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ABSTRACT
Image quality assessment (IQA) plays a critical role in automatically detecting and
correcting defects in images, thereby enhancing the overall performance of image
processing and transmission systems. While research on reference-based IQA is well-
established, studies on no-reference image IQA remain underdeveloped. In this
article, we propose a novel no-reference IQA algorithm based on transfer learning
(IQA-NRTL). This algorithm leverages a deep convolutional neural network (CNN)
due to its ability to effectively capture multi-scale semantic information features,
which are essential for representing the complex visual perception in images. These
features are extracted through a visual perception module. Subsequently, an adaptive
fusion network integrates these features, and a fully connected regression network
correlates the fused semantic information with global semantic information to
perform the final quality assessment. Experimental results on authentically distorted
datasets (KonIQ-10k, BIQ2021), synthetically distorted datasets (LIVE, TID2013),
and an artificial intelligence (AI)-generated content dataset (AGIQA-1K) show that
the proposed IQA-NRTL algorithm significantly improves performance compared to
mainstream no-reference IQA algorithms, depending on variations in image content
and complexity.
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INTRODUCTION
Image quality assessment (IQA) is fundamental in evaluating the perceptual quality of
images, playing a critical role in fields such as image processing, computer vision, and
digital media (Cao et al., 2023a; Heidari et al., 2024). Traditional IQA techniques typically
rely on reference-based models, where pristine images are available for comparison.
However, in many real-world applications, especially with the proliferation of user-
generated and artificial intelligence (AI) generated content (AIGC), a reference image is
often unavailable. This has increased the demand for no-reference IQA (NR-IQA)
algorithms, which can evaluate image quality without any reference. Recent advancements
in AI technologies, such as deep learning, have further accelerated the generation of large
volumes of digital content, including manipulated media like deepfake images Heidari
et al. (2024), heightening the need for accurate and robust NR-IQA methods to ensure
content quality and reliability.
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However, in addition to issues arising from AIGC, the process of image generation,
transmission, compression, and storage inevitably introduces various forms of distortion
(Chen et al., 2024; Yu et al., 2023; Mantiuk, Hammou & Hanji, 2023). These distortions
lead to significant differences between the visual information received by human observers
and the original image. Such degradation, if left unaddressed, can result in unexpected
deviations in practical applications that rely on high-fidelity image processing, such as
medical imaging, autonomous driving, and multimedia communications. Therefore,
accurate IQA is essential to mitigate these issues and ensure reliable use of digital images in
practice.

Traditionally, full-reference IQA methods, which compare a distorted image with a
pristine reference image, have demonstrated significant success in detecting image quality
degradation. However, in many real-world scenarios, such as social media sharing or
surveillance systems, reference images are not available. As a result, no-reference IQA
methods, which evaluate image quality without requiring a reference image, have become a
critical area of research. Despite the growing need for these methods, studies on no-
reference IQA remain underdeveloped compared to reference-based approaches.

This article addresses the growing need for accurate and efficient no-reference IQA by
proposing a novel algorithm based on transfer learning and deep convolutional neural
network (CNN). Traditional methods often struggle with distorted images due to data
limitations and computational challenges, particularly when assessing AI-generated
images with complex visual features. Leveraging transfer learning allows our model to
extract meaningful, multi-scale semantic information across diverse image types,
enhancing its ability to handle limited training data. The deep CNN, combined with an
adaptive fusion network, captures and refines these features to provide a robust and
comprehensive assessment of image quality, offering a more accurate and reliable
prediction for a wide range of digital images and sources.

LITERATURE REVIEW
The literature review in this study is divided into two key sections: Image quality
assessment (IQA) and no-reference image quality assessment (NR-IQA). The first section
provides an overview of the fundamental principles and advancements in IQA, which is a
well-established field that plays a crucial role in evaluating the quality of images across
various applications. The second section focuses specifically on NR-IQA, a rapidly growing
research area that addresses the challenges of assessing image quality without relying on
reference images.

Image quality assessment
IQA, as a critical research direction in the field of computer vision and image processing,
plays an essential role across diverse applications such as daily life, medical diagnostics,
and military operations (Zhao et al., 2023). Accurately assessing image quality allows
digital image processing systems to deliver optimal performance, ensuring the reliability of
subsequent operations like denoising, enhancement, and feature extraction. Effective IQA
not only improves the design and optimization of image processing algorithms but also
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provides real-time feedback in practical applications, ultimately enhancing user experience
and the efficiency of image-based tasks. In daily life, the demand for ultra-high-definition
(UHD) videos presents challenges in balancing efficiency and accuracy during video
quality assessment (VQA). For instance, the resolution and complexity of UHD content
often necessitate deep learning-based methods to ensure accurate quality evaluation
without sacrificing processing speed (Wu et al., 2023b). In medical imaging, accurate IQA
is vital for ensuring that doctors receive clear and detailed diagnostic information.
Kastryulin et al. (2023) emphasizes that precise IQA lead to enhanced diagnosis accuracy,
enabling more effective and timely treatments. In military applications, where images are
often captured in dynamic or challenging environments, high-quality IQA is crucial for the
reliability of surveillance systems. Wenqi et al. (2024) points out that the clarity and
accuracy of such images support intelligence gathering and decision-making processes,
underscoring the importance of IQA in defense and security contexts. As technology
advances, IQA methods have evolved from traditional approaches based on the human
visual system (HVS) to automated techniques leveraging deep learning and CNN. This
shift has allowed IQA methods to handle increasingly complex image data more
accurately, especially in the face of big data and AIGC. Traditional methods often struggle
with assessing the quality of images that lack a reference, such as those encountered in real-
time video streams or AI-generated images. No-reference IQA methods, therefore, have
gained considerable attention due to their ability to assess image quality without access to a
pristine reference image.

