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ABSTRACT11

The building of large-scale Digital Elevation Models (DEMs) using various interpolation algorithms is

one of the key issues in geographic information science. Different choices of interpolation algorithms

may trigger significant differences in interpolation accuracy and computational efficiency, and a proper

interpolation algorithm needs to be carefully used based on the specific characteristics of the scene

of interpolation. In this paper, we comparatively investigate the performance of parallel Radial Basis

Function (RBF)-based, Moving Least Square (MLS)-based, and Shepard’s interpolation algorithms for

building DEMs by evaluating the influence of terrain type, raw data density, and distribution patterns

on the interpolation accuracy and computational efficiency. The drawn conclusions may help select a

suitable interpolation algorithm in a specific scene to build large-scale DEMs.

12

13

14

15

16

17

18

19

20

INTRODUCTION21

Digital Elevation Model (DEM) is a numerical representation of topography made up of equal-22

sized grid cells, each with a value of elevation. One of the most important scientific challenges of23

digital elevation modeling is the inefficiency of most interpolation algorithms in dealing with a24

large amount of data produced by large-scale DEM with a fine resolution. To solve the problem,25

one of the common strategies is to parallelize interpolation algorithms on various High Performance26

Computing (HPC) platforms.27

For different large-scale DEM, different parallel spatial interpolation algorithms are usually28

specifically selected, because a variety of spatial interpolation algorithms exist that behave differ-29

ently for different data configurations and landscape conditions. Consequently, the accuracy of a30

DEM is sensitive to the interpolation technique, and it is significant to understand how the various31

algorithms affect a DEM. Therefore, this study is being conducted.32
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Spatial interpolation is a category of important algorithms in the field of geographic informa-33

tion. Siu-Nganlam (1983) had a review of various interpolation algorithms, including most distance-34

weighting methods, Kriging, spline interpolation, interpolating polynomials, finite-difference meth-35

ods, power-series trend models, Fourier models, distance-weighted least-squares, and least-squares36

fitting with splines. Many spatial interpolation algorithms are used to build DEMs, for example, the37

Shepard’s method (IDW) (Shepard, 1968), the Kriging method (Krige, 1953), the Discrete Smooth-38

ing Interpolation (DSI) method (Mallet, 1997), the Radial Basis Function (RBF)-based method39

(Powell, 1977), and the Moving Least Squares (MLS)-based method (Lancaster and Salkauskas,40

1981).41

Much research work (Gumus and Sen, 2013; Chaplot et al., 2006; Aguilar et al., 2005; Khairnar42

et al., 2015; Polat et al., 2015; Rishikeshan et al., 2014) has been conducted to evaluate the effects of43

different interpolation methods on the precision of DEM interpolation. In the comparative investi-44

gation of spatial interpolation algorithms for building DEMs, quite few studies specifically focused45

on the impact of data samples and terrain types on interpolation accuracy, among them, Gumus and46

Sen (2013) compared the accuracy of various interpolation methods at different point distributions,47

the interpolation performance of IDW is worse than other algorithms for the same data distribution.48

For the same algorithm, in the case of using all points and grid, their experimental results show that49

the best interpolation performances are Modified Shepard’s (MS) for random distribution; Multi-50

quadric Radial Basis Function (MRBF) for curvature distribution, and Inverse Distance Weighted51

(IDW) for uniform distribution.52

Chaplot et al. (2006) and Aguilar et al. (2005) evaluated the effects of landform types and the53

density of the original data on the accuracy of DEM production, their results show that interpola-54

tion algorithms perform well at higher sampling densities, and MRBF provided significantly better55

interpolation than IDW in rough or non-uniform terrain. At lower sampling densities, when the56

spatial structure of height was strong, Kriging yielded better estimates. When the spatial structure57

of height was weak, IDW and Regularized Spline with Tension (RST) performed better. On the58

other hand, MRBF performed well in the mountainous areas and Ordinary Kriging (OK) was the59

best for multi-scales interpolations in the smooth landscape. In addition, Zhang (2013) established60

a descriptive model of local terrain features to study the correlation of surface roughness indicators61

and spatial distribution indicators for DEM interpolation algorithms. (Chaplot et al., 2006). Ghan-62

dehari et al. (2019) illustrated that the Bi-quadratic and Bi-cubic interpolation methods outperform63

Weighted Average, Linear, and Bi-linear methods at coarse resolutions and in rough or non-uniform64

terrain. Aguilar et al. (2005) pointed out that MRBF is better than Multilog function for low sample65

densities and steeper terrain.66

With the increasing size of DEMs, it is increasingly necessary to design parallel solutions for67

existing sequential algorithms to speed up processing. When adopting an interpolation method to68

deal with a large DEM, the computational cost would be quite expensive, and the computational69

efficiency would especially be unsatisfied.70

The techniques in HPC are widely used to improve computational efficiency in various science71

and engineering applications such as surface modeling (Yan et al., 2016), spatial point pattern72
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analysis (Zhang et al., 2017), urban growth simulation (Guan et al., 2016), Delaunay Triangulation73

(DT) for GIS (Coll and Guerrieri, 2017), spatial interpolation (Wang et al., 2017; Cheng, 2013;74

Mei, 2014; Mei et al., 2017; Mei, 2014; Mei et al., 2016; Ding et al., 2018b), and image processing75

(Wasza et al., 2011; Lei et al., 2011; Yin et al., 2014; Wu et al., 2018).76

One of the effective strategies to solve the problem is to perform the DEM interpolation in77

parallel on various parallel computing platforms such as shared-memory computers, distributed-78

memory computers, or even clusters. The parallelization of DEM interpolation can be developed79

with the computational power of modern multicore Central Processing Units (CPUs) and many-80

core Graphics Processing Units (GPUs). For example, Zhou et al. (2017) proposed a parallel Open81

Multi-Processing (OpenMP)- and Message Passing Interface (MPI)-based implementation of the82

Priority-Flood algorithm that identifies and fills depressions in raster DEMs. Yan et al. (2015)83

accelerated high-accuracy surface modeling (HASM) in constructing large-scale and fine resolu-84

tion DEM surfaces by the use of GPUs and applied this acceleration algorithm to simulations of85

both ideal Gaussian synthetic surfaces and real topographic surfaces in the loess plateau of Gansu86

province. Tan et al. (2017) presented a novel method to generate contour lines from grid DEM87

data, based on the programmable GPU pipeline, that can be easily integrated into a 3D GIS system.88

Chen et al. (2010) demonstrated a new algorithm for reconstructing contour maps from raster DEM89

data for digital-earth and other terrain platforms in real-time entirely based on modern GPUs and90

programmable pipelines.91

The RBF, Kriging, MLS and Shepard’s interpolation algorithms are the most frequently used92

spatial interpolation algorithms, among which, the Kriging method can be regarded as an instance93

of RBF framework (Peng et al., 2019). Therefore, in this paper, we comparatively investigate the94

performance of the RBF-based, MLS-based, and Shepard’s interpolation algorithms for building95

DEMs by evaluating the influence of terrain type, raw data density, and distribution patterns on the96

interpolation accuracy and computational efficiency.97

The rest of the paper is organized as follows. Section 2 briefly introduces the basic principles98

of eight interpolation methods. Section 3 concentrates mainly on our parallel implementations of99

the eight interpolation methods and creation of the testing data. Section 4 introduces some of the100

experimental tests performed on the CPU and GPU. Section 5 discusses the experimental results.101

Finally, Section 6 states conclusions from the work.102

BACKGROUND103

In this section, we briefly introduce eight spatial interpolation algorithms.104

MLS-based Interpolation Algorithms105

The MLS method obtains the fitting surface by solving the equation group derived from mini-106

mizing the sum of the squares of the errors between the fitting data and the given node data.107

Original MLS Interpolation Algorithm108

The MLS approximation is used to approximate field variables and their derivatives. In a109

domain Ω, the MLS approximation f h (x) of the field variable f (x) in the vicinity of a point x̄ is110
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given as111

f h (x) =
m

∑
j=1

pj (x) ·aj (x̄) = PT (x) ·a(x̄) (1)

where pj (x), j = 1,2, · · · ,m is a complete basis function with coefficients aj (x̄). At each point x̄,112

aj (x̄) is chosen to minimize the weighted residual L2− norm (L2− norm refers to ∥x∥2, where113

x = [x1,x2, · · · ,xn]
T

, and ∥x∥2 =

√

(

|x1|
2 + |x2|

2 + |x3|
2 + · · ·+ |xn|

2
)

):114

J =
N

∑
I=1

w(x̄− xI)
[

PT (xI)a(x̄)− fI

]2
(2)

where N is the number of nodes in the compact-supported neighborhood of x̄ and fI refers to the115

nodal parameter of f at x = xI . Nodes refer to data points in the compact-supported neighborhood116

of x̄. Compact-supported, i.e. point x̄ is only related to the nodes of its neighborhood, xI is one of117

the nodes in the compact-supported neighborhood. And w(x− xk) is the compact-supported weight118

function. The most commonly used weight functions are the spline functions, for example, the119

cubic spline weight function (Eq. (3)):120

w(s̄) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2
3
−4s̄2 +4s̄3,

4
3
−4s̄+4s̄2 − 4

3
s̄3,

0,

s̄ ≤ 1
2

1
2
< s̄ ≤ 1

s̄ > 1

(3)

where s̄ = s
smax

and s = x̄− xI .121

The minimum of J with respect to a(x̄) gives the standard form of MLS approximation:122

f h (x) =
N

∑
I=1

φI (x) fI = Φ(x)F (4)

