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ABSTRACT
This study conducts a comparative analysis of the performance of ten novel and well-
performing metaheuristic algorithms for parameter estimation of solar photovoltaic
models. This optimization problem involves accurately identifying parameters that
reflect the complex and nonlinear behaviours of photovoltaic cells affected by
changing environmental conditions and material inconsistencies. This estimation is
challenging due to computational complexity and the risk of optimization errors,
which can hinder reliable performance predictions. The algorithms evaluated include
the Crayfish Optimization Algorithm, the Golf Optimization Algorithm, the Coati
Optimization Algorithm, the Crested Porcupine Optimizer, the Growth Optimizer,
the Artificial Protozoa Optimizer, the Secretary Bird Optimization Algorithm, the
Mother Optimization Algorithm, the Election Optimizer Algorithm, and the
Technical and Vocational Education and Training-Based Optimizer. These
algorithms are applied to solve four well-established photovoltaic models: the single-
diode model, the double-diode model, the triple-diode model, and different
photovoltaic module models. The study focuses on key performance metrics such as
execution time, number of function evaluations, and solution optimality. The results
reveal significant differences in the efficiency and accuracy of the algorithms, with
some algorithms demonstrating superior performance in specific models. The
Friedman test was utilized to rank the performance of the various algorithms,
revealing the Growth Optimizer as the top performer across all the considered
models. This optimizer achieved a root mean square error of 9.8602187789E−04 for
the single-diode model, 9.8248487610E−04 for both the double-diode and triple-
diode models and 1.2307306856E−02 for the photovoltaic module model. This
consistent success indicates that the Growth Optimizer is a strong contender for
future enhancements aimed at further boosting its efficiency and effectiveness. Its
current performance suggests significant potential for improvement, making it a
promising focus for ongoing development efforts. The findings contribute to the
understanding of the applicability and performance of metaheuristic algorithms in
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renewable energy systems, providing valuable insights for optimizing photovoltaic
models.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Optimization Theory and
Computation, Neural Networks
Keywords Solar photovoltaic models, Parameter estimation, Metaheuristics, Single-diode model,
Double-diode model, Triple-diode model, Photovoltaic module model

INTRODUCTION
Optimization is the process of making systems or decisions as effective, efficient, or
functional as possible. It is a fundamental concept that influences a broad range of
everyday activities and operations. By applying optimization techniques, individuals and
organizations can achieve the best possible outcomes with the least waste of time, effort,
and resources. In daily life, optimization manifests in various forms, such as planning the
quickest route to work to minimize commuting time, organizing schedules to enhance
productivity, or managing household budgets to maximize financial resources.

Optimization techniques and algorithms play a pivotal role in various sectors, driving
efficiency and enhancing the quality of solutions. In logistics and supply chain
management (Griffis, Bell & Closs, 2012), optimization algorithms are employed to
streamline routes and manage inventory levels effectively, thereby reducing costs and
improving delivery times. In finance (Katib et al., 2023; Boloş, Bradea & Delcea, 2021),
these techniques are crucial for portfolio optimization, risk management, and algorithmic
trading, ensuring that investments yield the best possible returns with minimal risk. The
manufacturing industry (Para, Del Ser & Nebro, 2022; Fathi & Ghobakhloo, 2020)
leverages optimization to enhance production processes, minimize waste, and improve
product quality. Similarly, in telecommunications (Moscholios et al., 2022; Moradi et al.,
2024), optimization is used to design efficient networks, manage traffic flow, and ensure
reliable connectivity.

Metaheuristics, such as genetic algorithms (Holland, 1992), particle swarm optimization
(Kennedy & Eberhart, 1995), and simulated annealing (Bertsimas & Tsitsiklis, 1993), are
widely favoured over exact methods for tackling complex optimization problems. These
metaheuristic algorithms can be broadly categorized based on their sources of inspiration,
which generally fall into four main groups: evolutionary algorithms, swarm intelligence,
physics-based methods, and human-based methods (Zitouni, Harous & Maamri, 2020).
Evolutionary algorithms, such as genetic algorithms and evolutionary mating algorithm
(Sulaiman et al., 2023), are inspired by natural selection processes, while swarm
intelligence methods, like particle swarm optimization and the archerfish hunting
optimizer (Zitouni et al., 2022), mimic the collective behaviour in biological populations.
Physics-based methods, such as simulated annealing and Young’s double-slit experiment
optimizer (Abdel-Basset et al., 2023a), draw from natural phenomena in physics.
Finally, human-based methods simulate human decision-making strategies and include
techniques like the human conception optimizer (Acharya & Das, 2022) and the
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leader-advocate-believer-based optimization algorithm (Reddy et al., 2023) and other
approaches inspired by human problem-solving behaviours. While exact methods such as
linear programming (Best & Ritter, 1985) or branch and bound (Lawler & Wood, 1966)
provide precise solutions, they often become computationally infeasible for large-scale or
intricate problems. Metaheuristics, in contrast, offer a practical approach by delivering
near-optimal solutions within a reasonable amount of time, making them suitable for real-
world applications where time and resources are limited (Blum & Roli, 2003).

One particularly challenging optimization problem is the parameters’ estimation of
solar photovoltaic (PV) models (Alsadi & Khatib, 2018). As the world increasingly turns to
renewable energy sources to reduce dependence on fossil fuels and combat climate change,
optimizing PV models becomes essential. PV model optimization involves maximizing
energy output and efficiency, which can significantly impact the viability and scalability of
solar energy solutions. Effective optimization of PV systems ensures that solar panels
operate at their highest potential, leading to greater energy savings and contributing to
more sustainable future energy. This optimization not only supports environmental
sustainability but it enhances energy security and reduces energy costs for consumers,
thereby playing a crucial role in our daily lives (Gu, Xiong & Fu, 2023). Even so, a
significant obstacle to the broader adoption of solar energy is its low conversion efficiency,
which drives the need for more innovative methods to enhance the design of solar energy
conversion systems. The solar cell serves as the essential element of a PV system, and
accurately modelling and estimating its parameters is crucial for effective simulation,
design, and control to achieve optimal performance. Estimating a solar cell’s unknown
parameters is complex due to the nonlinearity and multimodal nature of the search space.
Traditional optimization techniques are often inefficient in this context because they
struggle to navigate the complex, high-dimensional search space, making it easy to become
trapped in local optima and preventing a comprehensive exploration of possible solutions.
In contrast, metaheuristic algorithms are seen as promising due to their ability to explore
the search space more effectively, avoiding local optima and enhancing the chances of
finding a global solution. Their flexibility and adaptability make them well-suited to handle
complex, nonlinear, and multimodal problems like those involved in solar cell parameter
estimation (Sharma et al., 2023b).

Driven by the No-Free-Lunch theorem (Adam et al., 2019), a wide range of new
metaheuristic algorithms have been proposed during the last three decades to address
global optimization challenges; however, their effectiveness has largely been assessed
through standard benchmark functions alone. Thus, it is essential to undertake more
in-depth studies to confirm the viability of these optimizers in practical real-world
applications. This study, therefore, aims to address a paramount research question
identified in the literature: the need for comparative analyses to evaluate the performance
of recent state-of-the-art metaheuristics in estimating PV model parameters. To this end,
we examine the performance of ten recent metaheuristics in determining PV cell
parameters across four case studies, involving the single-diode model (SDM), double-
diode model (DDM), triple-diode model (TDM), and PV module model. Figure 1 presents
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a flow diagram illustrating the process of employing metaheuristic algorithms to extract
parameters of PV models.

This research article makes several significant contributions to the field of PV model
optimization. In this study, we implement ten recent high-performing metaheuristics to
tackle the problem of PV parameter estimation for four different solar PV models: SDM,
DDM, TDM, and PVMM. The metaheuristic algorithms we have used are the Crayfish
Optimization Algorithm (Jia et al., 2023), the Golf Optimization Algorithm (Montazeri
et al., 2023), the Coati Optimization Algorithm (Dehghani et al., 2023), the Crested
Porcupine Optimizer (Abdel-Basset, Mohamed & Abouhawwash, 2024), the Growth
Optimizer (Zhang et al., 2023), the Artificial Protozoa Optimizer (Wang et al., 2024), the
Secretary Bird Optimization Algorithm (Matoušová et al., 2023), the Mother Optimization
Algorithm (Fu et al., 2024), the Election Optimizer Algorithm (Zhou et al., 2024), and the
Technical and Vocational Education and Training-Based Optimizer (Hubalovska &
Major, 2023). These algorithms have been chosen based on their diversity, popularity in
recent studies, and applicability to the PV parameter estimation problem addressed in this
research. In addition, it provides a comprehensive evaluation of these algorithms in terms
of execution time, number of function evaluations, solutions’ optimality, current-voltage
(I–V) characteristic curves, power-voltage (P–V) characteristic curves, and convergence
rate. The contrastive analysis not only highlights the strengths and weaknesses of each
metaheuristic but also identifies the most suitable algorithm for efficient and accurate
parameter estimation in PV models. Furthermore, the findings contribute to a deeper
understanding of the applicability and performance of metaheuristic algorithms in
renewable energy systems.

The article is structured as follows: “PV Models and Mathematical Formulations”
describes the considered PV models and presents their mathematical formulations,
establishing the foundational concepts necessary for understanding the subsequent
sections. “Related Work” offers an overview of some state-of-the-art solutions proposed to
address the challenges associated with PVmodels. “Considered Metaheuristic Algorithms”
delves into the selected metaheuristic algorithms, highlighting their working principles and

Figure 1 Flow diagram illustrating the application of metaheuristic algorithms for parameter
extraction in PV models. Full-size DOI: 10.7717/peerj-cs.2646/fig-1
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equations, which will be used for contrastive analysis. “Numerical Results and Analysis”
presents the numerical results, discussing the performance variations of the considered
algorithms, thus providing a detailed comparative assessment. Finally, “Conclusion and
Perspectives” summarizes the findings and suggests potential future directions for research
in this domain.

PV MODELS AND MATHEMATICAL FORMULATIONS
PV models are essential components in the study and implementation of solar energy
systems. They simulate the behaviour of solar panels in converting sunlight into electricity,
helping engineers and researchers optimize the design and efficiency of solar power
systems. By accurately predicting the performance of solar panels under various
environmental conditions, PV models play a crucial role in the development of sustainable
energy solutions. In the following sections, we introduce the most common PVmodels and
present their mathematical formulations (Petrone, Ramos-Paja & Spagnuolo, 2017).

Single-diode model
The single-diode model (SDM) is the most simple and widely used model for simulating the
I–V (current-voltage) characteristics of a PV cell. It represents the PV cell with a single
diode, a shunt resistor, a current source, and a series resistor. This model balances simplicity
with accuracy and is often used in software simulations. The relationship between I–V of a
PV cell in the SDM is presented by Eq. (1), where I and V are the output current and the
output voltage of the PV cell, respectively. Figure 2 is a simplified representation of the
equivalent circuit for the SDM (Petrone, Ramos-Paja & Spagnuolo, 2017).

Î I;V ; xð Þ ¼ Iph � Isd exp V þ Rs�I
n�Vt

� �
� 1

� �
� V þ Rs�I

Rsh

x ¼ Iph; Isd;Rs;Rsh; n
� �

8<
: (1)

The various symbols employed in Eq. (1) and illustrated in Fig. 2 are explained as
follows:

. Photocurrent (Iph) is the current produced by the PV cell due to light exposure.

. Isd represents the reverse saturation current of the diodes.

Figure 2 Diagram of the single-diode model. Full-size DOI: 10.7717/peerj-cs.2646/fig-2
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. Series resistance (Rs): The resistance due to the current flow through the cell’s material
and contacts.

. Diode ideality factor (n): A factor that accounts for the deviation of the diode from the
ideal behaviour, typically ranging from 1 to 2.

. Vt ¼ k�T
q is the thermal voltage, where T ¼ 273:15þ 33:0 is the temperature in Kelvin,

k ¼ 1:380649� 10�23 J=K is the Boltzmann constant, and q ¼ 1:602176634� 10�19 C
is the charge of an electron.

. Shunt resistance (Rsh): The leakage current paths within the cell.

. Id is the second term of Eq. (1).

. Ish is the third term of Eq. (1).

Double-diode model
In the double-diode model (DDM), one additional diode is included that is used for
recombination losses in the depletion region of the PV cell. It offers more accuracy than
the SDM, especially under low light conditions, but at the cost of increased complexity.
The relationship betweenIand V of a PV cell in the DDM is described by Eq. (2). Figure 3
provides a simplified depiction of the equivalent circuit for the DDM (Petrone, Ramos-Paja
& Spagnuolo, 2017).

Î I;V ; xð Þ ¼ Iph �
P2
i¼1

Isdi exp V þ Rs�I
ni�Vt

� �
� 1

� �h i
� V þ Rs�I

Rsh

x ¼ Iph; Isd1 ; Isd2 ;Rs;Rsh; n1; n2
� �

8<
: (2)

In addition to the symbols that have already been explained in Eq. (1), the different
symbols used in Eq. (2) and shown in Fig. 3 are explained as follows:

. Isd1 represents the reverse saturation current of the first diode.

. Isd2 represents the reverse saturation current of the second diode.

. Ideality factor of the first diode (n1): Typically close to 1, accounting for diffusion
current.