Recent advancements in deep learning, particularly in transfer learning, have enabled
models to improve their capacity for processing complex and large-scale data. For
example, Chen et al. (2024) introduced a top-down approach for IQA, where high-level
semantic information guides the assessment process, improving the model’s ability to
focus on semantically important regions. This method, enhanced by cross-scale attention
mechanisms, demonstrated notable gains in assessment performance. Similarly, Zhao et al.
(2023) proposed a self-supervised learning-based approach for blind image quality
assessment (BIQA), utilizing custom pre-tasks and quality-aware contrastive loss to
enhance model sensitivity to distortions. By leveraging large-scale pre-training on
ImageNet, this model achieved significant improvements on subsequent BIQA tasks.
Zhang et al. (2023b) introduced a multi-task learning scheme that shares model parameters
across multiple tasks, such as scene classification and distortion type identification,
resulting in enhanced performance on multiple IQA datasets. In addition to these
innovations, specialized applications such as face image quality assessment (FIQA) have
seen significant advances. Boutros et al. (2023) proposed CR-FIQA, a method designed to
predict image quality by estimating the relative classifiability of samples, which is
particularly effective in assessing the quality of unseen data. Aslam et al. (2024) addresses
the limitations of IQA by leveraging visual representation learning, achieving state-of-the-
art performance on multiple datasets. The model outperforms an ImageNet pre-trained
model in Pearson and Spearman correlations, with fewer epochs required. The growing
trend of using deep learning-based approaches highlights the importance of integrating
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advanced machine learning techniques into IQA, making methods more adaptable to
complex real-world scenarios.

Given these advancements, this study aims to build on the current state of no-reference
IQA by incorporating transfer learning techniques to address the challenges posed by the
increasing prevalence of AI-generated content and complex image distortions. By
leveraging CNNs, this approach enhances the ability to capture multi-scale semantic
features, making it more robust in handling diverse image content without requiring
reference images. As IQA continues to evolve, these no-reference methods will play an
increasingly vital role in maintaining the quality of images in various fields.

No-reference image quality assessment
IQA can be broadly categorized into subjective and objective methods (Cao et al., 2023b).
Objective IQA methods, in particular, are classified based on the amount of reference
image information available: full-reference IQA (FR-IQA) (Lang et al., 2023; Elloumi,
Loukil & Bouhlel, 2024), semi-reference IQA (SR-IQA) (Liu et al., 2023), and no-reference
IQA (NR-IQA) methods. Among these, NR-IQA (Bouhamed et al., 2023; Zhou et al., 2023)
stands out due to its ability to assess image quality without requiring access to a pristine
reference image. This capability makes NR-IQA particularly advantageous for real-time
applications and scenarios where obtaining reference images is impractical or impossible.

Traditional NR-IQA methods have relied heavily on the HVS to extract perceptual
features from distorted images (Zhang et al., 2023a). These methods often train shallow
regression models that map distortion-related features to quality scores. While effective in
certain contexts, this approach has inherent limitations. The complexity of simulating the
HVS’s perception process means that these models struggle to capture the full range of
distortions that can occur in digital images, especially when it comes to representing subtle
structural distortions and intricate visual information. Recent developments in deep
learning, particularly CNN, have revolutionized NR-IQA by enabling models to learn
more representative features from distorted images. CNN-based approaches utilize
multiple convolutional layers to extract hierarchical features, followed by regression
networks to predict image quality scores. These methods have shown superior
performance compared to traditional NR-IQA approaches, offering more robust and
accurate assessments of distorted images (Han, Liu & Xie, 2023; Ruikar & Chaudhury,
2023). However, CNN-based NR-IQA models face two significant challenges. First, they
require extensive training datasets to achieve high accuracy, but current publicly available
IQA databases are often too small or insufficiently diverse to support the training needs of
these data-hungry models. Second, the computational cost of training deep CNN is
substantial, making them less practical for real-time or large-scale IQA tasks (Pan et al.,
2022).

To address these limitations, transfer learning has emerged as a promising solution in
the development of NR-IQA methods. By leveraging pre-trained models from related
tasks, transfer learning allows NR-IQA models to achieve high performance with
significantly reduced training data and computational resources. This approach mitigates
the challenges posed by limited IQA datasets and lengthy training times. In particular,
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transfer learning enables the extraction of multi-scale semantic features from images,
improving the model’s ability to assess image quality across diverse content types and
distortion levels. In this study, we propose a novel no-reference IQA algorithm based on
transfer learning to overcome the data limitations and computational inefficiencies of
traditional CNN-based NR-IQA methods. By leveraging pre-trained CNN models, our
approach captures essential visual and semantic features with minimal additional training,
resulting in a more efficient and accurate quality assessment. Furthermore, by
incorporating adaptive fusion networks, our model integrates multi-scale features more
effectively, leading to improved performance across various image content and distortion
types. This method not only advances the field of NR-IQA but also makes image quality
assessment more feasible in practical, real-time scenarios.

Based on the above content, this article introduces transfer learning into image quality
assessment, and innovatively proposes a no-reference image quality assessment algorithm
based on transfer learning based on deep convolutional neural network to realize no-
reference image quality assessment for distorted images.

Research gap
Based on the literature, there are notable advancements in IQA, particularly with CNNs
and deep learning approaches. However, a clear research gap remains in the domain of
NR-IQA. Traditional NR-IQA methods, relying on HVS features, fail to capture the
complex distortions in modern image datasets. Although CNN-based methods have
improved NR-IQA, they require extensive datasets and computational resources, which
limit their practical applicability. Existing IQA databases are often too small to train CNNs
effectively, and the time-consuming nature of training deep models makes them unsuitable
for real-time image assessment.

Furthermore, while transfer learning has been successfully applied to various image
processing tasks, its potential in NR-IQA remains underexplored. Current research lacks
robust models that efficiently utilize pre-trained CNN to enhance NR-IQA performance
across diverse image types and distortions. Our research aims to address this gap by
proposing a novel NR-IQA algorithm based on transfer learning, which overcomes the
limitations of traditional methods by reducing training requirements and enhancing
efficiency, while delivering superior accuracy in IQA.

