Peer]

Comparative investigation of parallel spatial interpolation
algorithms for building large-scale digital elevation models

Corresp. 1

Jingzhi Tu ', Guoxiang Yang “™*', Pian Qi ', Zengyu Ding ', Gang Mei

1
School of Engineering and Technology, China University of Geoscience (Beijing), Beijing, Beijing, China

Corresponding Authors: Guoxiang Yang, Gang Mei
Email address: yanggx@cugb.edu.cn, gang.mei@cugb.edu.cn

The building of large-scale Digital Elevation Models (DEMs) using various interpolation
algorithms is one of the key issues in geographic information science. Different choices of
interpolation algorithms may trigger significant differences in interpolation accuracy and
computational efficiency, and a proper interpolation algorithm needs to be carefully used
based on the specific characteristics of the scene of interpolation. In this paper, we
comparatively investigate the performance of parallel Radial Basis Function (RBF)-based,
Moving Least Square (MLS)-based, and Shepard’s interpolation algorithms for building
DEMs by evaluating the influence of terrain type, raw data density, and distribution
patterns on the interpolation accuracy and computational efficiency. The drawn
conclusions may help select a suitable interpolation algorithm in a specific scene to build
large-scale DEMs.

Peer] Comput. Sci. reviewing PDF | (CS-2019:08:40151:2:1:NEW 15 Jan 2020)

Peer]

2

21

22
23
24
25
26
27
28
29
30
31

32

Comparative Investigation of Parallel
Spatial Interpolation Algorithms for
Building Large-scale Digital Elevation
Models

Jingzhi Tu', Guoxiang Yang!, Pian Qi', Zengyu Ding!, and Gang Mei'

'School of Engineering and Technology, China University of Geosciences (Beijing),
Beijing, China

Corresponding author:
Guoxiang Yang, Gang Mei!

Email address: yanggx@cugb.edu.cn; gang.mei@cugb.edu.cn

ABSTRACT

The building of large-scale Digital Elevation Models (DEMs) using various interpolation algorithms is
one of the key issues in geographic information science. Different choices of interpolation algorithms
may trigger significant differences in interpolation accuracy and computational efficiency, and a proper
interpolation algorithm needs to be carefully used based on the specific characteristics of the scene
of interpolation. In this paper, we comparatively investigate the performance of parallel Radial Basis
Function (RBF)-based, Moving Least Square (MLS)-based, and Shepard’s interpolation algorithms for
building DEMs by evaluating the influence of terrain type, raw data density, and distribution patterns
on the interpolation accuracy and computational efficiency. The drawn conclusions may help select a
suitable interpolation algorithm in a specific scene to build large-scale DEMs.

INTRODUCTION

Digital Elevation Model (DEM) is a numerical representation of topography made up of equal-
sized grid cells, each with a value of elevation. One of the most important scientific challenges of
digital elevation modeling is the inefficiency of most interpolation algorithms in dealing with a
large amount of data produced by large-scale DEM with a fine resolution. To solve the problem,
one of the common strategies is to parallelize interpolation algorithms on various High Performance
Computing (HPC) platforms.

For different large-scale DEM, different parallel spatial interpolation algorithms are usually
specifically selected, because a variety of spatial interpolation algorithms exist that behave differ-
ently for different data configurations and landscape conditions. Consequently, the accuracy of a
DEM is sensitive to the interpolation technique, and it is significant to understand how the various

algorithms affect a DEM. Therefore, this study is being conducted.

Peer] Comput. Sci. reviewing PDF | (CS-2019:08:40151:2:1:NEW 15 Jan 2020)

Peer]

34
35
36
37
38
39
40

41

42
43
44
45
46
47
48
49
50
51

52

53
54
55
56
57
58
59
60
61
62
63
64
65

66

67
68
69

70

4l

72

Spatial interpolation is a category of important algorithms in the field of geographic informa-
tion. Siu-Nganlam (1983) had a review of various interpolation algorithms, including most distance-
weighting methods, Kriging, spline interpolation, interpolating polynomials, finite-difference meth-
ods, power-series trend models, Fourier models, distance-weighted least-squares, and least-squares
fitting with splines. Many spatial interpolation algorithms are used to build DEMs, for example, the
Shepard’s method (IDW) (Shepard, 1968), the Kriging method (Krige, 1953), the Discrete Smooth-
ing Interpolation (DSI) method (Mallet, 1997), the Radial Basis Function (RBF)-based method
(Powell, 1977), and the Moving Least Squares (MLS)-based method (Lancaster and Salkauskas,
1981).

Much research work (Gumus and Sen, 2013; Chaplot et al., 2006; Aguilar et al., 2005; Khairnar
etal., 2015; Polat et al., 2015; Rishikeshan et al., 2014) has been conducted to evaluate the effects of
different interpolation methods on the precision of DEM interpolation. In the comparative investi-
gation of spatial interpolation algorithms for building DEMs, quite few studies specifically focused
on the impact of data samples and terrain types on interpolation accuracy, among them, Gumus and
Sen (2013) compared the accuracy of various interpolation methods at different point distributions,
the interpolation performance of IDW is worse than other algorithms for the same data distribution.
For the same algorithm, in the case of using all points and grid, their experimental results show that
the best interpolation performances are Modified Shepard’s (MS) for random distribution; Multi-
quadric Radial Basis Function (MRBF) for curvature distribution, and Inverse Distance Weighted
(IDW) for uniform distribution.

Chaplot et al. (2006) and Aguilar et al. (2005) evaluated the effects of landform types and the
density of the original data on the accuracy of DEM production, their results show that interpola-
tion algorithms perform well at higher sampling densities, and MRBF provided significantly better
interpolation than IDW in rough or non-uniform terrain. At lower sampling densities, when the
spatial structure of height was strong, Kriging yielded better estimates. When the spatial structure
of height was weak, IDW and Regularized Spline with Tension (RST) performed better. On the
other hand, MRBF performed well in the mountainous areas and Ordinary Kriging (OK) was the
best for multi-scales interpolations in the smooth landscape. In addition, Zhang (2013) established
a descriptive model of local terrain features to study the correlation of surface roughness indicators
and spatial distribution indicators for DEM interpolation algorithms. (Chaplot et al., 2006). Ghan-
dehari et al. (2019) illustrated that the Bi-quadratic and Bi-cubic interpolation methods outperform
Weighted Average, Linear, and Bi-linear methods at coarse resolutions and in rough or non-uniform
terrain. Aguilar et al. (2005) pointed out that MRBF is better than Multilog function for low sample

densities and steeper terrain.

With the increasing size of DEMs, it is increasingly necessary to design parallel solutions for
existing sequential algorithms to speed up processing. When adopting an interpolation method to
deal with a large DEM, the computational cost would be quite expensive, and the computational

efficiency would especially be unsatisfied.

The techniques in HPC are widely used to improve computational efficiency in various science

and engineering applications such as surface modeling (Yan et al., 2016), spatial point pattern

2/29

Peer] Comput. Sci. reviewing PDF | (CS-2019:08:40151:2:1:NEW 15 Jan 2020)

Peer]

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

101

102

103

104

106
106

107

108
109

110

analysis (Zhang et al., 2017), urban growth simulation (Guan et al., 2016), Delaunay Triangulation
(DT) for GIS (Coll and Guerrieri, 2017), spatial interpolation (Wang et al., 2017; Cheng, 2013;
Mei, 2014; Mei et al., 2017; Mei, 2014; Mei et al., 2016; Ding et al., 2018b), and image processing
(Wasza et al., 2011; Lei et al., 2011; Yin et al., 2014; Wu et al., 2018).

One of the effective strategies to solve the problem is to perform the DEM interpolation in
parallel on various parallel computing platforms such as shared-memory computers, distributed-
memory computers, or even clusters. The parallelization of DEM interpolation can be developed
with the computational power of modern multicore Central Processing Units (CPUs) and many-
core Graphics Processing Units (GPUs). For example, Zhou et al. (2017) proposed a parallel Open
Multi-Processing (OpenMP)- and Message Passing Interface (MPI)-based implementation of the
Priority-Flood algorithm that identifies and fills depressions in raster DEMs. Yan et al. (2015)
accelerated high-accuracy surface modeling (HASM) in constructing large-scale and fine resolu-
tion DEM surfaces by the use of GPUs and applied this acceleration algorithm to simulations of
both ideal Gaussian synthetic surfaces and real topographic surfaces in the loess plateau of Gansu
province. Tan et al. (2017) presented a novel method to generate contour lines from grid DEM
data, based on the programmable GPU pipeline, that can be easily integrated into a 3D GIS system.
Chen et al. (2010) demonstrated a new algorithm for reconstructing contour maps from raster DEM
data for digital-earth and other terrain platforms in real-time entirely based on modern GPUs and
programmable pipelines.

The RBF, Kriging, MLS and Shepard’s interpolation algorithms are the most frequently used
spatial interpolation algorithms, among which, the Kriging method can be regarded as an instance
of RBF framework (Peng et al., 2019). Therefore, in this paper, we comparatively investigate the
performance of the RBF-based, MLS-based, and Shepard’s interpolation algorithms for building
DEMs by evaluating the influence of terrain type, raw data density, and distribution patterns on the
interpolation accuracy and computational efficiency.

