
Secure software development: leveraging
application call graphs to detect security
vulnerabilities
Lei Yan1, Guanghuai Zhao1, Xiaohui Li1 and Pengxuan Sun2

1 State Grid Beijing Electric Power Company, Beijing, China
2 The Faculty of Information Technology, Beijing University of Technology, Beijing, China

ABSTRACT
The inconsistency in software development standards frequently leads to
vulnerabilities that can jeopardize an application’s cryptographic integrity. This
situation can result in incomplete or flawed encryption processes. Vulnerabilities
may manifest as missing, bypassed, or improperly executed encryption functions or
the absence of critical cryptographic mechanisms, which eventually weaken security
goals. This article introduces a thorough method for detecting vulnerabilities using
dynamic and static analysis, focusing on a cryptographic function dominance tree.
This strategy systematically minimizes the likelihood of integrity breaches in
cryptographic applications. A layered and modular model is developed to maintain
integrity by mapping the entire flow of cryptographic function calls across various
components. The cryptographic function call graph and dominance tree are
extracted and subsequently analyzed using an integrated dynamic and static
technique. The extracted information undergoes strict evaluation against the
anticipated function call sequence in the relevant cryptographic module to identify
and localize potential security issues. Experimental findings demonstrate that the
proposed method considerably enhances the accuracy and comprehensiveness of
vulnerability detection in cryptographic applications, improving implementation
security and resilience against misuse vulnerabilities.

Subjects Adaptive and Self-Organizing Systems, Autonomous Systems, Cryptography, Security
and Privacy, Software Engineering
Keywords Network security, Secure software development, Authentication, Intrusion detection,
Security vulnerabilities, Data protection

INTRODUCTION
Cybersecurity has become a significant issue in today’s information-driven society,
especially within software development, where flaws in encryption methods can jeopardize
sensitive information. Cryptography protects data security in the information exchange
process, enabling essential functions like data encryption, key exchange, and
authentication (Chen et al., 2023). Nevertheless, the reliability of cryptographic systems is
not only based on theoretical security; it also hinges on how securely these systems are
implemented in software (Aldosary & Tanveer, 2024). This distinction is essential:
theoretical security pertains to the design and principles of cryptographic algorithms,
whereas implementation security emphasizes how these principles are applied in real-
world coding. Even if the theoretical design is sound, inadequate implementation can

How to cite this article Yan L, Zhao G, Li X, Sun P. 2025. Secure software development: leveraging application call graphs to detect security
vulnerabilities. PeerJ Comput. Sci. 11:e2641 DOI 10.7717/peerj-cs.2641

Submitted 18 October 2024
Accepted 10 December 2024
Published 22 January 2025

Corresponding author
Pengxuan Sun,
SunPXBJUT@163.com

Academic editor
Osama Sohaib

Additional Information and
Declarations can be found on
page 23

DOI 10.7717/peerj-cs.2641

Copyright
2025 Yan et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.2641
mailto:SunPXBJUT@�163.�com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2641
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

introduce vulnerabilities, affecting information systems’ confidentiality, integrity, and
authenticity (Limkar et al., 2023).

A rising concern in cryptographic software security is the issue of “cryptographic misuse
vulnerabilities.” These vulnerabilities arise when developers inadvertently breach
cryptographic security protocols, often due to a lack of standardization or insufficient
awareness of secure coding principles (Hasan et al., 2024). Misuse can manifest in various
ways, including incorrect configuration, poor key storage practices, or insecure handling of
cryptographic functions, leading to major security risks for end users. In contrast to design
flaws in the algorithms, cryptographic misuse vulnerabilities are more varied and can have
extensive consequences, making swift analysis and detection essential for maintaining
software security (Nyangaresi, 2023).

Despite the significance of this domain, the current research on detecting cryptographic
misuse vulnerabilities is still in its infancy and faces numerous challenges (Baho &
Abawajy, 2023). For instance, existing analyses often do not clearly categorize misuse
mechanisms, which complicates the comprehensive detection of vulnerabilities (Alkhwaja
et al., 2023). Moreover, current automated detection methods usually only address a
limited number of scenarios or depend on simple detection rules, resulting in low detection
rates and excessive false positives (Pimenta Rodrigues et al., 2024). While manual analysis
can be effective, it requires significant expertise and is not feasible for analyzing large
amounts of software, thereby stressing needing more efficient and automated detection
solutions.

This section reveals a new mechanism for identifying cryptographic misuse
vulnerabilities in software applications. Unlike traditional vulnerability detection
approaches that typically depend on static or dynamic analysis, our method integrates both
to address the shortcomings identified in earlier techniques. For example, methods that
rely solely on static analysis may overlook runtime vulnerabilities due to restricted path
coverage. In contrast, those employing only dynamic analysis might miss implicit API calls
or dependencies that were not executed during testing.

Our method closes these gaps by creating a comprehensive cryptographic function call
graph (CFCG) through control flow reconstruction and employing a cryptographic
function dominance tree (CFDT) to capture the interaction between function calls in a
modular, layered format. This layered framework, which merges dynamic and static
elements, offers more extensive coverage of cryptographic function flows, allowing our
system to identify misuse vulnerabilities that previous tools may have missed. Moreover,
our model minimizes false positives by refining detection rules customized to specific
cryptographic modules, thereby improving the detection of misuse vulnerabilities without
inundating analysts with unnecessary alerts.

The main contributions of this article are as follows:

. We propose an innovative, combined dynamic and static analysis approach for detecting
cryptographic misuse vulnerabilities, using cryptographic function dominance trees to
enhance accuracy and scope.

Yan et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2641 2/26

http://dx.doi.org/10.7717/peerj-cs.2641
https://peerj.com/computer-science/

. We develop a layered, modular application integrity model that offers an in-depth
perspective on cryptographic function flows and enables more effective detection of
integrity-related flaws.

. We create targeted detection rules for addressing cryptographic misuse vulnerabilities in
Windows applications, resulting in practical enhancements to software security analysis.

. We evaluate the effectiveness of our proposed method through a series of experiments,
displaying its robustness in identifying critical misuse vulnerabilities within
cryptographic applications.

This article is organized as follows: “Related Work” reviews relevant literature,
analyzing existing methodologies and their shortcomings in vulnerability detection. In
“Scheme Architecture: Proposed approach”, we introduce the suggested detection
method, providing details about the layered application integrity model and the
role of the cryptographic function dominance tree in pinpointing misuse vulnerabilities.
“Experimental Analysis” describes the experimental setup and evaluates the results of our
approach, emphasizing its strengths and practical uses. Finally, “Conclusions and Future
Work” concludes the article by discussing the key findings, potential limitations, and
pathways for future research.

RELATED WORK
Data breaches and vulnerabilities related to cryptographic misuse are ongoing concerns in
the field of cybersecurity. Unauthorized access to personal, health, or financial information
can pose serious privacy risks. A data breach occurs when sensitive information is revealed
to individuals who are not authorized to see it, thereby compromising the data’s privacy
and integrity (Pimenta Rodrigues et al., 2024). Wearable devices, commonly used for
everyday convenience, are a prime example of this risk. Their connectivity can make
personal data vulnerable to potential cyberattacks that target communication channels
(Silva-Trujillo et al., 2023).

Data breach prevention and privacy-enhancing technologies
Researchers have created various frameworks and encryption schemes to address
vulnerability in data communication. Coutinho et al. (2018) introduced an advanced
neural cryptographic model that trains artificial neural networks to establish a theoretically
unbreakable one-time pad (OTP) encryption algorithm. This model operates
autonomously without needing human input to enhance communication security. Vivar
et al. (2020) comprehensively analyzed security issues in smart contracts and recent
advancements in available public tools. Meanwhile, Bai et al. (2024) proposed a password-
based access control system that maintains security while ensuring system availability. Xu
et al. (2024) developed the Advanced Network-Hiding Access Control (AHAC)
framework, which minimizes exposure in network settings, thereby improving secure data
access. Jiang et al. (2024) introduced an innovative Reversible Data Hiding in Encrypted
Domains (RDH-ED) scheme based on Variable Threshold Image Secret Sharing (VTSIS),

Yan et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2641 3/26

http://dx.doi.org/10.7717/peerj-cs.2641
https://peerj.com/computer-science/

which requires no preprocessing and supports high security, a high embedding rate, and
complete reversibility.