ALGORITHM FLOW AND IMPLEMENTATION STEPS
Algorithm flow
This article innovatively proposes a quality assessment algorithm for no-reference images
based on transfer learning. The algorithm mainly consists of the following four modules:
multi-scale semantic information feature extraction module, visual perception module,
adaptive fusion network module and quality assessment regression module. Firstly, the
distorted images to be assessed are cropped into groups of three image blocks and then
input into a deep convolutional neural network based on ResNet-50. This algorithm uses
different convolutional layers of ResNet-50 to output local semantic features fea1, fea2, fea3
and high-level semantic features feahigh. These features are processed by the visual
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perception module to obtain local semantic features fea01, fea
0
2, fea

0
3 and fea0high that are

more in line with the human visual perception system. Among them, fea01, fea
0
2 and fea

0
3 are

processed by the adaptive fusion network module and connected with fea0high to obtain the
multi-scale semantic feature featotal. Finally, featotal is input into the fully connected layer
regression network to predict the image quality score. In order to solve the problem of
insufficient training data, the algorithm innovatively adopts transfer learning to transfer
and apply the knowledge of the source domain to the training process, avoiding the
complex process of training the target network from scratch. The algorithm flow chart is
shown in the Fig. 1.

Firstly, the multi-scale semantic information feature extraction module in this
algorithm uses a 50-layer residual neural network (ResNet-50) as the backbone network.
ResNet-50 has a deep network structure that can effectively capture the semantic
information in the images and alleviate the gradient vanishing problem in deep network
training through residual connections.

Secondly, the visual perception module in this algorithm is designed to simulate the
working principle of the human visual system. It draws on the way the human eyes
processes visual information. It can effectively capture the structural and semantic
information in the images, and achieve a deep understanding of images information
through complex features extraction and representation learning.

Thirdly, this algorithm introduces an adaptive fusion network module, which aims to
strengthen the important features of local semantic information of the images while
suppressing irrelevant features. The adaptive fusion network learns the weight relationship
between images features and realizes adaptive adjustment of different features, thereby
more effectively capturing the key information in the images.

Finally, the quality assessment regression module in this algorithm connects the fused
local semantic information with the global information. The connected features are input
into the fully connected layer regression network to predict the quality score of the images.
Through this regression module, the quality assessment of the images can be transformed
into a regression problem to obtain the final assessment result.

Meaning and goal of the algorithm
The significance of the algorithm proposed in this study lies in its innovative approach to
tackling the challenges of no-reference image quality assessment. By integrating transfer
learning with deep convolutional neural networks, this method focuses on extracting
multi-scale semantic features that more accurately simulate human visual perception. This
advancement allows the algorithm to assess image quality without relying on reference
images, representing a significant improvement over traditional methods. Additionally, the
use of transfer learning reduces the need for large datasets, which are typically required for
training deep networks, thus making the algorithm more efficient and practical for real-
world applications. The goal of the algorithm is to substantially enhance the accuracy and
efficiency of no-reference image quality assessment, especially in scenarios where large-
scale training data is not available. By employing a multi-layer feature extraction process
based on ResNet-50, along with adaptive feature fusion and a regression network, the
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algorithm aims to provide more precise quality scores for distorted images. Ultimately, this
approach seeks to offer a robust and scalable solution that improves the reliability of image
quality assessment across various fields.

Implementation steps
Multi-scale semantic information feature extraction module
In the field of deep neural networks, in order to obtain multi-scale semantic features, there
have been many mature studies based on the strategy of extracting information from
different convolutional layers of images.

AlexNet-NDTL (Kollem et al., 2023) is based on an improved AlexNet and uses
network-based deep transfer learning to extract features from the dataset. Updated
GoogLeNet (Yang et al., 2023) replaces the 7� 7 convolution kernel of the first layer with
three 3� 3 convolution kernels based on GoogLeNet, adds the ECA attention mechanism
to the inception module, and uses a residual network to connect the E-inception module,
solving the problem of increased information loss and gradient loss due to increased
network depth. Improved ResNet-50 (Wu et al., 2023a) introduces the Squeeze-and-
Excitation attention mechanism to improve the residual unit of ResNet-50, and combines
the Swish function and Ranger optimizer to ensure the effectiveness of feature learning and
training, further improving model performance. Improved ResNet-50 has a balanced
performance compared with typical recognition algorithms such as AlexNet-NDTL
(Kollem et al., 2023), Updated GoogLeNet (Yang et al., 2023), VGG-16 (Sharma & Guleria,
2023), ResNet-18 (Sunnetci et al., 2023), and DenseNet-201 (Salim et al., 2023). It explicitly
constructs an identity mapping. The residual network introduces skip connections, which
reduces the possibility of gradient vanishing and gradient exploding during training, and
improves the performance of deep networks. The flowchart of feature extraction for multi-
scale semantic information is shown in Fig. 2.

The input distorted image information x first passes through the first convolutional
layer weight layer to obtain the preliminary mapping function FðxÞ, and then reaches the
weight layer based on the second convolutional layer through the linear rectification

Figure 1 Algorithm flow. Full-size DOI: 10.7717/peerj-cs.2654/fig-1
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function. The final output of the weight layer is added to the shallow information of the
jump connection to obtain the final mapping function FðxÞ þ x. This structure can directly
map shallow information to deep positions, thus improving the accuracy of the model.

This article innovatively extracts the convolutional layer information info1, info2 and
info3 in the backbone network convolutional layer c layer2!10 (representing the tenth
operation of the second convolutional layer), c layer3!12 and c layer4!18 as local semantic
features of the image, and the convolutional layer information info4 in c layer5!10 as the
global semantic feature of the image. The method of obtaining multi-scale feature infoi is
shown in Eq. (1).

infoi ¼ Resðx; d1Þði ¼ 1; . . . ; 4Þ: (1)

Among them, infoi represents the input image obtaining features of four different scales
through the ResNet network, ResðÞ represents the feature extraction process of the

Figure 2 Flowchart of feature extraction. Full-size DOI: 10.7717/peerj-cs.2654/fig-2
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ResNet-50 network, x represents the information of the input image, and d1 represents the
parameters of the ResNet-50 network. The fusion of multi-scale semantic features enables
the complementary fusion of deep feature information and shallow feature information,
which improves the accuracy of the model to a certain extent.