. Ideality factor of the second diode (n2): Typically greater than 2, accounting for
recombination current.

. Id1 is the second term of Eq. (2).

Figure 3 Diagram of the double-diode model. Full-size DOI: 10.7717/peerj-cs.2646/fig-3
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. Id2 is the third term of Eq. (2).

. Ish is the fourth term of Eq. (2).

Triple-diode model
The triple-diode model (TDM) is a more comprehensive representation of a PV cell’s
behaviour, incorporating three diodes to account for various recombination mechanisms
within the cell. This model is particularly useful for high-precision applications and
research where the effects of different recombination processes need to be distinguished.
The relationship between I and V of a PV cell in the TDM is described by Eq. (3). Figure 4
offers a simplified depiction of the equivalent circuit for the TDM (Khanna et al., 2015).

Î I;V ; xð Þ ¼ Iph �
P3
i¼1

Isdi exp V þ Rs�I
ni�Vt

� �
� 1

� �h i
� V þ Rs�I

Rsh

x ¼ Iph; Isd1 ; Isd2 ; Isd3 ;Rs;Rsh; n1; n2; n3
� �

8<
: (3)

In addition to the symbols already explained in Eqs. (1) and (2), the different symbols
used in Eq. (3) and shown in Fig. 4 are:

. Isd3 represents the reverse saturation current of third the diode.

. Ideality factor of the third diode (n3): Typically representing another recombination
mechanism.

. Id1 is the second term of Eq. (3).

. Id2 is the third term of Eq. (3).

. Id3 is the fourth term of Eq. (3).

. Ish is the fifth term of Eq. (3).

PV module model
A PV module model (PVMM) represents the electrical behaviour of a PV module, which
consists of multiple PV cells connected in series and/or parallel. This model is crucial for
simulating and analyzing the performance of PV modules under various conditions,
including changes in sunlight intensity, temperature, and load conditions. By
understanding the characteristics of PV modules, engineers can design more efficient solar

Figure 4 Diagram of the triple-diode model. Full-size DOI: 10.7717/peerj-cs.2646/fig-4
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energy systems and optimize their performance. The I–V relationship of a PVMM can be
described by an extension of the SDM to account for multiple cells. For a module with Ns

cells connected in series and Np strings connected in parallel, Eq. (4) is used. Figure 5 is a
simplified representation of the equivalent circuit for a PVMM (Gu, Xiong & Fu, 2023).

Î I;V ; xð Þ ¼ Iph � Np � Isd � Np exp V�Np þ Rs�I�Ns

n�Np�Ns�Vt

� �
� 1

� �
� V�Np þ Rs�I�Ns

Rsh�Ns

x ¼ Iph; Isd;Rs;Rsh; n
� �

(
(4)

Objective functions
The objective function used in the context of PV models is the root mean square error
(RMSE), which is used to optimize the accuracy of the model. The RMSE is calculated by
measuring the differences between the actual observed values and the predicted values by
the model. The main aim of the RMSE objective function is to minimize the differences
between the measured and simulated current values over a range of voltages. This
approach ensures that the model accurately represents the real behaviour of the PV cell or
module. The smaller the RMSE, the better the model fits the actual performance data. The
RMSE expression is given by Eq. (5) (Khanna et al., 2015).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

XM
j¼1

Î Ii;j;Vi;j; x
� �� Ii;j

� �2vuut (5)

The RMSE is used to calibrate PV models by adjusting model parameters (i.e., x) to
minimize the error between the measured and simulated I–V characteristics. During the
parameter extraction process, the objective is to determine the values of the set of parameters
that result in the lowest RMSE, indicating the best fit of the model to the observed data. In
practical scenarios, the values of I and V are given by the following matrices (N and M are,
respectively, the number of rows and columns) (Easwarakhanthan et al., 1986).

Figure 5 Diagram of the PV module model. Full-size DOI: 10.7717/peerj-cs.2646/fig-5
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I ¼

�0:2057 �0:1291
�0:0588 0:0057
0:0646 0:1185
0:1678 0:2132
0:2545 0:2924
0:3269 0:3585
0:3873 0:4137
0:4373 0:4590
0:4784 0:4960
0:5119 0:5265
0:5398 0:5521
0:5633 0:5736
0:5833 0:5900

0
BBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCA

; V ¼

0:7640 0:7620
0:7605 0:7605
0:7600 0:7590
0:7570 0:7570
0:7555 0:7540
0:7505 0:7465
0:7385 0:7280
0:7065 0:6755
0:6320 0:5730
0:4990 0:4130
0:3165 0:2120
0:1035 �0:0100
�0:1230 �0:2100

0
BBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCA

RELATED WORK
During the last decade, the parameter estimation of PV models has witnessed significant
advancements, driven by the increasing demand for accurate and efficient solar energy
systems. As reported in Sharma et al. (2023b), researchers have developed a myriad of
techniques to enhance the precision of parameter identification, ranging from classical
optimization methods to more sophisticated approaches using metaheuristic algorithms.
These algorithms aim to enhance the accuracy and efficiency of estimating the unknown
parameters in PV models. The following paragraphs review recent contributions in this
domain, highlighting their methodologies and outcomes.

The analysis conducted in Li et al. (2020) introduced an enhanced adaptive differential
evolution (DE) algorithm for estimating the parameters of PV, utilizing a crossover rate
sorting mechanism and a dynamic population reduction strategy to improve performance.
Similarly, the analysis conducted in Hao et al. (2020) presented a multi-strategy success-
history-based adaptive DE (SHADE) algorithm, which uses a technique that linearly
reduces the population size for the identification of PV model parameters. In this work, a
novel weighted mutation operator, Eigen Gaussian random walk strategy and an inferior
solution search technique are used to improve the performance of the proposed work.
Likewise, the study (Liang et al., 2020) developed a self-adaptive ensemble-based DE
algorithm to estimate the varying model parameters by combining three different
mutation strategies and employing a self-adaptive scheme to balance population diversity
and convergence. Additionally, the experiment (Saadaoui et al., 2021) proposed a genetic
algorithm evaluated on various PV models. To maintain population diversity, a non-
uniform mutation operator and an adaptive crossover operator are utilized to get a
comprehensive and focused search as the population converges. Likewise, the research
(Kharchouf, Herbazi & Chahboun, 2022) presented an enhanced DE algorithm for
estimating solar PV cell parameters. This algorithm utilized the Lambert W function and a
preliminary step to tune the mutation and crossover rates.

The findings detailed in Abd El-Mageed et al. (2023) highlighted an improved hybrid
optimization algorithm between the queuing search optimization (QSO) algorithm and
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DE for PV parameter extraction. This approach enhanced population diversity by applying
DE to every solution produced by the QSO. Besides, the work described in Sharma et al.
(2023b) explored the efficiency of several optimization algorithms for tackling the
parameter estimation problem of four PVmodules and cells. The analysis of the simulation
showed that the wild horse optimizer (Naruei & Keynia, 2022) excelled for the Solarex
MSX-60 and SS2018 PV modules, while the coot-bird optimization (Naruei & Keynia,
2021) algorithm performed best for the LSM20 PV module and the RTC France solar cell.
Furthermore, the research outlined in Memon, Akbari & Zare (2023) proposed an
improved cheetah optimizer, which integrates enhancements to the cheetah optimizer to
address parameter estimation in PV models. This improvement was driven by the need for
more precise optimization techniques to solve this complex problem. Bakır (2023)
compared the performance of four methods to enhance the performance of solar PV
systems through accurate parameter estimation of solar cells. Experimental results show
that the fitness-distance balance-based stochastic fractal search achieved the highest
estimation accuracy across different PV models.

The improved moth flame algorithm (Qaraad et al., 2023) utilized a local escape
technique to maintain the population diversity and boost the algorithm exploration
capabilities. Although this algorithm achieved very promising results compared to others,
it consumes many number of function evaluations (up to 125,000). Moreover, the hybrid
approach (Janani, Chitti Babu & Krishnasamy, 2023) combined analytical techniques with
the grey wolf algorithm, presenting a solution for the DDM. This combination aimed to
leverage the strengths of both methods to achieve better convergence rates and accuracy.
Similarly, an integration between the chaos game optimization algorithm and the least
squares estimator (Bogar, 2023) is proposed to accelerate convergence speed and improve
outcomes for PV models. Besides, the squirrel search algorithm (Maden et al., 2023) was
adapted to estimate the unknown parameters of some PV models by minimizing the root
mean squared error between measured and estimated data. This adaptation showed
significant improvements in accuracy. Likewise, a new variant of the artificial gorilla troops
optimizer is presented in Abdel-Basset et al. (2023b) and assessed on parameter estimation
for PV models. It uses the ranking-based update strategy and convergence acceleration
strategy to improve both exploitation and exploration capabilities. The ranking-based
update strategy enhances local and global search abilities, while the convergence
acceleration strategy aims to improve global search abilities for quicker solutions. Sharma
et al. (2023a) introduced teaching learning-based optimization with unique exemplar
generation schemes to improve parameter estimation for PV modules, addressing the
challenge posed by the model’s complexity. By incorporating a modified initialization
scheme using chaotic maps and dynamic oppositional learning, along with specialized
teacher and learner phases, this hybrid algorithm achieves high precision with low RMSE
values across various PV modules.

The Growth Optimizer (Aribia et al., 2023) was specifically developed to find the
unknown parameters for the KKC and RTC PV modules. However, it required a large
number of function evaluations to achieve its results. Furthermore, in the investigation
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presented inGu et al. (2023), a parameter decomposition technique was applied to simplify
the complexity of the parameter estimation problem before employing the L-SHADE
algorithm. This technique was evaluated using two different PV modules and showed its
effectiveness over several competitors. Moreover, the opposition-based initialization
particle swarm optimization (Touabi, Ouadi & Bentarzi, 2023) improved the original
algorithm using opposition-based theory to better solve the parameter identification
problem of the SDM. This improvement aimed to enhance the convergence speed and
accuracy of the algorithm. In addition, the chimp optimization algorithm (Yang et al.,
2023) minimized the RMSE between measured and estimated data to find the optimal
values of unknown parameters across several PV models. Furthermore, the Harris Hawks
optimization algorithm (Garip, 2023) was enhanced with fractal maps to propose a new
technique, which was used to identify unknown parameters of the RTC France solar cell
and PWP PVmodules. Moreover, the work investigated in Chauhan, Vashishtha & Kumar
(2023) introduced an opposition-based learning reptile search algorithm with a Cauchy
mutation strategy to improve the identification of parameters in various PV models,
enhancing convergence speed and overcoming local minima issues. Lastly, the artificial
hummingbird optimizer (Ayyarao & Kishore, 2024) was adapted for parameter
identification of PV models under three different objective functions, demonstrating its
versatility and effectiveness in solving this complex problem.

Recently, several studies have utilized metaheuristic optimization algorithms to tackle
the problem of estimating PV model parameters. Various optimization algorithms–
including the lion optimizer, arithmetic optimization algorithm, grasshopper optimization
algorithm, particle swarm optimization, sine cosine algorithm, salp swarm algorithm, and
vortex search algorithm–were compared in Restrepo-Cuestas & Montano (2024). These
models have been used to estimate and analyze the parameters of the Bishop model and
have been validated using both monocrystalline and polycrystalline photovoltaic cell
technologies. Also, Mohamed et al. (2024) presented a hybrid optimization algorithm that
combines the Kepler optimization algorithm, a ranking-based update mechanism, and
exploitation improvement mechanisms. This algorithm demonstrated superior
performance for single-, double-, and triple-diode models. In another work, the scholars
(Wu et al., 2024) proposed an enhanced salp swarm algorithm, referred to as the super-
evolutionary Nelder-Mead salp swarm algorithm, for determining the unknown
parameters of PV models. The proposed algorithm incorporates a super-evolutionary
mechanism with Gaussian-Cauchy mutation and vertical/horizontal crossover to enhance
the global optimization and local search capabilities of the standard salp swarm algorithm.
Moreover, a combination of an enhanced gas solubility optimization algorithm and a first-
order adaptive damping Berndt-Hall-Hall-Hausman method was proposed by
Ramachandran et al. (2024) to address the theoretical gap in objective function design for
PV models. In this study, a new objective function that combines the Berndt-Hall-Hall-
Hausman and the Levenberg-Marquardt techniques was introduced to enhance the quality
and reliability of estimating the unknown parameters of PV models. Additionally, the
authors (Imade et al., 2024) proposed an improved JAYA algorithm with Gaussian
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mutation and individual weighting factors, which enhances the speed and accuracy of
obtaining the values of unknown parameters in PV models. Also, a modified bare-bones
imperialist competition algorithm was proposed by Lei et al. (2024) to accurately
determine the parameters of PV models. In addition, the work in Ekinci, Izci & Hussien
(2024) developed a novel hybrid optimization algorithm that combines the gazelle
optimization algorithm and the Nelder-Mead algorithm to estimate the parameters of PV
models. To finish with, a chaos learning butterfly optimization algorithm was proposed for
the accurate extraction of PV model parameters (Ru, 2024). This algorithm incorporates
Cauchy mutation to increase perturbation and help the algorithm escape local optima, a
chaos learning strategy to enhance global exploration, local exploitation, and convergence
speed/accuracy, and a terminal elimination mechanism to randomly initialize the three
worst individual positions to increase population diversity.