Valera-Rodriguez, Manzanares-Lopez & Cano (2024) examined Fully Homomorphic
Encryption (FHE) using the Microsoft SEAL library, tackling privacy and security
challenges across digital ecosystems. Jin et al. (2024) designed a token-based encryption
scheme that optimizes search and update times, supports multi-user modes, reduces
memory usage, and addresses history storage challenges. Chen et al. (2024) proposed an
ECC-based AKA protocol for secure message exchanges between devices and servers,
ensuring user anonymity, forward security, and two-way authentication with minimal
computational overhead.

Detection of password misuse vulnerabilities
Password misuse continues to be a major vulnerability due to possible mistakes by
developers in following cryptographic security standards. Zheng et al. (2024) tackled this
issue by introducing CRYPTOLINT, a lightweight vulnerability detection system that
employs static program slicing techniques to identify cryptographic misuse. Shuai et al.
(2014) created the Cryptographic Misuse Analyzer (CMA), which uses static analysis to
identify password API calls in Android applications. This system constructs control flow
and function call graphs, performs dynamic analysis, and logs cryptographic function
invocations to detect possible password misuse vulnerabilities.

To focus on cryptographic misuse in iOS applications, Li et al. (2014) developed
iCryptoTracer. This system integrates static and dynamic analysis to identify algorithmic
issues and offer detailed cryptographic insights.

Vulnerability detection tools and techniques
Multiple tools have been established to address vulnerabilities more comprehensively,
using automated testing methods to ensure strong security against diverse cryptographic
misuse risks. The POET system (Rizzo & Duong, 2010) employs fuzzing technology to
automate the detection of Padding Oracle attacks in web applications. At the same time,
FIAT (Barenghi et al., 2012) uses fault injection techniques to improve security testing on
password-based systems. Also, Aumasson & Romailler (2017), Peng et al. (2019), Feng et al.
(2022), Kamalbayev et al. (2021) proposed differential fuzzing technology, which uses the
CDF automated tool to assess cryptographic applications for security vulnerabilities.

In summary, our proposed detection method employs a layered and modular integrity
model, combined with dynamic and static analysis techniques, to create a comprehensive
view of cryptographic function flows within Windows applications. Using a CFDT, the
system evaluates the entire sequence of cryptographic function calls to identify potential
vulnerabilities impacting application integrity. This approach addresses several limitations
found in previous methods, such as overlooking runtime vulnerabilities and having limited
path coverage, thus offering a more precise and robust solution for detecting cryptographic
misuse (Forain, de Oliveira Albuquerque & de Sousa Júnior, 2022; Bi et al., 2019; Li et al.,
2024; Chen et al., 2024).

Yan et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2641 4/26

http://dx.doi.org/10.7717/peerj-cs.2641
https://peerj.com/computer-science/

The “Scheme Architecture: Proposed approach” section provides an experimental
analysis to validate this approach’s effectiveness. In this section, we apply our detection
model to various Windows applications to evaluate its ability to discover cryptographic
misuse vulnerabilities and compare its performance with existing methods. The following
section outlines the experimental setup, test cases, and analysis of the results, illustrating
our methodology’s practical impact and benefits.

SCHEME ARCHITECTURE: PROPOSED APPROACH
In this section, we introduce a systematic method to identify vulnerabilities arising from
the misuse of cryptography that can jeopardize the integrity of applications. Our proposed
strategy concentrates on detecting misuse vulnerabilities by using the characteristics of
cryptographic mechanisms and employing a dominance tree of cryptographic functions.
The method includes two main components: an integrity model that maps the structure of
the cryptographic application and a combined static-dynamic analysis framework that
reconstructs the graph of function invocations. This layered strategy enables a thorough
evaluation of the flow of cryptographic functions within an application.

The first component is developing a hierarchical and modular integrity model
encompassing the full array of cryptographic functions necessary for specific applications.
This model organizes these functions into modules, representing the application’s logical
progression of cryptographic calls. These modules provide a comprehensive
understanding of how cryptographic functions interrelate and enhance the overall security
framework of the application.

The second component integrates static and dynamic analysis techniques to derive the
application’s CFCG. We employ a control flow reconstruction algorithm to change this
graph into a cryptographic function dominance tree (CFDT), which depicts the
hierarchical relationships between function calls. With this configuration, we can trace the
sequence of cryptographic function invocations from the start to the end of the program,
identifying any anomalies that may suggest potential misuse vulnerabilities.

Cryptographic application integrity model
The core of our approach for detecting misuse vulnerabilities is based on establishing a
solid cryptographic application integrity model. This model offers a structured framework
for assessing the security and integrity of cryptographic functions within software
applications, ensuring these functions adhere to the expected flow to uphold
cryptographic-level security. The model is structured hierarchically and layer by layer to
accomplish this goal, organizing cryptographic functions according to their roles and
interactions. Figure 1 provides an overview of the framework used for identifying
misuse vulnerabilities, while Figs. 2 through 4 demonstrate the application of the model
using specific cryptographic libraries like CryptoAPI and OpenSSL. These figures illustrate
how each layer of the model contributes to the secure execution of cryptographic
processes.

The model consists of three layers, each addressing various elements of cryptographic
operations:

Yan et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2641 5/26

http://dx.doi.org/10.7717/peerj-cs.2641
https://peerj.com/computer-science/

Figure 1 Framework diagram of the application integrity misuse vulnerability detection system. Full-size DOI: 10.7717/peerj-cs.2641/fig-1

Figure 2 Cryptographic application integrity model. Full-size DOI: 10.7717/peerj-cs.2641/fig-2

Figure 3 CryptoAPI architecture diagram. Full-size DOI: 10.7717/peerj-cs.2641/fig-3

Yan et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2641 6/26

http://dx.doi.org/10.7717/peerj-cs.2641/fig-1
http://dx.doi.org/10.7717/peerj-cs.2641/fig-2
http://dx.doi.org/10.7717/peerj-cs.2641/fig-3
http://dx.doi.org/10.7717/peerj-cs.2641
https://peerj.com/computer-science/

1) Library support layer: This foundational layer includes essential data structures and
operations as building blocks for more advanced cryptographic tasks. Examples of this
layer include items such as X509 certificates, PEM information formats, random
number generators, and ASN1 encoding libraries. These components fulfill the basic
needs of cryptographic libraries by providing key functions and data formats necessary
for secure data management.

2) Cryptographic algorithm layer: This middle layer contains various cryptographic
algorithms that different libraries implement. The specific types of algorithms and the
number of functions available can differ based on the library used (e.g., CryptoAPI or
OpenSSL). Typically, this layer includes symmetric and asymmetric encryption
algorithms, hashing, and digital signatures. It is critical to guarantee that applications
can access secure and well-tested cryptographic algorithms essential for data protection
and integrity.

3) Protocol layer: This layer builds upon the foundational capabilities of the first two
layers by implementing higher-level protocols such as SSL/TLS, which are critical for
secure communication tasks like identity verification and key exchange. It connects low-
level cryptographic operations and the application’s needs, providing a safe and
coherent protocol structure for end-user applications.

Each layer is personalized to effectively operate cryptographic modules, which are self-
contained groups of functions that collaborate to provide specific functionalities within a
cryptographic library. Figure 2 depicts the overall organization of this integrity model,
while Figs. 3 and 4 offer more detailed views of the architectures of the CryptoAPI and
OpenSSL cryptographic libraries, respectively.