The rest of the paper is organized as follows. Section 2 briefly introduces the basic principles
of eight interpolation methods. Section 3 concentrates mainly on our parallel implementations of
the eight interpolation methods and creation of the testing data. Section 4 introduces some of the
experimental tests performed on the CPU and GPU. Section 5 discusses the experimental results.

Finally, Section 6 states conclusions from the work.

BACKGROUND

In this section, we briefly introduce eight spatial interpolation algorithms.

MLS-based Interpolation Algorithms
The MLS method obtains the fitting surface by solving the equation group derived from mini-

mizing the sum of the squares of the errors between the fitting data and the given node data.

Original MLS Interpolation Algorithm
The MLS approximation is used to approximate field variables and their derivatives. In a

domain Q, the MLS approximation f (x) of the field variable f (x) in the vicinity of a point ¥ is

3/29

Peer] Comput. Sci. reviewing PDF | (CS-2019:08:40151:2:1:NEW 15 Jan 2020)

Peer]

111

112

113

114

115
116
117
118
119

120

121

122

123
124

125

126

given as

1) =Y ps () (5) = P" () -a () (1)

j=1
where p; (x),j = 1,2,--- ,m is a complete basis function with coefficients a; (X). At each point £,
a; (%) is chosen to minimize the weighted residual L,— norm (L,— norm refers to ||x||,, where
x=vwm~»afﬂmuﬂf:¢0mf+mf+u#+~w+mﬁx
al 2
J=Y wE=x) [P (x1)a(%) - fi] 0

I=1

where N is the number of nodes in the compact-supported neighborhood of x and f; refers to the
nodal parameter of f at x = x;. Nodes refer to data points in the compact-supported neighborhood
of . Compact-supported, i.e. point X is only related to the nodes of its neighborhood, x; is one of
the nodes in the compact-supported neighborhood. And w (x — x;) is the compact-supported weight
function. The most commonly used weight functions are the spline functions, for example, the

cubic spline weight function (Eq. (3)):

245 +45, s<1i
w(E)=q 45448213, l<s<i 3)
0, §>1
where § = ﬁ and s = X —x;.
The minimum of J with respect to a (¥) gives the standard form of MLS approximation:
N
1) =) 0 (x) fr =@ (x)F)

I=1

Orthogonal MLS Interpolation Algorithm
For a given polynomial basis function p; (x), i=1,2,--- m, there is an orthonormal basis

function g; (x, %) that satisfies:

91 (%, %) = p1 (%)

i—1

qi (X,)E) =Di (X) - Z aij (X,)E)q]‘ (X,)E) ai - 273)' c,m (5)
=

where @;; (x, %) is the coefficient that makes g, (x,X) perpendicular to g; (x,).

L ()i () g a0,

Y wi (F) 45 (e, %)

(6)

o (%) =

4/29

Peer] Comput. Sci. reviewing PDF | (CS-2019:08:40151:2:1:NEW 15 Jan 2020)

Peer]

127

128

129
130
131
132
133

134

135
136

137

138
139
140

141

142

143
144
145
146
147
148

149

Because the coefficient matrix is a diagonal matrix, the solution for a; (x) does not require

matrix inversion, i.e.

ZkN:l wi (%) gi (i, %) fi
Y wie (%) g7 (3, %)
where a; and a; (¥) (Egs. (1)) have the same definition. f; and f; (Egs. (2)) have the same definition,

a;(%) =)

i.e., the nodal parameter of f at x = x;. Finally, ¢; and the orthonormal basis function ¢, (x,) are
fitted into Egs. (1) to obtain the orthogonal MLS approximation f” (x).

When the number or order of basis functions increases, only a,,;; and ¢, need to be calcu-
lated in Gram-Schmidt orthogonalization (Steve, 2011); recalculation of all entries in the coefficient

matrix is not needed. This could reduce the computational cost and the computational error.

Lancaster’s MLS Interpolation Algorithm
A singular weight function is adopted to make the approximation function f" (x) constructed

by the interpolation type MLS method satisfy the properties of the Kronecker & function:

%4
x—x)/pll s X —Xi|| < Pk
o (x,x) = H()/ H I H (3)
0, [l —xell > px
Let po (x) =1,p; (x),- -+, pa (x) denote the basis function used to construct the approximation

function, where the number of basis functions is 7+ 1. To implement the interpolation properties,
a new set of basis functions is constructed for a given basis function. First, p(x) are standardized,

1.e.,

Bo(r,f) = — ©)

[% w(xvxk):| "

k=1

Then, we construct a new basis function of the following form:

N
p(pl(x Z Na) XXk (xk)vi:1727"'7n_1 (10)
k=1 Z (x xl)

=

RBF-based Interpolation Algorithm

The RBF operates as a spline, essentially fitting a series of piecewise surfaces to approximate
a complex terrain.

Let X = {x;,x, -+ ,xy} be a set of pairwise distinct points in a domain Q C R? with associated
data values f;,i =1,2,---,N. We consider the problem of construction a d-variety function F €
(ol (Rd) that interpolates the known data. Specifically, we require F (x;) = f;, i = 1,2,--- ,N. If we
take F in the form.

N
x) =Y w0 (|lx—x,) (11)
j=1

5/29

Peer] Comput. Sci. reviewing PDF | (CS-2019:08:40151:2:1:NEW 15 Jan 2020)

Peer]

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

where @ : [0,o0] — R is a suitable continuous function, the interpolation conditions become:

N
ij(p(Hxi—xsz) =f, i=12,---,N (12)
j=1

Shepard’s Interpolation Algorithms

Shepard (1968) proposed a series of interpolation algorithms on the basis of weighting aver-
ages. These algorithms are termed Shepard’s method. The essential idea behind Shepard’s method
is to estimate expected values of the interpolation point by weighting averages of the nearby discrete
points as follows:

Let (x;,y;),i=1,2,--- N be the interpolation point and f; be the corresponding value at inter-

polation point (x;,y;). The expected value f at any point can be expressed as

- wi(x) f;
fx) = ; v, () (13)
where w (x) is a weight function.
The differences between the different variants of Shepard’s method are in the selection of
different weighting functions. In this subsection, four common variants of Shepard’s method will

be briefly introduced (Egs. (14) - (19)).

Variant A of Shepard’s Interpolation Algorithm

First, select the influence radius R > 0 and let the weight function be

y 0<r<?¥
w(r)=3 Z(:-1)*, L<r<R (14)
0, r>R

Then, a variation of Shepard’s interpolation will be obtained.

Variant B of Shepard’s Interpolation Algorithm
When employing the following weight function (Eq. (15)), a new variation of Shepard’s inter-

polation will be obtained.

2457445, §<1
w(s) =1 345445 — 15, l<s<i (15)
0, §>1
Inverse Distance Weighted (IDW) Interpolation Algorithm
If the weight function is selected as
(x) 1 (16)
wi(x) = ——%
d (x,x)*

the IDW interpolation is obtained. Typically, @ = 2 in the standard IDW. Where d (x,x;) is the

distance between the interpolation point x; and the nearby discrete point x.

6/29

Peer] Comput. Sci. reviewing PDF | (CS-2019:08:40151:2:1:NEW 15 Jan 2020)

Peer]

172
173
174
175
176

177

178
179

180

181
182

183

184

185
186
187
188
189
190
191
192
193
194
195

1

©

6

AIDW Interpolation Algorithm

The Adaptive Inverse Distance Weighted (AIDW) is an improved version of the standard IDW
(Shepard, 1968) originated by Lu and Wong (2008). The distance-decay parameter ¢ is no longer
a prespecified constant value but is adaptively adjusted for a specific unknown interpolated point
according to the distribution of the nearest neighboring data points.

The parameter « is taken as

ap, OOS‘URSOI
o [1=5(ug—0.1)]+50 (ug —0.1), 0.1 <uz<0.3
503 (Ur—0.3)+ 1 —5(ur—0.3)], 03<uzr<0.5

(k) = s [1 =5 (g —0.5)] + 50 (g —0.5), 0.5 < g < 0.7 (7
505 (g —0.7) + o [1 =5 (g —0.7)], 0.7 < pg < 0.9
Qs, 09<ur<1.0
0, R(So) < Ruin
pr =14 0.5—0.5c08 [T (R(So) = Rumin) /Rmax|» Rumin < R(So) < Rinax (18)
1, R(S0) > Rmax

where the ;, 0, 0, 04, 05 are the to-be-assigned five levels or categories of distance decay value.
Ry o1 Ry« refer to a local nearest neighbor statistic value, and R,,;, and Rmax can generally be

set to 0.0 and 2.0, respectively. Then,

R(Sy) = 2VN/A)k:d,. (19)

k=
where N is the number of points in the study area, A is the area of the study region, k is the number of

nearest neighbor points, d; is the nearest neighbor distances and S is the location of an interpolated

point.

METHODS

Implementations of the Spatial Interpolation Algorithms

We have implemented the spatial interpolation algorithms of RBF (Ding et al., 2018b), MLS
(Ding et al., 2018a), IDW (Mei, 2014), and AIDW (Mei et al., 2017) in our previous work. To
evaluate the computational performance of the GPU-accelerated interpolation, we implement and
compare (1) the sequential implementation, (2) the parallel implementation developed on a multi-
core CPU, (3) the parallel implementation using a single GPU, and (4) the parallel implementation
using multiple GPUs.

