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ABSTRACT

Diabetes mellitus is a common illness associated with high morbidity and mortality
rates. Early detection of diabetes is essential to prevent long-term health
complications. The existing machine learning model struggles with accuracy and
reliability issues, as well as data imbalance, hindering the creation of a dependable
diabetes prediction model. The research addresses the issue using a novel deep
learning mechanism called convolutional gated recurrent unit (CGRU), which could
accurately detect diabetic disorder and their severity level. To overcome these
obstacles, this study presents a brand-new deep learning technique, the CGRU, which
enhances prediction accuracy by extracting temporal and spatial characteristics from
the data. The proposed mechanism extracts both the spatial and temporal attributes
from the input data to enable efficient classification. The proposed framework
consists of three primary phases: data preparation, model training, and evaluation.
Specifically, the proposed technique is applied to the BRESS dataset for diabetes
prediction. The collected data undergoes pre-processing steps, including missing
data imputation, irrelevant feature removal, and normalization, to make it suitable
for further processing. Furthermore, the pre-processed data is fed to the CGRU
model, which is trained to identify intricate patterns indicating the stages of diabetes.
To group the patients based on their characteristics and identity patterns, the
research uses the clustering algorithm which helps them to classify the severity level.
The efficacy of the proposed CGRU framework is demonstrated by validating the
experimental findings against existing state-of-the-art approaches. When compared
to existing approaches, such as Attention-based CNN and Ensemble ML model, the
proposed model outperforms conventional machine learning techniques,
demonstrating the efficacy of the CGRU architecture for diabetes prediction with a
high accuracy rate o £ 99.9%. Clustering algorithms are more beneficial as they help in
identifying the subtle pattern in the dataset. When compared to other methods, it can
lead to more accurate and reliable prediction. The study highlights how the cutting-
edge CGRU model enhances the early detection and diagnosis of diabetes, which will
eventually lead to improved healthcare outcomes. However, the study limits to work
on diverse datasets, which is the only thing considered to be the drawback of this
research.
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INTRODUCTION

Currently, diabetes mellitus (DM) has developed into a very serious condition. Numerous
people have DM, which is categorized as a “non-communicable disease (NCB).” According
to 2017 statistics, an estimated 425 million people worldwide are predicted to have
diabetes, a condition that kills between two and five million people annually. By 2045, it is
anticipated to reach 629 million (Kalyankar, Poojara ¢ Dharwadkar, 2017). Insulin-
dependent type-1 diabetes that falls within the category of diabetes mellitus (DM) is also
known as diabetes mellitus (IDDM). Patients with this type of diabetes require insulin
injections because their bodies cannot produce enough insulin. Type 2 diabetes, on the
other hand, is known as non-insulin-dependent diabetes (NIDDM). When cells in the
body are unable to utilize insulin as intended, they develop this kind of diabetes.
Gestational diabetes, or type-3 diabetes, is commonly diagnosed in pregnant women who
did not have diabetes before pregnancy. Additionally, a diabetic has a higher risk of
developing various health issues (Mujumdar ¢ Vaidehi, 2019). Since diabetes is a major
global health concern with a high morbidity and mortality rate, there is a need for early
detection of diabetes. Hence, this research is motivated to provide an effective mechanism
for diabetes detection and accurate severity level prediction for timely intervention and
prevention of long-term complications.

Recent scientific and engineering advancements in technology have driven various
applications of artificial intelligence (AI), such as voice recognition, self-driving cars,
pattern matching, recommendation systems, real estate and stock market predictions, and
healthcare. The field of biocomputing has several uses for the use of Al including analytics,
cancer categorization, diabetic kidney condition evaluation, and the prediction of cardiac
attacks (Alhuseen et al., 2023). Through machine learning, the system gains improved
performance by learning from its past experiences. Al systems are applied in handwriting
identification, speech detection, facial recognition, responding to consumer queries, as well
as control, organization, and planning tasks. Nowadays, the healthcare industry relies
heavily on machine learning to anticipate a range of illnesses (Alsayed et al., 2023). Thus,
using machine learning algorithms for the early diagnosis of diabetes is crucial for
improving human life expectancy (Alsayed et al., 2021). For instance, Vhaduri ¢» Prioleau
(2020) revealed that using personal health devices for continuous glucose monitoring in
diabetes care can facilitate early detection.

Machine learning is regarded as a key technique in diabetes care because it can analyze
large datasets and identify intricate patterns that are difficult to detect manually. To
accurately predict the development of diabetes and identify high-risk individuals,
researches can employ machine learning models, which also facilitate early intervention
and improved health outcomes. Machine learning can process vast amounts of data,
making it more efficient and ideal for the healthcare system (Alsayed, Ismail ¢ Hasan,
2024). Thus, it can be stated that predictions done by machine learning models can provide
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accurate and reliable outcomes and they can also identify the patterns or characteristics

that are missed by the professionals. Moreover, the machine learning model is visible to
additional data, allowing it to adjust and provide more accurate results over time. This can
increase their efficacy in identifying and diagnosing diabetes. The application of machine
learning models in the prediction or diagnosis of diabetes can help control and treat the
condition at an early stage, which is considered a revolution in machine learning (Modi,
Kumar & Geetha, 2023).

The creation and implementation of an artificial intelligence software system that
considers diabetes management is described in this work (Alotaibi et al., 2014). The
creation of a meal suggestion structure, activity tracking and monitoring, chatbots for
diabetes education, and medications reminders are key priorities in diabetes management.
A regression approach is used in the prediction system presented in a study by Orabi,
Kamal & Rabah (2016) to determine the age at which an individual is likely to develop
diabetes based on 23 factors (Rasool et al., 2022a, 2022b). Alghamdi et al. (2017) presented
a study on the effectiveness of various machine-learning techniques for predicting
hyperglycemia from medical data. The proposed work was driven primarily by the need for
a program that anyone could use to estimate the likelihood of developing diabetes.

Over the past decade, artificial intelligence and machine learning have become popular
in many disciplines, especially in the medical area (Bajwa et al., 2021). Although there is
evidence showing how Al and ML assist in diagnosing diseases including diabetes, much of
the research focuses on the positive impact of these technologies, while giving less attention
to the existing drawbacks in current models. While Al-based methods can be highly
accurate in predicting diabetes, challenges remain in predicting severity levels, which are
crucial for determining the appropriate treatment program for patients (Ramudu et al.,
2023). Many current approaches experience problems in processing large datasets when
temporal and spatial data analysis is needed with various problems related to real-time
applicability, scalability, or the reliability of predictions (Wang et al., 2024). In addition, the
translation of these superior models into easily accessible, mobile-responsive tools and
applications has received limited attention, reducing the availability of effective alternatives
for patients and clinicians (Haleem et al., 2021). Existing studies on diabetes prediction
using machine learning have struggled with accuracy and reliability due to the disease’s
complexity. Inspired by the deep learning algorithm and aiming to address gaps in existing
research, this study develops a hybrid deep learning architecture for predicting diabetes
and classifying severity levels. By combining temporal and geographical data aspects, the
study presents a unique deep learning method that improves diabetes prediction by
utilizing the convolutional gated recurrent unit (CGRU). It employs clustering methods in
conjunction with a comprehensive framework that includes data preparation, model
training, and evaluation to achieve accurate severity classification. This novel strategy goes
beyond current practices to enhance the early diagnosis and detection of diabetes.