Orthogonal MLS Interpolation Algorithm123

For a given polynomial basis function pi (x) , i = 1,2, · · ·,m, there is an orthonormal basis124

function qi (x, x̄) that satisfies:125

q1 (x, x̄) = p1 (x)

qi (x, x̄) = pi (x)−
i−1

∑
j=1

αi j (x, x̄)qj (x, x̄) , i = 2,3, · · ·,m (5)

where αi j (x, x̄) is the coefficient that makes qi (x, x̄) perpendicular to qj (x, x̄).126

αi j (x̄) =

N

∑
k=1

wk (x̄) pi (xk)qj (xk, x̄)

∑
N
k=1 wk (x̄)q2

j (xk, x̄)
(6)
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Because the coefficient matrix is a diagonal matrix, the solution for ai (x) does not require127

matrix inversion, i.e.128

ai (x̄) =
∑

N
k=1 wk (x̄)qi (xk, x̄) fk

∑
N
k=1 wk (x̄)q2

i (xk, x̄)
(7)

where ai and aj (x̄) (Eqs. (1)) have the same definition. fk and fI (Eqs. (2)) have the same definition,129

i.e., the nodal parameter of f at x = xk. Finally, ai and the orthonormal basis function qi (x, x̄) are130

fitted into Eqs. (1) to obtain the orthogonal MLS approximation f h (x).131

When the number or order of basis functions increases, only am+1 and αm+1 need to be calcu-132

lated in Gram-Schmidt orthogonalization (Steve, 2011); recalculation of all entries in the coefficient133

matrix is not needed. This could reduce the computational cost and the computational error.134

Lancaster’s MLS Interpolation Algorithm135

A singular weight function is adopted to make the approximation function f h (x) constructed136

by the interpolation type MLS method satisfy the properties of the Kronecker δ function:137

ω (x,xk) =

{

∥

∥(x− xk)
/

ρk

∥

∥

-α
,

0,

∥x− xk∥ ≤ ρk

∥x− xk∥> ρk

(8)

Let p0 (x)≡ 1, p1 (x) , · · · , pm̄ (x) denote the basis function used to construct the approximation138

function, where the number of basis functions is m̄+1. To implement the interpolation properties,139

a new set of basis functions is constructed for a given basis function. First, p0(x) are standardized,140

i.e.,141

p̃0 (x, x̄) =
1

[

N

∑
k=1

ω (x,xk)

]1/2
(9)

Then, we construct a new basis function of the following form:142

p̃i (x, x̄) = pi (x̄)−
N

∑
k=1

ω (x,xk)
N

∑
l=1

ω (x,xl)
Pi (xk), i = 1,2, · · · , m̄ (10)

RBF-based Interpolation Algorithm143

The RBF operates as a spline, essentially fitting a series of piecewise surfaces to approximate144

a complex terrain.145

Let X = {x1,x2, · · · ,xN} be a set of pairwise distinct points in a domain Ω⊆ Rd with associated146

data values fi,i = 1,2, · · · ,N. We consider the problem of construction a d-variety function F ∈147

Ck
(

Rd
)

that interpolates the known data. Specifically, we require F (xi) = fi, i = 1,2, · · · ,N. If we148

take F in the form.149

F (x) =
N

∑
j=1

wjϕ
(

∥xi − x j∥2

)

(11)
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where ϕ : [0,∞]→ R is a suitable continuous function, the interpolation conditions become:150

N

∑
j=1

wjϕ
(

∥xi − x j∥2

)

= fi, i = 1,2, · · · ,N (12)

Shepard’s Interpolation Algorithms151

Shepard (1968) proposed a series of interpolation algorithms on the basis of weighting aver-152

ages. These algorithms are termed Shepard’s method. The essential idea behind Shepard’s method153

is to estimate expected values of the interpolation point by weighting averages of the nearby discrete154

points as follows:155

Let (xi,yi) , i = 1,2, · · · ,N be the interpolation point and fi be the corresponding value at inter-156

polation point (xi,yi). The expected value f at any point can be expressed as157

f (x) =
N

∑
i=1

wi (x) fi

∑
N
j=1 wj (x)

(13)

where w(x) is a weight function.158

The differences between the different variants of Shepard’s method are in the selection of159

different weighting functions. In this subsection, four common variants of Shepard’s method will160

be briefly introduced (Eqs. (14) - (19)).161

Variant A of Shepard’s Interpolation Algorithm162

First, select the influence radius R > 0 and let the weight function be163

w(r) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
r
,

27
4

(

r
R
−1

)2
,

0,

0 < r ≤ R
3

R
3
< r ≤ R

r > R

(14)

Then, a variation of Shepard’s interpolation will be obtained.164

Variant B of Shepard’s Interpolation Algorithm165

When employing the following weight function (Eq. (15)), a new variation of Shepard’s inter-166

polation will be obtained.167

w(s̄) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2
3
−4s̄2 +4s̄3,

4
3
−4s̄+4s̄2 − 4

3
s̄3,

0,

s̄ ≤ 1
2

1
2
< s̄ ≤ 1

s̄ > 1

(15)

Inverse Distance Weighted (IDW) Interpolation Algorithm168

If the weight function is selected as169

wi (x) =
1

d (x,xi)
α (16)

the IDW interpolation is obtained. Typically, α = 2 in the standard IDW. Where d (x,xi) is the170

distance between the interpolation point xi and the nearby discrete point x.171
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AIDW Interpolation Algorithm172

The Adaptive Inverse Distance Weighted (AIDW) is an improved version of the standard IDW173

(Shepard, 1968) originated by Lu and Wong (2008). The distance-decay parameter α is no longer174

a prespecified constant value but is adaptively adjusted for a specific unknown interpolated point175

according to the distribution of the nearest neighboring data points.176

The parameter α is taken as177

α (µR) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

α1,

α1 [1−5(µR −0.1)]+5α2 (µR −0.1) ,

5α3 (µR −0.3)+α2 [1−5(µR −0.3)] ,

α3 [1−5(µR −0.5)]+5α4 (µR −0.5) ,

5α5 (µR −0.7)+α4 [1−5(µR −0.7)] ,

α5,

0.0 ≤ µR ≤ 0.1

0.1 ≤ µR ≤ 0.3

0.3 ≤ µR ≤ 0.5

0.5 ≤ µR ≤ 0.7

0.7 ≤ µR ≤ 0.9

0.9 ≤ µR ≤ 1.0

(17)

µR =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0,

0.5−0.5cos
[

π (R(S0)−Rmin)
/

Rmax

]

,

1,

R(S0)≤ Rmin

Rmin ≤ R(S0)≤ Rmax

R(S0)≥ Rmax

(18)

where the α1, α2, α3, α4, α5 are the to-be-assigned five levels or categories of distance decay value.178

Rmin or Rmax refer to a local nearest neighbor statistic value, and Rmin and Rmax can generally be179

set to 0.0 and 2.0, respectively. Then,180

R(S0) =
2
√

N
/

A

k

k

∑
i=1

di (19)

where N is the number of points in the study area, A is the area of the study region, k is the number of181

nearest neighbor points, di is the nearest neighbor distances and S0 is the location of an interpolated182

point.183

METHODS184

Implementations of the Spatial Interpolation Algorithms185

We have implemented the spatial interpolation algorithms of RBF (Ding et al., 2018b), MLS186

(Ding et al., 2018a), IDW (Mei, 2014), and AIDW (Mei et al., 2017) in our previous work. To187

evaluate the computational performance of the GPU-accelerated interpolation, we implement and188

compare (1) the sequential implementation, (2) the parallel implementation developed on a multi-189

core CPU, (3) the parallel implementation using a single GPU, and (4) the parallel implementation190

using multiple GPUs.191

There are two key ideas behind the presented spatial interpolation algorithm:192

(1) We use an efficient k-Nearest Neighbor (kNN) search algorithm (Mei et al., 2016) to find193

the local set of data points for each interpolated point.194

(2) We employ the local set of data points to compute the prediction value of the interpolated195

point using different interpolation methods.196
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Mei and Tian (2016) evaluated the impact of different data layouts on the computational ef-197

ficiency of the GPU-accelerated IDW interpolation algorithm. They implemented three IDW ver-198

sions of GPU implementations, based upon five data layouts, including the Structure of Arrays199