There are two key ideas behind the presented spatial interpolation algorithm:

(1) We use an efficient k-Nearest Neighbor (kKNN) search algorithm (Mei et al., 2016) to find
the local set of data points for each interpolated point.

(2) We employ the local set of data points to compute the prediction value of the interpolated

point using different interpolation methods.

7/29

Peer] Comput. Sci. reviewing PDF | (CS-2019:08:40151:2:1:NEW 15 Jan 2020)

Peer]

197
198

199

201
202

203
204

205
206

207

209

210

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

231

232
233

234

236

Mei and Tian (2016) evaluated the impact of different data layouts on the computational ef-
ficiency of the GPU-accelerated IDW interpolation algorithm. They implemented three IDW ver-
sions of GPU implementations, based upon five data layouts, including the Structure of Arrays
(SoA), the Array of Structures (AoS), the Array of aligned Structures (AoaS), the Structure of Ar-
rays of aligned Structures (SoAoS), and a hybrid layout, then they carried out several groups of
experiments to evaluate the impact of different data layouts on the interpolation efficiency. Based

on their experimental results, the layout SoA is shown in Listing 1.

struct Pt {
float x[N];
float y[N];
float z[N];

b

struct Pt myPts;

Listing 1. The layout SoA

The kNN (Cover and Hart, 1967) is a machine learning algorithm often used in classification,
the k-Nearest Neighbor means that each data point can be represented by its k nearest neighbor
points. In all of the presented interpolation algorithms, for each interpolation point, a local set of
data points is found by employing the kNN search procedure and the found local sets of data points
are then used to calculate the prediction value of the interpolation point. For large size of DEM,
the kNN search algorithm can effectively improve the speed of interpolation by searching only the
points near the interpolation points (Mei et al., 2016).

Assuming there are m interpolated points and n data points, the process of the kNN search
algorithm is as follows:

Step 1: The k distances between the k data points and each of the interpolated points are
calculated; for example, if the k is set to 5, then there are 5 distances needed to be calculated; see
the row (A) in Figure 1.

Step 2: The k distances are sorted in ascending order; see the row (B) in Figure 1.

Step 3: For each of the rest (m-k) data points,

(1) The distance d is calculated, for example, the distance is 4.2 (d = 4.2);

(2) The d with the kth distance are compared: if d < the kth distance, then replace the kth
distance with the d (see row (C));

(3) Iteratively compare and swap the neighboring two distances from the kth distance to the
1st distance until all the k distances are newly sorted in ascending order; see the rows (C)—(E) in

Figure 1.

Creation of the Testing Data

Two sets of DEM data were downloaded from the Geospatial Data Cloud (http://www.
gscloud.cn//). More specifically, two 30-m resolution DEMs for two 20 km x 20 km regions
in Hebei and Sichuan provinces were selected. The topography of Hebei province is mainly plain,

while the topography of Sichuan province is mainly mountainous. Two sets of DEM data are

8/29

Peer] Comput. Sci. reviewing PDF | (CS-2019:08:40151:2:1:NEW 15 Jan 2020)

Peer]

237
238

239
240
241

242

243

244
245
246
247
248
249
250
251

252

253
254
255
256

257

259
260
261
262
263
264

265

Original 0.3 8.6 1.5 5 6.2 (A)
Sorted 0.3 1.5 5 6.2 8.6 (B)
Replaced 0.3 1.5 5 6.2 4.2 ©)
Swapped 0.3 1.5 5 4.2 6.2 (D)
Desired 0.3 1.5 42 5 6.2 (E)

Figure 1. An illustration of the process of the kNN search algorithm

derived from remote sensing satellites and compiled by the CNIC (Computer Network Information
Center, Chinese Academy of Sciences). More details on the selected DEMs are presented in Figure
2.

Data points and interpolated points (listed in Table 1 and Table 2) are produced as follows:

(1) The selected DEMs is imported into the software ArcGIS.

(2) A square region S is delimited in selected DEMs. For example, the two 20 km x 20 km
regions shown in Figure 2.

(3) Generating the x and y coordinates of randomly determined points by random number gen-
eration algorithms in the square region S, and then accessing the corresponding z coordinates from
the DEM (the randomly determined points are the data points P1). Evenly distributed (regularly
distributed) data points are randomly extracted using the Linear Congruential Random Number
Method (Lehmer, 1949), and normally distribution (irregularly distributed, mathematical expec-
tation u=10000, standard deviation 6=3333) data points are randomly extracted using the Box-
Muller Method (Box and Muller, 1958). For example, we set Size 1, the extracted regularly dis-
tributed data points P1 = 249990 (Table 1), and density is P1/S, (Sy is the area of S, and S is a
fixed value, where Syp=20 km x 20 km).

(4) The square region S is triangulated into a planar triangular mesh using the Delauney algo-
rithm (Watson, 1981), the mesh nodes are considered to be the interpolation points, with known
x and y coordinates and unknown z coordinates, the unknown z coordinates is the estimated value
to be obtained by interpolation. According to the randomly sampled points obtained in Step 3, we
use the interpolation method mentioned in Section 2 to interpolate. Then, the corresponding exact
elevation of the interpolation point is obtained by accessing the z value of the DEM at the associ-
ated x and y coordinates. Finally, the z values at the mesh points are used as control for testing the
accuracy of the interpolated z values.

To quantitatively determine regular and irregular point sampling, Average Nearest Neighbor
analysis (Ebdon, 1985) is applied. In the proposed method, Nearest Neighbor Ratio (NNR) is used
to evaluate the distribution pattern of sample points: if the NNR > 1, the distribution pattern shows
clustered; if the NNR < 1, the distribution pattern shows dispersed. As listed in Table 3, the NNR
of regularly-distributed, approximately 1.001, is greater than 1, the distribution pattern is dispersed

9/29

Peer] Comput. Sci. reviewing PDF | (CS-2019:08:40151:2:1:NEW 15 Jan 2020)

PeerJ Computer Science Manuscript to be reviewed

4.140E+6

Elevation (m)
48

4.135E+6

A Y 413086

4.125E+6

4.120E+6
3.380E+5 3.430E+5 3.480E+5 3.530E+5 3.580E+5

Elevation (m)

5600
= 5400

5.600E+3 5.650E+5 5.700E+5 5.750E+35 5.800E+5
X

Figure 2. The selected Zone 1 and Zone 2. ((A) 2.5D model of the Zone 1 study area and (B)
2.5D model of the Zone 2 study area.)

Peer] Comput. Sci. reviewing PDF | (CS-2019:08:40151:2:1:NEW 15 Jan 2020) 10129

Peer]

269
270
271
272
273

274

275
276
277

278

Table 1. Ten used groups of experimental testing data in the Flat zone

Data set Number of Data Points Number of Interpolated Points
Sizel 249990 259496
Size2 499975 529080
Regularly- .
L Size3 999883 1036780
distributed
Size4 1499750 1540373
Size5 1999566 2000520
Size1 249920 259496
Size2 499751 529080
Irregularly- .
L Size3 998840 1036780
distributed
Size4 1497397 1540373
Size5 1995531 2000520

Table 2. Ten used groups of experimental testing data in the Rugged zone

Data set Number of Data Points Number of Interpolated Points
Size 1 249994 259496
Size2 499970 529080
Regularly- .
Size3 999884 1036780
distributed .
Size4 1499746 1540373
Size 5 1999544 2000520
Size 1 249924 259496
Size2 499728 529080
Irregularly- .
Size3 998867 1036780
distributed
Size4 1497444 1540373
Size5 1995443 2000520

(Figure 3(A)), that is regularly-distributed; the NNR of irregularly-distributed, approximately 0.78,

is less than 1, the distribution pattern is clustered (Figure 3(B)), that is irregularly-distributed.

Zone 1 (Flat Zone)

The first selected region is located in Hengshui City, Hebei Province. The DEM of this region
has the identifier ASTGTM_N37E115 and is derived from the Geospatial Data Cloud (http://www.gscloud.cn/).

The location and elevation of this region is illustrated in Figure 2. In the region, the highest eleva-

tion is 48 m and the lowest is 8 m. We translated the X coordinate by 348,000 and the Y coordinate

by 4,130,000 to obtain a 20 kmx20 km square area centered on the origin. Five sets of benchmark

test data were generated in this region; see Table 1.

Zone 2 (Rugged Zone)

The second selected region is located in Ganzi Tibetan Autonomous Prefecture, Sichuan
Province. The DEM of this region has the identifier ASTGTM_N29E(099 and is derived from

the Geospatial Data Cloud (http://www.gscloud.cn/). The location and elevation of this region is

Peer] Comput. Sci. reviewing PDF | (CS-2019:08:40151:2:1:NEW 15 Jan 2020)

11/29

PeerJ Computer Science Manuscript to be reviewed

279

280

281

282

283

284

285

287

Significance Level Critical Value
(p-value) (z-score)

Significance Level Critical Value
(p-value) (z-score)

001 mm <-258 001 mm <-258
005 [@EE -2.58--1.96 0.05 [-2.58--1.96
010 [-1.96--1.65 0.10 [J -1.96--1.65
— [-1.65-1.65 — [J -1.65-1.65
010 [J 1.65-1.96 010 [1.65-1.96
0.05 @EE 1.96-258 005 @EE 1.96-258
001 @MW >258 0.01 EE >258
Significant Significant Significant Significant
T g
vy vy .
Oy 30 &2 ERI X
¢ < o oW
’ " .
L B
Clustered Random Dispersed Clustered Random Dispersed

Figure 3. The distribution patterns determined by the Average Nearest Neighbor analysis. ((A)

Regularly distributed and (B) irregularly distributed.)
Figure Source??? Looks like from a text book - and Figure text is also little small to read.