This research aims to employ the CGRU mechanism to extract spatial and temporal
characteristics, enabling the detection of intricate patterns for diabetes diagnosis.
Additionally, it seeks to identify the severity level of the condition, allowing for targeted
and personalized treatment plans based on patients’ specific needs (Xie et al., 2024). This
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CGRU framework highlights its potential to improve early detection and diagnosis,
ultimately enhancing healthcare outcomes. Moreover, the development of a web-based
mobile-responsive application for diabetes prediction and severity level classification can
improve the accessibility and real-world applicability of the proposed model. The
following are the key contributions of the research:

 Development of a prediction model: This research develops a machine learning-based
prediction model for instant diabetes detection, utilizing user-input features to improve
accessibility and enable early diagnosis. This service allows individuals to easily assess
their diabetes risk and take proactive steps toward better health through tailored risk
assessments.

o Integration of the convolutional neural network-gated recurrent unit (CNN-GRU)
model: To enhance diabetes prediction accuracy, a hybrid CGRU model is proposed,
integrating convolutional neural networks with gated recurrent units. This model
validates diabetes risk assessments by incorporating both temporal and spatial
information from medical datasets, leading to more accurate predictions and improved
patient outcomes.

e Clustering algorithm: To further refine the diabetes risk prediction model, a clustering
algorithm is employed to address the complexities of diabetes-related data, enhancing
the model’s reliability and accuracy.

e Performance outcome: The proposed method achieves high accuracy rates,
outperforming traditional machine learning techniques.

e The study starts with an introduction in the “Introduction” that highlights the value of
proactive healthcare management and describes the relevance of using a mobile app to
forecast diabetic illness. “Related Works” provides a comprehensive overview of the
study by reviewing prior studies and literature on mobile health applications and
diabetes prediction. The problem identified from the existing research is described in
“Research Gap”. The CGRU model is proposed in the “Materials and Methods” to
describe the model architecture and the methods used to predict diabetes using a mobile
app. The “Results and Discussion” presents the outcomes of the experiments conducted
using the proposed technique. The study’s major conclusions are finally outlined in the
“Conclusion”, along with their implications for diabetes prediction using mobile
technologies and potential areas for future research.

Related works

Recent research demonstrates improvements in the application of machine learning for
predicting diabetes, including in areas such as logistic regression, random forests, and deep
learning domains. Nevertheless, the classification of severity levels and integration of these
models into operational, user-friendly systems remain largely understudied in the existing
literature. The literature review of this study identifies gaps in current models, notably in
handling spatial-temporal data for the severity prediction and improving access through
more user-friendly and responsive online platforms.
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Maniruzzaman et al. (2020) developed a machine learning (ML) system for diabetes
individual prediction. The risk factors for diabetic sickness are identified by logistic
regression (LR), which makes use of the p-value and odds ratio (OR). The research uses
four different machine learning algorithms: “naive Bayes (NB), Ada Boost (AB), random
forest (RF), and decision tree (DT).” These algorithms were tested across 20 trials using
three different partitioning methods. The area under the curve and accuracy are used to
assess these classifiers” capabilities. The overall accuracy of the ML-based approach is
90.62%. The connection between LR-based choosing characteristics and RF-based
categorization for the K10 procedure results in an accuracy of 94.25% ACC and an AUC of
0.95. As a result, the LR and RF-based classifications function more effectively now. The
two of these will be extremely beneficial in the prediction of people with diabetes. The
study’s medical data categorization structure has a drawback in that it may be difficult to
adapt for use with other medical data classification schemes, potentially restricting its
future usefulness and efficacy in meeting the needs of doctors and patients.

Ahmad et al. (2021) compare the functions of fasting plasma glucose (FPG) and HbAlc
as input characteristics in forecasting diabetes in patients. By reducing the health and
financial costs associated with diabetes, the ability to predict a patient’s condition based on
a few key variables can enable quick, easy, and affordable diabetes screening. The research
established acceptable results on the training set by utilizing five distinct artificial
intelligence classifiers and feature removal through feature permutations and hierarchical
clustering. This suggests that our information or characteristics are not limited to
particular models. Research suggests that key determinants unique to the Saudi population
can be identified through illness analysis utilizing particular characteristics and managing
these factors may help reduce the disease. Research also offers some suggestions based on
the findings of this study. The study’s limitations include its restricted emphasis on Saudi
Arabia and the possibility of using larger, more diverse datasets in future research to
investigate deep learning and other black-box approaches.

Battineni et al. (2019) stated that the main cause of death and a prevalent chronic illness
is diabetes. Patients with diabetes who receive an early diagnosis have the chance to
properly control their condition by changing their lifestyle and eating habits. Numerous
investigations have explored the prediction and diagnosis of this illness using ML methods.
This study utilized the Pima Indian Diabetes Dataset (PIDD), which includes data from
768 female patients. Different data mining approaches were used to examine four different
machine learning classifiers: “logistic regression (LR), RF, J48, and NB.” The models were
analyzed using different cross-validation configurations. Accuracy, F-score, precision,
recall, and area under the curve (AUC) indicators of performance were computed
individually for each model individually. The primary constraint of this research is that it
only examined traditional machine learning classifiers. Despite potential advancements in
existing diabetes prediction methods, research may encounter difficulties in studying
unsupervised deep learning and machine learning methodologies due to the need for
further exploration.

Dey, Hossain ¢ Rahman (2018) have developed a method for forecasting and evaluating
diabetes using several computer-based detection methods. The standard method for
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diagnosing diabetic patients is more expensive and time-consuming. However, with
advancements in machine learning, researchers are now able to provide a solution to this
challenging issue. With an 82.35% prediction rate, the artificial neural network (ANN)
shows a tremendous boost in accuracy, which motivates the creation of a web-based
interactive application for diabetes prediction. One limitation of the work is that it builds a
location-based dataset using real medical data and applies a deep learning model to predict
diabetes. This might lead to problems with ethics and data privacy.

Al Sadi & Balachandran (2023) published an article on predicting Type 2 diabetes using
an ANN and six machine learning classifiers. This article examines the detection of T2DM
using artificial intelligence and the machine learning model on the Omani population
using a custom dataset and six models: K-NN, SVM, NB, Decision tree, RF, LDA, and
ANN, with MATLAB software (The MathWorks, Natick, MA, USA). The study analyzed
data from the prediabetes register and the Al Shifa health system in South Al Batinah
Province. The Random Forest and Decision Tree models achieved an accuracy of 98%. An
important finding of the study was the observation that a gain in the number of features
increases diagnosability, especially, in the case of missing values. Further work could
involve conducting similar studies with different medical datasets and incorporating
additional attributes to improve the results and system efficiency. However, shortcomings
include the use of a particular database and a limited number of features.