These studies demonstrate the effectiveness of metaheuristic approaches in improving
PV parameter estimation accuracy and reliability. Table 1 provides a summary of the
previously reported metaheuristic-based solutions applied for parameter extraction in PV
models. In summary, these advancements highlight the ongoing efforts and innovations in
the field of PV parameter estimation, showcasing the diverse approaches and
methodologies employed to enhance the accuracy and efficiency of these critical
estimations. However, existing metaheuristic optimization techniques for PV model
parameter estimation often suffer from at least one of the following drawbacks: falling into
local optima, slow convergence speed, and high computational cost.

CONSIDERED METAHEURISTIC ALGORITHMS
In this section, we provide an overview of the ten metaheuristics used for the contrastive
analysis. We will present and briefly explain their pseudocodes, parameters, and equations.
Table 2 summarizes the variables utilized in the considered algorithms. It is worth noting
that all the metaheuristic algorithms discussed here use Eq. (6) to create the initial
population.

xi ¼ r1 � UB� LBð Þ þ LB
i 2 f1; . . . ;Ng

�
(6)

Crayfish Optimization Algorithm
Inspired by the behaviours of crayfish, a new metaheuristic optimization algorithm, called
Crayfish Optimization Algorithm (COA), has been proposed (Jia et al., 2023). COA
divides these behaviours into three distinct stages to balance exploration and exploitation.
The summer resort stage represents the exploration phase where crayfish seek refuge when
temperatures are high. The competition stage, which is a part of the exploitation phase,
where crayfish compete for the same cave when temperatures are high. The foraging stage,
which is another part of the exploitation phase, where crayfish forage for food when the
temperature is suitable. Algorithm 1 outlines the working principle of the COA, with each
phase illustrated by Eqs. (7) through (12).
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Table 1 Summary of metaheuristic-based solutions for parameter extraction of PV models.

Solution Models Algorithm(s) used

Li et al. (2020) SDM, DDM, PVMM An enhanced adaptive differential evolution algorithm

Hao et al. (2020) SDM, DDM, PVMM A multi-strategy success-history based adaptive differential evolution
with linear population size reduction

Liang et al. (2020) SDM, DDM, PVMM A self-adaptive ensemble-based differential evolution algorithm

Saadaoui et al.
(2021)

SDM, DDM, PVMM, ESP-160 PPW PV, STP6-120/36,
Photowatt-PWP201

A genetic algorithm based on non-uniform mutation

Kharchouf, Herbazi
& Chahboun
(2022)

SDM, DDM, PVMM An improved differential evolution algorithm

Abd El-Mageed
et al. (2023)

SDM, DDM, PVMM, TFST40, MCSM55 An improved queuing search optimization algorithm dependent on
the differential evolution

Sharma et al.
(2023b)

R.T.C. France solar cell, LSM20 PV module, Solarex
MSX-60 PV module, SS2018P PV module

Spotted hyena optimizer, Sooty tern optimization, Aquila
optimization, Harris hawks optimization, Wild horse optimization,
Arithmetic optimization algorithm, Atom search optimization, Coot
bird optimization

Memon, Akbari &
Zare (2023)

SDM, DDM, PVMM An Improved cheetah optimizer

Bakır (2023) SDM, DDM, PVMM Fitness-distance balance-based stochastic fractal search, Particle
swarm optimization, student psychology-based optimization,
adaptive guided differential evolution

Qaraad et al. (2023) SDM, Photowatt-PWP 201 model, STM6-40/36 model An improved moth flame algorithm with local escape operators

Janani, Chitti Babu
& Krishnasamy
(2023)

SDM, DDM, PVMM A hybrid grey wolf optimization

Bogar (2023) SDM, DDM, TDM, PVMM A chaos game optimization-least squares algorithm

Maden et al. (2023) SDM, DDM, PVMM, R.T.C. France silicon solar cell,
polycrystalline CS6P-220P solar module

Squirrel search algorithm

Abdel-Basset et al.
(2023b)

SDM, DDM, TDM, PVMM A new variant of the artificial gorilla troops optimizer called ranking-
based gorilla troops optimizer

Abdel-Basset et al.
(2023a)

Photowatt-PWP201, Leibold Solar (LSM 20), Leybold
Solar (STE 4/100) PV modules

A new variant of teaching learning-based optimization with unique
exemplar generation schemes + chaotic maps and dynamic
oppositional based learning

Aribia et al. (2023) RTC France, Kyocera KC200GT PV modules Growth optimization

Gu et al. (2023) multi-crystalline KC200GT, mono-crystalline SM55 A success-history adaptation differential evolution with linear
population size reduction and decomposition

Touabi, Ouadi &
Bentarzi (2023)

STM6-40/36 module, Photowatt-PWP201 An opposition based initialization particle swarm optimization

Yang et al. (2023) SDM, DDM, TDM, multi-crystalline (KC200GT),
polycrystalline (SW255), monocrystalline (SM55)

Chimp optimization algorithm

Garip (2023) RTC France photovoltaic cell and Photowatt-PWP 201
photovoltaic models with single, double and three-
diodes

A fractional-order Harris Hawks optimization algorithm

Chauhan,
Vashishtha &
Kumar (2023)

SDM, DDM, PVMM An opposition-based learning reptile search algorithm with Cauchy
mutation strategy

Ayyarao & Kishore
(2024)

SDM, DDM, PVMM Artificial hummingbird optimization with three objective functions
(RMSE, Lambert W function, Newton–Raphson approach)

(Continued)
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y ¼ xi þ 2� t
Tmax

� 	� 	
� r1 � xG þ xL

2
� xi

� �
(7)

y ¼ xi � xbr1� N�1ð Þcþ1 þ xG þ xL
2

(8)

q ¼ C1 � 1ffiffiffiffiffiffiffiffiffiffiffi
2� p
p � r

� 	
� exp � s� lð Þ2

2� r2

� 	
(9)

Table 1 (continued)

Solution Models Algorithm(s) used

Restrepo-Cuestas &
Montano (2024)

Bishop model of the monoc-Si cell, Bishop model of the
poly c-Si

Ant lion optimizer, arithmetic optimization algorithm, grasshopper
optimization algorithm, particle swarm optimization, sine cosine
algorithm, salp swarm algorithm, vortex search algorithm

Mohamed et al.
(2024)

SDM, DDM, TDM, RTC France solar cell, Photowatt-
PWP201, Ultra 85-P, Ultra 85-P, STP6-120/36, and
STM6-40/36

Kepler optimization algorithm + ranking-based update and
exploitation improvement mechanisms

Wu et al. (2024) ST40, SM55, C200GT A super-evolutionary Nelder-Mead salp swarm algorithm

Ramachandran
et al. (2024)

SDM, DDM An enhanced gas solubility optimization algorithm + first-order
adaptive damping Berndt-Hall-Hall-Hausman method

Imade et al. (2024) SDM, DDM, TDM, PVMM, monocrystalline SM55,
poly-crystalline S75, thin-film ST40

An improved JAYA algorithm + Gaussian mutation individual
weighting factors.

Lei et al. (2024) SDM, DDM, PVMM A modified bare-bones imperialist competition algorithm

Ekinci, Izci &
Hussien (2024)

SDM and DDM of RTC France solar cell Photowatt-
PWP201 PV module

Gazelle optimization algorithm combined with the Nelder-Mead
algorithm

Ru (2024) 12 PV models, YL PV power station model in Guizhou
Power Grid

A chaos learning butterfly optimization algorithm

Table 2 The list of used parameters and variables.

Symbol Explanation

Tmax The maximum number of iterations (a scalar value)

t The t-th iteration (a scalar value)

N The population size (a scalar value)

D The dimension of the search space (a scalar value)

X The population of candidate solutions (a matrix of N rows and D columns)

xi The i-th candidate solution (a row vector of D columns)

LB The lower boundary values for each decision variable (a row vector of D columns)

UB The upper boundary values for each decision variable (a row vector of D columns)

f xið Þ The fitness value of the solution xi (a scalar value)

� The Hadamard product (i.e., the element-wise product)

r1; r2; . . . Random numbers drawn from a uniform distribution between 0 and 1 (scalar values)

r1; r2; . . . Row vectors of length D, where each element is independently drawn from a uniform distribution between 0 and 1

g1; g2; . . . Row vectors of length D, where each element is independently drawn from the Gaussian distribution

Ið1ÞS ; Ið2ÞS ; . . . Row vectors of length D, where each element is independently and uniformly drawn from the set S (S contains integers)

L A Row vectors of length D, representing the Lévy flight distribution
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Q ¼ C2 � r2 � f xið Þ
f xGð Þ (10)

y ¼ xi þ exp � 1
Q

� 	
� q� cos 2� p� r3ð Þ � sin 2� p� r3ð Þð Þ � xG (11)

y ¼ q� xi � exp � 1
Q

� 	
� xG

� 	
þ r4 � xi


 �
(12)

Algorithm 1 Pseudocode of the COA.

Input: Tmax, N, D, LB, UB, f, C1, C2, σ, µ

Output: The best candidate solution found so far (i.e., x�)

1 Generate X, a random population of candidate solutions, using Eq. (6);

2 t  1;

3 while t < Tmax do

4 Update xG (i.e., the position of the global optimum);

5 for i 1 to N do

6 Update xL (i.e., the position of the local optimum);

7 s r1 � 15þ 20;

8 if s > 30 then

9 if r2 < 0:5 then

10 Compute y using Eq. (7);

11 else

12 Compute y using Eq. (8);

13 end

14 else

15 Compute ρ and Q using Eqs. (9) and (10), respectively;

16 if Q > C2 þ 1
2 then

17 Compute y using Eq. (11);

18 else

19 Compute y using Eq. (12);

20 end

21 end

22 Check and correct the boundary values of y, if necessary;

23 xi  argminff xið Þ; f yð Þg;
24 end

25 t  t þ 1;

26 end

27 Compute the best candidate solution x�  argmin
i2f1;...;Ng

ff xið Þg;
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Golf Optimization Algorithm
A novel game-based metaheuristic optimization technique named the Golf Optimization
Algorithm (GOA) (Montazeri et al., 2023) is inspired by the strategic dynamics and player
behaviours observed in the sport of golf. It is structured into two phases: exploration and
exploitation. Algorithm 2 presents the working principle of the GOA, detailing each phase
with Eqs. (13) and (14).

y ¼ xi þ r1 � xG � Ið1Þf1;2g � xi
� �

(13)

y ¼ xi þ 1D � 2� r1ð Þ � r2 � UB� LBð Þ þ LB
t

(14)

Coati Optimization Algorithm
The Coati Optimization Algorithm (COA) introduced in Dehghani et al. (2023) is a new
metaheuristic algorithm that mimics the behaviour of coatis in nature, particularly their
strategies in hunting iguanas and escaping predators. The COA algorithm is designed in
two phases: exploration and exploitation, representing the coatis’ hunting and escaping
behaviours, respectively. Algorithm 3 elucidates the working principle of the COA, with
each phase detailed through Eqs. (13), (15), and (16).

Algorithm 2 Pseudocode of the GOA.

Input: Tmax, N, D, LB, UB, f

Output: The best candidate solution found so far (i.e., x�)

1 Generate X, a random population of candidate solutions, using Eq. (6);

2 t  1;

3 while t < Tmax do

4 for i 1 to N do

5 Update xG (i.e., the position of the global optimum);

6 Compute y using Eq. (13);

7 Check and correct the boundary values of y, if necessary;

8 xi  argminff xið Þ; f yð Þg;
9 end

10 for i 1 to N do

11 Compute y using Eq. (14);

12 Check and correct the boundary values of y, if necessary;

13 xi  argminff xið Þ; f yð Þg;
14 end

15 t  t þ 1;

16 end

17 Compute the best candidate solution x�  argmin
i2f1;...;Ng

ff xið Þg;
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y ¼ xi þ r1 � z� Ið1Þf1;2g � xi
� �

; f zð Þ < f xið Þ
xi þ r1 � xi � zð Þ; f zð Þ � f xið Þ

(

z ¼ r2 � UB� LBð Þ þ LB

8><
>: (15)

y ¼ xi þ 1D � 2� r1ð Þ � r2 � UB� LBð Þ
t

þ LB
t

� 	
(16)

Crested Porcupine Optimizer
The research article presented in Abdel-Basset, Mohamed & Abouhawwash (2024)
introduces a novel metaheuristic algorithm inspired by the defensive behaviours of crested
porcupines. This algorithm, named Crested Porcupine Optimizer (CPO), uses four distinct
protective mechanisms: sight, sound, odour, and physical attack, each reflecting different

Algorithm 3 Pseudocode of the COA.

