.24 56.82 82.85 61.44 62.38

BioBertTurk + MNLI-Tr 74.77 60.12 62.37 63.20 74.08 76.28

BioBertTurk + SNLI-Tr + MNLI-Tr 79.18 60.97 63.99 83.50 74.84 76.21
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domain datasets show significantly reduced performance, with test accuracies ranging
from 57.24% to 63.99%. These findings indicate that while the current implementation
successfully adapts biomedical knowledge to Turkish language structures, there remains an
opportunity for enhancement in processing normalized medical content through refined
training approaches and architectural adjustments.

Medical resident evaluation
We have evaluated our translation accuracy and abbreviation extraction quality with
medical residents. Using Raosoft, we extracted 2,052 rows from TurkMedNLI and divided
this into three groups. Each group evaluated five different aspects, ranging from
abbreviation extraction to normalized translation quality. First, we took the mean and
standard deviation of each evaluator’s results as presented in Table 12.

Evaluation of abbreviation quality: The quality of abbreviations indicates that each
demonstrates high satisfaction, but with varying levels of consistency. Resident-1 reported
a high mean satisfaction score of 9.821 with a low standard deviation of 0.820, indicating
consistent positive evaluations. Resident-2’s mean score was slightly lower at 9.75, with a
standard deviation of 1.003, suggesting a broader range of scores. Resident-3’s evaluations
showed a mean score of 9.436 with a higher standard deviation of 1.437, reflecting the most
significant variability and the lowest average satisfaction among the three residents.

Evaluation of abbreviation expansion quality: The quality of extended abbreviations
indicates overall satisfaction, but with varying levels of consistency. Resident-1 reported a
mean score of 8.805 with a standard deviation of 2.191, indicating moderate variability in
evaluations. Resident-2’s mean score was slightly higher at 8.910 with a standard deviation
of 2.292, suggesting more consistent evaluations than Resident-1. Resident-3’s evaluations
showed a mean score of 8.923 with a standard deviation of 2.330, reflecting the most
consistent evaluations among the three residents, though slightly lower in satisfaction
compared to the others.

Evaluation of expanded abbreviation translation: The quality of expanded
abbreviation translations demonstrates varying levels of satisfaction and consistency.
Resident-1 reported a mean score of 8.251 with a standard deviation of 2.401, indicating
relatively excellent quality with moderate variability. Resident-2’s mean score was lower at
7.930 with a higher standard deviation of 2.629, suggesting moderate satisfaction and
higher variability. Resident-3’s evaluations showed a mean score of 9.201 with a lower
standard deviation of 1.827, reflecting high satisfaction and more consistent evaluations
compared to the other residents.

Evaluation of normalized sentence quality: The quality of normalized sentences
indicates high satisfaction, with varying levels of consistency. Resident-1 reported a mean
score of 8.976 with a standard deviation of 2.089, indicating high satisfaction with low
variability. Resident-2’s mean score was slightly higher at 9.074 with a standard deviation
of 1.725, suggesting high satisfaction with slightly lower variability. Resident-3’s
evaluations showed a mean score of 9.018 with a standard deviation of 2.123, reflecting
consistent high satisfaction with moderate variability.
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Evaluation of normalized sentence translation quality: Normalized sentence
translation quality indicates moderate satisfaction with varying consistency. Resident-1
reported a mean score of 7.068 with a standard deviation of 2.040, indicating moderate
satisfaction with moderate variability. Resident-2’s mean score was slightly higher at 7.489
with a standard deviation of 2.125, suggesting slightly higher satisfaction with similar
variability. Resident-3’s evaluations showed a mean score of 7.770 with a standard
deviation of 2.404, reflecting the highest satisfaction among the three residents with
moderate variability. A critical consideration in evaluating our Turkish medical translation
quality is the validation of expert assessments across medical residents. Given our dataset’s
extensive size and the time constraints of medical experts, we implemented a strategic
sampling approach where each resident evaluated a distinct subset of translations. This
methodological choice, while allowing broader coverage of translations, presents a
fundamental limitation in assessing inter-rater reliability. Traditional reliability measures
such as Cohen’s Kappa or Intraclass Correlation Coefficient require multiple evaluators to
assess identical items to measure direct agreement. In our study design, each medical
resident evaluated entirely different sets of translations, with no overlap between the
assessed items, making it mathematically challenging to calculate rating agreement, as
these metrics require paired comparisons of how different evaluators scored the exact same
translations.