Table 3. The NNR of regular and irregular point sampling

Data set Flat Zone Rugged Zone
Size1 1.001731 1.001170
Size2 1.001219 1.001291
Regularly- .
Size3 1.001437 1.001173
distributed
Size4 1.001987 1.001758
Size5 1.002431 1.001869
Size 1 0.783242 0.781741
Size2 0.782947 0.784534
Irregularly- .
Size3 0.783653 0.784086
distributed
Size4 0.784653 0.784056
Size5 0.783745 0.784888

illustrated in Figure 2. In the region, the highest elevation is 5,722 m and the lowest is 3,498 m. We
translated the X coordinate by 570,000 and the Y coordinate by 3,300,000 to obtain a 20 kmx20
km square area centered on the origin. Five sets of benchmark test data are generated in this region;
see Table 2.

Criteria for Comparison

In this paper, we evaluate the interpolation algorithms described in Section 2 by: (1) comparing
the interpolation accuracy and efficiency when the terrain is gentle and rugged, and (2) comparing
the interpolation accuracy and efficiency when data points are evenly distributed and nonuniformly

distributed.

12/29

Peer] Comput. Sci. reviewing PDF | (CS-2019:08:40151:2:1:NEW 15 Jan 2020)

Figure Source??? Looks like from a text book - and Figure text is also little small to read.

Peer]

288
289
290

291

292

293
294
295
296

297

298
299
300

3

=3

1

302

303

304

305

306

307

308

The accuracy of each interpolation method is analyzed by comparing the elevation values
predicted by the interpolation algorithms with the real DEM elevation value. The efficiency of each
interpolation method is compared by benchmarking the running time of different implementations

developed in sequence, on a multicore CPU, on a single GPU, and on multiple GPUs.

RESULTS

Experimental Environment

To evaluate the computational performance of the presented various parallel interpolations, we
conducted ten groups of experimental tests in both the flat zone and the rugged zone on a powerful
workstation equipped with two Quadro M5000 GPUs. The specifications of the workstations are
listed in Table 4.

Table 4. Specifications of the workstation and the software used for the experimental tests

Specifications Details

CPU Intel Xeon E5-2650 v3
CPU Frequency 2.30 GHz

CPU RAM 144 GB

CPU Core 40

GPU Quadro M5000

GPU Memory 8 GB

GPU Core 2048

oS Windows 7 Professional
Compiler Visual Studio 2010
CUDA Version v8.0

Test Results of Interpolation Accuracy for Different Interpolation Algorithms

In this paper, we adopt the Normalized Root-Mean-Square-Error (NRMSE) as the metric to
measure the interpolation accuracy of the different interpolation algorithms. The NRMSE is defined
in Eq. (20).

Normalized Root-Mean-Square-Error (NRMSE):

1 1Y)
NRMSE = —— | — Y — 14 20
max [7) Mglf Jal (20)
1<i<N;

where V; is the number of interpolated points, f, is the theoretically exact solution of the ith in-
terpolated point (the elevation of the DEM at this point), and f, is the predicted value of the ith
interpolated point.

The interpolation accuracy of the ten groups of experimental tests is listed in Table 5. The
numerical value shown in Table 5 is NRMSE, which means that the smaller the numerical value,

the higher the interpolation accuracy.

13/29

Peer] Comput. Sci. reviewing PDF | (CS-2019:08:40151:2:1:NEW 15 Jan 2020)

Peer]

309
310
311
312
313
314
315
316
317
318
319
320

321

322
323
324
325

326

Table 5. Interpolation accuracy of the parallel interpolation algorithms implemented on a single

GPU
Data set Original Orthogonal Lancaster’s kNN kNN kNN kNN Shep- kNN Shep-
MLS MLS MLS RBF AIDW IDW ardl ard2

Size | 749E-5 7T49E-5 7.50E-5 023E-5 1.06E4 1.07E4 1.05E-4 1.03E-4
Size2 625E-5 625E-5 6.03E-5 6.85E-5 792E-5 798E5 78IE-S 7.80E-5
Regularly- Size3 552E5 5.52E5 5.23E-5 S67E-5 617E-5 6.19E5 6.15E-5 6.23E-5
distributed Size4 S5.06E-5 5.16E-5 4.88E-5 S24E-5 S45ES S46E5 SATE-S 5.58E-5
Flat Size5 491E-5 491E-5 4.64E-5 499E5 505E-5 50SE-5 5.08ES 5.20E-5
sone Sizel 1964 1.96E-4 1.86E-4 2.14E4 190E4 19564 19864 20264
Size2 153E4 1.53E-4 | 48E-4 714 15TE-4 1.60B-4 1.62E-4 1.65E-4

Irregularly- .
reg Size3 120E-4 120E-4 1.1SE-4 136E-4 128E-4 1314 1.32E-4 1.33E-4
distributed Sized 107E4 1.07E-4 1.02E-4 121E4 LISE-4 LI7E-4 1.18E-4 1.19E-4
Size5 9.50E-5 9.50E-5 9.14E-5 1.07E-4 105B-4 1.05E-4 1.06E-4 1.07E-4
Size | 22364 223E4 2.58E-4 441E4 921E4 92664 943E4 9.69E-4
Size2 123E4 123E-4 1.35E-4 235E-4 6.13E-4 6.16E-4 6.35E-4 6.63E-4
Regularly- Size3 9.09E-5 9.09E-5 9.07E-5 13764 413B-4 412B-4 433E-4 458E-4
distributed Sized 813E-5 8.13ES 7.99E-5 108E-4 331E4 330E-4 3.50E-4 3.71E-4
Rugged Size5 T.62E-5 7.62E-5 7.48E-5 9.39E-5 285E-4 2.83E-4 3.02E-4 321E-4
sone Size] 337E3 337E3 3.02E-3 399E3 40683 41283 411E3 407E3
Size2 1.98E3 198E-3 1.88E-3 206E-3 349E3 3.55E-3 3.57E3 3.52E-3
Zr:li‘;f:z Size3 103E3 1.03E-3 1.10E-3 156E3 202E3 205E3 2.04E-3 2.02E-3
Sized 8.15E-4 8.15E-4 821E-4 LI6E3 170E-3 170E-3 1.68E-3 1.67E-3
Size5 633E4 633E-4 6.50E-4 078E-4 135E-3 136E-3 136E-3 1.37E-3

As listed in Table 5, the most accurate interpolation algorithm is the MLS interpolation al-
gorithm. For the small size (Size 1), compared with other two algorithms, the MLS algorithm is
13.1%-49.4% more accurate than the RBF algorithm, and it is 2.1%-75.8% more accurate than the
Shepard’s algorithm. On the other hand, for the same algorithm, when the distribution pattern is
the same, its accuracy in the flat area is higher than that the rugged area. For example, for the
MLS algorithm, when the distribution pattern is nonuniformly distributed, the accuracy of the Lan-
caster’ MLS algorithm in the flat area is approximately 90% higher than that of the Lancaster’” MLS
algorithm in the rugged area.

As shown in Figure 4 and Figure 5, the NRMSEs of various interpolation methods for the
regularly distributed are less than 50% of the NRMSEs of various interpolation methods for the
irregularly distributed. The above behavior becomes even more obvious in the rugged zone than in
the flat zone. Thus, the regular distribution provides a more accurate solution for both the rugged

and the flat areas.

Test Results of Computational Efficiency for Different Interpolation Algorithms
In our experimental tests, the value of k is 20. Those twenty groups of experimental tests were
performed on the workstations mentioned above. The running times and corresponding speedups

of each group of experimental tests are presented in the following section. The speedup is defined
in Eq. (21).

T,
speedup = T d 21)

par

14/29

Peer] Comput. Sci. reviewing PDF | (CS-2019:08:40151:2:1:NEW 15 Jan 2020)

PeerJ Computer Science Manuscript to be reviewed

[Original MLS [l Orthogonal MLS [_] Lancaster’s MLS [[0] KNNRBF [Original MLS [IIll Orthogonal MLS [__] Lancaster’s MLS [[0] kNNRBF
[KNNAIDW [KNNIDW [kNNShepard a [_] kNNShepard b) [KNNAIDW [kKNNIDW [kNNShepard a [_| kNNShepard b,
3.0x10* 3.0x10* 3.0x10°* 3.0x10*
2.5x10* 4 F2.5x10% 2.5x10 4 I 2.5x10*
2.0x10* 4 F2.0x10% 2.0x10 4 I 2.0x10*
m m
7} %)
E 1.5x10" + 1.5x10“‘§ 1.5x10" - 1.5x10*
Z Z
1.0x10 F1.0x10% 1.0x10* A I 1.0x10*
5.0x10° 4 F5.0x10° 5.0x10°° I 5.0x10°
0.0~ - 0.0 0.0~ - 0.0
Size 1 Size 2 Size 3 Size 4 Size 5 Size 1 Size 2 Size 3 Size 4 Size 5
Data Set Data Set

Figure 4. Interpolation accuracy of GPU-accelerated interpolation algorithms in the Flat zone.
((A) Regularly distributed and (B) irregularly distributed.)