Input: Tmax, N, D, LB, UB, f

Output: The best candidate solution found so far (i.e., x�)

1 Generate X, a random population of candidate solutions, using Eq. (6);

2 t  1;

3 while t < Tmax do

4 for i 1 to bN2 c do
5 Update xG (i.e., the position of the global optimum);

6 Compute y using Eq. (13);

7 Check and correct the boundary values of y, if necessary;

8 xi  argminff xið Þ; f yð Þg;
9 end

10 for i 1þ bN2 c to N do

11 Compute y using Eq. (15);

12 Check and correct the boundary values of y, if necessary;

13 xi  argminff xið Þ; f yð Þg;
14 end

15 for i 1 to N do

16 Compute y using Eq. (16);

17 Check and correct the boundary values of y, if necessary;

18 xi  argminff xið Þ; f yð Þg;
19 end

20 t  t þ 1;

21 end

22 Compute the best candidate solution x�  argmin
i2f1;...;Ng

ff xið Þg;
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phases of exploration and exploitation in the optimization process. Algorithm 4 clarifies
the operational principle of the CPO, with each stage comprehensively detailed by
Eqs. (17)–(20).

y ¼ xi þ g1 � 2� r1 � xG �
xi þ xbr1� N�1ð Þcþ1

2

����
���� (17)

y ¼ 1D � Ið1Þf0;1g
� �

� T

T ¼ xi þ Ið1Þf0;1g �
xi þ xbr1� N�1ð Þcþ1

2
þ r1 � xbr2� N�1ð Þcþ1 � xbr3� N�1ð Þcþ1

� �� 	
8><
>: (18)

Algorithm 4 Pseudocode of the CPO.

Input: Tmax, N, D, LB, UB, f, Tf, a

Output: The best candidate solution found so far (i.e., x�)

1 Generate X, a random population of candidate solutions, using Eq. (6);

2 t  1;

3 while t < Tmax do

4 for i 1 to N do

5 Update xG (i.e., the position of the global optimum);

6 if r1 < r2 then

7 if r3 < r4 then

8 Compute y using Eq. (17);

9 else

10 Compute y using Eq. (18);

11 end

12 else

13 if r5 < Tf then

14 Compute y using Eq. (19);

15 else

16 Compute y using Eq. (20);

17 end

18 end

19 Check and correct the boundary values of y, if necessary;

20 xi  argminff xið Þ; f yð Þg;
21 end

22 t  t þ 1;

23 end

24 Compute the best candidate solution x�  argmin
i2f1;...;Ng

ff xið Þg;
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y ¼ 1D � Ið1Þf0;1g
� �

� xi þ Ið1Þf0;1g � T
T ¼ xdr1� N�1ð Þeþ1 þ S� xdr2� N�1ð Þeþ1 � xdr3� N�1ð Þeþ1

� �� d� c� r1

 �� �

S ¼ exp f xið ÞPN

j¼1 f xjð Þþe

 !

d ¼ þ1; r4 � 0:5
�1; r4 > 0:5

�

c ¼ 2� r5 � 1� t
Tmax

� � 1
Tmax

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(19)

y ¼ xG þ a� 1D � r1ð Þ þ r1ð Þ � d� xG � xið Þ � d� c� r2 � Fð Þ
F ¼ exp Sð Þ � r3 � xbr1� N�1ð Þcþ1 � xi

� �� ��
(20)

Growth Optimizer
A new metaheuristic algorithm called the Growth Optimizer (GO) (Zhang et al., 2023),
designed to solve both continuous and discrete global optimization problems. The
algorithm is inspired by the learning and reflection mechanisms observed in human
growth processes. The learning phase involves acquiring knowledge from the outside
world (i.e., exploration), while the reflection phase involves self-assessment and
adjustment of learning strategies (i.e., exploitation). Algorithm 5 explains the operational
principle of the GO, with each stage thoroughly detailed by Eqs. (21) and (22).

G1 ¼ xG � xB
G2 ¼ xG � xW
G3 ¼ xB � xW
G4 ¼ xbr1� N�1ð Þcþ1 � xbr2� N�1ð Þcþ1

y ¼ xi þ xiPN

j¼1 xj
�
P4

j¼1 jjGjjj�GjP4

j¼1 jjGjjj

8>>>>>><
>>>>>>:

(21)

y ¼
r1 � UB� LBð Þ þ LB; r1 < F
r2 � xG � xið Þ þ xi; r1 � F

�
; r2 < P2

xi; r2 � P2

8<
:

F ¼ 0:01þ 0:99� 1� t
Tmax

� �
8>>><
>>>:

(22)

Artificial Protozoa Optimizer
The research article proposed in Wang et al. (2024) presents a new bio-inspired
metaheuristic algorithm called the Artificial Protozoa Optimizer (APO). This algorithm is
inspired by the survival mechanisms of protozoa, including their foraging, dormancy, and
reproductive behaviours. The APO is mathematically modeled by Eqs. (23)–(26); and it is
implemented in Algorithm 6.

y ¼ r1 � UB� LBð Þ þ LB (23)

y ¼ xi þ Ið1Þf�1;1g � r1 � r2 � UB� LBð Þ þ LBð Þ � Ið2Þf0;1g (24)
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Algorithm 5 Pseudocode of the GO.

Input: Tmax, N, D, LB, UB, f, P1, P2

Output: The best candidate solution found so far (i.e., x�)

1 Generate X, a random population of candidate solutions, using Eq. (6);

2 t  1;

3 while t < Tmax do

4 for i 1 to N do

5 Z  sort Xð Þ;
6 xG  z1;

7 xB  zbr1� P1�2ð Þcþ2;

8 xW  zbr2� N�P1�1ð ÞcþP1þ1;

9 Compute y using Eq. (21);

10 Check and correct the boundary values of y, if necessary;

11 xi  argminff xið Þ; f yð Þg;
12 end

13 for i 1 to N do

14 Update xG (i.e., the position of the global optimum);

15 Compute y using Eq. (22);

16 Check and correct the boundary values of y, if necessary;

17 xi  argminff xið Þ; f yð Þg;
18 end

19 t  t þ 1;

20 end

21 Compute the best candidate solution x�  argmin
i2f1;...;Ng

ff xið Þg;

Algorithm 6 Pseudocode of the APO.

Input: Tmax, N, D, LB, UB, f, pmax, η

Output: The best candidate solution found so far (i.e., x�)

1 Generate X, a random population of candidate solutions, using Eq. (6);

2 t  1;

3 while t < Tmax do

4 S eqjeq 2 N; eq 	 U 1;Nð Þ; 8p 6¼ q eq 6¼ ep; q ¼ 1; . . . ; dpmax � r1 � Ne� �
;

5 for i 1 to N do

6 if i 2 S then

7 if 0:5� 1þ cos p� 1� i
N

� �� �� �
> r2 then

8 Compute y using Eq. (23);
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y ¼ xi þ b� xdr1� N�1ð Þeþ1 � xi þ 1
g

Pg
k¼1 Tk

� �
� Ið1Þf0;1g

b ¼ r1 � 1þ cos p� t
Tmax

� �� �
Tk ¼ exp � f xdr2�ieþ1ð Þ

f xdr3� N�i�1ð Þeþ1ð Þþe
����

����
� 	

xdr2�ieþ1 � xdr3� N�i�1ð Þeþ1
� �

8>>>>><
>>>>>:

(25)

y ¼ xi þ b� xn � xi þ 1
g

Pg
k¼1 Tk

� �
� Ið1Þf0;1g

xn ¼ 1� t
Tmax

� �
� Ið1Þf�1;1g � r1

� �
� xi

Tk ¼ exp � f xdr2� i�k�1ð Þeþ1ð Þ
f xdr3� iþk�1ð Þeþ1ð Þþe
����

����
� 	

xdr2� i�k�1ð Þeþ1 � xdr3� iþk�1ð Þeþ1
� �

8>>>>><
>>>>>:

(26)

Mother Optimization Algorithm
The Mother Optimization Algorithm (MOA), introduced in Matoušová et al. (2023), is a
novel metaheuristic approach inspired by the interactions between a mother and her
children. MOA simulates these interactions through three distinct phases: education,
advice, and upbringing. The algorithm begins with the education phase, where initial
solutions are generated and the search space is explored. In the advice phase, solutions are
refined based on guidance principles, enhancing the quality of the search. Finally, the
upbringing phase focuses on exploiting the best solutions by making small adjustments to
optimize the results. The MOA is implemented in Algorithm 7 and mathematically
modeled by Eqs. (27)–(29).

Algorithm 6 (continued)

9 else

10 Compute y using Eq. (24);

11 end

12 else

13 if 0:5� 1þ cos p� t
Tmax

� �� �
> r3 then

14 Compute y using Eq. (25);

15 else

16 Compute y using Eq. (26);

17 end

18 end

19 Check and correct the boundary values of y, if necessary;

20 xi  argminff xið Þ; f yð Þg;
21 end

22 t  t þ 1;

23 end

24 Compute the best candidate solution x�  argmin
i2f1;...;Ng

ff xið Þg;
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y ¼ xi þ r1 � xG � 2� r2 � xið Þ (27)

y ¼ xi þ r1 � xi � 2� r2 � zNð Þ (28)

y ¼ xi þ 1D � 2� r1ð Þ � UB� LB
t

� 	
(29)

Secretary Bird Optimization Algorithm
A new population-based optimization algorithm has been proposed by following the
behaviour of secretary birds in their natural environment, called the Secretary Bird
Optimization Algorithm (SBOA) (Fu et al., 2024). The algorithm’s design is centred on
two primary phases: exploration and exploitation. During the first phase, the SBOA
mimics the hunting strategy of secretary birds as they search for prey, which enhances the

Algorithm 7 Pseudocode of the MOA.

Input: Tmax, N, D, LB, UB, f

Output: The best candidate solution found so far (i.e., x�)

1 Generate X, a random population of candidate solutions, using Eq. (6);

2 t  1;

3 while t < Tmax do

4 for i 1 to N do

5 Update xG (i.e., the position of the global optimum);

6 Compute y using Eq. (27);

7 Check and correct the boundary values of y, if necessary;

8 xi  argminff xið Þ; f yð Þg;
9 end

10 for i 1 to N do

11 Z  sort Xð Þ;
12 xG  zN ;

13 Compute y using Eq. (28);

14 Check and correct the boundary values of y, if necessary;

15 xi  argminff xið Þ; f yð Þg;
16 end

17 for i 1 to N do

18 Compute y using Eq. (29);

19 Check and correct the boundary values of y, if necessary;

20 xi  argminff xið Þ; f yð Þg;
21 end

22 t  t þ 1;

23 end

24 Compute the best candidate solution x�  argmin
i2f1;...;Ng

ff xið Þg;
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algorithm’s ability to explore the solution space broadly. In the second phase, the
algorithm emulates the birds’ escape strategy from predators, focusing on refining the
search and converging to optimal solutions. The SBOA is executed in Algorithm 8 and
represented by Eqs. (30)–(33).

y ¼ xi þ xbr1� N�1ð Þcþ1 � xbr2� N�1ð Þcþ1
� � � r1 (30)

y ¼ xG þ exp
t

Tmax

� 	4
 !

� r1 � 0:5� 1Dð Þ � xG � xið Þ (31)

y ¼ xG þ 1� t
Tmax

� 	 2�t
Tmax � xi � 0:5� Lð Þ (32)

Algorithm 8 Pseudocode of the SBOA.

Input: Tmax, N, D, LB, UB, f

Output: The best candidate solution found so far (i.e., x�)

1 Generate X, a random population of candidate solutions, using Eq. (6);

2 t  1;

3 while t < Tmax do

4 for i 1 to N do

5 Update xG (i.e., the position of the global optimum);

6 if t < Tmax
3 then

7 Compute y using Eq. (30);

8 else if Tmax
3 < t < 2�Tmax

3 then

9 Compute y using Eq. (31);

10 else

11 Compute y using Eq. (32);

12 end

13 Check and correct the boundary values of y, if necessary;

14 xi  argminff xið Þ; f yð Þg;
15 end

16 for i 1 to N do

17 Update xG (i.e., the position of the global optimum);

18 Compute y using Eq. (33);

19 Check and correct the boundary values of y, if necessary;

20 xi  argminff xið Þ; f yð Þg;
21 end

22 t  t þ 1;

23 end

24 Compute the best candidate solution x�  argmin
i2f1;...;Ng

ff xið Þg;

Zga et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2646 23/52

http://dx.doi.org/10.7717/peerj-cs.2646
https://peerj.com/computer-science/


y ¼ xG þ 1� t
Tmax

� �2
� 2� r1 � 1Dð Þ � xi; r1 < 0:5

xi þ r2 � xdr2� N�1ð Þeþ1 � Ið1Þf1;2g � xi
� �

; r1 � 0:5

8<
: (33)

Election optimizer algorithm
Simulating the democratic electoral process, specifically presidential elections, a new
metaheuristic optimization algorithm, called the Election Optimizer algorithm (EOA), has
been proposed (Zhou et al., 2024). EOA simulates the complete election process,
incorporating explicit behaviours observed during elections, such as the nomination of
each party and presidential campaigns. Throughout the party nomination phase and to
escape local optima, the search space is extended by incorporating varied strategies and
innovative suggestions. During the presidential election phase, elite candidates are further
refined through televised debates and campaign speeches, maintaining population
diversity and enhancing convergence speed. Algorithm 9 summarizes the different steps
involved in defining the EOA, and its swarming behaviour is depicted by Eqs. (34)–(37).

y ¼ xbr1� N�1ð Þcþ1 þ a� 1� t
Tmax

� 	
� r1 � xi � xGð Þ (34)

y ¼ r1 � xi þ r2 � r3 � UB� LBð Þ þ LBð Þ (35)

y ¼ xG þ r1 � xG � 2� r2 � xið Þ (36)

y ¼ xG þ t þ 1ð Þ�
2�r1þ1
ðTmaxþ1Þ2 � r1 � 1

N

XN
i¼j

xj � xG

 !
(37)

Technical and Vocational Education and Training-Based Optimizer
Inspired by the process of teaching work-related skills in training schools and vocational
and technical education, a new metaheuristic algorithm has been proposed, known as
Technical and Vocational Education and Training-Based Optimizer (TVETBO)
(Hubalovska & Major, 2023). TVETBO is designed around three main phases: theory and
practical education, and individual skills development. In the theory education phase, the
algorithm mimics the theoretical knowledge imparted by instructors, enhancing the initial
exploration of the search space. During the practical education phase, the algorithm
simulates hands-on training, improving solution candidates through iterative refinement.
To enhance the exploitation capability of the algorithm, the individual skills development
phase focuses on fine-tuning solutions based on personal skill enhancement. Algorithm 10
depicts the pseudocode of the TVETBO, and its updating mechanisms are given by
Eqs. (38)–(40).

y ¼ xi þ r1 � xG � Ið1Þf1;2g � xi
� �

(38)

y ¼ xG þ t
Tmax

� r1 � xi � xGð Þ (39)
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Algorithm 9 Pseudocode of the EOA.