(SoA), the Array of Structures (AoS), the Array of aligned Structures (AoaS), the Structure of Ar-200

rays of aligned Structures (SoAoS), and a hybrid layout, then they carried out several groups of201

experiments to evaluate the impact of different data layouts on the interpolation efficiency. Based202

on their experimental results, the layout SoA is shown in Listing 1.203

204

struct Pt {205

float x[N];206

float y[N];207

float z[N];208

};209

struct Pt myPts;210
211

Listing 1. The layout SoA

The kNN (Cover and Hart, 1967) is a machine learning algorithm often used in classification,212

the k-Nearest Neighbor means that each data point can be represented by its k nearest neighbor213

points. In all of the presented interpolation algorithms, for each interpolation point, a local set of214

data points is found by employing the kNN search procedure and the found local sets of data points215

are then used to calculate the prediction value of the interpolation point. For large size of DEM,216

the kNN search algorithm can effectively improve the speed of interpolation by searching only the217

points near the interpolation points (Mei et al., 2016).218

Assuming there are m interpolated points and n data points, the process of the kNN search219

algorithm is as follows:220

Step 1: The k distances between the k data points and each of the interpolated points are221

calculated; for example, if the k is set to 5, then there are 5 distances needed to be calculated; see222

the row (A) in Figure 1.223

Step 2: The k distances are sorted in ascending order; see the row (B) in Figure 1.224

Step 3: For each of the rest (m-k) data points,225

(1) The distance d is calculated, for example, the distance is 4.2 (d = 4.2);226

(2) The d with the kth distance are compared: if d < the kth distance, then replace the kth227

distance with the d (see row (C));228

(3) Iteratively compare and swap the neighboring two distances from the kth distance to the229

1st distance until all the k distances are newly sorted in ascending order; see the rows (C)–(E) in230

Figure 1.231

Creation of the Testing Data232

Two sets of DEM data were downloaded from the Geospatial Data Cloud (http://www.233

gscloud.cn//). More specifically, two 30-m resolution DEMs for two 20 km × 20 km regions234

in Hebei and Sichuan provinces were selected. The topography of Hebei province is mainly plain,235

while the topography of Sichuan province is mainly mountainous. Two sets of DEM data are236
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Figure 1. An illustration of the process of the kNN search algorithm

derived from remote sensing satellites and compiled by the CNIC (Computer Network Information237

Center, Chinese Academy of Sciences). More details on the selected DEMs are presented in Figure238

2.239

Data points and interpolated points (listed in Table 1 and Table 2) are produced as follows:240

(1) The selected DEMs is imported into the software ArcGIS.241

(2) A square region S is delimited in selected DEMs. For example, the two 20 km × 20 km242

regions shown in Figure 2.243

(3) Generating the x and y coordinates of randomly determined points by random number gen-244

eration algorithms in the square region S, and then accessing the corresponding z coordinates from245

the DEM (the randomly determined points are the data points P1). Evenly distributed (regularly246

distributed) data points are randomly extracted using the Linear Congruential Random Number247

Method (Lehmer, 1949), and normally distribution (irregularly distributed, mathematical expec-248

tation µ=10000, standard deviation σ=3333) data points are randomly extracted using the Box-249

Muller Method (Box and Muller, 1958). For example, we set Size 1, the extracted regularly dis-250

tributed data points P1 = 249990 (Table 1), and density is P1/S0 (S0 is the area of S, and S0 is a251

fixed value, where S0=20 km × 20 km).252

(4) The square region S is triangulated into a planar triangular mesh using the Delauney algo-253

rithm (Watson, 1981), the mesh nodes are considered to be the interpolation points, with known254

x and y coordinates and unknown z coordinates, the unknown z coordinates is the estimated value255

to be obtained by interpolation. According to the randomly sampled points obtained in Step 3, we256

use the interpolation method mentioned in Section 2 to interpolate. Then, the corresponding exact257

elevation of the interpolation point is obtained by accessing the z value of the DEM at the associ-258

ated x and y coordinates. Finally, the z values at the mesh points are used as control for testing the259

accuracy of the interpolated z values.260

To quantitatively determine regular and irregular point sampling, Average Nearest Neighbor261

analysis (Ebdon, 1985) is applied. In the proposed method, Nearest Neighbor Ratio (NNR) is used262

to evaluate the distribution pattern of sample points: if the NNR > 1, the distribution pattern shows263

clustered; if the NNR < 1, the distribution pattern shows dispersed. As listed in Table 3, the NNR264

of regularly-distributed, approximately 1.001, is greater than 1, the distribution pattern is dispersed265
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Figure 2. The selected Zone 1 and Zone 2. ((A) 2.5D model of the Zone 1 study area and (B)

2.5D model of the Zone 2 study area.)
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Table 1. Ten used groups of experimental testing data in the Flat zone

Data set Number of Data Points Number of Interpolated Points

Regularly-

distributed

Size 1 249990 259496

Size 2 499975 529080

Size 3 999883 1036780

Size 4 1499750 1540373

Size 5 1999566 2000520

Irregularly-

distributed

Size 1 249920 259496

Size 2 499751 529080

Size 3 998840 1036780

Size 4 1497397 1540373

Size 5 1995531 2000520

Table 2. Ten used groups of experimental testing data in the Rugged zone

Data set Number of Data Points Number of Interpolated Points

Regularly-

distributed

Size 1 249994 259496

Size 2 499970 529080

Size 3 999884 1036780

Size 4 1499746 1540373

Size 5 1999544 2000520

Irregularly-

distributed

Size 1 249924 259496

Size 2 499728 529080

Size 3 998867 1036780

Size 4 1497444 1540373

Size 5 1995443 2000520

(Figure 3(A)), that is regularly-distributed; the NNR of irregularly-distributed, approximately 0.78,266

is less than 1, the distribution pattern is clustered (Figure 3(B)), that is irregularly-distributed.267

Zone 1 (Flat Zone)268

The first selected region is located in Hengshui City, Hebei Province. The DEM of this region269

has the identifier ASTGTM N37E115 and is derived from the Geospatial Data Cloud (http://www.gscloud.cn/).270

The location and elevation of this region is illustrated in Figure 2. In the region, the highest eleva-271

tion is 48 m and the lowest is 8 m. We translated the X coordinate by 348,000 and the Y coordinate272

by 4,130,000 to obtain a 20 km×20 km square area centered on the origin. Five sets of benchmark273

test data were generated in this region; see Table 1.274

Zone 2 (Rugged Zone)275

The second selected region is located in Ganzi Tibetan Autonomous Prefecture, Sichuan276

Province. The DEM of this region has the identifier ASTGTM N29E099 and is derived from277

the Geospatial Data Cloud (http://www.gscloud.cn/). The location and elevation of this region is278
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Figure 3. The distribution patterns determined by the Average Nearest Neighbor analysis. ((A)

Regularly distributed and (B) irregularly distributed.)

Table 3. The NNR of regular and irregular point sampling

Data set Flat Zone Rugged Zone

Regularly-

distributed

Size 1 1.001731 1.001170

Size 2 1.001219 1.001291

Size 3 1.001437 1.001173

Size 4 1.001987 1.001758

Size 5 1.002431 1.001869

Irregularly-

distributed

Size 1 0.783242 0.781741

Size 2 0.782947 0.784534

Size 3 0.783653 0.784086

Size 4 0.784653 0.784056

Size 5 0.783745 0.784888

illustrated in Figure 2. In the region, the highest elevation is 5,722 m and the lowest is 3,498 m. We279

translated the X coordinate by 570,000 and the Y coordinate by 3,300,000 to obtain a 20 km×20280

km square area centered on the origin. Five sets of benchmark test data are generated in this region;281

see Table 2.282

Criteria for Comparison283

In this paper, we evaluate the interpolation algorithms described in Section 2 by: (1) comparing284

the interpolation accuracy and efficiency when the terrain is gentle and rugged, and (2) comparing285

the interpolation accuracy and efficiency when data points are evenly distributed and nonuniformly286

distributed.287
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The accuracy of each interpolation method is analyzed by comparing the elevation values288

predicted by the interpolation algorithms with the real DEM elevation value. The efficiency of each289

interpolation method is compared by benchmarking the running time of different implementations290

developed in sequence, on a multicore CPU, on a single GPU, and on multiple GPUs.291

RESULTS292

Experimental Environment293

To evaluate the computational performance of the presented various parallel interpolations, we294

conducted ten groups of experimental tests in both the flat zone and the rugged zone on a powerful295

workstation equipped with two Quadro M5000 GPUs. The specifications of the workstations are296

listed in Table 4.297

Table 4. Specifications of the workstation and the software used for the experimental tests

Specifications Details

CPU Intel Xeon E5-2650 v3

CPU Frequency 2.30 GHz

CPU RAM 144 GB

CPU Core 40

GPU Quadro M5000

GPU Memory 8 GB

GPU Core 2048

OS Windows 7 Professional

Compiler Visual Studio 2010

CUDA Version v8.0

Test Results of Interpolation Accuracy for Different Interpolation Algorithms298

In this paper, we adopt the Normalized Root-Mean-Square-Error (NRMSE) as the metric to299

measure the interpolation accuracy of the different interpolation algorithms. The NRMSE is defined300

in Eq. (20).301

Normalized Root-Mean-Square-Error (NRMSE):302

NRMSE =
1

max
1≤i≤Ni

| fa|

√

1

Ni

Ni

∑
i=1

| fn − fa|
2

(20)

where Ni is the number of interpolated points, fa is the theoretically exact solution of the ith in-303

terpolated point (the elevation of the DEM at this point), and fn is the predicted value of the ith304

interpolated point.305

The interpolation accuracy of the ten groups of experimental tests is listed in Table 5. The306

numerical value shown in Table 5 is NRMSE, which means that the smaller the numerical value,307

the higher the interpolation accuracy.308
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Table 5. Interpolation accuracy of the parallel interpolation algorithms implemented on a single