[Original MLS [l Orthogonal MLS [Lancaster’s MLS [[0] KNNRBF I Original MLS [JIlll Orthogonal MLS [__] Lancaster’s MLS [[0] kNNRBF
Il KxNNAIDW [kNNIDW [kNNShepard a [___] kNNShepard b I KNNAIDW [0] KNNIDW [kNNShepard a [___] kNNShepard b
5.0x10° 5.0x10° 5.0x10° 5.0x10°
4.0x107 [4.0x10° 4.0x10° 4 I 4.0x10°
-3 - -3 -3 | . -3
o 3.0x10 3.0x10 m 3.0x10 3.0x10
7} %)
; E
2.0x107 I 2.0x10° 2.0x107 o F2.0x10?
1.0x10° [1.0x10° 1.0x10° A I 1.0x10°
0.0 _j_-:.}_—:.]_—:‘]_—:.l_ 0.0 0.0 - - 0.0
Size 1 Size 2 Size 3 Size 4 Size 5§ Size 1 Size 2 Size 3 Size 4 Size 5
Data Set Data Set

Figure 5. Interpolation accuracy of GPU-accelerated interpolation algorithms in the Rugged
zone. ((A) Regularly distributed and (B) irregularly distributed.)

sz where T, is the running time of sequential implementation, and 7}, is the running time of parallel

38 implementation.

s29 Computational Efficiency of Sequential Implementations

330 As listed in Table 6, for the sequential version, when giving the same sets of data points
s31 and interpolation points, the order of computational time from fastest to slowest is: the Shepard’s
a2 interpolation method, the MLS interpolation, and the RBF interpolation. The computational time
sz of Shepard’s interpolation method is approximately 20% less than the MLS interpolation method,
s34 and it is approximately 70% less than the computational time of the computational time of RBF

335 interpolation method.

sss Computational Efficiency of Parallel Inplementations
387 As shown in Figure 6-11, the parallel version developed on multi-GPUs has the highest
ss speedup in the three parallel versions. Except for the RBF interpolation method, the maximum

Peer] Comput. Sci. reviewing PDF | (CS-2019:08:40151:2:1:NEW 15 Jan 2020) 15/29

PeerJ Computer Science Manuscript to be reviewed

Table 6. Running time (ms) of sequential implementations

Data set Original Orthogonal Lancaster’s kNN kNN kNN kNN Shep- kNN Shep-
MLS MLS MLS RBF AIDW IDW ardl ard2

Size 1 1571.33 1501.67 1613.00 4194.33 1520.67 1239.00 1290.67 1270.33
Regularly- Size 2 3253.33 3238.33 3330.33 8547.33 3100.67 2475.67 2618.33 2583.00
distributed Size 3 6355.67 6063.33 6487.67 16610.67 6154.67 4957.33 5196.33 5125.33
Size 4 9462.00 9036.67 9670.33 24856.67 9161.33 7359.00 7754.67 7674.00

Flat Size 5 12403.33 11854.00 12725.33 3237033 12050.67 9643.33 10230.67 10058.00
zone Size 1 1458.33 1392.00 1500.00 4028.67 1409.00 1104.33 1177.33 1157.67
) Size 2 3042.33 2919.67 3115.00 8291.33 2923.00 2300.33 2430.67 2397.33
::tiztl;lz_ Size 3 6067.00 5738.00 6129.00 16299.33 5783.67 4559.00 4834.67 4776.33
Size 4 8856.00 8491.33 9142.00 24286.00 8636.33 6779.33 7211.33 7105.00
Size 5 11706.00 11214.00 12031.33 31744.00 11354.00 8922.00 9498.00 9372.67
Size 1 1576.00 1497.67 1605.33 4148.00 1512.67 1204.67 1278.00 1264.00
Regularly- Size 2 3211.33 3131.00 3285.33 8452.33 3117.33 2620.33 2695.33 2582.67
distributed Size 3 6354.33 6064.67 6500.33 16649.33 6139.67 4898.00 5200.33 5127.67
Size 4 9444.67 9026.67 9662.33 24811.67 9187.00 729333 7710.33 7660.33

Rugged Size 5 12416.67 11853.33 12711.33 32372.67 12008.33 9606.33 10205.67 10062.00
zone Size 1 1503.00 1408.00 1516.00 4060.33 1424.00 1117.33 1191.67 1214.67
regularly- Size 2 3032.33 2883.33 3110.33 827433 2925.67 2277.00 2424.00 2391.33
distributed Size 3 5943.33 5704.67 6089.33 16226.67 574633 4534.00 4800.33 4735.67
Size 4 8920.00 8524.33 9132.33 24262.00 8654.67 6781.67 7224.00 7115.67
Size 5 11632.33 11147.33 11925.33 31612.00 11282.33 8885.33 9435.67 9320.33

sse speedups of other interpolation algorithms are greater than 45.

340 As shown in Figures 12 and 13, for the parallel version developed on multi-GPUs, the order
a1 of the computational time from fastest to slowest is: the Shepard’s interpolation, the MLS interpo-
a2 lation, the RBF interpolation method. The computational time of Shepard’s interpolation method
343 1S 3%-30% less than the computational time of the MLS interpolation method, and it is 70%-85%

a4 less than the computational time of the RBF interpolation method.

I Original MLS [l Orthogonal MLS [__] Lancaster’s MLS [0 kNNRBF I Original MLS [l Orthogonal MLS [__] Lancaster’s MLS [0 kNNRBF
Il <NNAIDW [0 kKNNIDW [kNNSheparda [[__] kNNShepard b Il <NNAIDW [KNNIDW [kNNSheparda [kNNShepard b
60 60 60 60
50 50 50 50
40 - -40 404 - 40
£ £
O 30 30 © 30 30
(5] (5]
=N o
©n ©n
20 20 20 20
10 - 10 10 - 10
B Lo 0 L
Size 1 Size 2 Size 3 Size 4 Size 5 Size 1 Size 2 Size 3 Size 4 Size 5
Data Set Data Set

B

Figure 6. Comparison of the speedups of the parallel implementations developed on a multicore
CPU in the Flat zone. ((A) Regularly distributed and (B) irregularly distributed.)

Peer] Comput. Sci. reviewing PDF | (CS-2019:08:40151:2:1:NEW 15 Jan 2020) 16/29

PeerJ Computer Science Manuscript to be reviewed

[Original MLS [l Orthogonal MLS [_] Lancaster’s MLS [0] kKNNRBF [Original MLS [l Orthogonal MLS [__] Lancaster’s MLS [0] kKNNRBF
I <NNAIDW [KNNIDW [kNNShepard a [__]kNNShepard b| I «<NNAIDW [KNNIDW [kNNSheparda [_] kKNNShepard b
60 60 60 60
504 50 504 - 50
40 4 L4040 - 40
g g
3 =]
830_ -30830- 30
=3 o
%] %)
204 20 204 20
10 - 10 10 - 10
. Lo 0 - L
Size 1 Size 2 Size 3 Size 4 Size 5 Size 1 Size 2 Size 3 Size 4 Size 5
Data Set Data Set

B

Figure 7. Comparison of the speedups of the parallel implementations developed on a multicore
CPU in the Rugged zone. ((A) Regularly distributed and (B) irregularly distributed.)

I Original MLS [l Orthogonal MLS [Lancaster’s MLS [[0] kKNNRBF
[]

I Original MLS [l Orthogonal MLS [__] Lancaster’s MLS [[] KNNRBF
[]

KNNAIDW [0 kKNNIDW [kNNShepard a [[__] kNNShepard b| KNNAIDW [[0] kKNNIDW [kNNShepard a [kNNShepard b

60 60 60 60

504 50 504 - 50

40 4 L4040 - 40
g g

B 30 k303 30 L 30
(93 Q
o o
©n ©n

204 20 204 20

10 4 - 10 10 4 F 10

- Lo 0- Lo
Size 1 Size 2 Size 3 Size 4 Size 5 Size 1 Size 2 Size 3 Size 4 Size 5
Data Set Data Set

Figure 8. Comparison of the speedups of the parallel implementations developed on a single
GPU in the Flat zone. ((A) Regularly distributed and (B) irregularly distributed.)

«s DISCUSSION

346 The interpolation accuracy and computational efficiency are two critical issues that should be
a7 considered first in any interpolation algorithms. The interpolation accuracy should first be satisfied;
as otherwise, numerical analysis results would be inaccurate. In addition, the computational efficiency

ass should be practical.

350 More specifically, in the subsequent section we will analyze (1) the interpolation accuracy of
351 the presented eight GPU-accelerated interpolation algorithms with different data sets and (2) the

32 computational efficiency of the presented eight interpolation algorithms.