Input: Tmax, N, D, LB, UB, f, a

Output: The best candidate solution found so far (i.e., x�)

1 Generate X, a random population of candidate solutions, using Eq. (6);

2 t  1;

3 while t < Tmax do

4 for i 1 to N do

5 Update xG (i.e., the position of the global optimum);

6 if t < Tmax
2 then

7 if r1 < 0:5 then

8 Compute y using Eq. (34);

9 else

10 Compute y using Eq. (35);

11 end

12 else

13 if r2 < 0:5 then

14 Compute y using Eq. (36);

15 else

16 Compute y using Eq. (37);

17 end

18 end

19 Check and correct the boundary values of y, if necessary;

20 xi  argminff xið Þ; f yð Þg;
21 end

22 t  t þ 1;

23 end

24 Compute the best candidate solution x�  argmin
i2f1;...;Ng

ff xið Þg;

Algorithm 10 Pseudocode of the TVETBO.

Input: Tmax, N, D, LB, UB, f

Output: The best candidate solution found so far (i.e., x�)

1 Generate X, a random population of candidate solutions, using Eq. (6);

2 t  1;

3 while t < Tmax do

4 for i 1 to N do

5 Update xG (i.e., the position of the global optimum);

(Continued)

Zga et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2646 25/52

http://dx.doi.org/10.7717/peerj-cs.2646
https://peerj.com/computer-science/


y ¼ xi þ 1D � 2� r1ð Þ � UB� LB
t

� 	
(40)

NUMERICAL RESULTS AND ANALYSIS
This section presents the numerical results and discusses the findings of our comparative
analysis. As previously mentioned, the contrastive study encompasses a diverse array of
metaheuristic algorithms, including COA (Jia et al., 2023), GOA (Montazeri et al., 2023),
COA (Dehghani et al., 2023), CPO (Abdel-Basset, Mohamed & Abouhawwash, 2024), GO
(Zhang et al., 2023), APO (Wang et al., 2024), MOA (Matoušová et al., 2023), SBOA (Fu
et al., 2024), EOA (Zhou et al., 2024), and TVETBO (Hubalovska & Major, 2023). These
algorithms were evaluated across four PV models: SDM, DDM, TDM, and PVMM. To
distinguish COA (Jia et al., 2023) and COA (Dehghani et al., 2023), which share the same
acronyms, we will refer to the first as COA(1) and the second as COA(2). All the
metaheuristic algorithms were executed on a computer equipped with an AMD Ryzen 5
7600 6-Core Processor operating at 3.80 GHz and 16 GB of RAM. The operating system
running on this machine is Windows 11 Pro, a 64-bit OS designed for x64-based
processors. MATLAB R2019a is the chosen programming language for implementing and
running the algorithms, ensuring a robust and efficient computational environment. To
evaluate the impact of varying the maximum number of iterations and the population size

Algorithm 10 (continued)

6 Compute y using Eq. (38);

7 Check and correct the boundary values of y, if necessary;

8 xi  argminff xið Þ; f yð Þg;
9 end

10 for i 1 to N do

11 Update xG (i.e., the position of the global optimum);

12 Compute y using Eq. (39);

13 Check and correct the boundary values of y, if necessary;

14 xi  argminff xið Þ; f yð Þg;
15 end

16 for i 1 to N do

17 Compute y using Eq. (40);

18 Check and correct the boundary values of y, if necessary;

19 xi  argminff xið Þ; f yð Þg;
20 end

21 t  t þ 1;

22 end

23 Compute the best candidate solution x�  argmin
i2f1;...;Ng

ff xið Þg;
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on the performance of the chosen algorithms in solving the four selected PV models, we
varied the number of iterations from 1,000 to 5,000 in steps of 1,000 and set the population
size to 30, 50, and 100, resulting in 15 possible configurations: fC1; . . . ;C15g. The
dimensions of the search space for each PV model are 5, 7, 9, and 5 for the SDM, DDM,
TDM, and PVMM, respectively. Table 3 summarizes the ranges of permissible values for
each design variable. Additionally, Table 4 outlines the parameter settings of the
considered metaheuristic algorithms, which were taken from their original articles. Finally,
each configuration was run 30 times on each PV model to ensure the validity of the central
limit theorem and provide credibility to the statistical tests used to compare performance.
For each run, we saved the best solution and its fitness value, the convergence curve, the
number of function evaluations, and the runtime.

In order to determine the best configuration for each algorithm: i.e., the best maximum
number of iterations and population size, we consider three metrics averaged over 30 runs:
the average of the best fitness values, the average of the numbers of function evaluations,
and the average of the CPU times. First, we normalize these metrics using min-max
normalization to bring them onto a comparable scale. The normalized value for each
metric is calculated using the following formula:

t̂k ¼ tk � tmin

tmax � tmin
; k 2 f1; . . . ; 30g;

where tk is the original value, tmin is the minimum value, and tmax is the maximum value
for the specific metric. Next, we assign weights to each normalized metric based on its
importance: x1 for the average of the best fitness values, x2 for the average of the number
of function evaluations, and x3 for the average of the runtime. We then compute a
composite score for each configuration using the following formula:

S ¼ x1 � m1 þ x2 � m2 þ x3 � m3
m1 ¼ 1

30�
P30

k¼1 ak
m2 ¼ 1

30�
P30

k¼1 bk
m3 ¼ 1

30�
P30

k¼1 ck

8>><
>>: ;

where ak, bk, and ck represent the normalized values for the best fitness values, the
numbers of function evaluations, and the runtimes, respectively. The values of weights x1,
x2, and x3 are set to 0.5, 0.25, and 0.25, respectively. Finally, we rank the configurations
based on their composite scores and select the configuration with the lowest composite
score as the best one. Tables 1 through 8, located in the Supplemental File, provide a

Table 3 The value ranges for decision variables in the PV models.

Decision variable Range

Iph ½0; 1

Isd , Isd1 , Isd2 , Isd3 ½0; 1

Rs ½0; 0:5

Rsh ½0; 100

n, n1, n2, n3 ½1; 2
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summary of the numerical results obtained for this description. Besides, Table 5 provides a
comprehensive summary of the configurations where the selected metaheuristic
algorithms achieved the best performance for the considered PV models. These optimal
configurations will serve as the basis for the forthcoming comparative analysis. In this
table, the rows correspond to the different PV models, while the columns denote the
various metaheuristic algorithms. Each cell at the intersection of a row and a column
contains a pair of numbers: the first indicates the maximum number of iterations, and the
second specifies the population size.

Tables 6–9 present the best solutions found by each metaheuristic algorithm for the
SDM, DDM, TDM, and PVMM, and their RMSE values. In addition, Tables 10–13 provide
statistical summaries (minimum, maximum, median, mean, and standard deviation) of the
best configuration found by the selected metaheuristic algorithms for the same PV models.
From Table 6, it can be seen that the algorithms COA(1), CPO, GO, and APO have the best

Table 4 The settings of the considered metaheuristics.

Parameter Value

COA(1) (Jia et al., 2023)

C1 0:2

C2 3

r 3

l 2:5

GOA (Montazeri et al., 2023)

This algorithm operates without any control parameters

COA(2) (Dehghani et al., 2023)

This algorithm operates without any control parameters

CPO (Abdel-Basset, Mohamed & Abouhawwash, 2024)

Tf 0:8

a 0:2

GO (Zhang et al., 2023)

P1 5

P2 0:3

APO (Wang et al., 2024)

pmax 0:1

g 1

MOA (Matoušová et al., 2023)

This algorithm operates without any control parameters

SBOA (Fu et al., 2024)

This algorithm operates without any control parameters

EOA (Zhou et al., 2024)

a 2

TVETBO (Hubalovska & Major, 2023)

This algorithm operates without any control parameters
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RMSE values of approximately 0.000986, indicating the most accurate models among the
tested algorithms. From Table 7, it can be observed that the COA(1) emerged as the top
performer with the lowest RMSE (9:86� 10�4), followed closely by the GO and APO, all
demonstrating superior accuracy in parameter fitting. Other algorithms like SBOA and
CPO also showed good performance with slightly higher RMSE values. Conversely, the
MOA and TVETBO have the highest RMSEs, indicating less effective parameter
optimization. From Table 8, it is clear that GO, COA(1), and APO demonstrate superior

Table 5 The best configurations (i.e., maximum number of iterations and population size) for each algorithm.

COA(1) GOA COA(2) CPO GO APO MOA SBOA EOA TVETBO

SDM (3,000, 50) (2,000, 100) (4,000, 100) (5,000, 30) (2,000, 300) (3,000, 100) (1,000, 100) (5,000, 100) (1,000, 100) (4,000, 30)

DDM (3,000, 50) (3,000, 50) (1,000, 100) (5,000, 50) (5,000, 30) (5,000, 100) (5,000, 30) (3,000, 100) (2,000, 100) (2,000, 30)

TDM (2,000, 50) (2,000, 50) (1,000, 50) (5,000, 50) (3,000, 30) (3,000, 50) (3,000, 100) (5,000, 100) (3,000, 50) (4,000, 30)

PVMM (1,000, 30) (5,000, 100) (4,000, 100) (1,000, 30) (1,000, 30) (2,000, 30) (1,000, 30) (1,000, 30) (3,000, 100) (1,000, 100)

Table 6 The best parameters found by each metaheuristic algorithm for the SDM.

Iph Isd Rs Rsh n RMSE

COA(1) 7.6077553000E−01 3.2300000000E−07 3.6377092300E−02 5.3718532775E+01 1.4811851558E+00 9.8602187789E−04

GOA 7.6855138090E−01 1.3135000000E−06 2.5198965400E−02 1.4380023543E+01 1.6428681410E+00 1.0914713470E−02

COA(2) 7.6249242130E−01 1.0307000000E−06 3.1157331700E−02 6.2411353379E+01 1.6084623411E+00 2.8564228684E−03

CPO 7.6079175230E−01 3.2370000000E−07 3.6363187400E−02 5.3553641717E+01 1.4813939068E+00 9.8614349211E−04

GO 7.6077553040E−01 3.2300000000E−07 3.6377092700E−02 5.3718521395E+01 1.4811851459E+00 9.8602187789E−04

APO 7.6077537770E−01 3.2300000000E−07 3.6376981400E−02 5.3720811160E+01 1.4811879595E+00 9.8602188389E−04

MOA 7.6425150120E−01 1.1500000000E−08 4.6662886200E−02 1.9696189392E+01 1.2077652016E+00 6.1812674132E−03

SBOA 7.6064498500E−01 4.3320000000E−07 3.5190098800E−02 6.3254552197E+01 1.5113337758E+00 1.1352185900E−03

EOA 7.6263824490E−01 4.2330000000E−07 3.5813121800E−02 6.6909162728E+01 1.5084601948E+00 2.0449632490E−03

TVETBO 7.3468991870E−01 5.7000000000E−09 4.9085779100E−02 8.5319218618E+00 1.1687690533E+00 4.1036065111E−02

Table 7 The best parameters found by each metaheuristic algorithm for the DDM.