GPU

Data set Original

MLS

Orthogonal

MLS

Lancaster’s

MLS

kNN

RBF

kNN

AIDW

kNN

IDW

kNN Shep-

ard1

kNN Shep-

ard2

Flat

zone

Regularly-

distributed

Size 1 7.49E-5 7.49E-5 7.50E-5 9.23E-5 1.06E-4 1.07E-4 1.05E-4 1.03E-4

Size 2 6.25E-5 6.25E-5 6.03E-5 6.85E-5 7.92E-5 7.98E-5 7.81E-5 7.80E-5

Size 3 5.52E-5 5.52E-5 5.23E-5 5.67E-5 6.17E-5 6.19E-5 6.15E-5 6.23E-5

Size 4 5.16E-5 5.16E-5 4.88E-5 5.24E-5 5.45E-5 5.46E-5 5.47E-5 5.58E-5

Size 5 4.91E-5 4.91E-5 4.64E-5 4.99E-5 5.05E-5 5.05E-5 5.08E-5 5.20E-5

Irregularly-

distributed

Size 1 1.96E-4 1.96E-4 1.86E-4 2.14E-4 1.90E-4 1.95E-4 1.98E-4 2.02E-4

Size 2 1.53E-4 1.53E-4 1.48E-4 1.71E-4 1.57E-4 1.60E-4 1.62E-4 1.65E-4

Size 3 1.20E-4 1.20E-4 1.15E-4 1.36E-4 1.28E-4 1.31E-4 1.32E-4 1.33E-4

Size 4 1.07E-4 1.07E-4 1.02E-4 1.21E-4 1.15E-4 1.17E-4 1.18E-4 1.19E-4

Size 5 9.50E-5 9.50E-5 9.14E-5 1.07E-4 1.05E-4 1.05E-4 1.06E-4 1.07E-4

Rugged

zone

Regularly-

distributed

Size 1 2.23E-4 2.23E-4 2.58E-4 4.41E-4 9.21E-4 9.26E-4 9.43E-4 9.69E-4

Size 2 1.23E-4 1.23E-4 1.35E-4 2.35E-4 6.13E-4 6.16E-4 6.35E-4 6.63E-4

Size 3 9.09E-5 9.09E-5 9.07E-5 1.37E-4 4.13E-4 4.12E-4 4.33E-4 4.58E-4

Size 4 8.13E-5 8.13E-5 7.99E-5 1.08E-4 3.31E-4 3.30E-4 3.50E-4 3.71E-4

Size 5 7.62E-5 7.62E-5 7.48E-5 9.39E-5 2.85E-4 2.83E-4 3.02E-4 3.21E-4

Irregularly-

distributed

Size 1 3.37E-3 3.37E-3 3.02E-3 3.99E-3 4.06E-3 4.12E-3 4.11E-3 4.07E-3

Size 2 1.98E-3 1.98E-3 1.88E-3 2.96E-3 3.49E-3 3.55E-3 3.57E-3 3.52E-3

Size 3 1.03E-3 1.03E-3 1.10E-3 1.56E-3 2.02E-3 2.05E-3 2.04E-3 2.02E-3

Size 4 8.15E-4 8.15E-4 8.21E-4 1.16E-3 1.70E-3 1.70E-3 1.68E-3 1.67E-3

Size 5 6.33E-4 6.33E-4 6.59E-4 9.78E-4 1.35E-3 1.36E-3 1.36E-3 1.37E-3

As listed in Table 5, the most accurate interpolation algorithm is the MLS interpolation al-309

gorithm. For the small size (Size 1), compared with other two algorithms, the MLS algorithm is310

13.1%-49.4% more accurate than the RBF algorithm, and it is 2.1%-75.8% more accurate than the311

Shepard’s algorithm. On the other hand, for the same algorithm, when the distribution pattern is312

the same, its accuracy in the flat area is higher than that the rugged area. For example, for the313

MLS algorithm, when the distribution pattern is nonuniformly distributed, the accuracy of the Lan-314

caster’ MLS algorithm in the flat area is approximately 90% higher than that of the Lancaster’ MLS315

algorithm in the rugged area.316

As shown in Figure 4 and Figure 5, the NRMSEs of various interpolation methods for the317

regularly distributed are less than 50% of the NRMSEs of various interpolation methods for the318

irregularly distributed. The above behavior becomes even more obvious in the rugged zone than in319

the flat zone. Thus, the regular distribution provides a more accurate solution for both the rugged320

and the flat areas.321

Test Results of Computational Efficiency for Different Interpolation Algorithms322

In our experimental tests, the value of k is 20. Those twenty groups of experimental tests were323

performed on the workstations mentioned above. The running times and corresponding speedups324

of each group of experimental tests are presented in the following section. The speedup is defined325

in Eq. (21).326

speedup =
Tseq

Tpar

(21)
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Figure 4. Interpolation accuracy of GPU-accelerated interpolation algorithms in the Flat zone.

((A) Regularly distributed and (B) irregularly distributed.)

Figure 5. Interpolation accuracy of GPU-accelerated interpolation algorithms in the Rugged

zone. ((A) Regularly distributed and (B) irregularly distributed.)

where Tseq is the running time of sequential implementation, and Tpar is the running time of parallel327

implementation.328

Computational Efficiency of Sequential Implementations329

As listed in Table 6, for the sequential version, when giving the same sets of data points330

and interpolation points, the order of computational time from fastest to slowest is: the Shepard’s331

interpolation method, the MLS interpolation, and the RBF interpolation. The computational time332

of Shepard’s interpolation method is approximately 20% less than the MLS interpolation method,333

and it is approximately 70% less than the computational time of the computational time of RBF334

interpolation method.335

Computational Efficiency of Parallel Implementations336

As shown in Figure 6-11, the parallel version developed on multi-GPUs has the highest337

speedup in the three parallel versions. Except for the RBF interpolation method, the maximum338
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Table 6. Running time (ms) of sequential implementations

Data set Original

MLS

Orthogonal

MLS

Lancaster’s

MLS

kNN

RBF

kNN

AIDW

kNN

IDW

kNN Shep-

ard1

kNN Shep-

ard2

Flat

zone

Regularly-

distributed

Size 1 1571.33 1501.67 1613.00 4194.33 1520.67 1239.00 1290.67 1270.33

Size 2 3253.33 3238.33 3330.33 8547.33 3100.67 2475.67 2618.33 2583.00

Size 3 6355.67 6063.33 6487.67 16610.67 6154.67 4957.33 5196.33 5125.33

Size 4 9462.00 9036.67 9670.33 24856.67 9161.33 7359.00 7754.67 7674.00

Size 5 12403.33 11854.00 12725.33 32370.33 12050.67 9643.33 10230.67 10058.00

Irregularly-

distributed

Size 1 1458.33 1392.00 1500.00 4028.67 1409.00 1104.33 1177.33 1157.67

Size 2 3042.33 2919.67 3115.00 8291.33 2923.00 2300.33 2430.67 2397.33

Size 3 6067.00 5738.00 6129.00 16299.33 5783.67 4559.00 4834.67 4776.33

Size 4 8856.00 8491.33 9142.00 24286.00 8636.33 6779.33 7211.33 7105.00

Size 5 11706.00 11214.00 12031.33 31744.00 11354.00 8922.00 9498.00 9372.67

Rugged

zone

Regularly-

distributed

Size 1 1576.00 1497.67 1605.33 4148.00 1512.67 1204.67 1278.00 1264.00

Size 2 3211.33 3131.00 3285.33 8452.33 3117.33 2620.33 2695.33 2582.67

Size 3 6354.33 6064.67 6500.33 16649.33 6139.67 4898.00 5200.33 5127.67

Size 4 9444.67 9026.67 9662.33 24811.67 9187.00 7293.33 7710.33 7660.33

Size 5 12416.67 11853.33 12711.33 32372.67 12008.33 9606.33 10205.67 10062.00

Irregularly-

distributed

Size 1 1503.00 1408.00 1516.00 4060.33 1424.00 1117.33 1191.67 1214.67

Size 2 3032.33 2883.33 3110.33 8274.33 2925.67 2277.00 2424.00 2391.33

Size 3 5943.33 5704.67 6089.33 16226.67 5746.33 4534.00 4800.33 4735.67

Size 4 8920.00 8524.33 9132.33 24262.00 8654.67 6781.67 7224.00 7115.67

Size 5 11632.33 11147.33 11925.33 31612.00 11282.33 8885.33 9435.67 9320.33

speedups of other interpolation algorithms are greater than 45.339

As shown in Figures 12 and 13, for the parallel version developed on multi-GPUs, the order340

of the computational time from fastest to slowest is: the Shepard’s interpolation, the MLS interpo-341

lation, the RBF interpolation method. The computational time of Shepard’s interpolation method342

is 3%-30% less than the computational time of the MLS interpolation method, and it is 70%-85%343

less than the computational time of the RBF interpolation method.344

Figure 6. Comparison of the speedups of the parallel implementations developed on a multicore

CPU in the Flat zone. ((A) Regularly distributed and (B) irregularly distributed.)
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Figure 7. Comparison of the speedups of the parallel implementations developed on a multicore

CPU in the Rugged zone. ((A) Regularly distributed and (B) irregularly distributed.)