Peer] Comput. Sci. reviewing PDF | (CS-2019:08:40151:2:1:NEW 15 Jan 2020) 1729

PeerJ Computer Science Manuscript to be reviewed

[Original MLS [l Orthogonal MLS [_] Lancaster’s MLS [[0] kKNNRBF I Original MLS [l Orthogonal MLS [__] Lancaster’s MLS [] KNNRBF
I <NNAIDW [KNNIDW [kNNShepard a [__]KNNShepard b I <NNAIDW [kKNNIDW [kNNShepard a [] KNNShepard b|
60 60 60 60
50 - 50 50 - 50
40 F40 404 k40
£ g
3 30+ '30830' 30
o o
20 20 20 20
10 - 10 10 H - 10
- o O - -
Size 1 Size 2 Size 3 Size 4 Size 5 Size 1 Size 2 Size 3 Size 4 Size 5
Data Set Data Set

A

Figure 9. Comparison of the speedups of the parallel implementations developed on a single
GPU in the Rugged zone. ((A) Regularly distributed and (B) irregularly distributed.)

[Original MLS [JIlll Orthogonal MLS [__] Lancaster’s MLS [[0] kNNRBF [Original MLS [Jlll Orthogonal MLS [_] Lancaster’s MLS [KNNRBF
I KNNAIDW [kKNNIDW [kNNSheparda [] kNNShepard b I KNNAIDW [KNNIDW [kNNShepard a [] kNNShepard b
60 60 60 60

50 F50 50 - 50

40 1 L 40

30

Speedup
g
1
Speedup
W
=1
1

20

Size 1 Size 2 Size 3 Size 4 Size 5 Size 1 Size 2 Size 3 Size 4 Size 5
Data Set Data Set

A B

Figure 10. Comparison of the speedups of the parallel implementations developed on
multi-GPUs in the Flat zone. ((A) Regularly distributed and (B) irregularly distributed.)

s Comparison of Interpolation Accuracy

354 To better compare the accuracy of the described interpolation algorithms, in the case of the
355 highest sample density (Size 5) and the lowest sample density (Size 1), we listed those algorithms
sss with the highest accuracy (i.e., the minimum NRMSE) in Table 7.

357 As listed in Table 7, for lower sample density (Size 1), the Original MLS algorithm has the
sss best interpolation performance in regularly distributed. However, for higher sample density (Size
359 95), in general, the improved MLS algorithm Lancaster’s MLS has higher interpolation accuracy
seo than the Original MLS. In particular, the Original MLS has best accuracy in the rugged zone with
se1 irregularly distributed interpolation points.

362 On the other hand, for Shepard’s interpolation algorithms, the KNNAIDW is an improved

Peer] Comput. Sci. reviewing PDF | (CS-2019:08:40151:2:1:NEW 15 Jan 2020) 18/29

PeerJ Computer Science Manuscript to be reviewed

Original MLS [Jlll Orthogonal MLS [___] Lancaster’s MLS [[0] kNNRBF

I Original MLS [l Orthogonal MLS [_] Lancaster’s MLS [0 KNNRBF]
] I <NNAIDW [kKNNIDW

KNNAIDW [KNNIDW [kNNShepard a [] KNNShepard b [kNNShepard a [kNNShepard b|

60 60 60 60

50 F50 504 - 50

40 40 4 - 40
g 2
3 30 3 30 - 30
& &

20

10

Size 2 Size 3 Size 4 Size 5

Size 1

Size 1 Size 2 Size 3 Size 4 Size 5

Data Set Data Set

A B

Figure 11. Comparison of the speedups of the parallel implementations developed on
multi-GPUs in the Rugged zone. ((A) Regularly distributed and (B) irregularly distributed.)

Original MLS [Jll Orthogonal MLS[___] Lancaster’s MLS [L0] KNNRBF

[
I KNNAIDW [0 kKNNIDW

I Original MLS Il Orthogonal MLS [___] Lancaster’s MLS [0 KNNRBF
[|

[kNNSheparda [T] kNNShepard b| KNNAIDW [KNNIDW [kNNShepard a[] kNNShepard b|
1.6x10° 1.6x10° 1.6x10° 1.6x10°
1.4x10° 4 F 1.4x10° 1.4x10° F 1.4x10°
1.2x10° 4 - 1.2x10° 1.2x10° F1.2x10°
__1.0x10° 4 F1.0x10° _ 1.0x10° A - 1.0x10°
g g
S 8.0x102 8.0x10° g 8.0x102 L 8.0x10°
£ £
= =
6.0x10° 4 F 6.0x10? 6.0x10 4 I 6.0x10%
4.0x10° 4 - 4.0x10 4.0x10% F 4.0x10%
2.0x10° 4 F2.0x10? 2.0x10 4 I 2.0x10%
0.0 L 0.0 0.0 - L 0.0
Size 1 Size 2 Size 3 Size 4 Size 5 Size 1 Size 2 Size 3 Size 4 Size 5
Data Set Data Set

B

Figure 12. Comparison of the running time of the parallel implementations developed on

multi-GPUs in the Flat zone. ((A) Regularly distributed and (B) irregularly distributed.)

Table 7. The algorithm with the highest accuracy in congeneric algorithms and its corresponding

NRMSE
X X Shepard’s Interpolation
Data set MLS Algorithm RBF Algorithm K
Algorithm
Regularly- Size 1 Original MLS (7.49E-5) kNNRBF (9.23E-5) kNNShepard2 (1.03E-4)
Flat distributed Size 5 Lancaster’s MLS (4.64E-5) kNNRBF (4.99E-5) kNNAIDW (5.05E-5)
zone Irregularly- Size 1 Lancaster’s MLS (1.86E-4) kNNRBF (2.14E-4) kNNAIDW (1.90E-4)
distributed Size 5 Lancaster’s MLS (9.14E-5) kNNRBF (1.07E-4) kKNNAIDW (1.05E-4)
Regularly- Size 1 Original MLS (2.23E-4) kNNRBF (4.41E-4) kKNNAIDW (9.21E-4)
Rugged distributed Size 5 Lancaster’s MLS (7.48E-5) kKNNRBF (9.39E-5) kKNNIDW (2.83E-4)
zone Irregularly- Size 1 Lancaster’s MLS (3.02E-3) kNNRBF (3.99E-3) kNNAIDW (4.06E-3)
distributed Size 5 Original MLS (6.33E-4) kNNRBF (9.78E-4) kNNAIDW (1.35E-3)

Peer] Comput. Sci. reviewing PDF | (CS-2019:08:40151:2:1:NEW 15 Jan 2020)

19/29

PeerJ Computer Science Manuscript to be reviewed

[Original MLS [l Orthogonal MLS [_] Lancaster’s MLS [KNNRBF I Original MLS [l Orthogonal MLS [_] Lancaster’s MLS [[] KNNRBF
[| [|

KNNAIDW I KNNIDW [kNNShepard a [_] kKNNShepard b) KNNAIDW I KNNIDW [kNNShepard a [kNNShepard b)
1.6x10° 1.6x10° 1.6x10° 1.6x10°
1.4x10° o I 1.4x10° 1.4x10° 4 F 1.4x10°
1.2x10° 4 F 1.2x10° 1.2x10° A - 1.2x10°
_1.0x10° 4 F1.0x10° _ 1.0x10° 4 - 1.0x10°
2 2
£ g
5 8.0x10% - - 8.0x10? g 8.0x102 - 8.0x107
£
= [S
6.0x10% 4 I 6.0x10* 6.0x10% I 6.0x10%
4.0x10% 4 - 4.0x10° 4.0x10* 4 - 4.0x10*
2.0x10% 4 - 2.0x10% 2.0x10% 4 F2.0x10%
0.0 - L 0.0 0.0 - L 0.0
Size 1 Size 2 Size 3 Size 4 Size 5 Size 1 Size 2 Size 3 Size 4 Size 5
Data Set Data Set

A B

Figure 13. Comparison of the running time of the parallel implementations developed on

multi-GPUs in the Rugged zone. ((A) Regularly distributed and (B) irregularly distributed.)

ses version of the IDW, which can adaptively determine the power parameter according to the spatial
s« points’ distribution pattern. Therefore, in Shepard’s interpolation algorithms, the kANNAIDW has
ses higher accuracy in most situations. Although under some specific conditions, the KNNShepard2
sss and kNNIDW have higher accuracy than kNNAIDW, the accuracy of kANNAIDW is quite similar to
37 them.

368 As listed Table 7. For the same flat zone, when the data points are uniformly distributed, the
sse order of the interpolation accuracy from high to low is: the MLS interpolation algorithm, RBF, and
sro Shepard’s interpolation method; when the data points are normal distribution, the order of the in-
a7t terpolation accuracy from high to low is: the MLS interpolation algorithm, Shepard’s interpolation
sz method, and RBF. For the same rugged zone, regardless of the density and distribution of the data
s73 points, the interpolation accuracy order from high to low is: the MLS interpolation algorithm, RBF,
a7a and Shepard’s interpolation method.

375 To further verify the above conclusions obtained from NRMSE, we investigated the relative
are error of the interpolated results for the same set of data points and interpolation points (i.e., Size 1).
a7z The algorithm with the highest accuracy (i.e., the minimum NRMSE) is used to represent the kind
ars of algorithm.