While statistical approaches exist for comparing rating distributions across evaluators,
such as Kruskal-Wallis tests, applying these methods to our non-overlapping evaluation
sets could lead to misleading conclusions, as any observed differences might be attributed
to variations in the inherent difficulty of the evaluated translations rather than genuine
disagreement between residents. Nevertheless, our descriptive statistics reveal consistently
high mean ratings across evaluators for all evaluation criteria. However, we acknowledge
that this observed consistency cannot be statistically validated due to our study design’s
constraints. This limitation originated from prioritizing comprehensive coverage over the
ability to measure direct rating agreement, a trade-off necessitated by the practical
constraints of medical expert availability and dataset size. Future research would benefit

Table 12 Evaluation metrics for TurkMedNLI per evaluator.

Metric Evaluator-1 Evaluator-2 Evaluator-3

Abbreviation quality mean 9.821256 9.750000 9.435691

Abbreviation quality std 0.820267 1.003064 1.437326

Abbreviation expanded quality mean 8.805153 8.910131 8.922830

Abbreviation expanded quality std 2.190678 2.292112 2.330328

Abbreviation expanded translation quality mean 8.251208 7.929739 9.200965

Abbreviation expanded translation quality std 2.401213 2.628678 1.827452

Normalized sentence quality mean 8.975845 9.073529 9.017685

Normalized sentence quality std 2.088616 1.724803 2.122954

Normalized sentence translation quality mean 7.067633 7.488562 7.770096

Normalized sentence translation quality std 2.039592 2.124951 2.404412
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from incorporating a subset of overlapping evaluations while maintaining the coverage
achieved through our current approach.

The residents’ evaluation of the dataset reveals high satisfaction levels in a variety of
areas, including high scores for abbreviation quality and sentence normalization. However,
there is variation in the extended abbreviation and translation quality, indicating areas for
improvement. The high ratings for normalized sentence quality suggest that the
normalization process enhanced the clarity and comprehensibility of the sentences.
However, translations of normalized sentences received moderate scores, implying that
more fine-tuning may be required for more consistent outcomes. The evaluations highlight
the dataset’s strengths in abbreviation handling and sentence normalization while also
identifying areas for improvement, particularly in translation. These findings inform
future improvements to the dataset’s quality and reliability for medical language inference
tasks. Residents’ feedback validates the current approach’s effectiveness and provides a
clear path for targeted improvement.

Figure 2 presents a comprehensive visualization of the distribution of evaluation
rankings for various quality metrics assessed by three medical residents. The metrics
evaluated abbreviation quality, extended abbreviation quality, extended abbreviation
translation quality, normalized sentence quality, and normalized sentence translation
quality. The plots represent the frequency of rankings from 1 to 10, reflecting the level of
satisfaction and consistency in the evaluations.

Abbreviation quality shows an overwhelmingly high level of quality among the
residents, with the vast majority of rankings at 10. The distribution for extended
abbreviation quality shows a slightly broader range of rankings, though still predominantly
high. The plot for extended abbreviation translation quality exhibits a wider distribution of
rankings compared to the previous metrics, suggesting moderate satisfaction with
translation quality and the need for refinement to enhance consistency and overall
satisfaction.