Within the cryptographic modules, each function call is illustrated by a node, and these
nodes are categorized based on their invocation patterns. This classification assists in
monitoring how often each function is called and whether their invocation sequences
conform to expected standards. The nodes are categorized as follows:

Figure 4 OpenSSL architecture diagram. Full-size DOI: 10.7717/peerj-cs.2641/fig-4

Yan et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2641 7/26

http://dx.doi.org/10.7717/peerj-cs.2641/fig-4
http://dx.doi.org/10.7717/peerj-cs.2641
https://peerj.com/computer-science/

. a Node: Denotes a function that should be called exactly once at a specific location
within the module, guaranteeing that essential cryptographic operations are carried out
without duplication.

. βNode:Denotes a function that may be invoked multiple times at a designated position,
indicating flexibility regarding how often the function can be used within the
cryptographic process.

. γNode:Denotes interchangeable functions within the same category, where the order of
invocation can differ without affecting the intended flow of cryptographic functions.

The flexibility these nodes offer allows our model to adapt to the usual variations in the
usage of cryptographic functions, enhancing its applicability across diverse libraries and
application demands. A visual overview of these node types and their invocation patterns
can be found in Table 1, which details the various sequence types and their security
implications.

In practice, a cryptographic module is represented as an ordered sequence of these
nodes, reflecting the intended flow of essential cryptographic functions within a specific
application. The absence of any required node in this sequence indicates a missing or
incorrect function, which could potentially jeopardize the application’s security. For
example, the sequence depicted in Eq. (1) demonstrates a typical pattern of cryptographic
function calls:

a Að Þ ! ac Bð Þ ! b Cð Þ ! ac Dð Þ ! a Eð Þ: (1)

In this sequence, every type of node is essential in ensuring that cryptographic
operations are carried out securely and predictably. Any node left out or used incorrectly
could result in security weaknesses, as shown in Table 1.

Extraction of combined dynamic and static cryptographic function
invocation graph
Using this model, we can confirm whether the calls to cryptographic functions in an
application follow the expected flow outlined in the model. We extract the CFCG to
evaluate the sequence of cryptographic functions in an application. The CFCG offers a
high-level view of function invocation during cryptographic activities, capturing key
details about the interactions and order of function calls (see Fig. 5 for an example).

The integrity model’s hierarchical and modular structure provides a flexible yet
powerful framework for identifying misuse vulnerabilities across various applications and
cryptographic libraries. This model forms the groundwork for additional analysis and
comparison, which will be explored in the subsequent sections.

Next, we will extract and analyze the flow of cryptographic function invocations within
an application. We will compare this with the sequences set out in our integrity model to
spot any deviations that may signal misuse vulnerabilities.

It is essential to fully understand how cryptographic functions are carried out in an
application to detect misuse vulnerabilities. We employ a combined static and dynamic
analysis approach to create a CFCG, which maps the complete flow of cryptographic

Yan et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2641 8/26

http://dx.doi.org/10.7717/peerj-cs.2641
https://peerj.com/computer-science/

function invocations. This hybrid method addresses the shortcomings of static- or
dynamic-only techniques, such as missing runtime dependencies or inadequate coverage
of potential function pathways.

Both static and dynamic analyses play distinct roles in developing a reliable and accurate
CFCG:

. Static analysis: The static component examines the application’s codebase before it runs,
tracing function calls and control flow to generate an initial structure for the CFCG. This
preliminary graph captures possible execution paths, including direct and indirect
function calls. Static analysis is valuable for revealing dependencies and function calls
that may not be triggered during a single execution but are essential for understanding
the overall cryptographic flow.

. Dynamic analysis: In contrast, dynamic analysis occurs during runtime, collecting real-
time information about function executions, including indirect calls and dynamically
loaded functions that may not be identified through static analysis alone. This process
enables us to obtain usage data on cryptographic functions, documenting the sequence
and frequency of function calls in practice.

Table 1 Determination table for different node sequences.

Node sequences Description

1-2 ABCCCDE Right

1-2 ADCBE Right

1-2 ABBCCDE Error: NodeBcannotbecalledmultipletimes

1-2 ABCCCED Error: NodeDEcallorderreversed

1-2

Figure 5 Example code cryptographic function invocation graph.
Full-size DOI: 10.7717/peerj-cs.2641/fig-5

Yan et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2641 9/26

http://dx.doi.org/10.7717/peerj-cs.2641/fig-5
http://dx.doi.org/10.7717/peerj-cs.2641
https://peerj.com/computer-science/

Figure 5 displays a sample CFCG that illustrates an application’s flow of cryptographic
functions. In this graph, nodes represent individual cryptographic functions, while edges
indicate the calling relationships among these functions. By merging the data from static
and dynamic analyses, we can enhance this initial CFCG to more accurately depict the
actual function invocation paths within the application, assisting in identifying potential
misuse vulnerabilities.

Steps for extracting the cryptographic function call graph
The CFCG extraction process consists of a defined series of steps designed to capture all
relevant function calls and paths, as illustrated in Fig. 6. The steps are outlined as follows:

1) Preprocessing the application: The first step is to prepare the application for analysis.
If the application contains packed or encrypted files, we use unpacking tools to ensure
all code is accessible for static and dynamic inspection. This preprocessing phase
guarantees no function calls are missed due to obfuscation methods or packing.

2) Static control flow analysis: In this step, we conduct a thorough static code analysis
using control flow analysis tools such as IDA Pro SDK. This results in the creation of the
preliminary CFCG, which maps out all potential function calls, including explicit calls
and indirect jumps within the control flow. The generated graph offers a high-level view
of the application’s potential execution paths. This phase also identifies implicit calls or
conditional branches that might be overlooked by dynamic analysis due to its reliance
on specific runtime conditions.

3) Dynamic binary instrumentation:We proceed to the dynamic analysis phase with the
initial graph established. In this stage, we apply dynamic binary instrumentation by
executing the application in a controlled environment and monitoring cryptographic
function calls in real-time. This approach captures critical runtime information,
including the sequence of function calls, execution frequency, and any dynamically
loaded functions. The runtime traces enable us to refine the initial CFCG to accurately
represent the execution flow, incorporating indirect jumps and implicit calls.

4) Graph refinement and integration: After collecting static and dynamic data, the CFCG
is refined to generate a final, comprehensive graph that effectively represents the
cryptographic function calls within the application. Based on insights gained from
dynamic analysis, the CFCG is updated to add new nodes (representing cryptographic
functions) and edges (representing calling relationships) that static analysis did not
initially capture. This final step ensures the CFCG fully integrates anticipated and
observed function flows, resulting in a highly accurate model of the application’s
cryptographic behavior.

Advantages of the combined approach
The combined static-dynamic approach provides notable advantages compared to
traditional methods focusing on only one type of analysis. Static analysis by itself may
overlook runtime-specific details, such as dynamically loaded functions. In contrast,
dynamic analysis might fail to capture specific paths that were not executed during the

Yan et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2641 10/26

http://dx.doi.org/10.7717/peerj-cs.2641
https://peerj.com/computer-science/

testing phase. By integrating both approaches, we develop a more reliable CFCG,
encompassing all pertinent cryptographic function calls, regardless of their invocation
timing or method.

Figure 6 depicts this process of extraction and refinement, emphasizing the
contributions of each type of analysis in forming the final graph. The combination of static
and dynamic data enhances our ability to accurately identify misuse vulnerabilities by
ensuring that every possible path to a cryptographic function is taken into account. This
improved CFCG gives us a thorough perspective on the flows of cryptographic functions,
thereby assisting the detection of irregularities that may signal vulnerabilities.