Iph Isd1 Isd2 Rs Rsh n1 n2 RMSE

COA(1) 7.6077553030E−01 3.2300000000E−07 0.0000000000E+00 3.6377093100E−02 5.3718520850E+01 1.4811851342E+00 1.0529289916E+00 9.8602187789E−04

GOA 7.6510021610E−01 3.0000000000E-10 3.0900000000E−08 5.1236688900E−02 1.7479119526E+01 1.0187798216E+00 1.3646460291E+00 7.8737429493E−03

COA(2) 7.6423345180E−01 7.1530000000E−07 6.1000000000E−09 3.2746584500E−02 3.0872072880E+01 1.5857077990E+00 1.2988787792E+00 3.5599768202E−03

CPO 7.6092528040E−01 3.0780000000E−07 6.0000000000E-10 3.6476930200E−02 5.0194853219E+01 1.4764003687E+00 1.9564443808E+00 1.0025597044E−03

GO 7.6078107890E−01 7.4930000000E−07 2.2600000000E−07 3.6740429600E−02 5.5485441965E+01 2.0000000000E+00 1.4510182297E+00 9.8248487610E−04

APO 7.6079890280E−01 2.0150000000E−07 2.7250000000E−07 3.6491241900E−02 5.4150354439E+01 1.8453966922E+00 1.4676611710E+00 9.8478502518E−04

MOA 7.6458680050E−01 3.0000000000E-10 0.0000000000E+00 5.5126062100E−02 1.4022792774E+01 1.0000000000E+00 1.0000000000E+00 1.1816280874E−02

SBOA 7.6058733160E−01 3.9520000000E−07 0.0000000000E+00 3.5533117500E−02 6.0847215232E+01 1.5017650714E+00 1.9995698908E+00 1.0625737349E−03

EOA 7.6130286360E−01 1.4620000000E−07 1.8596000000E−06 3.4437501100E−02 8.1426481879E+01 1.4334186824E+00 1.8742951004E+00 1.7907122489E−03

TVETBO 7.3059686250E−01 0.0000000000E+00 1.5631000000E−06 1.6727317000E−03 3.4662745707E+01 1.0000030030E+00 1.6709129717E+00 3.9436054603E−02
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Table 9 The best parameters found by each metaheuristic algorithm for the PVMM.

Iph Isd Rs Rsh n RMSE

COA(1) 3.8564249370E−01 7.1050000000E−06 1.1705191000E−02 1.0000000000E+02 1.0000000000E+00 1.2307306856E−02

GOA 3.8891165400E−01 7.0409000000E−06 1.3033979300E−02 6.4416500874E+01 1.0000047656E+00 1.5384800935E−02

COA(2) 3.8754220910E−01 1.1082700000E−05 6.9116877000E−03 7.2597073604E+01 1.0436188458E+00 1.5336896361E−02

CPO 3.8564249460E−01 7.1050000000E−06 1.1705190400E−02 1.0000000000E+02 1.0000000000E+00 1.2307306856E−02

GO 3.8564249400E−01 7.1050000000E−06 1.1705191500E−02 1.0000000000E+02 1.0000000000E+00 1.2307306856E−02

APO 3.8564249370E−01 7.1050000000E−06 1.1705190900E−02 1.0000000000E+02 1.0000000000E+00 1.2307306856E−02

MOA 3.8564251360E−01 7.1050000000E−06 1.1705227700E−02 1.0000000000E+02 1.0000000000E+00 1.2307306856E−02

SBOA 3.8564249400E−01 7.1050000000E−06 1.1705191100E−02 1.0000000000E+02 1.0000000000E+00 1.2307306856E−02

EOA 3.8568606460E−01 7.1164000000E−06 1.1297964000E−02 9.9679917046E+01 1.0001382417E+00 1.2340266929E−02

TVETBO 3.7564549540E−01 6.5955000000E−06 4.0851954000E−03 4.7228449322E+01 1.0000182179E+00 2.7419994376E−02

Table 10 The min, max, median, mean, and std values of the best configuration for the SDM.

Min Max Median Mean STD

COA(1) 9.8602187789E−04 2.2286139909E−01 2.2286139909E−01 2.1546555318E−01 4.0508716351E−02

GOA 1.0914713470E−02 1.5549184840E−01 1.1783454059E−01 1.0946767129E−01 3.7017859012E−02

COA(2) 2.8564228684E−03 6.9849842147E−02 1.4020806666E−02 1.8177180434E−02 1.4502684599E−02

CPO 9.8614349211E−04 8.1731195398E−03 3.2889515204E−03 3.0046337556E−03 1.5749312527E−03

GO 9.8602187789E−04 2.2286139909E−01 1.1816280874E−02 9.1291948113E−02 1.0931804288E−01

APO 9.8602188389E−04 2.2286139909E−01 6.1133540563E−03 3.4572567552E−02 7.5282553190E−02

MOA 6.1812674132E−03 2.2286139909E−01 2.2286139909E−01 2.1563872803E−01 3.9560198628E−02

SBOA 1.1352185900E−03 2.2286139909E−01 2.2286139909E−01 2.0808019063E−01 5.6251691784E−02

EOA 2.0449632490E−03 1.5818955994E−02 9.5367020927E−03 9.0545666088E−03 2.9578909944E−03

TVETBO 4.1036065111E−02 2.5139770042E−01 2.1716246888E−01 1.9433266834E−01 4.6844332197E−02

Table 11 The min, max, median, mean, and std values of the best configuration for the DDM.

Min Max Median Mean STD

COA(1) 9.8602187789E−04 2.2286139909E−01 2.2286139909E−01 1.9330817906E−01 7.6634331785E−02

GOA 7.8737429493E−03 4.5011974031E−01 2.1041103296E−01 2.3944933750E−01 1.0597864377E−01

COA(2) 3.5599768202E−03 1.5276176031E−01 3.7858783348E−02 5.3869898777E−02 4.1271719228E−02

CPO 1.0025597044E−03 5.3959456444E−03 1.6446674182E−03 2.1573824591E−03 1.2001519180E−03

GO 9.8248487610E−04 2.2286139909E−01 9.8602187789E−04 6.1854099491E−02 9.8851700726E−02

APO 9.8478502518E−04 5.6861369797E−03 1.0275828979E−03 1.4948131129E−03 1.0270094600E−03

MOA 1.1816280874E−02 2.2286139909E−01 2.2286139909E−01 2.0647516923E−01 5.1137623103E−02

SBOA 1.0625737349E−03 2.2286139909E−01 2.2286139909E−01 2.0073039807E−01 6.7528130406E−02

EOA 1.7907122489E−03 6.3074169621E−01 7.0223576028E−02 1.9834809043E−01 2.3637996745E−01

TVETBO 3.9436054603E−02 2.7284755418E−01 1.9065026597E−01 1.8378574345E−01 4.9004575210E−02

Zga et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2646 31/52

http://dx.doi.org/10.7717/peerj-cs.2646
https://peerj.com/computer-science/


performance with the lowest RMSE values, indicating high accuracy and reliability. CPO
also performs commendably well, slightly trailing behind the top three. Moderate
performers such as COA(2), MOA, EOA, and SBOA, while not as precise, still provide
reasonable accuracy. However, GOA and TVETBO exhibit considerably higher RMSE
values, with TVETBO being the least accurate. These results suggest that GO, COA(1), and
APO are the most suitable algorithms for applications requiring high precision in the
TDM, whereas GOA and TVETBO may need further optimization to enhance their
performance. From Table 9, it is evident that six algorithms (COA(1), CPO, GO, APO,
MOA, SBOA) consistently achieved the lowest RMSE values, indicating their superior
effectiveness in optimizing the PVMM. In contrast, the EOA algorithm, with a slightly
higher RMSE, showed minor variations in parameters, indicating a close but slightly less
optimal solution. The TVETBO algorithm, however, diverged significantly, yielding a
much higher RMSE and differing parameter values, which points to its relatively lower
effectiveness for this specific optimization problem.

Table 12 The min, max, median, mean, and std values of the best configuration for the TDM.

Min Max Median Mean STD

COA(1) 9.8602187789E−04 2.2286139909E−01 2.2286139909E−01 1.7232775411E−01 9.3256952572E−02

GOA 1.8837705005E−02 6.0674055824E−01 4.1446357323E−01 3.9036869495E−01 1.5440794026E−01

COA(2) 3.6309167663E−03 2.8528869729E−01 1.3968897144E−01 1.2406134605E−01 7.9780889172E−02

CPO 1.0046545920E−03 4.7983708510E−03 1.7045175001E−03 2.0671695563E−03 1.0722654025E−03

GO 9.8248487610E−04 2.2286139909E−01 1.5575126985E−03 4.2683968750E−02 8.3292624881E−02

APO 9.8463282698E−04 1.1801453894E−02 1.6029903814E−03 3.1404160184E−03 3.1429931120E−03

MOA 5.2865429516E−03 2.2286139909E−01 2.2286139909E−01 2.1093529828E−01 4.6509247156E−02

SBOA 1.0690313595E−03 2.2286139909E−01 2.2286139909E−01 2.0069028280E−01 6.7650414973E−02

EOA 1.4307111957E−03 6.3074169621E−01 2.2286141179E−01 2.7872543765E−01 2.4943253138E−01

TVETBO 4.5692730515E−02 2.4933651766E−01 2.2286139911E−01 2.0102565366E−01 4.3910414758E−02

Table 13 The min, max, median, mean, and std values of the best configuration for the PVMM.

Min Max Median Mean STD

COA(1) 1.2307306856E−02 2.2286139909E−01 2.2286139909E−01 1.4629386623E−01 1.0235437952E−01

GOA 1.5384800935E−02 4.2123499532E−02 2.3868033619E−02 2.4192423362E−02 4.8292250280E−03

COA(2) 1.5336896361E−02 4.2828896260E−02 2.4253342306E−02 2.4490781021E−02 5.9814388442E−03

CPO 1.2307306856E−02 2.0032173551E−02 1.4729857469E−02 1.5115668237E−02 2.2852310769E−03

GO 1.2307306856E−02 2.2286139909E−01 1.2307306856E−02 4.7399655562E−02 7.9810322695E−02

APO 1.2307306856E−02 2.2286139909E−01 1.5441204831E−02 2.9811714221E−02 5.2314594224E−02

MOA 1.2307306856E−02 1.9545166579E−02 1.9545166579E−02 1.6716218635E−02 3.4931096189E−03

SBOA 1.2307306856E−02 2.2286139909E−01 2.2286139909E−01 1.8793261127E−01 7.9438809012E−02

EOA 1.2340266929E−02 1.7468213958E−02 1.5619128687E−02 1.5486560010E−02 1.0173063280E−03

TVETBO 2.7419994376E−02 1.8622600143E−01 1.3013899147E−01 1.2363965276E−01 3.9886423754E−02
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Tables 10–13 summarize the evaluation of the ten selected metaheuristic algorithms for
the SDM, DDM, TDM, and PVMM, run 30 times, to reveal significant insights into their
performance and consistency. From Table 10, it is obvious that CPO and EOA emerge as
the most reliable and consistent algorithms, evidenced by their low standard deviations of

1:57� 10�3 and 2:96� 10�3, respectively, and generally low median RMSE values of

3:29� 10�3 and 9:54� 10�3, and mean RMSE values of 3:00� 10�3 and 9:05� 10�3.
COA(2) also demonstrates strong performance, balancing low error with a median RMSE
of 1:40� 10�2 and a mean RMSE of 1:82� 10�2 with a moderate standard deviation of

1:45� 10�2. However, algorithms like GO, APO, MOA, and SBOA display a wide range of
performance, with low minimum RMSE values of 9:86� 10�4 but high variability,
indicated by their standard deviations of 1:09� 10�1, 7:53� 10�2, 3:96� 10�2, and
5:63� 10�2, respectively. TVETBO is the least stable and reliable, with high variability
(standard deviation of 4:68� 10�2) and generally higher error rates (median RMSE of

2:17� 10�1 and mean RMSE of 1:94� 10�1), suggesting it may need further
optimization. From Table 11, it is evident that CPO and APO emerge as the most reliable
and consistent algorithms, evidenced by their low standard deviations of 1:20� 10�3 and
1:03� 10�3, respectively, and generally low median RMSE values of 1:64� 10�3 and
1:03� 10�3, and mean RMSE values of 2:16� 10�3 and 1:49� 10�3. COA(2) also
demonstrates strong performance, balancing low error with a median RMSE of

3:79� 10�2 and a mean RMSE of 5:39� 10�2 with a moderate standard deviation of

4:13� 10�2. However, algorithms like GO, GOA, MOA, and SBOA display a wide range
of performance, with low minimum RMSE values of 9:86� 10�4 but high variability,
indicated by their standard deviations of 9:89� 10�2, 1:06� 10�1, 5:11� 10�2, and
6:75� 10�2, respectively. EOA is the least stable and reliable, with high variability
(standard deviation of 2:36� 10�1) and generally higher error rates (median RMSE of

7:02� 10�2 and mean RMSE of 1:98� 10�1). From Table 12, it is obvious that CPO and
APO emerge again as the most reliable and consistent algorithms, evidenced by their low
standard deviations of 1:07� 10�3 and 3:14� 10�3, respectively, and generally low
median RMSE values of 1:70� 10�3 and 1:60� 10�3, and mean RMSE values of

2:07� 10�3 and 3:14� 10�3. COA(2) also demonstrates strong performance, balancing
low error with a median RMSE of 1:40� 10�1 and a mean RMSE of 1:24� 10�1 with a
moderate standard deviation of 7:98� 10�2. However, algorithms like GO, GOA, MOA,
and SBOA display a wide range of performance, with low minimum RMSE values of

9:86� 10�4 but high variability, indicated by their standard deviations of 8:33� 10�2,
1:54� 10�1, 4:65� 10�2, and 6:77� 10�2, respectively. EOA is the least stable and
reliable, with high variability (standard deviation of 2:49� 10�1) and generally higher
error rates (median RMSE of 2:23� 10�1 and mean RMSE of 2:79� 10�1). From
Table 13, manifestly, EOA stands out with the smallest mean value of 1:55� 10�2 and the
smallest standard deviation of 1:02� 10�3, indicating highly consistent and low-error
performance. CPO also demonstrates strong performance with a mean of 1:51� 10�2 and
a low standard deviation of 2:29� 10�3, showcasing reliability with minimal variability.
MOA shows good consistency with a mean of 1:67� 10�2 and a standard deviation of
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3:49� 10�3. GOA and COA(2) provide balanced performance with mean values around

2:42� 10�2 and 2:45� 10�2, and standard deviations of 4:83� 10�3 and 5:98� 10�3,
respectively, indicating moderate consistency. TVETBO has higher performance with a
mean of 1:24� 10�1 and a standard deviation of 3:99� 10�2, though with more
variability. COA(1) and SBOA exhibit higher variability and less consistency, with mean
values of 1:46� 10�1 and 1:88� 10�1, and standard deviations of 1:02� 10�1 and
7:94� 10�2, respectively. Finally, GO and APO show considerable variability with mean
values of 4:74� 10�2 and 2:98� 10�2, and standard deviations of 7:98� 10�2 and
5:23� 10�2, respectively, indicating potential for high results but with less consistent
performance.