Visual perception module

Because the traditional NR-IQA method based on deep learning network fails to fully
incorporate the characteristics of the human visual perception system when designing the
network structure, it leads to problems of insufficient sample number and limited sample
diversity. This method often relies on limited data sets for training, which not only affects
the generalization ability of the model, but also causes a large gap between the assessment
results and human perception results. Therefore, to address these problems, this article
innovatively introduces a reference-free image quality assessment method based on
perceptual semantic features.

In this new approach, this article uses semantic features to describe the quality of
images, and closely integrates the semantic content of images with quality assessment
during the quality assessment process. In this way, not only can the human perception
process of images be better simulated, but the automatic assessment process can also be
made closer to human understanding and assessment of the semantic content of images.
This improvement is expected to significantly improve the generalization ability of the
model, making its performance on different samples more stable and reliable, and further
narrowing the gap between automatic assessment results and human subjective
perception. This article introduces a perception module to capture the information of
distorted images. The calculation method of the perception module is shown in Eq. (2).

info0i ¼ perðinfoi; d2Þði ¼ 1; . . . ; 4Þ: (2)

Among them, info0i represents the features of four different scales after being processed
by the perception network model, perðÞ represents the perception network model, infoi
represents the features of four different scales obtained by the input image through the
ResNet network, and d2 represents the network parameters of the perception module. The
network structure of this perception module is shown in Fig. 3.

Firstly, the local semantic features infoiði ¼ 1; 2; 3Þ and the global semantic features
info4 output by the ResNet-50 network are divided into non-overlapping modules.
Secondly, these non-overlapping modules are connected and stacked according to the
number of dimensions of their respective channels. Finally, a 1 * 1 convolution operation

and a global average pooling operation are performed to obtain the feature

info0iði ¼ 1; . . . ; 4Þ processed by the perception module. Global average pooling calculates

the mean of the two-dimensional feature map of each channel and takes the average of all
pixel values of each channel as the output value of the channel. This operation greatly
simplifies the representation of the data, thereby effectively reducing the number of
parameters of the model. In this way, the complexity of the model is reduced and the risk
of overfitting is effectively suppressed. In addition, this method can also preserve the
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spatial information of the input image, making the model more flexible and adaptable
when processing inputs of different sizes.

Adaptive fusion network module
In the feature fusion stage, a large amount of redundant information is usually inevitably
introduced, which will interfere with the accurate assessment of image quality. In order to
solve this problem and reduce the impact of noise superposition in different feature maps,
this article applies an adaptive feature fusion module to the feature info0iði ¼ 1; 2; 3Þ
processed by the perception module. The adaptive feature fusion module assigns higher
weights to the key parts of each layer of features when performing feature fusion.
Specifically, the adaptive fusion module can dynamically adjust the fusion ratio between
different layers according to the importance of feature maps. This adaptive adjustment
mechanism can not only highlight important feature information, but also effectively
suppress unnecessary features, thereby optimizing the entire feature fusion process.

Through this approach, this article not only enhances the emphasis on important
features, but also significantly reduces the amount of parameters in the network model.
This reduction in the number of parameters further improves the efficiency of the model
and makes the assessment of image quality more accurate and reliable. The network
structure of this adaptive fusion network module is shown in Fig. 4.

Figure 3 Network structure of the perception module. Full-size DOI: 10.7717/peerj-cs.2654/fig-3
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The input of the network is the feature info0iði ¼ 1; 2; 3Þ processed by the perception
module. These features have different dimensions, where info01 contains a 16-dimensional
feature map, info02 contains a 32-dimensional feature map, and info03 contains a
64-dimensional feature map. Since the dimensions of these feature maps are inconsistent,
in order to perform effective feature fusion in the model, this article converts them into
feature maps of the same size. This model uniformly converts all feature maps into 64-
dimensional feature maps. Specifically, this article uses 64 convolution kernels of size 1� 1
to convolve these three features. The step size of each convolution kernel is different to
ensure that different information in each feature map can be captured during the feature
fusion process. In this way, this article can better fuse feature maps of different dimensions,
so that the model can make full use of these features and improve the overall performance
and accuracy. This feature fusion method not only ensures the consistency of feature map
dimensions, but also can capture more local and global information through convolution
operations of different step lengths, thereby enhancing the feature expression ability of the
model. The features after dimension matching are summed up, as shown in Eq. (3).

info0sum ¼ Mðinfo01Þ þMðinfo02Þ þMðinfo03Þ: (3)

Among them, info0sum represents the features obtained after fusion, MðÞ represents the
dimension matching function, and info0iði ¼ 1; 2; 3Þ represents the features processed by
the perception module. The size of the fused feature map is height � width � channel
(where height represents the height of the feature map, width represents the width of the
feature map, and channel represents the number of channels of the feature map). Then,

Figure 4 Structure of the adaptive fusion network. Full-size DOI: 10.7717/peerj-cs.2654/fig-4
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global average pooling is used to capture the global information of infoi. infoi represents
the features of four different scales obtained by the input image through the ResNet
network, and the features are aggregated into a channel � 1-dimensional feature vector
infoeig . Then, based on the fully connected layer, infoeig is compressed into

ðchannel=coeÞ � 1-dimensional squeezed feature information infoext , where coe is the
compression coefficient, as shown in Eq. (4).

infoext ¼ Aðmatrixðchannel=coeÞ�1infoeigÞ: (4)

Among them, infoext represents the squeeze feature information, AðÞ represents the
activation function, matrixðchannel=coeÞ�1 represents the ðchannel=coeÞ � 1 dimensional
weighted matrix, and infoeig represents the channel � 1 dimensional feature vector.