Using the CFCG for misuse vulnerability detection
With the final CFCG, we now have a high-level overview of the flow of cryptographic
functions within the application. This enables us to analyze and identify vulnerabilities
more effectively. The CFCG acts as a critical input for the subsequent step: creating a
CFDT and contrasting it with the expected function call sequences outlined in our
cryptographic integrity model. This comparison discovers discrepancies from anticipated
cryptographic usage patterns, bringing attention to potential misuse vulnerabilities within
the application.

In summary, the integrated static and dynamic analysis approach enables us to generate
a refined and accurate CFCG. This graph offers a detailed and thorough perspective on
cryptographic function calls present in the application. Such a foundation is essential for
effectively identifying misuse vulnerabilities, ensuring that all possible function flows are
considered during the vulnerability detection.

Construction of cryptographic function dominator tree
The CFCG is a thorough representation, but it can be pretty detailed due to the numerous
cryptographic function calls and their interconnections. To make the analysis more
accessible and improve the identification of misuse vulnerabilities, we create a CFDT
derived from the CFCG. The CFDT emphasizes meaningful relationships and control
flows, making identifying vulnerabilities within cryptographic functions simpler by
organizing the tasks based on their logical execution sequence.

Figure 6 Process diagram for extracting CFCG. Full-size DOI: 10.7717/peerj-cs.2641/fig-6

Yan et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2641 11/26

http://dx.doi.org/10.7717/peerj-cs.2641/fig-6
http://dx.doi.org/10.7717/peerj-cs.2641
https://peerj.com/computer-science/

A dominance tree is a control flow data structure that illustrates how specific nodes (or
function calls) “dominate” others according to their place in the execution hierarchy. This
structure is critical for analyzing the flow of cryptographic functions, as it clarifies which
functions must be executed before others, enabling a detailed comparison of the expected
execution order with the actual execution order.

Dominance relationships and their importance
In a dominance tree, the arrangement of each node indicates its execution dependencies,
which means that one function must finish before another can start. The CFDT structures
these relationships to simplify, verifying whether cryptographic functions are executed
securely and predictably. Figure 7 presents an example of a dominance tree. It illustrates
how various cryptographic functions are organized based on their dominance
relationships, thus creating a clear pathway from the application’s entry point to its exit.

The CFDT is based on several essential definitions that describe the relationships
between function nodes:

. Dominance: A function node vp is said to “dominate” another node vq if every potential
path from the program’s entry point to vq must pass through vp. This relationship is
essential because it allows us to monitor key functions that secure the cryptographic
process and block unauthorized access.

. Strict dominance: If a node vp dominates vq and vp 6¼ vq, then vp is regarded as “strictly
dominating.” vq. Strict dominance means that vq relies on vp and cannot operate
independently, introducing an additional layer of organization to the cryptographic call
flow.

. Immediate dominance: Node vp is said to “immediately dominate.” vq if it strictly
dominates vq and there are no other nodes positioned between them in the dominance
hierarchy. Immediate dominance is especially valuable for analyzing direct dependencies
among functions, enabling us to determine sequences where secure function calls should
take place without interference or omission.

. Post-dominance: The concept of post-dominance is the opposite of dominance, where a
node vp is said to “post-dominate” vq if every path from vq to the program’s exit point
must pass through vp. Post-dominance guarantees that specific critical cryptographic
functions are carried out before the application concludes, preventing incomplete
security operations.

Figure 7 demonstrates a sample code’s CFDT and post-dominance tree, illustrating how
the hierarchical relationships assist integrity analysis.

Advantages of using a dominance tree for vulnerability detection
The CFDT structure plays a critical role in identifying vulnerabilities related to the misuse
of cryptographic functions, as it simplifies the process of analyzing the entire CFCG.
Rather than assessing each function call individually, we can concentrate on the key nodes
within the dominance tree, where we analyze the secure flow of essential cryptographic

Yan et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2641 12/26

http://dx.doi.org/10.7717/peerj-cs.2641
https://peerj.com/computer-science/

functions. The CFDT allows for more effective detection of potential misuse by focusing on
specific paths and relationships that comply with secure patterns.

By categorizing functions into dominance layers, we can effectively check for various
conditions, such as:

. Missing dominant functions: Certain cryptographic functions must be dominant over
others to guarantee secure operations. If these dominant functions are absent or
substituted, it indicates a possible misuse vulnerability.

. Unexpected bypasses: The CFDT can reveal pathways for bypassing critical functions.
This situation is particularly pertinent when identifying weaknesses that could lead to
insecure access or manipulation of data.

. Improper function sequencing: Certain cryptographic processes demand a specific
order of operations. The CFDT assists us in confirming that functions are executed in the
correct sequence, ensuring essential steps such as key generation and data encryption are
neither skipped nor misordered.

Constructing the CFDT from the CFCG
The CFDT construction process involves changing the CFCG into a tree structure
representing dominance relationships. This change simplifies the complex CFCG into a
model that is more accessible for analyzing potential vulnerabilities. Below is a step-by-step
outline of how the CFDT is constructed:

Figure 7 Example diagrams of dominance tree and post-dominance tree.
Full-size DOI: 10.7717/peerj-cs.2641/fig-7

Yan et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2641 13/26

http://dx.doi.org/10.7717/peerj-cs.2641/fig-7
http://dx.doi.org/10.7717/peerj-cs.2641
https://peerj.com/computer-science/

1) Identify dominant paths: We start by examining each node in the CFCG from the
entry point to see which nodes dominate others based on various execution paths. This
step establishes the initial layers of the CFDT, indicating which functions act as crucial
security points.

2) Define immediate and strict dominance: We then use the definitions of immediate
and strict dominance to outline direct and hierarchical dependencies among the
functions, creating layers within the CFDT. This stage also aids in recognizing
sequences that need to be uninterrupted for secure execution.

3) Incorporate post-dominance relationships: Finally, we examine post-dominance
relationships to confirm that critical functions remain intact until the application exits.
This step is essential for maintaining cryptographic integrity during the program’s
runtime, protecting against unexpected termination or incomplete function calls.

Applying the CFDT for misuse vulnerability detection
Once the CFDT is created, it establishes a simplified process for identifying misuse
vulnerabilities by enabling us to verify the secure flow of cryptographic functions in an
organized way. The CFDT presents a straightforward method for assessing the integrity of
cryptographic functions by emphasizing nodes that must adhere strictly to a specific order.
Any departure from the anticipated dominance or post-dominance relationships indicates
a potential misuse vulnerability.

For instance, if a cryptographic function that should dominate the flow is missing in the
CFDT or is arranged incorrectly, this may signal a vulnerability where critical security
functions have been circumvented. On the other hand, post-dominance analysis aids in
recognizing situations where critical cryptographic functions are cut off too early, making
the application open to security weaknesses.

In summary, the CFDT offers a practical and effective method for safeguarding the
integrity of cryptographic function flows, directing our attention to the most critical
security relationships within the application. As shown in Fig. 7, the dominance and post-
dominance trees give a structured view of how cryptographic functions interact, making it
easier to detect potential vulnerabilities and maintain the integrity of cryptographic
applications.

Detection algorithm design
After building the CFCG and the CFDT, the following task is to implement a detection
algorithm to find misuse vulnerabilities within the flow of functions in the cryptographic
application. Our algorithm uses the CFCG and CFDT to establish a comprehensive process
for comparing the actual sequences of cryptographic functions with those that should be
present in a secure application. By conducting this comparison, the algorithm can identify
any irregularities or deviations in function flow that may point to vulnerabilities.

Algorithm 1 describes the steps in this process and offers a structured approach for
analyzing the integrity of cryptographic functions and detecting potential misuse
vulnerabilities.