Tables 14–17 present the average rankings of the ten algorithms based on the Friedman
ranking test for SDM, DDM, TDM, and PVMM, respectively. The primary objective of
applying this test to each model is to identify the algorithm that excels within the
corresponding model. It is important to note that the Friedman ranking test was applied to
the RMSE values for each algorithm, which were obtained over 30 runs. Specifically, each
table represents a 30� 10 matrix of RMSE values, where the rows correspond to the 30
runs, and the columns correspond to the 10 algorithms. From the analysis of these tables, it
is evident that CPO achieved the highest ranking for SDM, APO ranked first for both
DDM and TDM, and GO ranked first for PVMM. In addition, the Wilcoxon test was
applied to the same data to deepen the analysis, where the highest-ranked algorithm for
each model was compared against the remaining algorithms. Specifically, CPO was
compared to the other algorithms for SDM, APO was compared to the other algorithms
for both DDM and TDM, and GO was compared to the other algorithms for PVMM.
Tables 18–21 present these findings. From Table 18, the exact p-values and asymptotic
p-values are all less than 0.05, suggesting that the differences observed between CPO and
the other algorithms are statistically significant. This means that for all comparisons in the

Table 14 Average rankings of the ten algorithms based on Friedman ranking test for SDM.

COA(1) GOA COA(2) CPO GO APO MOA SBOA EOA TVETBO

Ranks 8.0833 5.6333 4.0667 2.1333 4.3333 3.3333 8.1667 7.9167 3.4 7.9333

Table 15 Average rankings of the ten algorithms based on Friedman ranking test for DDM.

COA(1) GOA COA(2) CPO GO APO MOA SBOA EOA TVETBO

Ranks 7.1333 7.7 4.4333 2.5333 3.1 1.8333 7.5333 7.4 6.7 6.6333

Table 16 Average rankings of the ten algorithms based on Friedman ranking test for TDM.

COA(1) GOA COA(2) CPO GO APO MOA SBOA EOA TVETBO

Ranks 5.8167 9.2333 5.0333 2.3667 2.6833 2.2667 6.75 6.45 7.4 7

Zga et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2646 34/52

http://dx.doi.org/10.7717/peerj-cs.2646
https://peerj.com/computer-science/


table, CPO significantly outperforms the other algorithms in terms of the median
performance, with very strong evidence against the null hypothesis of no difference. From
Table 19, the exact p-values for all comparisons except for APO vs. GO are very small
(often in the range of 10�9), indicating that the differences are statistically significant. For
APO vs. GO, the exact p-value is larger than 0.2, suggesting no statistically significant
difference between APO and GO in this case. From Table 20, for most comparisons, the
exact p-values are very small (in the range of 10�9), suggesting that APO significantly
outperforms the other algorithms. However, for APO vs. CPO and APO vs. GO, the exact
p-values are greater than 0.05, indicating no significant difference in performance. For
Table 21, the exact p-values for many comparisons are above 0.05 (like for GO vs. GOA,

Table 17 Average rankings of the ten algorithms based on Friedman ranking test for PVMM.

COA(1) GOA COA(2) CPO GO APO MOA SBOA EOA TVETBO

Ranks 6.9167 6.5667 6.5 3.65 2.6167 3.9667 4.15 8.3667 3.9667 8.3

Table 18 Results obtained by the Wilcoxon test for comparing CPO with the remaining algorithms
for SDM.

Algorithms Rþ R� Exact p-value Asymptotic p-value

CPO vs. COA(1) 464.0 1.0 3.726E−9 0.000002

CPO vs. GOA 465.0 0.0 1.8626E−9 0.000002

CPO vs. COA(2) 461.0 4.0 1.3038E−8 0.000002

CPO vs. GO 363.0 102.0 0.006194 0.00705

CPO vs. APO 354.0 111.0 0.011304 0.012096

CPO vs. MOA 465.0 0.0 1.8626E−9 0.000002

CPO vs. SBOA 462.0 3.0 9.314E−9 0.000002

CPO vs. EOA 459.0 6.0 2.608E−8 0.000003

CPO vs. TVETBO 465.0 0.0 1.8626E−9 0.000002

Table 19 Results obtained by the Wilcoxon test for comparing APO with the remaining algorithms
for DDM.

Algorithms Rþ R� Exact p-value Asymptotic p-value

APO vs. COA(1) 462.0 3.0 9.314E−9 0.000002

APO vs. GOA 465.0 0.0 1.8626E−9 0.000002

APO vs. COA(2) 465.0 0.0 1.8626E−9 0.000002

APO vs. CPO 390.0 75.0 7.296E−4 0.001155

APO vs. GO 295.0 170.0 �0.2 0.195043

APO vs. MOA 465.0 0.0 1.8626E−9 0.000002

APO vs. SBOA 465.0 0.0 1.8626E−9 0.000002

APO vs. EOA 464.0 1.0 3.726E−9 0.000002

APO vs. TVETBO 465.0 0.0 1.8626E−9 0.000002
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GO vs. COA(2), etc.), indicating no significant difference between GO and the other
algorithms in those cases. However, for some comparisons (like GO vs. SBOA and GO vs.
TVETBO), the exact p-values are very small, indicating statistical significance in favour
of GO.

First, Fig. 6A demonstrates that CPO and EOA achieve the most desirable solution
distributions, marked by low variability and tight clustering of data points around the
median, indicating high consistency and minimal outliers. In contrast, GOA, GO, and
TVETBO exhibit high variability, with GOA and TVETBO particularly yielding lower-
quality solutions. Although GO presents some solutions near the performance level of
CPO and EOA, TVETBO’s results are marked by numerous outliers, suggesting unstable
behaviour. Similarly, COA(2) and APO approximate the performance of CPO and EOA,
though to a slightly lesser extent. The remaining algorithms, however, show inferior
performance, accompanied by significant outliers. Next, in Fig. 6B, CPO and APO
maintain their consistent behaviour, with minimal variability in their solution
distributions. However, GOA, COA, GO, EOA, and TVETBO display substantial

Table 20 Results obtained by the Wilcoxon test for comparing APO with the remaining algorithms
for TDM.

Algorithms Rþ R� Exact p-value Asymptotic p-value

APO vs. COA(1) 450.0 15.0 2.552E−7 0.000007

APO vs. GOA 465.0 0.0 1.8626E−9 0.000002

APO vs. COA(2) 465.0 0.0 1.8626E−9 0.000002

APO vs. CPO 194.0 271.0 �0.2 1

APO vs. GO 303.0 162.0 0.15188 0.144193

APO vs. MOA 464.0 1.0 3.726E−9 0.000002

APO vs. SBOA 462.0 3.0 9.314E−9 0.000002

APO vs. EOA 464.0 1.0 3.726E−9 0.000002

APO vs. TVETBO 465.0 0.0 1.8626E−9 0.000002

Table 21 Results obtained by the Wilcoxon test for comparing GO with the remaining algorithms
for PVMM.

Algorithms Rþ R� Exact p-value Asymptotic p-value

GO vs. COA(1) 420.0 45.0 3.05E−5 1

GO vs. GOA 325.0 140.0 0.05768 0.055767

GO vs. COA(2) 325.0 140.0 0.05768 0.055767

GO vs. CPO 325.0 140.0 0.05768 0.055767

GO vs. APO 304.5 130.5 0.06075 0.055785

GO vs. MOA 295.0 140.0 0.09634 1

GO vs. SBOA 422.0 13.0 3.278E−7 1

GO vs. EOA 325.0 140.0 0.05768 0.055767

GO vs. TVETBO 402.0 63.0 2.316E−4 0.000471
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variability, indicating a degree of instability in their performance. Despite this instability,
GO demonstrates competitive performance levels comparable to CPO and APO. In
contrast, the remaining algorithms perform poorly, exhibiting numerous outliers and
failing to achieve reliable outcomes. Then, Fig. 6C depicts that CPO, GO, and APO exhibit
the most favourable variability, though GO contains some outliers. In contrast, GOA, COA
(2), EOA, and TVETBO show high levels of variability, indicating inconsistent
performance. The remaining algorithms consistently demonstrate poor performance, with
numerous outliers reflecting their lack of reliability. Finally, in Fig. 6D, GO surprisingly
achieves the best outcome, with only a single outlier. It is closely followed by GOA, COA
(2), CPO, APO, MOA, SBOA, and EOA, all of which display similar and strong
performance levels. In contrast, COA(1) and TVETBO perform poorly, exhibiting high
variability and lower reliability in their results.

Figure 6 (A–D) Boxplot of the best fitness values obtained by COA(1), GOA, COA(2), CPO, GO,
APO, MOA, SBOA, EOA, and TVETBO. Full-size DOI: 10.7717/peerj-cs.2646/fig-6
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Figures 7 and 8 illustrate the comparative performance of the considered metaheuristic
algorithms in terms of runtime and the number of function evaluations. Figure 7A,
depicting the runtime of the SDM, shows that APO is the fastest algorithm, completing its
computations in approximately 20 s, while SBOA is the slowest, taking around 280 s. This
significant difference in runtime suggests that APO is highly efficient, whereas SBOA may
involve more extensive computations. Figure 8A, which details the number of function
evaluations of the SDM, indicates that APO also performs the fewest evaluations, roughly
0.5 million, in contrast to SBOA’s highest count of around 6.5 million. These results imply
a strong correlation between the number of evaluations and runtime, as algorithms, such
as SBOA, which perform more evaluations, naturally require more time. On the other
hand, algorithms (COA(1), GO, and EOA) show a balance with moderate runtime and
function evaluations, suggesting they are efficient yet thorough in their optimization
process. The trade-off between computational time and optimization accuracy is evident,
as some algorithms opt for speed and fewer evaluations, while others, like MOA and
SBOA, invest more time and computational effort to potentially achieve more precise
solutions. From Fig. 8B, SBOA exhibits the highest number of function evaluations,
surpassing 3.5 million, suggesting a thorough search process but at the cost of
computational resources. In contrast, APO and TVETBO show the lowest function
evaluations (FEs), indicating potentially faster but less exhaustive searches. Figure 7B
highlights the runtime in seconds, where SBOA again stands out with the longest runtime
of approximately 180 s, consistent with its high FEs. CPO and GO also have considerable
runtime, indicating intensive computations. On the other hand, APO and TVETBO
demonstrate significantly shorter runtimes, around 20 and 50 s respectively, aligning with
their lower FEs. Figure 7C displays the runtime in seconds for each algorithm. Notably,
MOA and SBOA have the highest execution times, both exceeding 250 s, indicating these
algorithms are computationally intensive. In contrast, APO exhibits the shortest runtime,
taking less than 10 s. COA(1), COA(2), and EOA also show relatively low execution times,
under 50 s. CPO and GO fall in the mid-range, with runtimes around 100 and 60 s,
respectively. TVETBO has a moderate execution time of approximately 75 s. Figure 8C
shows the number of FEs required by each algorithm. MOA and SBOA again rank highest,
each requiring close to 6� 107 evaluations, indicating these algorithms perform extensive
searches to find solutions. CPO and GO require fewer evaluations, around 2� 107 and

1:2� 107 respectively. APO requires the fewest evaluations, just below 2� 106, aligning
with its short runtime. COA(1), COA(2), and EOA have relatively low evaluation counts,
similar to their shorter runtimes. TVETBO also has a moderate number of evaluations,
approximately 7� 106. From Fig. 7D, COA(1), CPO, GO, APO, MOA, and SBOA exhibit
very low runtimes, indicating that these algorithms are highly computationally efficient.
They can quickly arrive at solutions, which is beneficial for time-sensitive applications. In
contrast, GOA, COA(2), and EOA have significantly higher runtimes, with GOA being the
most time-consuming at around 220 seconds, followed by EOA at approximately 120 s and
COA(2) at around 100 s. This suggests that while these algorithms may offer good
performance, they require much more time to compute their solutions. TVETBO also
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shows a moderately high runtime of around 80 s, placing it in a middle ground between the
very efficient algorithms and the more time-intensive ones. From Fig. 8D, GOA requires
the highest number of function evaluations, nearly 6� 107, indicating a high
computational cost in terms of the number of iterations needed to reach a solution. COA
(2) also requires a substantial number of evaluations, around 3� 107, followed by EOA
and TVETBO at approximately 2� 107 each. This high number of evaluations
corresponds with their longer runtimes, suggesting a direct relationship between the
number of evaluations and the computational time required. On the other hand, COA(1),
CPO, GO, APO, MOA, and SBOA have significantly lower numbers of function
evaluations, indicating these algorithms can reach solutions more quickly and with fewer
computational steps, enhancing their efficiency. This lower computational demand makes

Figure 7 (A–D) The execution time of the selected PV models.
Full-size DOI: 10.7717/peerj-cs.2646/fig-7
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these algorithms particularly suitable for applications where computational resources are
limited or where rapid solutions are required.