The model complexity can be reduced to a certain extent by the squeezing operation of
the fully connected layer. Specifically, feature infoext is input to the softmax layer and the
fully connected layer, which can adaptively select important features from different scales.
In this process, softiði ¼ 1; 2; 3Þ represents the weight vector obtained through the adaptive
network, which corresponds to feature selection at different scales. To be more specific,
assume that softiði ¼ 1; 2; 3Þ is the weight vector generated by the adaptive network at
different scales, and softjiði ¼ 1; 2; 3Þ represents the j� th element in softiði ¼ 1; 2; 3Þ,
respectively. Due to the inherent properties of the softmax layer, the elements of the weight
vector softiði ¼ 1; 2; 3Þ will satisfy the conditions of

P3
i¼1 soft

j
i ¼ 1. This means that at

each position j, the sum of the elements of the weight vector softiði ¼ 1; 2; 3Þ is 1, ensuring
the normalization of the weights and the reasonable distribution of relative importance.
Finally, by operating the information with weights at different scales, the final feature map
ffused can be obtained, as shown in Eq. (5).

ffused ¼
X3
i¼1

softiinfo
0
i: (5)

Among them, ffused represents the final feature map, softiði ¼ 1; 2; 3Þ represents the
weight vector generated by the adaptive network at different scales, and info0iði ¼ 1; 2; 3Þ
represents the features processed by the perception module. This method can not only
effectively reduce the complexity of the model, but also improve the feature extraction
ability and generalization performance of the model by adaptively selecting and combining
important features at different scales.

Quality assessment regression module
The target network of image quality assessment aims to accurately map the learned multi-
scale image features to the corresponding quality scores. In this model structure, the target
network used is composed of two fully connected layers. These two fully connected layers
are responsible for fusing and processing information at different levels to ensure that the
final output quality score can effectively reflect the quality of the input image. Specifically,
the target network first receives the global semantic information info4, which contains a
high-level understanding of the overall characteristics of the input image. At the same
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time, the target network also receives the feature ffused obtained through the adaptive fusion
network. The role of the adaptive fusion network is to intelligently combine multi-scale
image features to generate more representative feature representations. Then, through Eq.
(6), the target network connects the global semantic information info4 with the feature
ffused to obtain the fused feature representation f 0fused . This process not only retains the

global information of the image, but also integrates multi-scale features, so that the final
f 0fused can more comprehensively reflect the quality characteristics of the image. Finally, the

target network maps f 0fused to a specific quality score through further calculation, thus
completing the image quality assessment task.

f 0fused ¼ Fðffused; info04Þ: (6)

Among them, f 0fused represents the fused features, FðÞ represents the feature fusion
function, ffused represents the features obtained by the adaptive fusion network, and info04
represents the features processed by the perception module.

After the obtained feature f 0fused is used as the input of the target network, it is further
processed. This article selects the LeakyReLU function as the activation function of the
target network. The LeakyReLU function is a commonly used activation function that
allows a certain negative slope when the input value is negative, thereby alleviating the
“neuron death” problem that may occur in the ReLU function to a certain extent. This
target network inputs the feature f 0fused into fully connected layers activated by the
LeakyReLU activation function, which perform nonlinear transformations on the input
features to capture important patterns and features required in image quality assessment.
Finally, after multiple layers of processing, the target network outputs an image quality
score, which represents a comprehensive assessment result of the input image quality. This
quality score is shown in Eq. (7), which specifically describes the calculation process from
feature f 0fused to the final quality score. Through this process, the network can effectively use
the learned features to evaluate the image quality and return a quantitative quality score S.

S ¼ Evaðf 0fused;weightfull; biasÞ: (7)

Among them, S represents the final predicted image quality score, EvaðÞ represents the
quality assessment network model, f 0fused represents the fused features, weightfull represents
the fully connected layer weight of the target network, and CC represents the fully
connected layer bias of the target network.

Based on the above content, the overall network model proposed in this article is shown
as Eq. (8).

Sfinal ¼ T Evaðx; infoi; info0i; SÞði ¼ 1; 2; 3Þ (8)

Among them, Sfinal represents the final quality score of the image, T EvaðÞ represents
the entire network model, x represents the input distorted image, infoi represents the
multi-scale feature extraction network model from ResNet-50, info0i represents the
perception network model, S represents the quality assessment network model, and i
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represents the features of i different scales after processing by the perception network
model.

EXPERIMENTS AND ANALYSES
Datasets
To ensure the objectivity and effectiveness of the experiments, this article utilizes a
combination of real-world and artificially synthesized distortion datasets, including
KonIQ-10K (Hosu et al., 2020), LIVE (Edlund et al., 2021), BIQ2021 (Ahmed & Asif, 2022),
and TID2013 (Ponomarenko et al., 2015).

Among these, KonIQ-10K is a widely adopted dataset for image quality assessment. It
comprises 10,073 real-world images collected from a variety of online platforms,
representing diverse shooting conditions and devices. Each image in the dataset is
associated with multiple subjective quality ratings provided by independent human
reviewers, making it a valuable resource for understanding perceptual image quality in
natural scenes.

The LIVE dataset, created by the University of Texas, is a well-established benchmark in
the field. It contains a broad range of images and video clips subjected to common
distortion types, such as compression artifacts, Gaussian noise, blur, and transmission
errors. The subjective scores for each image and video are derived from evaluations by
human observers, providing valuable insights into how these distortions affect perceived
quality.

In addition to these, the BIQ2021 dataset plays a critical role in NR-IQA tasks. Designed
to handle real-world distortions, BIQ2021 includes a diverse collection of both natural and
distorted images. The dataset provides subjective scores gathered from human observers,
facilitating research focused on blind or no-reference IQA. Its diverse range of real-world
distortions makes it an essential dataset for evaluating modern NR-IQA methods.

Lastly, the TID2013 dataset is one of the most comprehensive resources available for
image quality assessment, encompassing 25 reference images with 24 types of distortions at
five levels of intensity. These distortions cover a wide range of visual anomalies, including
Gaussian noise, image compression, chromatic aberrations, and more. Each image is
accompanied by subjective quality ratings collected from human participants, allowing for
detailed analysis of how different distortions impact perceptual quality. The richness of the
TID2013 dataset makes it an indispensable resource for both full-reference and no-
reference IQA model evaluation.