Yan et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2641 14/26

http://dx.doi.org/10.7717/peerj-cs.2641
https://peerj.com/computer-science/

Overview of the detection algorithm
The detection algorithm evaluates each function path to ensure it conforms to the integrity
model established for the cryptographic application. To accomplish this, the algorithm
executes the following main steps, as illustrated in Algorithm 1:

1) Extract dominant sequences: Initially, the algorithm analyses the CFDT to identify all
possible dominant sequences, represented as s1; s2;…; sn. Each sequence indicates a
potential route from the program’s entry to its exit, confirming that all important paths
in the cryptographic function flow are included. We create a baseline for comparing
actual function calls with the anticipated function flow by extracting these sequences.

2) Filter non-essential nodes: Following the extraction of dominant sequences, the
algorithm enhances each sequence by removing non-critical function nodes. Only
essential cryptographic functions remain in the processed sequences, marked as
s10; s10;…; sn0: This filtering phase minimizes irrelevant information in the analysis by
concentrating on critical nodes that directly affect security, thereby assisting in the
identification of deviations.

3) Branch node collection and key function identification: Subsequently, the algorithm
gathers all branching nodes from the refined sequences. Each branching node is
indicated as v1; v2;…; vi, signifies a decision point within the cryptographic flow where
various function paths may diverge. The algorithm reviews each branching node’s sub-
paths, pinpointing essential cryptographic functions that should be activated along each
potential path. Additional nodes are generated as necessary to ensure each path aligns
with the anticipated cryptographic flow, thus creating a thorough representation of
possible execution paths.

4) Sequence comparison and vulnerability detection: The concluding step entails
comparing the processed sequences, sk 00, with the secure function call sequences
outlined in the integrity model. This comparison enables the algorithm to identify any
discrepancies in the order, frequency, or presence of cryptographic functions. If any

Algorithm 1 Integrity misuse vulnerability detection algorithm.

Input: 1. CFCG 2. CFDT 3. An integrity password module

Output: Presence of application integrity misuse vulnerability

START

1: Step 1: Extract all dominant sequences s1; s2; . . . ; sn from CFDT;

2: Step 2: Referring toM; s1; s2; . . . ; sn is processed to eliminate the non-critical crypto-function nodes, the processed dominated sequence is denoted
as s01; s

0
2; � � � ; s0n, and the selected sequence from start to end is denoted as s0k ;

3: Step 3: Collect the branching nodes in s0k noted as v1; v2; . . . ; vi, for each branching node, based on CFCG as well as s01; s
0
2; � � � ; s0n

� �
=s0k , find the key

cryptographic functions passed in each of its branching paths and generate new nodes to be inserted into s0k , and finally obtain the sequence s00k ;

4: Step 4: Referring to the information of a; b; c nodes in M, compare the sequence s00k to determine if there is a misuse vulnerability;

END

Yan et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2641 15/26

http://dx.doi.org/10.7717/peerj-cs.2641
https://peerj.com/computer-science/

irregularities are detected, such as absent dominant nodes or unexpected function calls,
they are flagged as potential misuse vulnerabilities.

Detailed explanation of algorithm 1 steps
Every step in the algorithm is essential for guaranteeing the accuracy and effectiveness of
vulnerability detection:

. Step 1 (Extracting dominant sequences): The CFDT algorithm determines dominant
sequences, capturing critical cryptographic flows. Dominant sequences are significant as
they indicate the main execution paths that protect the application’s cryptographic
integrity. Extracting these sequences offers a comprehensive view of the application’s
security architecture.

. Step 2 (Filtering out non-essential nodes): The algorithm enhances the sequences by
removing non-essential functions and concentrating on nodes that directly impact
security. This step optimizes the process by discarding unnecessary data, simplifying
identifying critical vulnerabilities while avoiding confusion from redundant or unrelated
function calls.

. Step 3 (Branching path analysis): The algorithm outlines potential paths for each
branching node in the sequence to guarantee that key cryptographic functions are
included. By creating new nodes as required, the algorithm adapts to variations in
execution paths, capturing the flexibility of cryptographic operations while maintaining
security standards. This enables the system to identify vulnerabilities in non-linear
function flows, such as instances where multiple paths converge on the same security-
critical function.

. Step 4 (Sequence comparison): The final step thoroughly compares the refined
sequences and the expected function call sequences established in the integrity model.
This comparison reveals any discrepancies, such as missing nodes or incorrect
invocation orders, which may suggest vulnerabilities due to misuse. Any deviation from
the model is emphasized, allowing the algorithm to reveal vulnerabilities that could
jeopardize the application’s security.

Using the algorithm to detect misuse vulnerabilities
Algorithm 1 outlines a method for analyzing the integrity of cryptographic functions,
allowing for efficient identification of vulnerabilities related to misuse. By concentrating on
dominant sequences and enhancing these sequences through node filtering and path
analysis, the algorithm effectively narrows down potential vulnerabilities while confirming
the secure flow of cryptographic functions.

For example, suppose a key cryptographic function that is expected to appear in the
sequence is either missing or incorrectly placed. The algorithm will flag this situation as a
misuse vulnerability. Also, if a branching path does not include necessary cryptographic
functions, this inconsistency is detected, indicating an incomplete or incorrect execution of
cryptographic tasks. With this structured methodology, the algorithm can reveal a variety
of misuse vulnerabilities, which include:

Yan et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2641 16/26

http://dx.doi.org/10.7717/peerj-cs.2641
https://peerj.com/computer-science/

. Omissions of required functions: The algorithm checks for missing functions essential
for security. The absence of dominant functions may create security vulnerabilities,
potentially allowing unauthorized access or exposing data.

. Unintended execution paths: The algorithm identifies unexpected function calls or
bypasses by examining branching paths. These anomalies frequently suggest possible
vulnerabilities where attackers could take advantage of insecure paths.

. Improper function order: Certain cryptographic operations depend on functions
executed in a particular order (for example, key generation followed by encryption). The
algorithm detects instances where functions are arranged incorrectly, which can weaken
the application’s security and reliability.

Summary of algorithm 1’s role in vulnerability detection
Our method establishes a robust framework for identifying vulnerabilities in cryptographic
misuse within applications by implementing the steps detailed in Algorithm 1. This
algorithm enables us to evaluate the flow of cryptographic functions against a securely
defined model, which assists in detecting any potential misuse or irregularities. The
approach is a structured, multi-step process that combines sequence extraction, filtering,
path analysis, and comparison, ensuring thorough detection of misuse vulnerabilities in
cryptographic function flows.

In summary, the detection algorithm uses the CFCG and CFDT advantages to find
misuse vulnerabilities, thereby offering a systematic and scalable solution for securing
cryptographic applications. By adhering to the process presented in Algorithm 1, the
algorithm contributes to maintaining cryptographic integrity by making sure that all
essential functions are performed in the correct sequence, without any omissions or
deviations from the security model.

EXPERIMENTAL ANALYSIS
To evaluate how effective our proposed method for detecting vulnerabilities related to
cryptographic misuse is, we performed several experiments on different Windows
applications. We aimed to measure the accuracy and efficiency of the algorithm, and its
capacity to identify misuse vulnerabilities in cryptographic functions. The setup for the
experiments and the results are detailed in tables and figures, which offer insight into how
the algorithm performs in real-world situations.

Experimental setup
The experiments took place in a controlled setting to replicate common cryptographic use
cases found in Windows applications. We chose test cases from three primary categories:

1) Networked applications: These programs need secure network communication, such
as messaging and file-sharing applications.

2) Data-processing applications: This category includes software that handles sensitive
data, such as encryption tools and document editors with cryptographic features.

Yan et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2641 17/26

http://dx.doi.org/10.7717/peerj-cs.2641
https://peerj.com/computer-science/

3) Malicious code samples: We selected specific samples from recognized malware
databases to assess the strength of our detection algorithm against vulnerabilities in
cryptographic functions.