Figure 9 shows the convergence curves of the selected metaheuristics for the considered
PV models, each showing the RMSE as a function of the number of iterations. In Fig. 9A,
COA(1), GOA, CPO, and APO exhibit rapid convergence, quickly reducing RMSE to
around 10�2 within the first few hundred iterations, demonstrating their efficiency in
reaching near-optimal solutions swiftly. COA(2), MOA, and SBOA show a more gradual
but steady convergence, with RMSE stabilizing below 10�2 after a larger number of
iterations, indicating a consistent approach to optimization. EOA and COA(2) feature
stepped convergence patterns with significant periodic improvements, reflecting a more
phased optimization strategy. In contrast, TVETBO displays slower convergence,

Figure 8 (A–D) The number of FEs of the selected PV models.
Full-size DOI: 10.7717/peerj-cs.2646/fig-8
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stabilizing at a higher RMSE value around 10�1, suggesting less efficiency in optimization
compared to the others. In Fig. 9B, COA(1), GOA, and APO show rapid initial decreases in
RMSE, with GOA and APO stabilizing quickly, indicating efficient convergence to optimal
solutions. COA(2) and SBOA exhibit step-wise improvements, suggesting periodic
significant enhancements in solution quality. CPO, GO, and EOA display more gradual
reductions, with CPO and GO achieving steady convergence, while EOA shows a late but
drastic improvement phase. MOA demonstrates a delayed yet effective convergence
around the 2000th iteration. Conversely, TVETBO converges quickly but stabilizes at a
higher RMSE, indicating potentially less accurate results. In Fig. 9C, COA(1), APO, and
MOA demonstrate rapid convergence, stabilizing around an RMSE of 10�2 within the first
200 iterations, indicating efficient early optimization. GOA and COA(2) exhibit two-phase
convergence, with steep initial drops followed by further refinement around 500–600

Figure 9 (A–D) Convergence curves of the best fitness values obtained by COA(1), GOA, COA(2),
CPO, GO, APO, MOA, SBOA, EOA, and TVETBO. Full-size DOI: 10.7717/peerj-cs.2646/fig-9
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iterations. CPO and SBOA show steady and persistent RMSE reduction, achieving stability
around 10�2 after more extended periods (around 2,000 iterations). GO follows a similar
pattern but stabilizes slightly earlier at around 1,500 iterations. EOA is unique, with
minimal improvements initially and a sharp RMSE decrease around 1,600 iterations,
indicating delayed yet effective optimization. TVETBO converges rapidly within the first
200 iterations but stabilizes slightly above 10�2, suggesting quicker but less thorough
convergence. In Fig. 9D, COA(1), COA(2), CPO, GO, and SBOA show rapid initial
convergence, achieving stable RMSE values quickly, indicating efficient performance. GOA
and EOA demonstrate slower, more gradual convergence, requiring more iterations to
achieve lower RMSE values, which may suggest they are more thorough in exploring the
solution space. APO, MOA, and TVETBO show balanced performance with steady
convergence, achieving stable solutions within a moderate number of iterations.

Figure 10 the current-voltage curves of the selected metaheuristics for the considered
PV models, where each plot compares actual data (blue lines) with simulated data (red
triangles). In Fig. 10A, most algorithms, including COA(1), GOA, COA(2), CPO, GO,
APO, MOA, SBOA, and EOA, show an excellent fit, with the simulated data closely
following the actual data, indicating high accuracy in modelling the PV cell’s performance.
These curves reveal that these algorithms effectively capture the characteristics of the
photovoltaic cells, ensuring precise simulations. On the other hand, the TVETBO
algorithm, while generally providing a good fit, shows a slight deviation between the
simulated and actual data near the knee of the curve, suggesting it may be slightly less
accurate than the others. In Fig. 10B, all algorithms, including COA(1), GOA, COA(2),
CPO, GO, APO, MOA, SBOA, EOA, and TVETBO, show a close match between the
simulated and actual data, indicating their effectiveness in parameter optimization for the
DDM. Notably, the curves for COA(1), GOA, and APO exhibit nearly perfect alignment,
reflecting their superior performance in minimizing the RMSE and accurately capturing
the PV characteristics. Algorithms like MOA and TVETBO also perform well but show
slightly larger deviations in certain regions, suggesting minor discrepancies in their
optimization results. In Fig. 10C, COA(1), GOA, COA(2), CPO, GO, APO, MOA, SBOA,
and EOA all show excellent alignment between the actual and simulated data, indicating
high accuracy in parameter estimation and model representation. TVETBO also performs
well, although it shows a slight deviation at higher voltages, suggesting that while it is
generally effective, it may require further refinement to achieve the same level of precision
as the other algorithms. In Fig. 10D, all algorithms show a moderate level of accuracy, with
the simulated data closely aligning with the actual data. This loose alignment indicates how
each algorithm replicates the real-world behaviour of the PVMM. Among these, COA(1),
COA(2), MOA, and SBOA stand out for their higher precise modelling, as evidenced by
the near-perfect match between simulated and actual data points.

Figure 11 illustrates the power-voltage curves of the selected metaheuristics for the
considered PV models, where each plot compares actual data (blue lines) with simulated
data (red triangles). In Fig. 11A, most algorithms, including COA(1), GOA, COA(2), CPO,
GO, APO, MOA, SBOA, and EOA, exhibit an excellent fit between the simulated and
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actual data, with simulated points closely following the actual data across the entire voltage
range. This indicates high accuracy in representing the power characteristics of the PV
cells. On the other hand, the TVETBO algorithm shows a generally good fit but deviates
slightly near the peak power point, suggesting it may be less precise than the other
algorithms. In Fig. 11B, all algorithms, including COA(1), GOA, COA(2), CPO, GO, APO,
MOA, SBOA, EOA, and TVETBO, show a high degree of accuracy in replicating the actual
data, with the power curves closely following the actual P-V characteristics. Notably, COA
(1), GOA, and APO show near-perfect alignment with the actual data, indicating their
superior performance in minimizing errors and capturing the PV system’s behaviour.
Algorithms such as MOA and TVETBO, while still accurate, exhibit slightly larger
deviations near the peak power point, suggesting minor discrepancies in their optimization

Figure 10 (A–D) Current-voltage curves of the best solutions obtained by COA(1), GOA, COA(2),
CPO, GO, APO, MOA, SBOA, EOA, and TVETBO. Full-size DOI: 10.7717/peerj-cs.2646/fig-10
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results. In Fig. 11C, COA(1), GOA, COA(2), CPO, GO, APO, MOA, SBOA, and EOA
show a strong correlation between the actual and simulated data, indicating high accuracy
and precise parameter optimization. These algorithms effectively replicate the actual P-V
characteristics, reflecting their robustness and reliability. TVETBO, while generally
accurate, shows a slight deviation at higher voltages, suggesting it may require further
refinement to achieve the same level of precision as the other algorithms. In Fig. 11D, while
all algorithms show good alignment between actual and simulated data across most of the
voltage range, there is a noticeable discrepancy at the peak power points. The simulated
data tends to deviate from the actual data at the top of the curves, indicating that these
algorithms may struggle to accurately capture the maximum power point behaviour of the

Figure 11 (A–D) Power-voltage curves of the best solutions obtained by COA(1), GOA, COA(2),
CPO, GO, APO, MOA, SBOA, EOA, and TVETBO. Full-size DOI: 10.7717/peerj-cs.2646/fig-11
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PVMM. This discrepancy suggests that while the algorithms are generally reliable, their
accuracy in predicting the PVmodule’s performance at peak power requires improvement.

Table 22 provides a summary of the best RMSE values found by the selected
metaheuristic algorithms for the different PV models, specifically the SDM, DDM, TDM,
and PVMM. Table 23 summarizes the p-values obtained by the post hoc Dunn’s test with a
significance level set to 0.05. If the p-value is less than the chosen significance level, we
would conclude that there are statistically significant differences among the algorithms’
performances; otherwise, we would conclude that there are no statistically significant
differences among the algorithms’ performances. Table 24 illustrates the ranking of the
optimizers considered for the comparative study using the Friedman test. COA(1) ranks
second (2.75), suggesting it is one of the most effective algorithms, closely followed by CPO
(3.875) and APO (2.625). GO, with the lowest rank of 1.75, emerges as the top-performing
algorithm. On the other hand, TVETBO, ranked tenth (10), shows the least favourable
performance among the algorithms considered. GOA (8.75), COA(2) (7.25), MOA

Table 22 Summary of the best RMSE values found by the selected metaheuristics for the SDM,
DDM, TDM, and PVMM.

SDM DDM TDM PVMM

COA(1) 9.8602187789E−04 9.8602187789E−04 9.8602187789E−04 1.2307306856E−02

GOA 1.0914713470E−02 7.8737429493E−03 1.8837705005E−02 1.5384800935E−02

COA(2) 2.8564228684E−03 3.5599768202E−03 3.6309167663E−03 1.5336896361E−02

CPO 9.8614349211E−04 1.0025597044E−03 1.0046545920E−03 1.2307306856E−02

GO 9.8602187789E−04 9.8248487610E−04 9.8248487610E−04 1.2307306856E−02

APO 9.8602188389E−04 9.8478502518E−04 9.8463282698E−04 1.2307306856E−02

MOA 6.1812674132E−03 1.1816280874E−02 5.2865429516E−03 1.2307306856E−02

SBOA 1.1352185900E−03 1.0625737349E−03 1.0690313595E−03 1.2307306856E−02

EOA 2.0449632490E−03 1.7907122489E−03 1.4307111957E−03 1.2340266929E−02

TVETBO 4.1036065111E−02 3.9436054603E−02 4.5692730515E−02 2.7419994376E−02

Table 23 Results of the Dunn’s test using the RMSE values reported in Table 22.

GOA COA(2) CPO GO APO MOA SBOA EOA TVETBO

COA(1) 0.1631 0.7535 1.0000 1.0000 1.0000 0.8041 1.0000 0.9874 0.0221

GOA 1.0000 0.5818 0.0342 0.1365 1.0000 0.8882 1.0000 1.0000

COA(2) 0.9932 0.3108 0.6986 1.0000 1.0000 1.0000 0.9999

CPO 1.0000 1.0000 0.9966 1.0000 1.0000 0.1365

GO 1.0000 0.3586 0.9997 0.7535 0.0033

APO 0.7535 1.0000 0.9783 0.0177

MOA 1.0000 1.0000 0.9997

SBOA 1.0000 0.3586

EOA 0.9647
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(7.125), SBOA (4.625), and EOA (6.25) fall in the middle range, indicating moderate
effectiveness.

CONCLUSION AND PERSPECTIVES
In conclusion, this study has conducted an extensive comparative analysis of ten
contemporary metaheuristic algorithms for parameter estimation of various PV models.
This optimization problem requires precise parameter identification to capture the
complex, nonlinear behaviours of PV cells, which are influenced by fluctuating
environmental conditions. The estimation process is challenging due to high
computational demands and potential optimization errors, both of which can impact the
accuracy of performance predictions. Through detailed experimentation and performance
evaluation across four distinct PV models—the SDM, DDM, TDM, and PVMM—we have
demonstrated significant variances in the efficiency and accuracy of the algorithms.
Notably, the GO has emerged as the most effective algorithm, as confirmed by the
Friedman test rankings. This optimizer has achieved an RMSE of 9.8602187789E−04 for
the single-diode model, 9.8248487610E−04 for both the double-diode and triple-diode
models and 1.2307306856E−02 for the photovoltaic module model.

The results underscore the importance of selecting appropriate optimization algorithms
tailored to specific PV models to achieve optimal performance. The comprehensive
evaluation of execution time, number of function evaluations, and solution optimality
provides a clear understanding of each algorithm’s strengths and limitations. These
insights are crucial for researchers and practitioners in the field of renewable energy,
particularly in the development and optimization of solar PV systems.

Several avenues for future research and development can be considered:

. Combining the strengths of different metaheuristic algorithms to create hybrid
optimization techniques could potentially yield even better performance and robustness
in parameter estimation tasks.

. Extending the evaluation of these algorithms to real-world PV systems (e.g., Photowatt-
PWP201, STM6-40/36, STP6-120/36) and operational data would help in validating
their practical applicability and effectiveness under varying environmental conditions.

. Refinement and adaptation of the existing algorithms, incorporating mechanisms to
avoid local optima and improve convergence speed, can further enhance their
performance.

Table 24 Results of the Friedman test using the RMSE values reported in Table 22.

COA(1) GOA COA(2) CPO GO APO MOA SBOA EOA TVETBO

Ranks 2.7500 8.7500 7.2500 3.8750 1.7500 2.6250 7.1250 4.6250 6.2500 10
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