Figure 8. Comparison of the speedups of the parallel implementations developed on a single

GPU in the Flat zone. ((A) Regularly distributed and (B) irregularly distributed.)

DISCUSSION345

The interpolation accuracy and computational efficiency are two critical issues that should be346

considered first in any interpolation algorithms. The interpolation accuracy should first be satisfied;347

otherwise, numerical analysis results would be inaccurate. In addition, the computational efficiency348

should be practical.349

More specifically, in the subsequent section we will analyze (1) the interpolation accuracy of350

the presented eight GPU-accelerated interpolation algorithms with different data sets and (2) the351

computational efficiency of the presented eight interpolation algorithms.352
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Figure 9. Comparison of the speedups of the parallel implementations developed on a single

GPU in the Rugged zone. ((A) Regularly distributed and (B) irregularly distributed.)

Figure 10. Comparison of the speedups of the parallel implementations developed on

multi-GPUs in the Flat zone. ((A) Regularly distributed and (B) irregularly distributed.)

Comparison of Interpolation Accuracy353

To better compare the accuracy of the described interpolation algorithms, in the case of the354

highest sample density (Size 5) and the lowest sample density (Size 1), we listed those algorithms355

with the highest accuracy (i.e., the minimum NRMSE) in Table 7.356

As listed in Table 7, for lower sample density (Size 1), the Original MLS algorithm has the357

best interpolation performance in regularly distributed. However, for higher sample density (Size358

5), in general, the improved MLS algorithm Lancaster’s MLS has higher interpolation accuracy359

than the Original MLS. In particular, the Original MLS has best accuracy in the rugged zone with360

irregularly distributed interpolation points.361

On the other hand, for Shepard’s interpolation algorithms, the kNNAIDW is an improved362
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Figure 11. Comparison of the speedups of the parallel implementations developed on

multi-GPUs in the Rugged zone. ((A) Regularly distributed and (B) irregularly distributed.)

Figure 12. Comparison of the running time of the parallel implementations developed on

multi-GPUs in the Flat zone. ((A) Regularly distributed and (B) irregularly distributed.)

Table 7. The algorithm with the highest accuracy in congeneric algorithms and its corresponding

NRMSE

Data set MLS Algorithm RBF Algorithm
Shepard’s Interpolation

Algorithm

Flat

zone

Regularly-

distributed

Size 1 Original MLS (7.49E-5) kNNRBF (9.23E-5) kNNShepard2 (1.03E-4)

Size 5 Lancaster’s MLS ( 4.64E-5) kNNRBF (4.99E-5) kNNAIDW (5.05E-5)

Irregularly-

distributed

Size 1 Lancaster’s MLS (1.86E-4) kNNRBF (2.14E-4) kNNAIDW (1.90E-4)

Size 5 Lancaster’s MLS (9.14E-5) kNNRBF (1.07E-4) kNNAIDW (1.05E-4)

Rugged

zone

Regularly-

distributed

Size 1 Original MLS (2.23E-4) kNNRBF (4.41E-4) kNNAIDW (9.21E-4)

Size 5 Lancaster’s MLS (7.48E-5) kNNRBF (9.39E-5) kNNIDW (2.83E-4)

Irregularly-

distributed

Size 1 Lancaster’s MLS (3.02E-3) kNNRBF (3.99E-3) kNNAIDW (4.06E-3)

Size 5 Original MLS (6.33E-4) kNNRBF (9.78E-4) kNNAIDW (1.35E-3)
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Figure 13. Comparison of the running time of the parallel implementations developed on

multi-GPUs in the Rugged zone. ((A) Regularly distributed and (B) irregularly distributed.)

version of the IDW, which can adaptively determine the power parameter according to the spatial363

points’ distribution pattern. Therefore, in Shepard’s interpolation algorithms, the kNNAIDW has364

higher accuracy in most situations. Although under some specific conditions, the kNNShepard2365

and kNNIDW have higher accuracy than kNNAIDW, the accuracy of kNNAIDW is quite similar to366

them.367

As listed Table 7. For the same flat zone, when the data points are uniformly distributed, the368

order of the interpolation accuracy from high to low is: the MLS interpolation algorithm, RBF, and369

Shepard’s interpolation method; when the data points are normal distribution, the order of the in-370

terpolation accuracy from high to low is: the MLS interpolation algorithm, Shepard’s interpolation371

method, and RBF. For the same rugged zone, regardless of the density and distribution of the data372

points, the interpolation accuracy order from high to low is: the MLS interpolation algorithm, RBF,373

and Shepard’s interpolation method.374

To further verify the above conclusions obtained from NRMSE, we investigated the relative375

error of the interpolated results for the same set of data points and interpolation points (i.e., Size 1).376

The algorithm with the highest accuracy (i.e., the minimum NRMSE) is used to represent the kind377

of algorithm.378

As shown in Figure 14 and Figure 15, the Y axis is the lgN (N is the count of relative error),379

and the X axis is the relative error e. The e is defined in Eq. (22).380

ei =

∣

∣

∣

∣

fn − fa

fa

∣

∣

∣

∣

×100% (22)

where fa is the theoretically exact solution of the ith interpolated point (the elevation of the DEM381

at this point), fn is the predicted value of the ith interpolated point, and ei is the relative error of the382

ith interpolated point.383

As listed in Table 8 and Table 9. For better evaluation of relative error, we also calculated the384

mean relative error E. The E is defined in Eq. (23)385
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E =

Ni

∑
i=1

ei

Ni

(23)

where Ni is the number of interpolated points.386

In the Flat Zone387

Figure 14. Frequency distribution of the Relative Error for the parallel implementation

developed on a single GPU in the Flat zone. ((A) Regularly distributed and (B) irregularly

distributed. The size of data points: Size 1.)

Table 8. The algorithm with the highest accuracy in congeneric algorithms and its corresponding

mean relative error in the Flat zone

Distribution Mean Relative Error E (%)

Regularly-distributed
Original MLS kNNRBF kNNShepard b

0.0069 0.0078 0.0084

Irregularly-distributed
Lancaster’s MLS kNNRBF kNNAIDW

0.0144 0.0162 0.0148

As shown in Figure 14, for the flat region, when the data points are evenly distributed, the388

frequency statistical curve of the MLS is the highest when it is close to zero, the lowest when it is389

far away from zero, and the relative error distribution range is smaller, which means that the error390

of MLS method is small. The characteristics of the frequency statistical curve of Shepard’s method391

are completely opposite to those of MLS, which means that the error of MLS method is large. For392

the RBF interpolation algorithm, the characteristic of the frequency statistics curve is a transitional393

phase between those for the MLS and those for Shepard’s method. The above curve features and394

E (Table 8) illustrate that the interpolation accuracy is from high to low in this condition: the MLS395

interpolation algorithm, RBF, and Shepard’s interpolation method.396
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When the data points are normally distributed, the relative error distribution ranges of all the397

interpolation methods are larger than that for the uniformly distributed data points. As shown in398

Figure 14, the characteristics of the frequency statistics curve of RBF are obvious, the frequency399

statistical curve of RBF is above the frequency statistical curves of MLS and Shepard’s method,400

which means that the error of RBF method is larger. The characteristics of frequency statistical401

curves of MLS and Shepard’s method are very similar, and the relative error distribution range of402

MLS is the largest. As listed in Table 8, in the flat zone, the accuracy of MLS is slightly higher403

than Shepard’s method when the data points are normally distributed.404

In the Rugged Zone405

Figure 15. Frequency distribution of the Relative Error for the parallel implementation

developed on a single GPU in the Rugged zone. ((A) Regularly distributed and (B) irregularly

distributed. The size of data points: Size 1)

Table 9. The algorithm with the highest accuracy in congeneric algorithms and its corresponding

mean relative error in the Rugged zone

Distribution Mean Relative Error E (%)

Regularly-distributed
Original MLS kNNRBF kNNAIDW

0.0514 0.0582 0.0904

Irregularly-distributed
Lancaster’s MLS kNNRBF kNNAIDW

0.3078 0.3493 0.3703

As shown in Figure 15, for the rugged region, regardless of whether the data points are uni-406

formly distributed or normally distributed, the characteristics of frequency statistical curves of MLS,407

RBF and Shepard’s method are similar to those illustrated in Figure 14. However, in Figure 15(B),408

it is a little different in that most of the frequency statistical curve of Shepard’s method is higher409

than the RBF’s. As listed in Table 9, the interpolation accuracy is from high to low: the MLS410
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interpolation algorithm, RBF, and Shepard’s interpolation method.411

According to the above Figures and Tables, some summary conclusions are obtained as fol-412

lows:413

For the same region, when the density of data points is almost the same, the interpolation414

accuracy when the data points are evenly distributed is higher than the interpolation accuracy when415

the data points are nonuniformly distributed.416

As listed in Table 5 and Table 7, when the data points are evenly distributed, the gap of the ac-417

curacy between the three variations of the MLS method, RBF, and Shepard’s interpolation methods418

increases with the decrease of point density.419

As shown in Figure 14 and Figure 15, when the data points are nonuniformly distributed, the420

maximum relative errors of MLS is larger than other algorithms’, however, MLS method has lower421