Kozinetz et al. (2024) developed a model on nocturnal high and low-glucose prediction
in adults with diabetes using both machine-learning and deep-learning models. This study
used ML and deep learning (DL) models to predict the nocturnal glucose level in T1D
patients who underwent MDI therapy. Specifically, the continuous glucose monitoring
data were used in the training and testing of the models involving 380 subjects. Both MLP
and CNN which are the parts of DL algorithms, as well as RF and GBTs, which are parts of
ML algorithms, were tested. The models demonstrated high accuracy in predicting glucose
levels within the target range (F1 metric). Within a 30-min prediction horizon, the
proposed method achieved high accuracy, with F1 scores ranging from 93% to 97% and
96% to 98%, exceeding the target range. However, in the case of low glucose levels, the
performance of these models was comparatively less accurate (F1: 80-86%) with MLP
having the highest accuracy in these cases. The analysis also showed that both DL and ML
models are useful for estimating the patients’ nocturnal glucose levels in those with type 1
diabetes (T1D) using MDI ranges. More work must be done in the future to obtain larger
groups with which to improve low glucose alerts and forecasts. Thus, assessing the utility of
these predictive models in mobile applications for preventing FM and nocturnal
hypoglycemia is still a significant issue to address.

Alghamdi (2023) conducted research on predicting the complications of diabetes using
computational intelligence. The classification and prediction model uses data mining
techniques to extract useful knowledge on diabetes data to assist in early detection and
diabetes prediction. The XGBoost classifier, using a gradient boosting framework, has
demonstrated a high accuracy rate in predicting diabetes from large datasets with many
labeled features. However, the decision of the best algorithm predicting diabetes may
depend on the nature of the collected data and the specific objectives of the study. In
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addition to prediction, these techniques are useful for defining risk factors, tracking disease
dynamics, and evaluating treatment outcomes. They provide essential information that
helps the healthcare providers in their decision-making regarding disease processes.
Further studies are required to implement other machine learning algorithms and data
analysis techniques, as well as to extend the proposed XGboost classifier to improve
accuracy and generalization with other benchmark datasets of clinical relevance (Lugner
et al, 2024).

Research gap

In recent years, diabetes management and prediction have seen substantial advancements
through mobile applications and deep learning models. While extensive research has been
conducted on diabetes risk assessment and control using ML and DL techniques,
significant gaps remain in delivering accurate, generalized, and mobile-friendly solutions
that integrate multi-dimensional variables essential for managing diabetes severity. The
existing models face limitations in accurately predicting and grading diabetes severity due
to the lack of integration across diverse data dimensions, such as lifestyle, genetic, and
physiological factors, in a holistic and interpretable manner (Ahmad et al., 2021,
Maniruzzaman et al., 2020). The current models often emphasize prediction without
effectively addressing severity classification or continuous, on-the-go monitoring, leaving a
gap in practical tools for diabetes self-management (Kozinetz et al., 2024; Alghamdi, 2023).
Moreover, existing models often rely on conventional machine learning or single-layer
deep learning approaches that fail to capture the intricate dependencies and temporal
dynamics within these multi-dimensional data points, leading to reduced prediction
accuracy and grading precision (Alghamdi, 2023). This research addresses these gaps by
developing an integrated, mobile-accessible hybrid model for diabetes prediction and
severity grading, leveraging multi-dimensional data in real-time, thereby advancing both
the accessibility and functionality of diabetes management tools.

MATERIALS AND METHODS

This section deals with the Proposed Hybrid CGRU model with K-means clustering for
diabetes prediction and severity classification. Initially, it explains how the front-end and
back-end interface works in the prediction process.

A subfield of artificial intelligence called machine learning enables computers to learn,
make discoveries, and forecast results without the assistance of humans. Machine learning
has been utilized in various sectors and is now being actively applied to develop mobile
applications. Additionally, the evolving TensorFlow lite provides mobile apps developers
with new and fascinating capabilities that are easy to use. Strong mobile machine-learning
apps may use excellent business models and carry out intricate tasks. Retrofit, a REST AP]I,
was explored in this study (Sarker, 2021). The Python API communicates with the Java
API, represented by Retrofit, to send and receive responses. Retrofit was chosen as the Java
API in this study due to its user-friendly nature. The main advantage is that everyone can
make API calls just as rapidly as they can make Java method calls. Its features, such as the
ability to add custom headers and request types, upload files, and simulate responses, make
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Figure 1 Front-end and Back-end Interface (Source: Python Logo (https://commons.wikimedia.org/
wiki/File:Python.svg) from Wikiversity (2010) and React JS logo (https://commons.wikimedia.org/
wiki/File:React_Logo_SVG.svg) from Wikimedia Commons (2023)).

Full-size Kal DOI: 10.7717/peerj-cs.2642/fig-1

it easier to use web services while reducing boilerplate code in applications (Miklosik ¢
Evans, 2020). Figure 1 illustrates the architecture employed to integrate a machine learning
model into a smartphone.

As depicted in Fig. 1, this architecture consists of two primary parts: the front-end and
the back-end. Through HTTP API Service, a request from the front end is sent to the back
end. Once the data reaches the back-end, it is processed by the model depending on the
input. The model then begins to predict and forwards the data over HTTP (REST) to the
user interface (UI) component, from which the result is shown. Employing this process,
the machine learning model integrates with the web-based mobile responsive application
to finalize the forecast. React JS is used in the front-end development process to create an
intuitive dashboard that allows users to observe their everyday activities. Meanwhile,
diabetes prediction is handled by the Python back-end. Model prediction, a trained model
file called “Model.pkl,” and model training are some of its constituent parts. The trained
model is used by the backend to estimate the chance of diabetes when users enter their
daily data, ensuring smooth communication between the two levels. The phases of the
proposed ML-based diabetes prediction and severity level classification are depicted in
Fig. 2.

Hybrid deep learning model for diabetes prediction

In the first step, the dataset preparation process is carried out based on the collected data.
The given data is cleaned and processed, then split into training and testing datasets. Next,
the pre-processed data is input into the Hybrid CGRU model, where features are extracted
to predict diabetic conditions. Finally, the model’s performance in predicting diabetes is
evaluated using various performance metrics.

Data collection
The BRESS data collection, an open-source diabetes dataset, was originally compiled by the
National Institute of Diabetes and Digestive and Kidney Diseases for use in the machine

Alsayed et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2642 8/35


https://commons.wikimedia.org/wiki/File:Python.svg
https://commons.wikimedia.org/wiki/File:Python.svg
https://commons.wikimedia.org/wiki/File:React_Logo_SVG.svg
https://commons.wikimedia.org/wiki/File:React_Logo_SVG.svg
http://dx.doi.org/10.7717/peerj-cs.2642/fig-1
http://dx.doi.org/10.7717/peerj-cs.2642
https://peerj.com/computer-science/

PeerJ Computer Science

CNN Convolutional Max Pooling:
ReLu Layer Layer | GRU
Layer i

BRFSS
rom Kaggie - » » » H_D_DD»_’
from Kaggle | |

Data Collectio ReLu """""""" S S

Convolutional Max Pooling Layer
Layer Layer
Flatten
layer

No Diabetes —

R - -

Pre Diabetes —

Dense Layer
Softmax
Activated

Output Layer

Figure 2 Proposed model for diabetes prediction and severity level classification.
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learning categorization in this study (kaggle, 2021). Table 1 shows the description of the
dataset used in this research.