The number of datasets in the field of image quality assessment is relatively small, and it
is difficult to find enough data to complete experiments. This makes data preprocessing
operations particularly important in quality assessment. In order to increase the training
data of the model, this experiment uses data augmentation. First, for the training data in
the LIVE dataset, this article performs random sampling operations to obtain different
image samples. Then, these samples are horizontally inverted and the image size is
adjusted to 224 � 224 pixels. Next, data format conversion and data standardization are
performed to ensure that the data has a consistent format and distribution before entering
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the model. For the KonIQ� 10K dataset, this article first resizes the training data to
512 � 384 pixels. Then, it is processed according to the same steps as the LIVE dataset,
including random sampling, horizontal reversal, data format conversion, and data
normalization. These preprocessing operations not only increase the amount of data, but
also enrich the diversity of the data.

Dataset introduction and data augmentation
Due to the limited availability of datasets in the field of image quality assessment, acquiring
sufficient experimental data can be challenging.

1. LIVE
This dataset contains numerous images and videos with a variety of distortions,

including compression artifacts, noise, blur, and transmission errors. Like the KonIQ-10K
dataset, each image and video in the LIVE dataset is rated subjectively by human observers.
For the LIVE dataset, the process includes:

. Random Sampling: Selecting various image samples to increase data variability.

. Horizontal Flipping: Enhancing data diversity through mirroring.

. Resizing: Adjusting images to a uniform size of 224 × 224 pixels.

. Format Conversion and Normalization: Ensuring consistency in data format and
distribution.

2. TID2013
The TID2013 dataset is one of the most comprehensive datasets used for image quality

assessment, containing images with 24 types of distortions at five different levels of
severity. For the TID2013 dataset, the process includes:

. Resizing: All images are resized to 384� 384 pixels to ensure uniformity across the
dataset.

. Data Augmentation: Techniques such as random cropping and flipping are applied to
increase data variability and model performance.

. Format Conversion and Normalization: Consistent with other datasets, this step ensures
that all images are in the same format and normalized to a standard distribution.

3. KonIQ-10K
This dataset is widely utilized for image quality evaluation. It includes over 10,000

images gathered from various online platforms, covering a range of shooting conditions
and devices. For the KonIQ-10K dataset, the process includes:

. Resizing: Adjusting images to 512 × 384 pixels.

. Random Sampling and Horizontal Flipping: Similar to the LIVE dataset, to enrich the
dataset.

. Data Format Conversion and Normalization: Consistent with the preprocessing steps
used for the LIVE dataset.
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4. BIQ2021
The BIQ2021 dataset is a more recent addition to the field of image quality assessment,

specifically focusing on blind or no-reference image quality tasks. It includes a diverse
range of images, featuring both natural and distorted content. For the BIQ2021 dataset, the
process includes:

. Resizing: Images are resized to 256� 256 pixels to maintain consistency.

. Random cropping and horizontal flipping: These techniques are used to augment the
dataset and improve model robustness.

. Format conversion and normalization: Ensures consistency in data format and pixel
value distribution across all samples.

The code used in this experiment has been made publicly available on GitHub. You can
access it via the following link: https://github.com/deyi2024/A-Quality-Assessment-
Algorithm-for-No-Reference-Images-Based-on-Transfer-Learning.git.

Dataset with manual scoring
Unlike NSIs, which are captured from real scenes, AGIs are produced by AI models and
exhibit unique quality characteristics. Consequently, viewers assess AGIs differently from
NSIs. To address this, Zhang et al. (2023c) introduced the AGIQA-1K database, which
features 1,080 AGIs with quality labels covering technical issues, AI artifacts,
unnaturalness, discrepancy, and aesthetics.

Algorithm effect assessment indicators
This algorithm uses the two most commonly used model performance assessment
indicators in the field of image quality assessment to comprehensively measure the effect of
a no-reference image quality assessment algorithm based on transfer learning. The two
indicators are Pearson linear correlation coefficient (PLCC) and Spearman rank
correlation coefficient (SROCC). PLCC is a statistic used to measure the strength of the
linear relationship between two variables. In image quality assessment, PLCC is used to
evaluate the linear correlation between the quality score predicted by the model and the
subjective score of humans. A higher PLCC value indicates that there is a strong linear
relationship between the quality score predicted by the model and the subjective score,
which means that the model can accurately reflect human perception of image quality. The
algorithm proposed in this article calculates PLCC as shown in Eq. (9).

SPLCC ¼
Pn

i¼1 ðreali � realÞðpredi � predÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðreali � realÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðpredi � predÞ2

q : (9)

Among them, SPLCC represents the Pearson linear correlation coefficient value, i
represents the i� th distorted image, n represents the total number of distorted images,

reali represents the subjective assessment score of the distorted image, real represents the
mean of the subjective score, predi represents the model prediction score of the distorted
image, and pred represents the mean of the prediction score.
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PLCC is a commonly used indicator to describe the linear correlation between two sets
of data, and its value range is between [−1, 1]. Specifically, when the value of PLCC is 0, it
means that the two sets of data are completely unrelated, that is, there is no linear
relationship between the quality score predicted by the model and the subjective
assessment of humans. The closer the PLCC value is to 1, the stronger the positive linear
relationship between the two sets of data. In other words, the closer the model-predicted
score is to the standard of human subjective assessment, the better the model’s
performance. On the contrary, if the PLCC value is close to −1, it means that there is a
strong negative linear relationship between the two sets of data, which means that the
model’s prediction results are exactly the opposite of the trend of human subjective
assessment. In this case, the model’s prediction performance is poor and cannot effectively
reflect humans’ actual perception of image quality.