NRMSE and E. A small number of larger relative errors has little effect on the overall interpola-422

tion accuracy. A large number of small and medium relative errors are the key to determine the423

interpolation accuracy of the algorithm.424

As listed in Table 5, compared with the uniform distribution, when the points are nonuniformly425

distributed the difference in the accuracy of the interpolation algorithms is not as sensitive to the426

changes of point density.427

Compared with the three variations of the MLS method and the RBF method, Shepard’s in-428

terpolation method is quite suitable for cases where the data points have a smooth trend. When429

interpolating for the data points with an undulating trend, the accuracy of Shepard’s interpolation430

method will be poor. When the density of data points is small, this rule becomes more obvious.431

Comparison of Computational Efficiency432

The parallel implementations developed on multi-GPUs is the most efficient, therefore, the433

parallel implementations developed on multi-GPUs are discussed below.434

In the Flat Zone435

As illustrated in Figure 12, for the flat region, except for the kNNRBF, when the number of436

data point set is not much different, the nonuniformly distributed data point set requires significantly437

more interpolation time than the uniformly distributed data point set, and with the increase of the438

number of points, the rule of the interpolation time is more obvious.439

As illustrated in Figure 10, the speedups achieved by the RBF interpolation method is gener-440

ally small, and its speedups are not much different in various cases. However, when the size of441

data point set is Size 1 and the data point set is nonuniformly distributed, the speedup of the RBF442

interpolation method is larger than other methods, which means that the benefits of parallelism are443

lower in this case.444

As indicated above, the distribution pattern of data points strongly influences the interpolation445

efficiency.446

In the Rugged Zone447

As illustrated in Figure 11 and Figure 13, the running time and the speedups in the rugged448

region are almost the same as those in the flat region. In other words, the characteristics of the449
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terrain elevation of data points have a weak influence on computational efficiency.450

Influence of kNN Search on Computational Efficiency451

According to Section 3, in the interpolation procedure, the kNN search may affect the entire452

computational efficiency of interpolation.453

To specifically evaluate the influence of the kNN search on the computational efficiency of454

the entire interpolation procedure, we investigated the computational cost of the kNN search for455

relatively large numbers of data points, i.e., for the dataset of Size 5 (listed in Figure 16).456

Note that we employ four sets of data points with Size 5, including (1) the set of uniformly457

distributed data points and the set of nonuniformly distributed data points in the flat region and (2)458

the set of uniformly distributed data points and the set of nonuniformly distributed data points in459

the rugged region.460

Figure 16. Comparison of the running time cost in the kNN search procedure. ((A) Sequential

version on single CPU and (B) Parallel version on single GPU.)

As listed in Table 10, for the sequential version, regardless of whether the data points are461

uniformly distributed or nonuniformly distributed, the kNN search costs approximately 75% of462

the computational time of the entire interpolation procedure for the three variations of the MLS463

interpolation algorithm and the AIDW interpolation algorithm, whereas the kNN search costs less464

than 30% of the computational time for the RBF interpolation algorithm and approximately 90% in465

the other three variations of Shepard’s method. It should also be noted that for the same size of data466

points, whether they are uniformly or nonuniformly distributed, there is no significant difference in467

the computational cost of the kNN search; that is, the distribution pattern of data points is of weak468

influence on the computational efficiency of the kNN search in the sequential version.469

As listed in Table 11, for the parallel version developed on a single GPU, when the sizes of470

data points are almost the same, it would cost much more time in the kNN search when the data471

points are nonuniformly distributed than when the data points are uniformly distributed. Moreover,472

when the data points are nonuniformly distributed, the proportion of the kNN search time to the total473
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Table 10. Proportion of the kNN search time to the running time of the sequential

implementations. (The proportion is TkNN

Trun
×100%, where TkNN is the kNN search time, and Trun is

the running time of the corresponding sequential implementations.)

Data set Original

MLS

Orthogonal

MLS

Lancaster’s

MLS

kNN

RBF

kNN

AIDW

kNN

IDW

kNN Shep-

ard1

kNN Shep-

ard2

Flat

zone

Regularly-

distributed

74.9% 78.4% 73.0% 28.7% 77.1% 96.4% 90.8% 92.4%

Irregularly-

distributed

72.8% 76.0% 70.8% 26.8% 75.1% 95.5% 89.7% 90.9%

Rugged

zone

Regularly-

distributed

73.7% 77.2% 72.0% 28.3% 76.2% 95.3% 89.7% 91.0%

Irregularly-

distributed

73.0% 76.2% 71.2% 26.9% 75.3% 95.6% 90.0% 91.1%

time is approximately 10% to 20% more than the proportion when the data points are uniformly474

distributed under the same conditions.475

Table 11. Proportion of the kNN search time to the running time of the parallel implementations

developed on a single GPU. (The proportion is TkNN

Trun
×100%, where TkNN is the kNN search time,

and Trun is the running time of the corresponding parallel implementations.)

Data set Original

MLS

Orthogonal

MLS

Lancaster’s

MLS

kNN

RBF

kNN

AIDW

kNN

IDW

kNN Shep-

ard1

kNN Shep-

ard2

Flat

zone

Regularly-

distributed

46.2% 41.3% 44.3% 6.3% 54.6% 65.0% 63.1% 62.0%

Irregularly-

distributed

67.8% 66.8% 68.3% 23.1% 69.5% 71.0% 70.3% 70.4%

Rugged

zone

Regularly-

distributed

45.8% 41.2% 44.4% 6.3% 54.6% 65.3% 62.5% 63.3%

Irregularly-

distributed

68.7% 67.4% 69.0% 22.0% 70.5% 72.3% 71.4% 71.7%

On the GPU, for the same interpolation method and the same data size, the proportion of the476

kNN search time relative to the total time when the data points are nonuniformly distributed is larger477

than that when the data points are uniformly distributed, and the achieved speedups are small.478

However, on the CPU, the proportion of kNN search time when the data points are nonuni-479

formly distributed relative to the total time is similar to that when the data points are uniformly480

distributed, and the achieved speedups are similar. This is because there are a large number of481

logical operations, such as switches in the kNN search, and the GPU is inherently not as suitable482

for performing logical operations as the CPU.483

In the kNN search procedure, the number of points in the search range is slightly smaller than484

k after determining a certain level. After the level is expanded, the number of points in the search485

range will be more than k. In this case, the k nearest neighbors should be selected and the redundant486

neighbors should be ignored by first sorting and then discarding. Unfortunately, there are a large487

number of logical operations in sorting.488

In this procedure of sorting and discarding, when the point density is intensive in a region, the489
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number of found nearest neighbors would be far more than the expected k, and much computational490

time would thus be required to sort the found neighbors.491

For areas with sparse data points, it takes more time to find enough k points by expanding the492

region level. Therefore, in contrast to a uniform distribution, when the data point set is nonuni-493

formly distributed, the kNN search needs more computational time and its proportion of the total494

time is also greater.495

CONCLUSION496

In this paper, we present the development of the sequential version, the parallel version on a497

multicore CPU, the parallel version on a many-core GPU, and the parallel version on multi-GPUs498

for each of the eight variations of the MLS, RBF, and Shepard’s interpolation algorithms. We also499

evaluated the interpolation accuracy and computational efficiency for the above four versions of500

each variation when building large-scale DEMs. We have obtained the following observations.501

(1) The distribution pattern of data points and the landscape conditions strongly influences the502

interpolation accuracy. The distribution pattern of data points strongly influences the interpolation503

efficiency, and the landscape conditions have a weak influence on the interpolation efficiency.504

(2) For the same flat region, when the density of points is large, there is no obvious difference505

in terms of the interpolation accuracy for all interpolation methods. When the data points are506

uniformly distributed and the density of points is small, the order of the interpolation accuracy507

from high to low is: the MLS interpolation algorithm, RBF, and Shepard’s interpolation method.508

When the data points are nonuniformly distributed and the density of points is small, the order509

of the interpolation accuracy from high to low is: the MLS interpolation algorithm, Shepard’s510

interpolation method, and RBF.511

(3) For the same rugged region, regardless of the density and distribution of the data points,512

the interpolation accuracy order from high to low is: the MLS interpolation algorithm, RBF, and513

Shepard’s interpolation method. When the data points are uniformly distributed, the above rules514

are more obvious than those when data points are nonuniformly distributed.515

(4) The Shepard’s interpolation method is only suitable for application in cases where the data516

points have smooth trends. When the data points have uniformly rugged trends, the accuracy of517

Shepard’s interpolation method is rather unsatisfactory, especially in the case when the density of518

data points is small.519

(5) For the same set of data points and interpolation points, the order of computational expense520

from high to low is: the RBF interpolation method, the MLS algorithm, and Shepard’s method521