Data pre-processing
Data pre-processing is crucial for ensuring the model’s accuracy and reliability. It involves
cleaning, transforming, and preparing raw data for subsequent modeling and analysis.

Missing data analysis

In this research, the dataset used is inherently balanced and does not contain any
missing values, making it unnecessary to perform data imputation. By using the full
dataset, researchers retained all the information necessary for analysis, model training, and
diagnostics. This approach enhances the performance and robustness of predictions,
avoiding the potential issues associated with imputed data, such as misleading information
or additional biases. Therefore, the proposed model incorporates accurate input free from
biases, and this enhances its ability to produce reliable and accurate predictions (Phung,
Kumar & Kim, 2019). This ensures the information is maintained in its real form, retaining
its integrity and structure for further analysis.

Irrelevant feature removal

One of the critical steps in enhancing model performance involves redundancy and
cleaning of the dataset through irrelevant feature removal. This research focused on
reducing the number of attributes used in diabetes prediction to retain only the most
impactful features. Recursive feature elimination (RFE) was thus applied, a feature
selection technique that is robust in recursively eliminating lesser important features based
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Table 1 Description of datasets.

Key factors Description
Age The individual’s age in years.
Glucose The remaining amount of glucose in the blood 2 h after a meal, often called the “2-h postprandial blood sugar level”
Insulin A person blood level insulin, measured in microunits per milliliter (uU/mL)
Blood pressure  Measurement, given in millimetres of mercury (mm Hg), of the pressure of blood on artery walls as it circulates throughout the
body.
HighBP A binary variable that shows if a person has high blood pressure
High A binary value that indicates if a person has elevated cholesterol.
Cholesterol
Smoker A binary variable that indicates if someone smokes
Stroke A binary variable that indicates whether or not a person has had a stroke
BMI A body fat and health status measurement that is computed by dividing weight in kilograms by height in meters squared

on a measure of importance determined by the impact on prediction outcome (Bari ¢
Karande, 2021). Based on this, the seven attributes from the original dataset— Fruits,’
‘Veggies,” ‘HvyAlcoholConsump,” ‘NoDocbcCost,” ‘DiftWalk,” ‘Education,” and ‘Income’—
were deemed irrelevant to the analysis and were subsequently excluded. This helped filter
out factors that, while concerning, were not closely linked to predicting the probability of
diabetes, such as BMI, high blood pressure, and physical activity. This unique feature
selection process using RFE resulted in a more enhanced model, highly suited for
classifying the severity of diabetes.

Data cleaning

Data cleaning is a crucial step to ensure the reliability and quality of the dataset for
accurate diabetes severity prediction. In this research, duplicate records were identified and
removed to prevent bias caused by over-representing certain observations, ensuring each
record contributed equally to the model’s learning process. These data-cleaning measures
collectively ensured a high-quality dataset, enabling the deep learning model to achieve
superior accuracy in predicting and classifying diabetes severity levels.

Normalization

Normalization is applied to convert the numeric features of the dataset to a common
scale, minimizing stability and convergence issues in the model. To help overcome possible
biases, the data is normalized using the Z-score normalization method to bring the scale of
each feature closer to zero mean and unit variance. Batch normalization was applied
during model training to improve learning and further enhance the accuracy of diabetes
severity classification (Tan et al., 2023). The normalization layer in the batch
normalization approach is defined as follows in Eq. (1) and performs Z-normalization on
the output of the preceding layer (Yazdanian ¢» Sharifian, 2021). Using Eq. (1), the min-
max scaling can be achieved.
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A = — 1
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A is the dataset’s starting value, A, is the smallest value, and A, is its highest value.
This technique might be helpful when the features are not evenly distributed or fall within
a limited range.

Data transformation

Data transformation is one of the functional parts of the process of preparing the dataset
for analysis. To improve feature extraction and reduce feature space, where features are
somewhat related, aggregation techniques have been used. Generalization was aimed at
reducing complexities by combining values of similar categories, while smoothing was also
used to enhance dataset readability by avoiding distortions. These steps improved the
general quality and organization of the data, providing a better chance of predicting the
severity of diabetes (Karim, Majumdar ¢ Darabi, 2019).

Deploying hybrid CGRU deep learning model for diabetes prediction
Compared to LSTM architectural design, the GRU design requires fewer parameters to be
configured and is more straightforward (Chung et al., 2014). Consequently, optimizing the
CNN model using GRU makes sense, as CNN and GRU, while not identical, can effectively
complement each other. This study develops a new CNN-GRU model. The input and
output architecture of the CNN-GRU system proposed in this study is shown in Fig. 3.

Convolutional layer

The convolution layers gather the features from the input data, which is made up of
many convolution kernels. Every cell of the convolution kernel is associated with a bias
vector and a weight factor. Every convolutional layer neuron has connections to several
neighboring neurons in the vicinity of the preceding layer. The dimensions of the area are
determined by the size of the convolution kernel, commonly referred to in the literature as
the “receptive field.” The significance is comparable to the visual cortex’s receptive field.
The input characteristics are frequently scanned while the convolution kernel is operating.
They are subsequently multiplied and averaged by the matrix components of the receptive
field, and the variations are applied on top of each other (Wu et al., 2023).

g=1 h=1 r=1

R (x,y) = [R*®@ s (x,y) +a = Z Z Z [Rf (wox + awoy + 1)sf,, (u,v)] +a (2)
k& g
Hi+2q9—
(x7y)8{0’1a"'7Hl+1}7 Hl+1 :lW—H+1 (3)
0

In Eq. (2), the summation part defines the equivalent to cracking a cross-correlation and
defines the deviation. The input and output of the convolution layer of [ + 1 are denoted as
R*™! and RY, respectively, and are also known as a feature maps. It is assumed that the
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feature maps, in this case, have the same length as well as width since R + 1 is the size of
R*™ in Eq. (3). The pixel of the feature map is defined as R(a,b) and the number of
characteristic graph is mentioned as K. The parameter of the convolution layer of
consistent to the side of the convolution step, convolution kernel and padding layer are
defined as wy, g and g, respectively.

The settings of the convolution layer include its length and width. The output feature
map size of the convolution layer, which is a CNN hyperparameter, depends on the kernel
size. The kernel size is specified as a value smaller than the total dimension of the image
input. Overall, the convolution layer is a key setting in the CNN. There are multiple
possible sizes for the convolution kernel. A bigger convolution kernel maintains its lower
size relative to the input picture while extracting more information from the input and
enhancing model performance. The convolution phase sweeps the feature map twice and
determines the distance between each convolution kernel point. Over each element of the
feature map, the convolutional kernel is applied during the convolution phase with a size of
1, which can neglect n — 1 pixels when the number of steps exceeds 1. The convolutional
layer has an activation function designed to highlight intricate features and their
presentation. The equation is shown in Eq. (4):

ML, = f(R.,.) )

where ‘x” and ‘Y’ represent the position of the convolution layer at the position in the Ith
layer and kth filter and the activation function is denoted as “f’.
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One of the most common activation functions is called Relu. This often means that the
curved function is represented using different types and slope functions. It is described as

Eq. (5):
g(e) = max (0,e). (5)

In the above Eq. (5), the g(e) represents the output of ReLUs activation function for

« »

input is denoted as ‘¢ which is the maximum of “0” and the input “¢”.
Max-pooling layer

The pooling layer prevents overfitting in the output by down-sampling the input vector.
The simulation’s complexity of computation is decreased by the pooling layer. An
evaluation of the pooling layer’s output is given as follows:

a:‘ = down (akfl, s) (6)

i
where s is the pool size, a¥ is the characteristic vectors of the preceding layer, and down

(k — 1) is the downsample as mentioned in Eq. (6). Two frequently used procedures for
pooling are maximum pooling and average pooling.