Table 2 outlines the hardware and software environment used for testing, detailing the
system configuration to guarantee that our experiments can be replicated and are reliable.
By employing a mix of legitimate and malicious applications, we aimed to confirm the
algorithm’s ability to differentiate secure applications from those that may have
vulnerabilities.

Execution of the detection algorithm
The detection process was carried out following the steps outlined in Algorithm 1. Each
application was analyzed to extract its CFCG and to create a CFDT, as described in
“Extraction of Combined Dynamic and Static Cryptographic Function Invocation Graph”
and “Construction of Cryptographic Function Dominator Tree”. This extraction and
analysis were conducted using the static and dynamic analysis tools detailed in Fig. 6. We
ensured thorough path coverage using static and dynamic analyses, effectively capturing all
pertinent cryptographic function flows.

The algorithm performed the following steps for each application:

1) CFCG extraction and CFDT construction: Through static and dynamic analysis, the
algorithm produced a CFCG, which was subsequently converted into a CFDT. This
process offered an in-depth perspective on the relationships between cryptographic
functions, as illustrated in Figs. 5 and 7.

2) Sequence analysis and comparison: The algorithm implemented its detection rules,
contrasting the actual function call sequences in the CFDT with the expected sequences
outlined in the cryptographic integrity model.

3) Identification of misuse vulnerabilities: Any deviations from the expected sequences
were marked as misuse vulnerabilities, with specific patterns such as missing dominant
nodes or altered function orders signaling potential issues.

Malicious code samples are detected within a virtual machine environment to protect
the host system.

Table 2 Hardware and software information table for testing environment.

Environment Device Information

Hardware Processor Intel(R) Core(TM) i5-10400 @ 2.90 GHz

Memory 64 G

Hard disk 1T

Software Operating system Windows 10 x64

Dynamic binary platform Pin 3.21

Static program analysis tools IDA Pro 7.7

Virtual machine software VMware� Workstation 17 Pro

Yan et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2641 18/26

http://dx.doi.org/10.7717/peerj-cs.2641
https://peerj.com/computer-science/

Analysis of detection results for a malicious sample
We evaluated our detection system using a malicious application identified on VirusTotal.
Table 3 summarizes the detection results, emphasizing the misuse of vulnerabilities in
cryptographic functions related to SSL secure connections. Our detection system revealed a
significant flaw in how the sample handles cryptographic functions necessary for SSL
connections.

Upon further analysis of the cryptographic module for SSL, the detection system noted
that the application establishes an SSL connection and retrieves the certificate information
from a remote server. However, as shown in Algorithm 2, the application fails to verify the
received certificate, an essential step in validating the server’s identity. This omission
makes the SSL connection vulnerable to man-in-the-middle (MITM) attacks, as it does not
implement a secure authentication process.

Algorithm 2 visually represents the reverse analysis of the cryptographic function calls
within this sample. In the code sequence, following the retrieval of the certificate
information (j_SSL_get_peer_certificate()), the program only displays the details of the
certificate’s subject and issuer without verifying its authenticity. This lack of verification
creates a vulnerability in application integrity, permitting any SSL certificate, whether valid
or not, to be accepted. As a result, the identity authentication process in this malicious
application is ineffective, exposing it to potential security threats.

Analysis of detection results for CNKI Reader and Xunlei download
In addition to analyzing malicious samples, we also used our system to examine legitimate
applications with known vulnerabilities, such as CNKI Reader’s CAJViewer (Feng et al.,
2022) and Xunlei Download Manager (Kamalbayev et al., 2021). These vulnerabilities have
been documented and reported in the China National Vulnerability Database (CNVD),
which offers comprehensive details on the misuse vulnerabilities identified in these
applications. In both instances, notable cryptographic weaknesses within their upgrade
processes render them vulnerable to security threats.

CNKI Reader (CAJViewer) vulnerability analysis
The CAJViewer application displayed a vulnerability related to integrity misuse during its
upgrade process. The detection results revealed no SSL secure connections in the update
sequence. In particular, the upgrade executable (AutoUpgrade.exe) did not include a
secure cryptographic function sequence required for authenticating the server during

Table 3 Table of misuse vulnerability detection results of a malicious sample.

Type Information description

1-2 Hash value 311307cc405cd0aafc651997cf991397

1-2 Standard password
module

SSL connection based on OpenSSL

1-2 Detection result Extracted cryptographic function call sequences: OpenSSL add ssl algorithms ! SSL CTX net ! SSL_new !
SSL_connect ! SSL_get_peer_certificate ! SSL_read ! SSL_write ! SSL_shutdown ! SSL_free ! SSLCTX _free
Missing key cryptographic functions: SSL_CTX_set_verify, SSL_CTX_load_varify_location, SSL_get_verify_result,
X509_check_issued, X509_check_host, X509_check_purpose

Yan et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2641 19/26

http://dx.doi.org/10.7717/peerj-cs.2641
https://peerj.com/computer-science/

updates, as detailed in Table 4. This oversight indicates a serious misuse of cryptographic
integrity and emphasizes the lack of a complete SSL authentication mechanism, which is
essential for secure software updates.

Figure 8 depicts the update process for CAJViewer, which comprises two main steps:

1) The update program, AutoUpgrade.exe, initially requests an XML configuration file
from the server. This file guides the update process, including essential information such
as file names, sizes, and MD5 hashes.

2) Following the XML file parsing, the application downloads the updated files, verifies
their integrity using MD5 checks, and then replaces the existing program version with
the newly downloaded version before launching it.

Since the update process lacks SSL server authentication, it is susceptible to MITM
attacks, which enable an attacker to intercept and alter the update process. Figure 9
illustrates a simulated MITM attack scenario where the client machine’s access to the
legitimate CNKI update server is redirected to a fraudulent server. The server controlled by
the attacker supplies a malicious XML configuration file and an executable containing the
WannaCry ransomware virus. Consequently, when the client starts the update, the
ransomware is downloaded and executed, jeopardizing the system.

Xunlei Download Manager vulnerability analysis
Like CAJViewer, the upgrade process of the Xunlei Download Manager does not include
SSL secure connections or cryptographic validation. Our analysis revealed that the

Algorithm 2 Results of the reverse analysis.

Input: &v4; 0xCCu; 0xD8uð Þ
Output: Result

1: v6 ¼ j _SSL_get_peer_certificate();

2: if v6 is true then

3: sub_4657A7(&unk_5344A4);

4: v0 ¼ j X509 _get_subject_name(v6);

5: v5 ¼ j X509 NAME _oneline v0; 0; 0ð Þ ;
6: sub_4657A7(“Certificates : %s”);

7: j_CERYPTO_free(v5);

8: v1 ¼ j x509 get_issuer_name(v6);

91: v5 ¼ j x509 NAME _oneline v1; 0; 0ð Þ;
10: sub_4657A7(“issuer : %s”);

11: j_CRYPTO_free(v5);

12: j_X589_free(v6);

13: else

14: sub_4657A7(“Nocertificates”);

Yan et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2641 20/26

http://dx.doi.org/10.7717/peerj-cs.2641
https://peerj.com/computer-science/

Figure 8 CNKI reader upgrade process diagram. Full-size DOI: 10.7717/peerj-cs.2641/fig-8

Table 4 Misuse vulnerability information for CNKI Reader and Xunlei download.

Vulnerability information CNVD vulnerability
ID

CNVD certificate ID

1-3 CNKI Reader CA (Viewer) (http|:|//www|.er arbitrary file download execution
vulnerability)

CNVD-2018-02906 CNVD-YCGA-201801007490

1-3 Xunlei download software upgrade arbitrary file download vulnerability CNVD-2018-06136 CNVD-YCGA-201803083461

Figure 9 Man-in-the-middle attack simulation scene. Full-size DOI: 10.7717/peerj-cs.2641/fig-9

Yan et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2641 21/26

http://dx.doi.org/10.7717/peerj-cs.2641/fig-8
http://dx.doi.org/10.7717/peerj-cs.2641/fig-9
http://dx.doi.org/10.7717/peerj-cs.2641
https://peerj.com/computer-science/

detection system identified the lack of secure cryptographic functions, suggesting that an
attacker could exploit Xunlei’s update process. The results in Table 4 emphasize a
considerable risk linked to the application’s inability to create a secure and authenticated
connection with the server when updates occur.