Moreover, for the same size of data points and interpolation points, the computational efficiency in522

the case when the data points are nonuniformly distributed is worse than when the data points are523

uniformly distributed.524

(6) For the same interpolation method, the impact of kNN search on the computational effi-525

ciency of the CPU versions and the GPU versions is different. Specifically, the percentage of the526

computational time of kNN search relative to the computational time of the entire interpolation527

procedure in the CPU versions is much smaller than in the GPU versions.528

26/293HHU-�&RPSXW��6FL��UHYLHZLQJ�3')�_��&6�������������������1(:����-DQ������

Manuscript to be reviewedComputer Science



ACKNOWLEDGMENTS529

This research was supported by the Natural Science Foundation of China (Grant Numbers530

11602235 and 41772326), and the Fundamental Research Funds for the Central Universities (Grant531

Numbers 2652018097, 2652018107, and 2652018109). The authors would like to thank the editor532

and reviewers for their contributions to the paper.533

REFERENCES534

Aguilar, F. J., Aguera, F., Aguilar, M. A., and Carvajal, F. (2005). Effects of terrain morphology,535

sampling density, and interpolation methods on grid DEM accuracy. Photogrammetric Engineer-536

ing and Remote Sensing, 71(7):805–816.537

Box, G. E. P. and Muller, M. E. (1958). A Note on the Generation of Random Normal Deviates.538

Annals of Mathematical Statistics, 29(2):610–611.539

Chaplot, V., Darboux, F., Bourennane, H., Leguedois, S., Silvera, N., and Phachomphon, K. (2006).540

Accuracy of interpolation techniques for the derivation of digital elevation models in relation to541

landform types and data density. Geomorphology, 77(1-2):126–141.542

Chen, Z., Shen, L., Zhao, Y., and Yang, C. (2010). Parallel algorithm for real-time contouring from543

grid DEM on modern GPUs. Science China-Technological Sciences, 53:33–37.544

Cheng, T. (2013). Accelerating universal Kriging interpolation algorithm using CUDA-enabled545

GPU. Computers & Geosciences, 54:178–183.546

Coll, N. and Guerrieri, M. (2017). Parallel constrained Delaunay triangulation on the GPU. Inter-547

national Journal of Geographical Information Science, 31(7):1467–1484.548

Cover, T. and Hart, P. (1967). Nearest neighbor pattern classification. Information Theory, IEEE549

Transactions on, 13(1):21–27.550

Ding, Z., Mei, G., Cuomo, S., Tian, H., and Xu, N. (2018a). Accelerating multi-dimensional551

interpolation using moving least-squares on the GPU. Concurrency and Computation-Practice552

& Experience, 30(24).553

Ding, Z., Mei, G., Cuomo, S., Xu, N., and Tian, H. (2018b). Performance Evaluation of GPU-554

Accelerated Spatial Interpolation Using Radial Basis Functions for Building Explicit Surfaces.555

International Journal of Parallel Programming, 46(5):963–991.556

Ebdon, D. (1985). Statistics in Geography. Blackwell Publishing, Hoboken, 2nd edition edition.557

Ghandehari, M., Buttenfield, B. P., and Farmer, C. J. Q. (2019). Comparing the accuracy of es-558

timated terrain elevations across spatial resolution. International Journal of Remote Sensing,559

40:5025–5049.560

Guan, Q., Shi, X., Huang, M., and Lai, C. (2016). A hybrid parallel cellular automata model for561

urban growth simulation over GPU/CPU heterogeneous architectures. International Journal of562

Geographical Information Science, 30(3):494–514.563

Gumus, K. and Sen, A. (2013). Comparison of spatial interpolation methods and multi-layer neu-564

ral networks for different point distributions on a digital elevation model. Geodetski Vestnik,565

57(3):523–543.566

Khairnar, H. D., Shingare, P. S., Kale, S., and Ieee (2015). Accuracy Evaluation of Cartosat-1567

27/293HHU-�&RPSXW��6FL��UHYLHZLQJ�3')�_��&6�������������������1(:����-DQ������

Manuscript to be reviewedComputer Science



DEM using different Interpolation Techniques for Pune Area. 2015 International Conference on568

Industrial Instrumentation and Control.569

Krige, D. G. (1953). A Statistical Approach to Some Basic Mine Valuation Problems on the Wit-570

watersrand. OR, 4(1):18–18.571

Lancaster, P. and Salkauskas, K. (1981). Surfaces generated by moving least squares methods.572

Math Compt, 37(155):141–158.573

Lehmer, D. H. (1949). Mathematical Methods in Large-Scale Computing Units. Proc. of 2nd Symp.574

on Large-Scale Digital Calculating Machinery, 26:141–146.575

Lei, W., Xiong, R., Ma, S., Liang, L., and Ieee (2011). GPU Based Fast Algorithm for Tanner576

Graph Based Image Interpolation. IEEE International Workshop on Multimedia Signal Process-577

ing.578

Lu, G. Y. and Wong, D. W. (2008). An adaptive inverse-distance weighting spatial interpolation579

technique. Computers and Geosciences, 34(9):1044–1055.580

Mallet, J. L. (1997). Discrete modeling for natural objects. Mathematical Geology, 29(2):199–219.581

Mei, G. (2014). Evaluating the Power of GPU Acceleration for IDW Interpolation Algorithm.582

Scientific World Journal.583

Mei, G. and Tian, H. (2016). Impact of data layouts on the efficiency of GPU-accelerated IDW584

interpolation. SpringerPlus, 5(1):104.585

Mei, G., Xu, L., and Xu, N. (2017). Accelerating adaptive inverse distance weighting interpolation586

algorithm on a graphics processing unit. Royal Society Open Science, 4(9).587

Mei, G., Xu, N., and Xu, L. (2016). Improving GPU-accelerated adaptive IDW interpolation algo-588

rithm using fast kNN search. Springerplus, 5.589

Peng, X., Wu, Q., Cai, Y., Lou, L., Yu, Y., and Li, Q. (2019). The application of radial basis590

function interpolation in reactor core power distribution on-line monitoring. Annals of Nuclear591

Energy, 132:752–762.592

Polat, N., Uysal, M., and Toprak, A. S. (2015). An investigation of DEM generation process based593

on LiDAR data filtering, decimation, and interpolation methods for an urban area. Measurement,594

75:50–56.595

Powell, M. J. D. (1977). Restart procedures for the conjugate gradient method. Mathematical596

Programming, 12(1):241–254.597

Rishikeshan, C. A., Katiyar, S. K., Mahesh, V. N. V., and Ieee (2014). Detailed evaluation of DEM598

interpolation methods in GIS using DGPS data, series = 2014 6th International Conference on599

Computational Intelligence and Communication Networks.600

Shepard, D. (1968). A Two-Dimensional Interpolation Function for Irregularly-Spaced Data. Pro-601

ceedings of the 1968 ACM National Conference, pp.:517–524.602

Siu-Nganlam, N. (1983). Spatial interpolation methods: A review. American Cartographer,603

10(2):129–150.604

Steve, J. L. (2011). Linear Algebra with Applications (8th Edition). Prentice Hall.605

Tan, L., Wan, G., Li, F., Chen, X., and Du, W. (2017). GPU based contouring method on grid DEM606

data. Computers & Geosciences, 105:129–138.607

28/293HHU-�&RPSXW��6FL��UHYLHZLQJ�3')�_��&6�������������������1(:����-DQ������

Manuscript to be reviewedComputer Science



Wang, H., Guan, X., and Wu, H. (2017). A Hybrid Parallel Spatial Interpolation Algorithm for608

Massive LiDAR Point Clouds on Heterogeneous CPU-GPU Systems. Isprs International Journal609

of Geo-Information, 6(11).610

Wasza, J., Bauer, S., Hornegger, J., and Ieee (2011). Real-time Preprocessing for Dense 3-D Range611

Imaging on the GPU: Defect Interpolation, Bilateral Temporal Averaging and Guided Filtering.612

2011 Ieee International Conference on Computer Vision Workshops.613

Watson, D. F. (1981). Computing the n-dimensional delaunay tessellation with application to614

voronoi polytopes. Computer Journal, 24(2):167–172.615

Wu, J., Deng, L., and Jeon, G. (2018). Parallel constrained Delaunay triangulation on the GPU.616

IEEE Transactions on Industrial Informatics, 14:426–436.617

Yan, C., Liu, J., Zhao, G., Chen, C., and Yue, T. (2016). A high accuracy surface modeling method618

based on GPU accelerated multi-grid method. Transactions in Gis, 20(6):991–1003.619

Yan, C., Zhao, G., Yue, T., Chen, C., Liu, J., Li, H., and Su, N. (2015). Speeding up the high-620

accuracy surface modelling method with GPU. Environmental Earth Sciences, 74(8):6511–6523.621

Yin, K., Sun, F., Zhou, S., and Zhang, C. (2014). PAR Model SAR Image Interpolation Algorithm622

on GPU with CUDA. Iete Technical Review, 31(4):297–306.623

Zhang, G., Zhu, A., and Huang, Q. (2017). A GPU-accelerated adaptive kernel density estima-624

tion approach for efficient point pattern analysis on spatial big data. International Journal of625

Geographical Information Science, 31(10):1–30.626

Zhang, J. (2013). Research on DEM Interpolation Algorithm Adaptability with Local Terrain Fea-627

tures. International Conference on Geoinformatics.628

Zhou, G., Liu, X., Fu, S., and Sun, Z. (2017). Parallel identification and filling of depressions629

in raster digital elevation models. International Journal of Geographical Information Science,630