Gated recurrent unit

Using an embedding layer (explained below), the multi-hot encoded input x is
transferred into a low-dimensional embedding, as shown in Fig. 4. In the last stage, a fully
connected layer is created by combining the patient’s demographic data vector with fully
interconnected layers that have a hyperbolic tangent activation and the hidden state at the
final timestamp. On top of the patient’s results, an additional fully connected layer (also
known as the logistic regression layer) is implemented.

This layer computes the patient’s risk score by using a single neuron with sigmoid
activity. The following Eqs. (7) to (11):

Reset Gate ry = o(W(“”)Et + W(hv)ht—l)- (7)

In Eq. (7), rg represents the reset gate value with the sigmoid activation function “¢”, the
weight matric “W®)” for the input ¢; in the reset gate. ¢; define the current time step. The
weight matrix of the previous hidden state “h;_,” is defined by W),

Update Gate z, = J(W(“”)Et + W(hv)ht—l) (8)
Process Input }Nzg = tanh(W(ii’)Et + w (hh) ht,1> 9)
Hidden State hy = (1 — v;) * hy_y + z; * h, (10)
Output State O; = h;. (11)

In Egs. (7) to (11), z,, fzg, hg, O, denotes the update gate, process input, hidden state, and
output state, respectively. The tanh function represents the tangent activation function,
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W (") denotes the weight matrix for the processed input, and W) denotes the weight
matrix for the previous hidden state. The CGRU approach presented in this work extracts
certain important characteristics while maintaining the initial feature layout using a
convolutional layer. Furthermore, to avoid the issue of the framework being over-fitted, the
weak value feature was excluded by using the max pooling layer, and the intense feature
value was selected from the significant feature. To eliminate eigenvalues less than zero, a
rectified linear unit is applied in the convolutional layer, while a max pooling layer is
incorporated to enhance the training efficiency. Subsequently, to speed up the simulation’s
computation while enhancing its accuracy, the eigenvalues are transmitted via the GRU
update and reset gates.

Flatten layer

One of the key components of the CNN is the fully connected layer, which integrates the
spatial characteristic refined by the pooling layer that follows the convolutional layer.
Using the dense connection, the fully connected layer enables the fusion of learned
information across the spatial dimension, with each neuron connected to every neuron in
the preceding layer. This integration phase needs to capture complex relationships
between the input so that the network can identify complicated patterns ranging from
lower-level features such as edges and textures to higher-level abstraction. The integration
is mathematically represented by matrix multiplication, followed by bias addition and the
application of the activation function. As a consequence, the network can provide accurate
predictions for various machine-learning tasks. Before proceeding to the fully connected
layers, the feature maps that the pooling and convolution layers have recovered must be
flattened into a one-dimensional vector. The multi-dimensional feature maps are reshaped
into a single long vector using this flattening technique. Every element in this vector
represents a distinct quality that the convolutional layers were able to identify. By
connecting every neuron in one layer to the other layer, the fully connected layer allows the

Alsayed et al. (2025), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.2642 14/35


http://dx.doi.org/10.7717/peerj-cs.2642/fig-4
http://dx.doi.org/10.7717/peerj-cs.2642
https://peerj.com/computer-science/

PeerJ Computer Science

network to learn the complex representation. In a fully connected layer, every neuron has a
unique function in identifying different facets of the input data and identifying certain
patterns, or combinations of patterns, that are essential for outcome prediction. In many
tasks involving classification, the output of the last fully connected layer is processed
through a softmax activation function to produce probability ratings for each class.

Softmax layer

The softmax layer is a crucial component commonly utilized in neural network
categorization jobs. Its primary function is to create an ordered distribution using the
probabilities that result from the layers that precede it. This transformation ensures that
the probabilities of all possible outcomes sum to one, thereby accurately assigning a
likelihood to each class, such as “diabetes” and “no diabetes.” The softmax layer normalizes
the probabilities allowing the algorithm to select the class with the highest probability as
the model’s output and produce an accurate prediction.

The overall working process of the CGRU model in predicting diabetes is given below in
Algorithm 1.

Clustering algorithm for severity level classification

The clustering method is used to classify individuals into three severity classifications
relative to diabetes: high, moderate, and low. Patient data, including demographics,
medical histories, and laboratory test results, make up the dataset utilized for this research.
The data is pre-processed to make sure it is in a format that is appropriate for clustering.
Using the hierarchical clustering technique, patients are grouped into clusters based on
their similarity. The process begins by assigning each patient to an individual cluster,
which are then iteratively merged based on similarity until a single cluster remains. This
technique identifies the optimal number of clusters and uses a dendrogram to visualize the
hierarchical structure of the clustering results. The average severity level of the patients in
each cluster, which is ascertained by the average value of the severity metric computed
utilizing the patient data, is then employed to classify the clusters as high, moderate, or low
severity categories.

Hierarchical clustering

Hierarchical clustering is the most efficient technique for grouping data points into clusters
based on their similarities. It detects patterns in severity levels and organizes them
according to shared attributes or similarities. Different types of patients exhibit various
abnormal behaviors, which may differ from one another. To classify the user with the same
data characteristics, the research utilizes the hierarchical clustering algorithm. The
fundamental stage in anomaly identification is to cluster the original diabetic data using
the hierarchical clustering technique. To identify data outliers using the standard
information model, researchers typically need to train a sufficient number of labeled data
samples in the diabetes severity prediction. The important process of hierarchical
clustering is to compute the distance between two kinds of data points by merging the
algorithm and combining the two closest data points. This helps to calculate the distance
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Algorithm 1 CGRU for Predicting the diabetes.