SROCC is a nonparametric statistic that measures the order relationship between two
variables. SROCC is used in image quality assessment to evaluate the monotonic
relationship between model prediction results and subjective scores, that is, whether the
two variables have a consistent ranking trend. A higher SROCC value indicates that the
ranking of the model prediction results is more consistent with the ranking of the
subjective scores, which means that the model can maintain a good relative order when
predicting image quality. These two performance assessment indicators can
comprehensively measure the prediction accuracy and monotonicity of the prediction
results of the algorithm proposed in this article. The SROCC calculated by the algorithm
proposed in this article is shown in Eq. (10).

SSROCC ¼ 1� 6
Pn

i¼1 grade
2
i

nðn2 � 1Þ : (10)

Among them, SSROCC represents the Spearman rank correlation coefficient value, i
represents the i� th distorted image, n represents the total number of distorted images,
and gradei represents the grade difference between the predicted score and the subjective
score of the distorted image.

SROCC is often used to represent the rank correlation between two sets of data, and its
value range is [0, 1]. When the SROCC value is closer to 1, it means that the consistency
between the two sets of data is higher. In image quality assessment, a higher SROCC value
indicates that there is a high degree of consistency between the quality score predicted by
the model and the ranking of human subjective assessment, indicating that the model can
well imitate human quality perception ability when predicting image quality, indicating
that the model’s predicted score is very close to the subjective quality assessment.

Comparison of experimental results
Comparison based on the real distortion dataset KonIQ � 10K and BIQ2021
The research method in this article was compared with the assessment methods proposed
by other scholars on the same datasets (KonIQ� 10K and BIQ2021). First, 90% of all
target images in the dataset are randomly selected as training data, and the remaining 10%
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are used as test data. In order to ensure the robustness of the experimental results and
reduce the accidental effects caused by data division, the division of the training set and the
test set is repeated 50 times, and the median of all results is taken as the final experimental
result. In order to reduce the impact of outliers on model training, the mean absolute error
(MAE) was used as the loss function during the training process. MAE can minimize the
gap between the model prediction results and the actual subjective quality score, making
the model’s prediction results as close to the subjective quality score as possible. The
calculation method of the loss function is shown in Eq. (11). By minimizing this loss
function, the model can more accurately reflect the true quality of the image.

Loss ¼
PSum

i¼1 jjT Evaðpiecei; infoi; info0i; SÞ � Q realijj
Sum

: (11)

Among them, Loss represents the loss function value, Sum represents the total number
of image blocks, T EvaðÞ represents the entire network model, piecei represents the i� th
image block of the input distorted image, infoi represents the multi-scale feature extraction
network model from ResNet � 50, info0i represents the perception network model, S
represents the quality assessment network model, and Q reali represents the true quality
score of the i� th image block.

This experiment compares the image quality assessment methods based on manually
extracted image features, such as the IQA—NRTL method proposed in this article, the
ECGQA algorithm proposed by Liu et al. (2021), the DLBF algorithm proposed byMahum
& Aladhadh (2022), the FDD algorithm proposed by Chen, Rottensteiner & Heipke (2021),
and the image quality assessment methods based on deep learning, such as the CELL
algorithm proposed by Rasheed, Shi & Khan (2023), the PDAA algorithm proposed by
Valicharla et al. (2023), and the CFFA algorithm proposed by König et al. (2024). The
experiments are carried out on the authentically distorted images from KonIQ� 10K and
BIQ2021 dataset, and the algorithm effects are compared with the PLCC and SROCC
values, as shown in Table 1.

As can be seen from Table 1, the assessment methods based on manual feature
extraction, such as ECGQA, DLBF, and FDD, perform poorly on real distortion datasets,
which is specifically reflected in the low PLCC and SROCC values and the inability to
accurately predict the image quality score. This shows that these methods have obvious
limitations when dealing with complex image quality assessment tasks and cannot
effectively capture the true quality characteristics of images. In contrast, deep learning-
based assessment methods such as CELL, PDAA, and CFFA perform much better on real
distortion datasets. These methods learn image features through deep neural networks and
improve the accuracy of image quality prediction to a certain extent. However, these
methods still have difficulty in achieving ideal prediction accuracy for various reasons. The
CELL method lacks a module that captures local semantic information, which makes it
unable to fully understand the local quality changes of the image; although the PDAA
method considers the importance of local information for global quality prediction, it
ignores the correlation between the extracted hierarchical features, which limits its

Yang et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2654 18/25

http://dx.doi.org/10.7717/peerj-cs.2654
https://peerj.com/computer-science/


performance improvement; the adaptive layer of the CFFA method ignores important
underlying distortion information when selecting features, making its prediction results
imperfect.

The IQA—NRTL method proposed in this article improves the above shortcomings.
IQA—NRTL is designed to pay more attention to the comprehensiveness and accuracy of
feature extraction, especially in capturing local semantic information and processing
multi-layer feature correlation. Experimental results show that the PLCC and SROCC
values of the IQA—NRTL method on the real distortion data set have reached the optimal
level, significantly better than traditional manual feature extraction methods and existing
deep learning methods. Among them, in terms of PLCC, the IQA—NRTL method
improves by 15.64% and 12.68% respectively compared with the optimal solutions of the
first two strategies. In terms of SROCC, the IQA—NRTL method improves by 27.76% and
5.65% respectively compared with the optimal solutions of the first two strategies. This
shows that the IQA—NRTL method has high accuracy and reliability in evaluating data
sets of real natural scenes.

Comparison based on artificial distortion dataset LIVE and TID2013
In order to verify the performance of this method on a synthetic dataset, this article
selected the LIVE and TID2013 dataset, which is widely used in the field of image quality
assessment. Through this dataset, this article systematically compared and analyzed the
proposed assessment method with other commonly used quality assessment methods.
Specifically, the PLCC and SROCC values of each method on the LIVE dataset were
calculated to measure the accuracy and consistency of different methods in image quality
prediction. Table 2 shows the PLCC and SROCC values of each method on the LIVE data
set. It can be clearly seen from the results that the IQA—NRTL method proposed in this
article performs well on both key performance indicators, significantly better than
traditional manual feature extraction methods and existing deep learning methods.