Key findings and conclusions from detection results
Based on the outcomes of these assessments, several conclusions can be made about the
effectiveness of the system and the severity of various types of misuse vulnerabilities:

1) Effective detection of misuse vulnerabilities: The detection system can accurately
identify both parameter misuse and application integrity misuse vulnerabilities. In the
case of parameter misuse vulnerabilities, the system successfully identifies misused
cryptographic function addresses, parameter names, and values. Regarding application
integrity misuse vulnerabilities, it retrieves cryptographic function call sequences from
the target program and indicates missing critical functions.

2) Risk levels of misuse vulnerabilities: Various types of misuse vulnerabilities present
different levels of risk. In general, application integrity misuse vulnerabilities that lack a
complete cryptographic mechanism (such as SSL) are considered the most serious, as
they make applications highly vulnerable to attacks. For example, vulnerabilities linked
to crucial management or parameter misuse could allow attackers to decrypt sensitive
information. Nonetheless, these parameter misuse vulnerabilities usually need specific
conditions for exploitation, while the lack of a fundamental mechanism (as seen in the
integrity misuse cases) poses an immediate threat.

CONCLUSIONS AND FUTURE WORK
Conclusion
This article proposes a detailed method for identifying misuse vulnerabilities in
cryptographic applications through a structured analysis incorporating static and dynamic
techniques. We developed a CFCG and a CFDT to visualize an application’s entire flow of
cryptographic function calls, which helps spot security deviations.

Our proposed methodology overcomes the shortcomings of conventional detection
methods that typically depend on only static or dynamic analysis, which may overlook
indirect calls, dynamic dependencies, or detailed execution paths. Using our integrated
approach, we achieved increased path coverage and improved accuracy in identifying
cryptographic misuse vulnerabilities. The CFDT structure enabled us to efficiently identify
and analyze critical security pathways, boosting the reliability and robustness of the
detection process.

The experimental evaluation confirmed our algorithm’s effectiveness across various test
scenarios, including both legitimate applications and malicious examples. The algorithm
successfully determined misuse vulnerabilities across multiple application types, ranging
from network communication tools to malware samples, thus offering insights into a
broad array of cryptographic function flows. The detection rate was high, with few false

Yan et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2641 22/26

http://dx.doi.org/10.7717/peerj-cs.2641
https://peerj.com/computer-science/

positives, indicating that our method can reliably distinguish between secure applications
and those at risk of misuse vulnerabilities.

Key findings from our research include:

. Enhanced vulnerability detection: The implementation of the CFDT provided a
structured view of cryptographic functions, allowing for the accurate identification of
missing or incorrectly ordered function calls essential for application security.

. Broad path coverage with low false positives: By merging static and dynamic analysis,
our method captured indirect calls and dynamically loaded functions, minimizing the
rate of false positives and establishing the algorithm’s suitability for complex software
systems.

. Scalability and flexibility: The algorithm’s capability to adapt to various application
types and cryptographic libraries demonstrates its potential for widespread application
in detecting misuse vulnerabilities across multiple fields.

The proposed methodology presents a practical and dependable solution for enhancing
cryptographic security in software applications. This approach can discover vulnerabilities
that might remain unnoticed by thoroughly analyzing the flow and sequence of
cryptographic function calls, thereby advancing software security standards.

Future work
Looking ahead, there are numerous avenues for future development. Subsequent efforts
could focus on extending the algorithm’s adaptability to additional operating systems and
cryptographic libraries, thereby widening its application scope. In addition, integrating
machine learning techniques could enhance the algorithm’s capability to detect complex
patterns of cryptographic misuse, further decreasing false positives and improving
detection accuracy. As cybersecurity continues to evolve, we believe that methodologies
like ours, which integrate comprehensive analysis with in-depth path validation, will be
essential in promoting secure software development practices.

In summary, the detection approach introduced in this study is a valuable resource for
safeguarding cryptographic applications from misuse vulnerabilities. By strengthening
software with trustworthy cryptographic integrity checks, we can enhance the protection of
sensitive data and contribute to a more secure online environment.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
Lei Yan, Guanghuai Zhao and Xiaohui Li are employed by the State Grid Beijing Electric
Power Company.

Yan et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2641 23/26

http://dx.doi.org/10.7717/peerj-cs.2641
https://peerj.com/computer-science/

Author Contributions
. Lei Yan conceived and designed the experiments, performed the experiments, performed
the computation work, prepared figures and/or tables, authored or reviewed drafts of the
article, and approved the final draft.

. Guanghuai Zhao conceived and designed the experiments, performed the computation
work, prepared figures and/or tables, and approved the final draft.

. Xiaohui Li conceived and designed the experiments, analyzed the data, performed the
computation work, prepared figures and/or tables, authored or reviewed drafts of the
article, and approved the final draft.

. Pengxuan Sun performed the experiments, analyzed the data, performed the
computation work, authored or reviewed drafts of the article, and approved the final
draft.

Data Availability
The following information was supplied regarding data availability:

The raw data and code are available in the Supplemental Files.
The data is available at GitHub and Zenodo:
- https://github.com/TQRG/security-patches-dataset/blob/main/dataset/security_

patches_v1.0.csv.
- Pengxuan, S. (2024). Secure Software Development: Leveraging Application Call

Graphs to Detect Security Vulnerabilities [Data set]. Zenodo. https://doi.org/10.5281/
zenodo.14523945.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.2641#supplemental-information.

REFERENCES
Aldosary A, Tanveer M. 2024. PAAF-SHS: PUF and authenticated encryption based

authentication framework for the IoT-enabled smart healthcare system. Internet of Things
26(17):101159 DOI 10.1016/j.iot.2024.101159.

Alkhwaja I, Albugami M, Alkhwaja A, Alghamdi M, Abahussain H, Alfawaz F, Almurayh A,
Min-Allah N. 2023. Password cracking with brute force algorithm and dictionary attack using
parallel programming. Applied Sciences 13(10):5979 DOI 10.3390/app13105979.

Aumasson JP, Romailler Y. 2017. Automated testing of crypto software using differential fuzzing.
In: Black Hat USA 2017. Vol. 7.

Baho SA, Abawajy J. 2023. Analysis of consumer IoT device vulnerability quantification
frameworks. Electronics 12(5):1176 DOI 10.3390/electronics12051176.

Bai L, Han P,Wang J, Wang J. 2024. Throughput maximization for multipath secure transmission
in wireless ad-hoc networks. IEEE Transactions on Communications 72(11):6810–6821
DOI 10.1109/TCOMM.2024.3409539.

Barenghi A, Breveglieri L, Koren I, Naccache D. 2012. Fault injection attacks on cryptographic
devices: theory, practice, and countermeasures. Proceedings of the IEEE 2012(100):3056–3076
DOI 10.1109/JPROC.2012.2188769.