Input: Dataset D = {(X;,y;)| i=1, 2, ..., n}, //X; is feature vector, y; € {0,1} is the label representing Diabetes (1) or No Diabetes (0)

Output: Predicting the condition yy.eq € {0,1} for each test instance

Begin

For each instance (X;,y;) in D
Clean the data by handling missing values and outliers
Normalize or standardize features in X; to ensure consistent scaling
Perform feature selection by identifying relevant features and dropping irrelevant ones

end for

Split the dataset D into a training set Dygin = {(Xtrain, Yirain)} and a testing set Dioy = {(Xiest, Veest) } using a specified split ratio (80-20)

Train the data in the CGRU model

Initialize the CGRU model parameters

Define convolutional layer parameters, such as filter count and kernel size, for spatial feature extraction

Define GRU layer parameters to capture temporal patterns

For each epoch e

For each batch (Xpatch, Ybatch) € Dirain
Extract spatial features from Xpap, using the convolutional layers: Fyparia) = ConvLayer (Xpaich)
Pass Fypasia through GRU layers to capture temporal features: Fiemporat = GRULayer (Fspm,-al)
Predict yyreq based on Fiomporal
Calculate the loss L = Loss(Ypred, Ybatch) using the loss function
Update the model parameters to minimize L using an optimizer
End for

End for

Test the data in the CGRU model

For each instance (Xest, Viest) € Drest
Extract spatial features from X,y using the convolutional layers: Fypaiqr = ConvLayer (Xes)
Extract temporal features from Fopaiqr through GRU layers Fiopmporas = GRULayer (Fspmiul)
Predict ypreq € {0,1} based on Fiemporal
Compute loss and Update model parameters using backpropagation

End for

Evaluate the trained model on the test set (Accuracy, Precision, Recall, FI-score)

Print the test loss and test accuracy

End

among each kind of data point and also determine the similarity among them. At first, each
class is defined based on the sum of distortion degree. If the “n” samples were divided into
‘k’ classes, with ‘k’ being less than '’ and >2, then Zj represents the class k (k = 1, 2,...,n).

The degree of distortion for this class is calculated using Eq. (12), where u; denotes the

center of gravity:
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> law — . (12)

usZk

The degrees of distortion of all classes are calculated using Eq. (13).

J=2 e D1 = el (13)

ueZy

J, often known as the aggregation coefficient, shows a progressive decline in its “a,”
value, with increasing cluster count. The ideal number of clusters is ascertained when the
grouping coefficient begins to converge. Figure 5 shows the hierarchical clustering
dendrogram where the data points are grouped based on similarity. The x-axis represents
the individual data point and the y-axis represents the distance or dissimilarity between
clusters. To differentiate the clusters, the branches are color-coded as blue, green, and red.
The distance between clusters is determined by merging the heights of the two clusters.
The workflow of the hierarchical clustering process is mentioned in Algorithm 2.

K-means clustering algorithm

Using a Python-based combinatorial k-means clustering analysis tool, which requires the
selection of a small number of descriptors from a larger set, the separation of instances was
determined through k-means clustering. Utilizing the Python Notebook platform, the
combinatorial k-means clustering program was created utilizing SciPy, Matplotlib, and
Itertools. The flow chart of the clustering process is shown in Fig. 6. The patient data for
each underlying illness was retrieved from spreadsheet files using the Pandas module and
visualized with the Matplotlib tool. K-means clustering was performed using the hierarchy
of the cluster submodule from SciPy. Every possible combination of any descriptor was
examined using the Itertools package. The user-selected Excel file contained all the data
extracted by the application. Subsequently, the data were divided by each attribute’s
standard deviation to normalize them. To perform the k-means clustering, several linking
techniques are available, such as centroid, average, and Ward’s.

The hierarchical clustering algorithm begins by initializing the process and taking the
measured features of data points as input. It computes a distance matrix to show the
pairwise distances between all points using metrics such as Euclidean or Manhattan
distance. Initially, each data point is considered its cluster. The algorithm then checks if
there is only one cluster. If not, it merges the two closest clusters, updates the distance
matrix, and repeats the process until only a cluster remains. This iterative process
continues, combining the most similar data points or clusters and updating distances, until
all points are consolidated into a single cluster.

For all computations in this paper, the centroid approach was chosen. The program
combined every conceivable combination of three descriptors from each of the
spreadsheet’s properties that were marked as input data, using k-means clustering by
default. Combinations including two descriptors are an additional option. This study used
artificial clustering to arrange the three variables into every feasible combination. For every
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k-mean clustering, a parameter known as the global variance was calculated to rank every
feasible clustering.

varGlobal = Z Z var; . (14)

€«

In Eq. (14), var; is the variance of the descriptor “” for the “k” cluster and it can be also
stated that each cluster has different descriptors. Some restrictions were also implemented
to choose a legitimate clustering. The stochastic ¢ clustering process may result in systems
with a non-equilibrium number of cluster members, leading to clusters with one or two
items that exhibit low variance within the associated group. It is specified that a legitimate
clustering is a situation where at least three components for any of the clusters are involved
to prevent this problem. Three different descriptor combinations were used by the
program to achieve clustering. The right number of instances with data available for the
three descriptors under investigation were chosen for each combination. In this manner,
most data were always utilized for each clustering.

RESULTS AND DISCUSSION

This section includes a description of the system and the results of the suggested diabetes
prediction model. The collected dataset is implemented in the Python software in a
Windows 10 Operating System. First, the efficacy of the CGRU method was assessed.
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Algorithm 2 Hierarchical clustering for grouping the severity class.
For each instance Xgiapetic € Ypred
Select relevant severity features such as blood sugar levels, HbAIc levels, and other indicators of severity
Apply K-means Clustering for Initial Classification
Initialize K-means clustering with K = 3 (representing Low, Medium, and High severity levels)
Run K-means on the severity feature set to create initial clusters, clusters = K — means(Xgigpetic, K = 3)
Assign cluster labels to each instance based on proximity to cluster centroids
Low - cluster with the lowest centroid value
Medium - cluster with intermediate centroid value
High - cluster with the highest centroid value
Perform hierarchical clustering on the initial clusters for further refinement
Use an appropriate linkage criterion and distance metric
Distance function {z;,z,}

foru=1ton

2y = {ay}
end for

Z = 1{zp.Zu}
U=n+l

While Z.size >1 do
Find two closest cluster Zyin1, Zminy with minimum distance:
~(Zmin1s Zminz) = min dist (z,,z,) for all z,,z, in Z
—eliminate Zyim and Zyiny from Z
—add the merged cluster {Zyjn1, Zyina} to C
~Increment U = U+1
end while
Check the dendrogram to verify natural groupings and refine boundaries between Low, Medium, and High-severity clusters
For each instance Xgigpetic
Assign final severity labels to each cluster outcome
Low - cluster with minimal severity indicators
Medium - cluster with intermediate severity indicators
High - cluster with highest severity indicators
output the predicted severity label: Low, Medium, or High
end for
end for
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Subsequently, the developed Android mobile application and website structure are
presented.

Experimental results for diabetes prediction and severity level
classification

Figure 7 shows the input data of the binary classification of diabetes in which the different
parameters that cause diabetes were used to evaluate the performance. Figure 8 illustrates
the outcome of the missing value analysis and it shows that there are no/zero missing
values present.

Figure 9 illustrates the result of the irrelevant feature removal, highlighting the
characteristics of various health indicators, such as blood pressure, cholesterol level, BMI,
and smoking status, efc. Based on that, the seven attributes from the original dataset,
namely, ‘Fruits,” “Veggies,” ‘HvyAlcoholConsump,” ‘NoDocbcCost,” ‘DiffWalk,’
‘Education,” and ‘Income’ were considered as attributes that do not add any value to the
analysis and were subsequently dropped from the analysis. The individual health data is
presented in each row representing the absence of the specific condition.

Figure 10 shows the BMI vs. PhysHIth scatter plot, where the data points represent
individual BMI and physical health status, providing details on the potential correlation
between higher BMI, poor physical health, and increased diabetes risk.