379 As shown in Figure 14 and Figure 15, the Y axis is the [gN (N is the count of relative error),

a0 and the X axis is the relative error e. The e is defined in Eq. (22).

fn_fa

x 100% (22)

e =
a

a1 where f, is the theoretically exact solution of the ith interpolated point (the elevation of the DEM
ss2 at this point), f,, is the predicted value of the ith interpolated point, and e; is the relative error of the
ss3 ith interpolated point.

384 As listed in Table 8 and Table 9. For better evaluation of relative error, we also calculated the

sss mean relative error E. The E is defined in Eq. (23)

Peer] Comput. Sci. reviewing PDF | (CS-2019:08:40151:2:1:NEW 15 Jan 2020) 20729

Peer]

386

387

388
389
390
391
392
393
394
395

396

M=

€

E:i:l
N;

where A, is the number of interpolated points.

(23)

In the Flat Zone

6 6
= MLS = MLS
5 e RBF|| -+ RBF
IDW \‘ IDW
e
%
Zz 31 z 31 Y
)) ;
.
2 2 \
.
] ’ N
- e
S = e \ N .
e Tax
0 e 0- \/. N
0.00 0.02 004 006 008 010 0.12 0.14 0.16 0.0 0.1 0.2 0.3 0.4 0.5

Relative Error e (%) Relative Error e (%)

Figure 14. Frequency distribution of the Relative Error for the parallel implementation
developed on a single GPU in the Flat zone. ((A) Regularly distributed and (B) irregularly
distributed. The size of data points: Size 1.)

Table 8. The algorithm with the highest accuracy in congeneric algorithms and its corresponding

mean relative error in the Flat zone

Distribution Mean Relative Error E (%)
o Original MLS kNNRBF kNNShepard b
Regularly-distributed
0.0069 0.0078 0.0084
L Lancaster’s MLS kNNRBF kNNAIDW
Irregularly-distributed
0.0144 0.0162 0.0148

As shown in Figure 14, for the flat region, when the data points are evenly distributed, the
frequency statistical curve of the MLS is the highest when it is close to zero, the lowest when it is
far away from zero, and the relative error distribution range is smaller, which means that the error
of MLS method is small. The characteristics of the frequency statistical curve of Shepard’s method
are completely opposite to those of MLS, which means that the error of MLS method is large. For
the RBF interpolation algorithm, the characteristic of the frequency statistics curve is a transitional
phase between those for the MLS and those for Shepard’s method. The above curve features and
E (Table 8) illustrate that the interpolation accuracy is from high to low in this condition: the MLS
interpolation algorithm, RBF, and Shepard’s interpolation method.

21/29

Peer] Comput. Sci. reviewing PDF | (CS-2019:08:40151:2:1:NEW 15 Jan 2020)

Peer]

397

398

399

401

402

403

404

405

406

407

408

410

When the data points are normally distributed, the relative error distribution ranges of all the
interpolation methods are larger than that for the uniformly distributed data points. As shown in
Figure 14, the characteristics of the frequency statistics curve of RBF are obvious, the frequency
statistical curve of RBF is above the frequency statistical curves of MLS and Shepard’s method,
which means that the error of RBF method is larger. The characteristics of frequency statistical
curves of MLS and Shepard’s method are very similar, and the relative error distribution range of
MLS is the largest. As listed in Table 8, in the flat zone, the accuracy of MLS is slightly higher

than Shepard’s method when the data points are normally distributed.

In the Rugged Zone
6 6
—— MLS —— MLS
5 --+- RBF R --e-- RBF
IDW 5 IDW
4 4
4
34
% %3
24
2
14 \h\
. 1 - \\
A%
01 .
T T T T T T T T T 0 T T T T T T
00 02 04 06 08 10 12 14 16 18 0 2 4 6 8 10

Relative Error e (%) Relative Error e (%)

Figure 15. Frequency distribution of the Relative Error for the parallel implementation
developed on a single GPU in the Rugged zone. ((A) Regularly distributed and (B) irregularly
distributed. The size of data points: Size 1)

Table 9. The algorithm with the highest accuracy in congeneric algorithms and its corresponding

mean relative error in the Rugged zone

Distribution Mean Relative Error E (%)

L Original MLS ~ kNNRBF kNNAIDW
Regularly-distributed

0.0514 0.0582 0.0904

L Lancaster’s MLS kNNRBF kNNAIDW
Irregularly-distributed

0.3078 0.3493 0.3703

As shown in Figure 15, for the rugged region, regardless of whether the data points are uni-
formly distributed or normally distributed, the characteristics of frequency statistical curves of MLS,
RBF and Shepard’s method are similar to those illustrated in Figure 14. However, in Figure 15(B),
it is a little different in that most of the frequency statistical curve of Shepard’s method is higher

than the RBF’s. As listed in Table 9, the interpolation accuracy is from high to low: the MLS

22/29

Peer] Comput. Sci. reviewing PDF | (CS-2019:08:40151:2:1:NEW 15 Jan 2020)

Peer]

411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430

431

432
433

434

435
436
437
438
439
440
441
442
443
444
445

446

447
448

449

interpolation algorithm, RBF, and Shepard’s interpolation method.

According to the above Figures and Tables, some summary conclusions are obtained as fol-
lows:

For the same region, when the density of data points is almost the same, the interpolation
accuracy when the data points are evenly distributed is higher than the interpolation accuracy when
the data points are nonuniformly distributed.

As listed in Table 5 and Table 7, when the data points are evenly distributed, the gap of the ac-
curacy between the three variations of the MLS method, RBF, and Shepard’s interpolation methods
increases with the decrease of point density.

As shown in Figure 14 and Figure 15, when the data points are nonuniformly distributed, the
maximum relative errors of MLS is larger than other algorithms’, however, MLS method has lower
NRMSE and E. A small number of larger relative errors has little effect on the overall interpola-
tion accuracy. A large number of small and medium relative errors are the key to determine the
interpolation accuracy of the algorithm.

As listed in Table 5, compared with the uniform distribution, when the points are nonuniformly
distributed the difference in the accuracy of the interpolation algorithms is not as sensitive to the
changes of point density.

Compared with the three variations of the MLS method and the RBF method, Shepard’s in-
terpolation method is quite suitable for cases where the data points have a smooth trend. When
interpolating for the data points with an undulating trend, the accuracy of Shepard’s interpolation

method will be poor. When the density of data points is small, this rule becomes more obvious.

Comparison of Computational Efficiency
The parallel implementations developed on multi-GPUs is the most efficient, therefore, the

parallel implementations developed on multi-GPUs are discussed below.

In the Flat Zone

As illustrated in Figure 12, for the flat region, except for the ANNRBF, when the number of
data ppc?ilrrl]ttssef is not much different, the nonuniformly distributed data point set requires significantly
more interpolation time than the uniformly distributed data point set, and with the increase of the
number of points, the-rale-ef-the-interpolation time A as. wel

As illustrated in Figure 10, the speedups achieved by the RBF interpolation method is gener-
ally small, and its speedups are not much different in various cases. However, when the size of
data point set is Size 1 and the data point set is nonuniformly distributed, the speedup of the RBF
interpolation method is larger than other methods, which means that the benefits of parallelism are
lower in this case.

As indicated above, the distribution pattern of data points strongly influences the interpolation

efficiency.

In the Rugged Zone
As illustrated in Figure 11 and Figure 13, the running time and the speedups in the rugged

region are almost the same as those in the flat region. In other words, the characteristics of the

23/29

Peer] Comput. Sci. reviewing PDF | (CS-2019:08:40151:2:1:NEW 15 Jan 2020)

sstein

sstein

sstein

points

does increase as well.

PeerJ Computer Science Manuscript to be reviewed

450 terrain elevation of data points have a weak influence on computational efficiency.

1 Influence of kNN Search on Computational Efficiency

452 According to Section 3, in the interpolation procedure, the kNN search may affect the entire
43 computational efficiency of interpolation.

454 To specifically evaluate the influence of the kNN search on the computational efficiency of
45 the entire interpolation procedure, we investigated the computational cost of the kNN search for
46 relatively large numbers of data points, i.e., for the dataset of Size 5 (listed in Figure 16).

457 Note that we employ four sets of data points with Size 5, including (1) the set of uniformly
4ss distributed data points and the set of nonuniformly distributed data points in the flat region and (2)
459 the set of uniformly distributed data points and the set of nonuniformly distributed data points in

460 the rugged region.

I Regularly-distributed [lnegularly.dismbmed\ I Regularly-distributed [lrregularly-dismbmed\
1.2x10* 1.2x10* 8.0x10° 8.0x10?
7.0x10% I 7.0x10?
1.0x10* F 1.0x10*
6.0x10% I 6.0x10°
8.0x10° 4 I 8.0x10° R
- _5.0x10% F5.0x10°
2 2
E E
o 6.0x10° 4 - 6.0x10° 5 4.0x10% I 4.0x10?
E E
= =) 5
3.0x10% I 3.0x10
4.0x10° I 4.0x10°
2.0x10% I 2.0x10?
2.0x10° I 2.0x10°
1.0x10° I 1.0x10?
0.0 - L 0.0 0.0 - L 0.0
Flat zone Rugged zone Flat zone Rugged zone
Data set Data set

Figure 16. Comparison of the running time cost in the kNN search procedure. ((A) Sequential

version on single CPU and (B) Parallel version on single GPU.)