Yan et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2641 24/26

http://dx.doi.org/10.7717/peerj-cs.2641#supplemental-information
https://github.com/TQRG/security-patches-dataset/blob/main/dataset/security_patches_v1.0.csv
https://github.com/TQRG/security-patches-dataset/blob/main/dataset/security_patches_v1.0.csv
https://doi.org/10.5281/zenodo.14523945
https://doi.org/10.5281/zenodo.14523945
http://dx.doi.org/10.7717/peerj-cs.2641#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2641#supplemental-information
http://dx.doi.org/10.1016/j.iot.2024.101159
http://dx.doi.org/10.3390/app13105979
http://dx.doi.org/10.3390/electronics12051176
http://dx.doi.org/10.1109/TCOMM.2024.3409539
http://dx.doi.org/10.1109/JPROC.2012.2188769
http://dx.doi.org/10.7717/peerj-cs.2641
https://peerj.com/computer-science/

Bi B, Huang D, Mi B, Deng Z, Pan H. 2019. Efficient LBS security-preserving based on NTRU
oblivious transfer. Wireless Personal Communications 108(4):2663–2674
DOI 10.1007/s11277-019-06544-2.

Chen C, Cui J, Qu G, Zhang J. 2024.Write+Sync: software cache write covert channels exploiting
memory-disk synchronization. IEEE Transactions on Information Forensics and Security
19:8066–8078 DOI 10.1109/TIFS.2024.3414255.

Chen X, Wu C, Liu X, Huang Q, Zhang D, Zhou H, Yang Q, Khan MK. 2023. Empowering
network security with programmable switches: a comprehensive survey. IEEE Communications
Surveys & Tutorials 2023(25):1653–1704 DOI 10.1109/COMST.2023.3265984.

Coutinho M, de Oliveira Albuquerque R, Borges F, Garcia Villalba LJ, Kim TH. 2018. Learning
perfectly secure cryptography to protect communications with adversarial neural cryptography.
Sensors 18(5):1306 DOI 10.3390/s18051306.

Feng X, Yu L, Kong W, Wang J. 2022. Frontier hotspots and trend evolution of cultural and
creative design in China—an empirical research on CNKI-based bibliometrics. Library Hi Tech
2024(42):203–226 DOI 10.1108/LHT-10-2021-0353.

Forain I, de Oliveira Albuquerque R, de Sousa Júnior RT. 2022. Towards system security: what a
comparison of national vulnerability databases reveals. In: Proceedings of the 2022 17th Iberian
Conference on Information Systems and Technologies (CISTI). Piscataway: IEEE, 1–6.

Hasan MK, Weichen Z, Safie N, Ahmed FRA, Ghazal TM. 2024. A survey on key agreement and
authentication protocol for internet of things application. IEEE Access 12(7):61642–61666
DOI 10.1109/ACCESS.2024.3393567.

Jiang C, Zhang M, Zhang X, Di F. 2024. Reversible data hiding in encrypted images based on
preprocessing-free variable threshold secret sharing. Applied Sciences 14(13):5574
DOI 10.3390/app14135574.

Jin Z, Li D, Zhang X, Cai Z. 2024. Research on dynamic searchable encryption method based on
Bloom filter. Applied Sciences 14(8):3379 DOI 10.3390/app14083379.

Kamalbayev B, Seidullayeva N, Sain A, Parwekar P, Ukaegbu IA. 2021. Analyses on architectural
and download behavior of Xunlei. In: Proceedings of the Intelligent Computing and Applications:
Proceedings of ICICA 2019. Cham: Springer, 43–53.

Li X, Lu Z, Yuan M, LiuW,Wang F, Yu Y, Liu P. 2024. Tradeoff of code estimation error rate and
terminal gain in SCER attack. IEEE Transactions on Instrumentation and Measurement 73:1–12
DOI 10.1109/TIM.2024.3493878.

Li Y, Zhang Y, Li J, Gu D. 2014. iCryptoTracer: dynamic analysis on misuse of cryptography
functions in iOS applications. In: Proceedings of the Network and System Security: 8th
International Conference, NSS 2014, Xi’an, China, October 15–17, 2014, Proceedings 8. Cham:
Springer, 349–362.

Limkar S, Ashok WV, Singh S, Singh A, Wagh SK, Ajani SN. 2023. A mechanism to ensure
identity-based anonymity and authentication for IoT infrastructure using cryptography. Journal
of Discrete Mathematical Sciences and Cryptography 2023(26):1597–1611
DOI 10.47974/JDMSC-1827.

Nyangaresi VO. 2023. Privacy preserving three-factor authentication protocol for secure message
forwarding in wireless body area networks. Ad Hoc Networks 142(2):103117
DOI 10.1016/j.adhoc.2023.103117.

Peng P, Yang L, Song L, Wang G. 2019. Opening the Blackbox of VirusTotal: analyzing online
phishing scan engines. In: Proceedings of the Internet Measurement Conference, 478–485.

Pimenta Rodrigues GA, Marques Serrano AL, Lopes Espiñeira Lemos AN, Canedo ED,
Mendonça FLLD, de Oliveira Albuquerque R, Sandoval Orozco AL, García Villalba LJ. 2024.

Yan et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2641 25/26

http://dx.doi.org/10.1007/s11277-019-06544-2
http://dx.doi.org/10.1109/TIFS.2024.3414255
http://dx.doi.org/10.1109/COMST.2023.3265984
http://dx.doi.org/10.3390/s18051306
http://dx.doi.org/10.1108/LHT-10-2021-0353
http://dx.doi.org/10.1109/ACCESS.2024.3393567
http://dx.doi.org/10.3390/app14135574
http://dx.doi.org/10.3390/app14083379
http://dx.doi.org/10.1109/TIM.2024.3493878
http://dx.doi.org/10.47974/JDMSC-1827
http://dx.doi.org/10.1016/j.adhoc.2023.103117
http://dx.doi.org/10.7717/peerj-cs.2641
https://peerj.com/computer-science/

Understanding data breach from a global perspective: incident visualization and data protection
law review. Data 9:27 DOI 10.3390/data9020027.

Rizzo J, Duong T. 2010. Practical padding oracle attacks. In: Proceedings of the 4th USENIX
Workshop on Offensive Technologies (WOOT 10).

Shuai S, Guowei D, Tao G, Tianchang Y, Chenjie S. 2014.Modelling analysis and auto-detection
of cryptographic misuse in android applications. In: Proceedings of the 2014 IEEE 12th
International Conference on Dependable, Autonomic and Secure Computing. Piscataway: IEEE,
75–80.

Silva-Trujillo AG, González González MJ, Rocha Pérez LP, García Villalba LJ. 2023.
Cybersecurity analysis of wearable devices: smartwatches passive attack. Sensors 23(12):5438
DOI 10.3390/s23125438.

Valera-Rodriguez FJ, Manzanares-Lopez P, Cano MD. 2024. Empirical study of fully
homomorphic encryption using microsoft SEAL. Applied Sciences 14(10):4047
DOI 10.3390/app14104047.

Vivar AL, Castedo AT, Orozco ALS, Villalba LJG. 2020. An analysis of smart contracts security
threats alongside existing solutions. Entropy 22(2):203 DOI 10.3390/e22020203.

XuM, Chen B, Tan Z, Chen S, Wang L, Liu Y, San TI, Fong SW,WangW, Feng J. 2024. AHAC:
advanced network-hiding access control framework. Applied Sciences 14(13):5593
DOI 10.3390/app14135593.

Zheng W, Lin L, Wu X, Chen X. 2024. An empirical study on correlations between deep neural
network fairness and neuron coverage criteria. IEEE Transactions on Software Engineering
50(3):391–412 DOI 10.1109/TSE.2023.3349001.

Yan et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2641 26/26

http://dx.doi.org/10.3390/data9020027
http://dx.doi.org/10.3390/s23125438
http://dx.doi.org/10.3390/app14104047
http://dx.doi.org/10.3390/e22020203
http://dx.doi.org/10.3390/app14135593
http://dx.doi.org/10.1109/TSE.2023.3349001
http://dx.doi.org/10.7717/peerj-cs.2641
https://peerj.com/computer-science/

	Secure software development: leveraging application call graphs to detect security vulnerabilities
	Introduction
	Related work
	Scheme architecture: proposed approach
	Experimental analysis
	Conclusions and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