The distribution of high cholesterol by age and sex is presented in Fig. 11. The
prevalence of high cholesterol among the ‘Sex 0.0’ and ‘Sex 1.0” is compared with the age
group from “<10” to “<80” within each group. It can be obviously observed that there is a
gradual increase in each case, with a sudden rise occurring in the age group ‘60-69’.

Figure 12 shows the comparison of mental health score distributions for individuals
who have had a stroke. The person with a stroke is labeled as “1.0” and the non-stroke is
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Diabetes_binary HighBP HighChol CholCheck BMI Smoker Stroke HeartDiseaseorAttack PhysActivity Fruits .. AnyHealthcare NoDocbcCost GenHith

0 0.0 1.0 0.0 10 26.0 0.0 0.0 0.0 1.0 00 .. 10 0.0 3.0
1 0.0 1.0 1.0 10 26.0 1.0 1.0 0.0 0.0 10 .. 1.0 0.0 3.0
2 0.0 0.0 0.0 10 26.0 0.0 0.0 0.0 1.0 10 .. 1.0 0.0 1.0
3 0.0 1.0 10 10 280 1.0 0.0 0.0 1.0 10 .. 1.0 0.0 3.0
4 0.0 0.0 0.0 10 290 1.0 0.0 0.0 1.0 10 .. 1.0 0.0 20

5 rows x 22 columns

Figure 7 Input data. Full-size K&l DOT: 10.7717/peerj-cs.2642/fig-7
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Figure 8 Missing value analysis outcome. Full-size K] DOT: 10.7717/peerj-cs.2642/fig-8

labeled as “0.0”. The spread and density of mental health scores in each group are shown in
the Y-axis, ranging from —5 to 35. This helps identify patterns or differences in mental
health conditions associated with stroke occurrence.

Figure 13 illustrates the correlation matrix heatmap, showing the strength and direction
of the relationships between variables. Positive correlation is represented in green, negative
correlation in red, and no correlation is indicated in yellow. This color-coding helps in
interpreting correlation values ranging from —1 to 1.
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Diabetes_binary HighBP HighChol CholCheck BMI Smoker Stroke HeartDiseaseorAttack PhysActivity AnyHealthcare GenHith MentHith PhysHith

0 0.0 1.0 0.0 10 26.0 0.0 0.0 0.0 1.0 1.0 3.0 5.0 30.0
1 0.0 1.0 1.0 10 26.0 1.0 1.0 0.0 0.0 1.0 3.0 0.0 0.0
2 0.0 0.0 0.0 10 26.0 0.0 0.0 0.0 1.0 1.0 1.0 0.0 10.0
3 0.0 1.0 1.0 10 280 1.0 0.0 0.0 1.0 1.0 3.0 0.0 3.0
4 0.0 0.0 0.0 10 29.0 1.0 0.0 0.0 1.0 1.0 20 0.0 0.0
70687 1.0 0.0 10 10 37.0 0.0 0.0 0.0 0.0 1.0 4.0 0.0 0.0
70688 1.0 0.0 1.0 10 290 1.0 0.0 1.0 0.0 1.0 20 0.0 0.0
70689 1.0 1.0 1.0 10 250 0.0 0.0 1.0 0.0 1.0 5.0 15.0 0.0
70690 1.0 1.0 1.0 10 180 0.0 0.0 0.0 0.0 1.0 4.0 0.0 0.0
70691 1.0 1.0 10 10 250 0.0 0.0 1.0 1.0 1.0 20 0.0 0.0

58033 rows x 15 columns

Figure 9 After removing irrelevant features. Full-size K&] DOT: 10.7717/peerj-cs.2642/fig-9
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Figure 10 BMI vs PhysHIth scatter plot. Full-size 4] DOT: 10.7717/peerj-cs.2642/fig-10

The Layer explanation of the proposed neural network architecture is presented in

» o«

Fig. 14. It includes the layers such as “convld_3”, “max_poolingld_3”, “flatten_3”,

» <«

“dense_7”, “dense_8” and “dense_9” and each layer represents the output shape. The
convolution layer includes 128 parameters contributing to the total sum of 16,705 trainable

parameters, which are updated during training.
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Figure 11 High cholesterol by age and sex. Full-size K&] DOTI: 10.7717/peerj-cs.2642/fig-11
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Figure 12 Violin plot of stroke vs. mental health. Full-size K&l DOT: 10.7717/peerj-cs.2642/fig-12
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Figure 15 depicts the graphical representation of “training and validation loss” and
“training and validation accuracy” for 20 epochs. For training and validation loss for each
epoch, the loss is gradually reduced to 0.002%, and for the training and validation
accuracy, it is gradually raised to 99%.

Figure 16 presents the ROC curve for the proposed model, which is used to evaluate the
efficiency of the binary classifier. It plots the true positive rate against the false positive rate
at various thresholds. The curve indicates efficient performance between the classes, with a
perfect classification achieved, and an AUC of 0.99 (=1).

The diabetes-predicted data taken for Severity analysis is shown in Fig. 17 with key
health indications such as “Diabetes”, “Hunger”, “BMI”, and “Cholesterol”, among others.
The numerical values were defined based on their health metrics.

Figure 18 shows the severity level group for the taken data as moderate, high, and low
levels. Among the three sets of severity levels taken from the dataset, the moderate level has
the highest rate, followed by highest level lies in second place, and the lowest level in third.

The performance of a machine learning algorithm in the form of a confusion matrix is
presented in Figs. 19A and 19B. From Fig. 19A, it can be observed that there are 10,604
true positives, 0 false positives, 1 false negative, and 10,603 true negatives. Based on this, it
can be concluded that the high number of correct predictions and the negligible number of
errors indicate high prediction accuracy. Similarly, from Fig. 19B, it is evident that there is
a high count along the diagonal, indicating a high level of accurate predictions. In
conclusion, the classification results demonstrate high accuracy, minimal errors, and
improved efficiency.

Performance evaluation

The evaluation metrics are the quantitative measures used to determine the ML model’s
performance and efficacy. These metrics provide information about how well a model is
doing and help compare different models or algorithms. The metrics used for evaluation
and its formula are provided below.

Accuracy: It is the percentage of correctly classified instances out of the total

occurrences, reflecting the model’s overall prediction performance. Equation (16) may be
used to calculate the accuracy.

Tp + TN

16
TP+TN+FP+FN ( )

Accuracy =

Recall: A classification model’s recall measures its ability to correctly identify all
pertinent examples. It is calculated as the ratio of true positive predictions to the total
number of genuine positive occurrences. It is also known as a true positive rate or
sensitivity at times. The recall might be determined using Eq. (17).

T

Recall = ——
eca T, + Fy

(17)
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Figure 13 Correlation matrix heatmap. Full-size k&l DOI: 10.7717/peerj-cs.2642/fig-13
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Figure 14 Neural network architecture. Full-size k&l DOI: 10.7717/peerj-cs.2642/fig-14
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Figure 17 Severity data pre-processed result.
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Figure 18 Severity levels of diabetes prediction. Full-size K&] DOT: 10.7717/peerj-cs.2642/fig-18

Precision: The effectiveness of a classification model’s predicted outcomes is measured
by its precision. It is calculated as the ratio of the overall number of accurate positive
predictions to the entire number of effective predictions made by the model.
Mathematically, it is expressed by Eq. (18).