31(6):1061–1078.631

29/293HHU-�&RPSXW��6FL��UHYLHZLQJ�3')�_��&6�������������������1(:����-DQ������

Manuscript to be reviewedComputer Science



)LJXUH��
$Q�LOOXVWUDWLRQ�RI�WKH�SURFHVV�RI�WKH��N�11�VHDUFK�DOJRULWKP

3HHU-�&RPSXW��6FL��UHYLHZLQJ�3')�_��&6�������������������1(:����-DQ������

Manuscript to be reviewedComputer Science



)LJXUH��
7KH�VHOHFWHG�=RQH���DQG�=RQH���

�$�����'�PRGHO�RI�WKH�=RQH���VWXG\�DUHD�DQG��%�����'�PRGHO�RI�WKH�=RQH���VWXG\�DUHD�

3HHU-�&RPSXW��6FL��UHYLHZLQJ�3')�_��&6�������������������1(:����-DQ������

Manuscript to be reviewedComputer Science



3HHU-�&RPSXW��6FL��UHYLHZLQJ�3')�_��&6�������������������1(:����-DQ������

Manuscript to be reviewedComputer Science



)LJXUH��
7KH�GLVWULEXWLRQ�SDWWHUQV�GHWHUPLQHG�E\�WKH�$YHUDJH�1HDUHVW�1HLJKERU�DQDO\VLV�

�$��5HJXODUO\�GLVWULEXWHG�DQG��%��LUUHJXODUO\�GLVWULEXWHG�

3HHU-�&RPSXW��6FL��UHYLHZLQJ�3')�_��&6�������������������1(:����-DQ������

Manuscript to be reviewedComputer Science



)LJXUH��
,QWHUSRODWLRQ�DFFXUDF\�RI�*38�DFFHOHUDWHG�LQWHUSRODWLRQ�DOJRULWKPV�LQ�WKH�)ODW�]RQH�

�$��5HJXODUO\�GLVWULEXWHG�DQG��%��LUUHJXODUO\�GLVWULEXWHG�

3HHU-�&RPSXW��6FL��UHYLHZLQJ�3')�_��&6�������������������1(:����-DQ������

Manuscript to be reviewedComputer Science



)LJXUH��
,QWHUSRODWLRQ�DFFXUDF\�RI�*38�DFFHOHUDWHG�LQWHUSRODWLRQ�DOJRULWKPV�LQ�WKH�5XJJHG�]RQH�

�$��5HJXODUO\�GLVWULEXWHG�DQG��%��LUUHJXODUO\�GLVWULEXWHG�

3HHU-�&RPSXW��6FL��UHYLHZLQJ�3')�_��&6�������������������1(:����-DQ������

Manuscript to be reviewedComputer Science



)LJXUH��
&RPSDULVRQ�RI�WKH�VSHHGXSV�RI�WKH�SDUDOOHO�LPSOHPHQWDWLRQV�GHYHORSHG�RQ�D�PXOWLFRUH
&38�LQ�WKH�)ODW�]RQH�

�$��5HJXODUO\�GLVWULEXWHG�DQG��%��LUUHJXODUO\�GLVWULEXWHG�

3HHU-�&RPSXW��6FL��UHYLHZLQJ�3')�_��&6�������������������1(:����-DQ������

Manuscript to be reviewedComputer Science



)LJXUH��
&RPSDULVRQ�RI�WKH�VSHHGXSV�RI�WKH�SDUDOOHO�LPSOHPHQWDWLRQV�GHYHORSHG�RQ�D�PXOWLFRUH
&38�LQ�WKH�5XJJHG�]RQH�

�$��5HJXODUO\�GLVWULEXWHG�DQG��%��LUUHJXODUO\�GLVWULEXWHG�

3HHU-�&RPSXW��6FL��UHYLHZLQJ�3')�_��&6�������������������1(:����-DQ������

Manuscript to be reviewedComputer Science



)LJXUH��
&RPSDULVRQ�RI�WKH�VSHHGXSV�RI�WKH�SDUDOOHO�LPSOHPHQWDWLRQV�GHYHORSHG�RQ�D�VLQJOH�*38
LQ�WKH�)ODW�]RQH�

�$��5HJXODUO\�GLVWULEXWHG�DQG��%��LUUHJXODUO\�GLVWULEXWHG�

3HHU-�&RPSXW��6FL��UHYLHZLQJ�3')�_��&6�������������������1(:����-DQ������

Manuscript to be reviewedComputer Science



)LJXUH��
&RPSDULVRQ�RI�WKH�VSHHGXSV�RI�WKH�SDUDOOHO�LPSOHPHQWDWLRQV�GHYHORSHG�RQ�D�VLQJOH�*38
LQ�WKH�5XJJHG�]RQH�

�$��5HJXODUO\�GLVWULEXWHG�DQG��%��LUUHJXODUO\�GLVWULEXWHG�

3HHU-�&RPSXW��6FL��UHYLHZLQJ�3')�_��&6�������������������1(:����-DQ������

Manuscript to be reviewedComputer Science



)LJXUH���
&RPSDULVRQ�RI�WKH�VSHHGXSV�RI�WKH�SDUDOOHO�LPSOHPHQWDWLRQV�GHYHORSHG�RQ�PXOWL�*38V
LQ�WKH�)ODW�]RQH�

�$��5HJXODUO\�GLVWULEXWHG�DQG��%��LUUHJXODUO\�GLVWULEXWHG�

3HHU-�&RPSXW��6FL��UHYLHZLQJ�3')�_��&6�������������������1(:����-DQ������

Manuscript to be reviewedComputer Science



)LJXUH���
&RPSDULVRQ�RI�WKH�VSHHGXSV�RI�WKH�SDUDOOHO�LPSOHPHQWDWLRQV�GHYHORSHG�RQ�PXOWL�*38V
LQ�WKH�5XJJHG�]RQH�

�$��5HJXODUO\�GLVWULEXWHG�DQG��%��LUUHJXODUO\�GLVWULEXWHG�

3HHU-�&RPSXW��6FL��UHYLHZLQJ�3')�_��&6�������������������1(:����-DQ������

Manuscript to be reviewedComputer Science



)LJXUH���
&RPSDULVRQ�RI�WKH�UXQQLQJ�WLPH�RI�WKH�SDUDOOHO�LPSOHPHQWDWLRQV�GHYHORSHG�RQ�PXOWL�
*38V�LQ�WKH�)ODW�]RQH�

�$��5HJXODUO\�GLVWULEXWHG�DQG��%��LUUHJXODUO\�GLVWULEXWHG�

3HHU-�&RPSXW��6FL��UHYLHZLQJ�3')�_��&6�������������������1(:����-DQ������

Manuscript to be reviewedComputer Science



)LJXUH���
&RPSDULVRQ�RI�WKH�UXQQLQJ�WLPH�RI�WKH�SDUDOOHO�LPSOHPHQWDWLRQV�GHYHORSHG�RQ�PXOWL�
*38V�LQ�WKH�5XJJHG�]RQH�

�$��5HJXODUO\�GLVWULEXWHG�DQG��%��LUUHJXODUO\�GLVWULEXWHG�

3HHU-�&RPSXW��6FL��UHYLHZLQJ�3')�_��&6�������������������1(:����-DQ������

Manuscript to be reviewedComputer Science



)LJXUH���
)UHTXHQF\�GLVWULEXWLRQ�RI�WKH�5HODWLYH�(UURU�IRU�WKH�SDUDOOHO�LPSOHPHQWDWLRQ�GHYHORSHG
RQ�D�VLQJOH�*38�LQ�WKH�)ODW�]RQH�

�$��5HJXODUO\�GLVWULEXWHG�DQG��%��LUUHJXODUO\�GLVWULEXWHG��7KH�VL]H�RI�GDWD�SRLQWV��6L]H���

3HHU-�&RPSXW��6FL��UHYLHZLQJ�3')�_��&6�������������������1(:����-DQ������

Manuscript to be reviewedComputer Science



)LJXUH���
)UHTXHQF\�GLVWULEXWLRQ�RI�WKH�5HODWLYH�(UURU�IRU�WKH�SDUDOOHO�LPSOHPHQWDWLRQ�GHYHORSHG
RQ�D�VLQJOH�*38�LQ�WKH�5XJJHG�]RQH�

�$��5HJXODUO\�GLVWULEXWHG�DQG��%��LUUHJXODUO\�GLVWULEXWHG��7KH�VL]H�RI�GDWD�SRLQWV��6L]H��

3HHU-�&RPSXW��6FL��UHYLHZLQJ�3')�_��&6�������������������1(:����-DQ������

Manuscript to be reviewedComputer Science



)LJXUH���
&RPSDULVRQ�RI�WKH�UXQQLQJ�WLPH�FRVW�LQ�WKH�N11�VHDUFK�SURFHGXUH�

�$��6HTXHQWLDO�YHUVLRQ�RQ�VLQJOH�&38�DQG��%��3DUDOOHO�YHUVLRQ�RQ�VLQJOH�*38�

3HHU-�&RPSXW��6FL��UHYLHZLQJ�3')�_��&6�������������������1(:����-DQ������

Manuscript to be reviewedComputer Science