The plot for normalized sentence quality shows a strong concentration of high rankings,
indicating high satisfaction with the quality of normalized sentences. The distribution for
normalized sentence translation quality is more varied, with rankings spread across the
scale, suggesting moderate satisfaction with the translation process. The consistent high
rankings for abbreviation and normalized sentence quality validate the effectiveness of
these aspects, while the distribution of lower rankings in translation-related metrics
highlights opportunities for improvement. These insights are crucial for guiding future
enhancements to the dataset, ensuring higher consistency and overall satisfaction in
medical language inference tasks.

DISCUSSIONS
The performance decrease between English and Turkish translations in our results
originates from the limitations of our translation model. Facebook’s NLLB model is great
at processing multiple languages simultaneously. However, its training primarily relies on
general-purpose parallel corpora. To address these limitations, future research could focus
on developing a domain-specific English-Turkish parallel medical corpus. Although this
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solution demands substantial data curation resources, it presents an effective pathway for
improving translation quality and reducing performance disparities between languages.

While TurkMedNLI demonstrates the effectiveness of using large language models for
medical dataset translation and refinement, there are several important limitations. The
computational costs associated with LLM fine-tuning present a significant constraint,
which requires carefully selecting a subset of training data to make the abbreviation
extraction model training feasible. The human evaluation component of our pipeline
presents additional scalability challenges. As dataset size increases or medical domain
coverage expands, the need for domain experts with diverse specializations grows
proportionally, increasing both validation costs and potential bottlenecks in the dataset
creation process.

TurkMedNLI builds upon the foundational work established by RuMedNLI and
ViMedNLI while introducing a novel approach to domain-specific translation challenges.
RuMedNLI demonstrated the effectiveness of combining machine translation with expert

Figure 2 TurkMedNLI evaluation distribution per evaluation criteria. Full-size DOI: 10.7717/peerj-cs.2662/fig-2
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human validation, achieving 77.64% accuracy with their RuBERT model on medical
inference tasks. ViMedNLI advanced this methodology through state-of-the-art English-
Vietnamese translation systems, with their ViPubmedT5 model reaching 81.65% accuracy
and ViHealthBERT achieving 79.04% accuracy. In comparison, our BioBERTurk model
achieves 75.59% accuracy on direct translation and 72.99% on the normalized version,
which, while slightly lower than its predecessors, represents comparable performance
considering Turkish’s complex morphological structure and the challenges of medical
domain adaptation.

CONCLUSION
In this study, we introduced TurkMedNLI, the first Turkish Medical Natural Language
Inference dataset, developed using a large language model-based pipeline. Our approach
successfully addresses critical challenges in domain-specific translation, particularly the
disambiguation of medical abbreviations, measurement and metric conversion, and
preservation of clinical context. The pipeline’s effectiveness, demonstrated through both
machine learning metrics and expert validation, establishes a framework for creating high-
quality medical datasets in low-resource languages.

In addition to its contribution to NLI tasks, the dataset offers valuable resources for
broader applications in biomedical NLI. The parallel corpus of medical abbreviations and
their expanded forms, along with contextual sentences, can significantly enhance NER
models’ ability to identify and process domain-specific entities. These improvements have
broader implications for clinical text mining, automated medical information extraction,
and cross-lingual medical data applications.

Despite challenges, our study demonstrates the broad potential of large language models
in creating high-quality domain-specific datasets. Our methodology for handling
specialized terminology and context-aware translation extends beyond Turkish medical
NLP, offering a framework adaptable to other specialized domains and low-resource
languages.

Looking ahead, we have identified several key opportunities for advancing this research.
Our first priority is to enhance the preprocessing methodology to handle a wider range of
medical examples. We also aim to develop specialized English-Turkish parallel corpora for
medical texts, which will enable more precise domain-specific translation model fine-
tuning. In parallel, we plan to explore smaller, more efficient language models that can be
comprehensively fine-tuned with larger datasets. A critical focus will be implementing a
more rigorous medical expert evaluation framework that includes overlapping assessment
sets for proper statistical validation of inter-rater reliability and standardized evaluation
metrics across different medical specialties.
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