T

_— (18)

Precision =

F1-score: The Fl-score is determined by taking the harmonic mean of accuracy and
recall. It is a statistical measure that offers a balance between the two parameters. As it
accounts for both false positives and false negatives, it is particularly useful in situations
where there is an unequal distribution of classes. F1-score is calculated using Eq. (19).
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Figure 19 Confusion matrix for diabetes prediction and severity classification. Full-size K&] DOT: 10.7717/peerj-cs.2642/fig-19

Precision x Recall
F1 — score = 2 x — . (19)
Precision + Recall

In Egs. (16), (17), and (18), T, and Ty represent the true positives and true negatives,
while Fy and F, refer to the false negatives and positives, respectively.

Table 2 shows the performance evaluation of the proposed CGRU model with the
Clustering algorithm in predicting diabetes and classifying the severity stage. From
Table 2, it can be concluded that the proposed model provides enhanced accuracy,
precision, recall, and an F1-score of 99.99%, correspondingly.

Table 3 and Fig. 20 present the comparison of severity prediction of Existing research
(Zhao et al., 2024; Dutta et al., 2022) and the proposed model. It can be concluded that the
proposed model achieves high accuracy of 99.9%, while the ensemble ML classifier shows a
lower accuracy of 73.4%. Figure 21 shows the interface of the proposed web-based mobile
responsive application in diabetes prediction. This improvement shows the better ability of
the model to extract the spatial and temporal characteristics from the dataset improving
the forecast accuracy. They further note that the complex patterns make it difficult for the
model to learn, suggesting that the CGRU framework is more reliable for accurate
classification of the level of severity of diabetes.

DISCUSSION

The most significant finding of this study is the remarkable performance of the proposed
Convolutional Gated Recurrent Unit (CGRU) model for diabetes prediction, and severity
level classification, achieving an outstanding accuracy, precision, recall, and F1-score of
99.9%. This exceptional performance highlights the model’s robustness and potential to
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Table 2 Performance metrics of proposed model.

Metrics Efficiency
Accuracy 99.9%
Precision 99.9%
Recall 99.9%
F1-Score 99.9%

Table 3 Comparison of proposed method with different methods.

References Method Accuracy
Zhao et al. (2024) Attention based CNN 94.12%
Dutta et al. (2022) Ensemble ML Classifier 73.4%
Proposed model CGRU with K-means clustering 99.9%

Performance Comparison

100.00%

80.00%
60.00%
40.00%
20.00%

0.00%

Attention Ensemble ML CGRU
based CNN Classifier

Figure 20 Performance comparison of proposed method with existing models.
Full-size K&] DOT: 10.7717/peerj-cs.2642/fig-20

enhance diabetes care by enabling precise and timely predictions. The integration of this
model into a web-based mobile-responsive application further enhances its usability and
accessibility, making it a practical tool for real-time deployment and user-friendly
interaction. This directly addresses the gap in previous studies, which often lacked the
integration of mobile-responsive features and accurate severity classification, thereby
improving the practical utility and applicability of the model in everyday healthcare
settings.

When comparing the results to existing methods, such as the Attention-based CNN
(94.12% accuracy) (Zhao et al., 2024) and the Ensemble ML Classifier (73.4% accuracy)
(Dutta et al., 2022), the superiority of the CGRU model is evident. Previous studies faced
challenges related to dataset dimensions and population specificity, which limited their
generalizability and effectiveness. The proposed model effectively overcomes these
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Figure 21 Interface of the proposed web-based mobile responsive application. Full-size 4] DOT: 10.7717/peerj-cs.2642/fig-21

limitations by capturing both temporal and spatial information from medical datasets
through the integration of CNN and GRU. Additionally, the use of a clustering algorithm
enhances the model’s reliability and accuracy, addressing the complexities inherent in
diabetes-related data by classifying the severity levels of diabetes, which is not present in
the existing applications. This comprehensive approach not only improves prediction
accuracy, but also offers significant advancements in patient outcomes by providing
tailored diabetes risk assessments and management strategies.

Despite the promising results, this study has certain limitations. One primary concern is
the need for further validation across diverse datasets to ensure the model’s generalizability
and robustness. Additionally, the model’s performance in real-world scenarios with
varying data quality and noise levels remains to be thoroughly tested. Unexpectedly, the
CGRU model achieved higher precision and recall rates than initially anticipated,
indicating its effectiveness in minimizing false positives and negatives. Further studies
should be aimed at replicating the proposed model in other samples to eliminate the
possibility of overfitting the model. Furthermore, to produce accurate results, it is crucial to
evaluate the efficiency of the adopted model by performing trials with real-world data of
diversified quality and with different levels of noise included. It will strengthen the validity
of the model if similar performance can be demonstrated in other clinical settings and with
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less homogeneous data. However, future research should explore the robustness of the
model in different clinical environments and with more heterogeneous data to fully
establish its reliability and applicability.

CONCLUSION

This work develops an innovative architecture for deep learning for the early diagnosis and
estimation of diabetes mellitus: the CGRU. By integrating gated recurrent units with
convolutional layers, the CGRU model effectively extracts both temporal and spatial
properties from input data, closing significant gaps in existing methods. A useful technique
for assembling comparable data points according to the similarities is the Hierarchical
Clustering method. Each data point is initially treated as a separate cluster. The method
then iteratively identifies and merges the two closest clusters, adding the combined cluster
to the resulting set. This process is repeated until only one cluster remains. By carefully
pre-processing the BRESS dataset, which included imputation of missing data, elimination
of superfluous features, and normalization, the researchers were able to obtain high-quality
input for model training. The CGRU model surpassed two popular machine learning
algorithms, SVM and CNN-LSTM, in terms of prediction accuracy, with a rate of 99.9%.
The proposed model performs well due to the balanced dataset, which is implemented in
clinical practice, ensuring its reproducibility. The proposed model delivers improved
prediction results on balanced datasets and can be incorporated into a web-based mobile
application for the early diagnosis of diabetes mellitus and more effective intervention.
Potential directions for future work involve extended investigation of the CGRU
framework in the context of other chronic diseases, enlargement of a dataset used for the
analysis to make it more representative, improvement of model configurations,
optimization of user interfaces, and long-term research concerning the effects on the
health status of patients and overall healthcare costs. This development is expected to
enhance the ability to diagnose, preview, and manage diabetes, offering valuable resources
for healthcare workers and individuals affected by the disease. Future studies could explore
the applicability of the CGRU framework to other chronic diseases, expand the variety of
the dataset to improve the model’s generalizability, and refine the model’s design to
enhance accuracy. Improvements to the web-based application’s user interface, along with
longitudinal studies to evaluate the long-term impact of early diabetes prediction on
patient health outcomes and healthcare costs, would also be valuable. By integrating this
model into a web-based mobile-responsive application, we have created a practical tool for
early diagnosis and timely intervention, thereby enhancing patient outcomes and
improving healthcare delivery.
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