From the data in Table 2, it can be concluded that the assessment method IQA—NRTL
proposed in this article has achieved relatively ideal test results on the LIVE dataset, and its
PLCC and SROCC values are better than most methods. Although the assessment score of

Table 1 Comparative experimental results based on the KonIQ� 10K and BIQ2021 dataset.

Comparison algorithms KonIQ-10K results BIQ2021 results

PLCC SROCC PLCC SROCC

Based on hand-crafted statistics ECGQA 0.650 0.549 0.703 0.612

DLBF 0.694 0.614 0.743 0.679

FDD 0.755 0.498 0.802 0.564

Based on deep learning CELL 0.713 0.710 0.768 0.766

PDAA 0.782 0.638 0.831 0.693

CFFA 0.669 0.802 0.727 0.865

IQA-NRTL 0.895 0.850 0.938 0.902
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the IQA—NRTL method did not reach the best among all mainstream image quality
assessment methods, its PLCC index reached 0.914, which was only 0.006 lower than the
best algorithm, and its SROCC index reached 0.929, which was only 0.009 lower than the
best method. This shows that the IQA—NRTL method can provide reliable quality
prediction results in practical applications while maintaining high accuracy and
consistency. Compared with the mainstream FDD and PDAA methods, the performance
of the IQA—NRTL method in practical applications is not substantially different, and it
can meet the needs of actual image quality assessment and achieve ideal quality prediction
results. In summary, by comparing the experimental results, it can be seen that the IQA—
NRTLmethod proposed in this article performs quite well on the LIVE dataset. Although it
is slightly inferior to the best method in some indicators, its overall performance is
comparable to the current mainstream image quality assessment methods.

Fusion experiment
To further verify the effectiveness of the IQA—NRTLmethod proposed in this article, this
article conducted multiple comparative experiments on the KonIQ� 10K , BIQ2021, LIVE
and TID2013 dataset. First, this article uses a model containing only the ResNet � 50
network as the baseline method for experiments, named Exp ResNet � 50; then, the multi-
scale semantic information feature extraction module, visual perception module and
adaptive fusion network module are added in turn for experiments, named Exp Semantic,
Exp Vision and Exp Adapt respectively; finally, the IQA—NRTL model containing all
modules is used for experiments. Through these experiments, the experimental results of
the five models were obtained and their PLCC and SROCC values were compared. The
experimental results are shown in Table 3.

Through the above experimental steps, we can compare in detail the effect of each
module on improving model performance, and finally verify the effectiveness and
superiority of the IQA—NRTL method proposed in this article in image quality
assessment. Experimental results show that the addition of each module significantly
improves the performance of the model, and the final IQA—NRTLmodel performs best in
both PLCC and SROCC indicators.

Table 2 Comparative experimental results based on the LIVE and TID2013 dataset.

Comparison algorithms LIVE results TID2013 results

PLCC SROCC PLCC SROCC

Based on hand-crafted statistics ECGQA 0.908 0.859 0.853 0.802

DLBF 0.915 0.848 0.862 0.789

FDD 0.906 0.901 0.851 0.860

Based on deep learning CELL 0.912 0.910 0.860 0.857

PDAA 0.920 0.930 0.871 0.883

CFFA 0.877 0.817 0.821 0.764

IQA-NRTL 0.914 0.929 0.870 0.874
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Subjective experiment based on AGIQA� 1K
Both the algorithms based on “Hand-Crafted Statistics” and “Deep Learning,” as well as
the IQA-NRTL algorithm proposed in this article, achieved satisfactory results in image
quality assessment experiments, as shown in Table 4. However, in subjective evaluation
experiments, the results of the IQA-NRTL algorithm were closer to human visual scores
compared to other algorithms. This indicates that the proposed algorithm demonstrates a
clear advantage in subjective evaluations, further underscoring its ability to better simulate
the human visual system’s perception of image quality. This advantage highlights the
superior practical reliability of the IQA-NRTL algorithm in image quality assessment tasks.

CONCLUSION
This article presents an advanced no-reference image quality assessment method, IQA-
NRTL, based on deep learning that leverages transfer learning combined with a
convolutional neural network to address common challenges in image quality assessment.
By integrating transfer learning, IQA-NRTL increases the available training data,
mitigating overfitting and enhancing generalization. The design incorporates a multi-scale
information extraction approach, enabling the model to capture distortion characteristics
at various levels and ensuring effective identification of quality issues. Additionally, a
perception module refines semantic information extraction by reducing the impact of

Table 3 Comparative experimental results.

Comparison algorithms KonIQ-10K BIQ2021 LIVE TID2013

PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC

Exp_ResNet-50 0.815 0.721 0.857 0.762 0.912 0.918 0.883 0.881

Exp_Semantic 0.826 0.810 0.868 0.852 0.927 0.937 0.892 0.902

Exp_Vision 0.819 0.799 0.852 0.849 0.924 0.928 0.894 0.891

Exp_Adapt 0.834 0.749 0.871 0.784 0.928 0.936 0.891 0.906

IQA-NRTL 0.887 0.859 0.928 0.891 0.949 0.955 0.912 0.928

Table 4 Comparative experimental results based on the AGIQA-1K dataset.

Comparison algorithms Algorithm results AGIQA-1K results

PLCC SROCC PLCC SROCC

ECGQA 0.894 0.827 0.846 0.783

Based on hand-crafted statistics DLBF 0.870 0.786 0.836 0.793

FDD 0.875 0.828 0.827 0.826

CELL 0.901 0.899 0.825 0.893

Based on deep learning PDAA 0.912 0.927 0.804 0.810

CFFA 0.863 0.801 0.736 0.762

IQA-NRTL 0.909 0.921 0.903 0.910
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irrelevant details, while an adaptive fusion module integrates global and local features,
improving the accuracy and comprehensiveness of quality assessments. A cognitive
memory library through a fully connected layer regression network provides robust
predictions for distorted images. Experimental results validate the effectiveness of IQA-
NRTL, demonstrating a 15.64% improvement in PLCC and a 27.76% improvement in
SROCC compared to the best traditional methods, confirming its superiority in image
quality assessment.
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