461 As listed in Table 10, for the sequential version, regardless of whether the data points are
462 uniformly distributed or nonuniformly distributed, the kNN search costs approximately 75% of
463 the computational time of the entire interpolation procedure for the three variations of the MLS
464 interpolation algorithm and the AIDW interpolation algorithm, whereas the kNN search costs less
465 than 30% of the computational time for the RBF interpolation algorithm and approximately 90% in
466 the other three variations of Shepard’s method. It should also be noted that for the same size of data
467 points, whether they are uniformly or nonuniformly distributed, there is no significant difference in
468 the computational cost of the kNN search; that is, the distribution pattern of data points is of weak
469 influence on the computational efficiency of the kNN search in the sequential version.

470 As listed in Table 11, for the parallel version developed on a single GPU, when the sizes of
471 data points are almost the same, it would cost much more time in the kNN search when the data
472 points are nonuniformly distributed than when the data points are uniformly distributed. Moreover,

473 when the data points are nonuniformly distributed, the proportion of the kNN search time to the total

Peer] Comput. Sci. reviewing PDF | (CS-2019:08:40151:2:1:NEW 15 Jan 2020) 24129

Peer]

474

475

476
477
478
479
480
481
482
483
484
485
486
487
488

489

Table 10. Proportion of the kNN search time to the running time of the sequential
implementations. (The proportion is gﬁﬂ x 100%, where T;yy is the kNN search time, and 7,,, is

the running time of the corresponding sequential implementations.)

Data set Original Orthogonal Lancaster’s kNN kNN kNN kNN Shep- kNN Shep-
MLS MLS MLS RBF AIDW IDW ardl ard2
Regularly- 74.9% 78.4% 73.0% 28.7% 77.1% 96.4% 90.8% 92.4%
Flat distributed
zone Irregularly- 72.8% 76.0% 70.8% 26.8% 75.1% 95.5% 89.7% 90.9%
distributed
Regularly- 73.7% 77.2% 72.0% 28.3% 76.2% 95.3% 89.7% 91.0%
Rugged distributed
zone Irregularly- 73.0% 76.2% 71.2% 26.9% 75.3% 95.6% 90.0% 91.1%
distributed

time is approximately 10% to 20% more than the proportion when the data points are uniformly

distributed under the same conditions.

Table 11. Proportion of the kNN search time to the running time of the parallel implementations

developed on a single GPU. (The proportion is % x 100%, where Ty is the kNN search time,

run

and T,,, is the running time of the corresponding parallel implementations.)

Data set Original Orthogonal Lancaster’s kNN kNN kNN kNN Shep- kNN Shep-
MLS MLS MLS RBF AIDW IDW ard1 ard2
Regularly- 46.2% 41.3% 44.3% 6.3% 54.6% 65.0% 63.1% 62.0%
Flat distributed
zone Irregularly- 67.8% 66.8% 68.3% 23.1% 69.5% 71.0% 70.3% 70.4%
distributed
Regularly- 45.8% 41.2% 44.4% 6.3% 54.6% 65.3% 62.5% 63.3%
Rugged distributed
zone Irregularly- 68.7% 67.4% 69.0% 22.0% 70.5% 72.3% 71.4% 71.7%
distributed

On the GPU, for the same interpolation method and the same data size, the proportion of the
kNN search time relative to the total time when the data points are nonuniformly distributed is larger
than that when the data points are uniformly distributed, and the achieved speedups are small.

However, on the CPU, the proportion of kNN search time when the data points are nonuni-
formly distributed relative to the total time is similar to that when the data points are uniformly
distributed, and the achieved speedups are similar. This is because there are a large number of
logical operations, such as switches in the kNN search, and the GPU is inherently not as suitable
for performing logical operations as the CPU.

In the ANN search procedure, the number of points in the search range is slightly smaller than
k after determining a certain level. After the level is expanded, the number of points in the search
range will be more than k. In this case, the k nearest neighbors should be selected and the redundant
neighbors should be ignored by first sorting and then discarding. Unfortunately, there are a large
number of logical operations in sorting.

In this procedure of sorting and discarding, when the point density is intensive in a region, the

25/29

Peer] Comput. Sci. reviewing PDF | (CS-2019:08:40151:2:1:NEW 15 Jan 2020)

Peer]

490
491

492

494

495

496

497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527

528

number of found nearest neighbors would be far more than the expected k, and much computational
time would thus be required to sort the found neighbors.

For areas with sparse data points, it takes more time to find enough k points by expanding the
region level. Therefore, in contrast to a uniform distribution, when the data point set is nonuni-
formly distributed, the kNN search needs more computational time and its proportion of the total

time is also greater.

CONCLUSION

In this paper, we present the development of the sequential version, the parallel version on a
multicore CPU, the parallel version on a many-core GPU, and the parallel version on multi-GPUs
for each of the eight variations of the MLS, RBF, and Shepard’s interpolation algorithms. We also
evaluated the interpolation accuracy and computational efficiency for the above four versions of
each variation when building large-scale DEMs. We have obtained the following observations.

(1) The distribution pattern of data points and the landscape conditions strongly influences the
interpolation accuracy. The distribution pattern of data points strongly influences the interpolation
efficiency, and the landscape conditions have a weak influence on the interpolation efficiency.

(2) For the same flat region, when the density of points is large, there is no obvious difference
in terms of the interpolation accuracy for all interpolation methods. When the data points are
uniformly distributed and the density of points is small, the order of the interpolation accuracy
from high to low is: the MLS interpolation algorithm, RBF, and Shepard’s interpolation method.
When the data points are nonuniformly distributed and the density of points is small, the order
of the interpolation accuracy from high to low is: the MLS interpolation algorithm, Shepard’s
interpolation method, and RBF.

(3) For the same rugged region, regardless of the density and distribution of the data points,
the interpolation accuracy order from high to low is: the MLS interpolation algorithm, RBF, and
Shepard’s interpolation method. When the data points are uniformly distributed, the above rules
are more obvious than those when data points are nonuniformly distributed.

(4) The Shepard’s interpolation method is only suitable for application in cases where the data
points have smooth trends. When the data points have uniformly rugged trends, the accuracy of
Shepard’s interpolation method is rather unsatisfactory, especially in the case when the density of
data points is small.

(5) For the same set of data points and interpolation points, the order of computational expense
from high to low is: the RBF interpolation method, the MLS algorithm, and Shepard’s method
Moreover, for the same size of data points and interpolation points, the computational efficiency in
the case when the data points are nonuniformly distributed is worse than when the data points are
uniformly distributed.

(6) For the same interpolation method, the impact of kNN search on the computational effi-
ciency of the CPU versions and the GPU versions is different. Specifically, the percentage of the
computational time of kNN search relative to the computational time of the entire interpolation

procedure in the CPU versions is much smaller than in the GPU versions.

26/29

Peer] Comput. Sci. reviewing PDF | (CS-2019:08:40151:2:1:NEW 15 Jan 2020)

Peer]

529

530
531
532

533

534

535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566

567

ACKNOWLEDGMENTS

This research was supported by the Natural Science Foundation of China (Grant Numbers
11602235 and 41772326), and the Fundamental Research Funds for the Central Universities (Grant
Numbers 2652018097, 2652018107, and 2652018109). The authors would like to thank the editor

and reviewers for their contributions to the paper.

REFERENCES

Aguilar, F. J., Aguera, F., Aguilar, M. A., and Carvajal, F. (2005). Effects of terrain morphology,
sampling density, and interpolation methods on grid DEM accuracy. Photogrammetric Engineer-
ing and Remote Sensing, 71(7):805-816.

Box, G. E. P. and Muller, M. E. (1958). A Note on the Generation of Random Normal Deviates.
Annals of Mathematical Statistics, 29(2):610-611.

Chaplot, V., Darboux, F., Bourennane, H., Leguedois, S., Silvera, N., and Phachomphon, K. (2006).
Accuracy of interpolation techniques for the derivation of digital elevation models in relation to
landform types and data density. Geomorphology, 77(1-2):126-141.

Chen, Z., Shen, L., Zhao, Y., and Yang, C. (2010). Parallel algorithm for real-time contouring from
grid DEM on modern GPUSs. Science China-Technological Sciences, 53:33-37.

Cheng, T. (2013). Accelerating universal Kriging interpolation algorithm using CUDA-enabled
GPU. Computers & Geosciences, 54:178—183.

Coll, N. and Guerrieri, M. (2017). Parallel constrained Delaunay triangulation on the GPU. Inter-
national Journal of Geographical Information Science, 31(7):1467-1484.

Cover, T. and Hart, P. (1967). Nearest neighbor pattern classification. Information Theory, IEEE
Transactions on, 13(1):21-27.

Ding, Z., Mei, G., Cuomo, S., Tian, H., and Xu, N. (2018a). Accelerating multi-dimensional
interpolation using moving least-squares on the GPU. Concurrency and Computation-Practice
& Experience, 30(24).

Ding, Z., Mei, G., Cuomo, S., Xu, N., and Tian, H. (2018b). Performance Evaluation of GPU-
Accelerated Spatial Interpolation Using Radial Basis Functions for Building Explicit Surfaces.
International Journal of Parallel Programming, 46(5):963-991.

Ebdon, D. (1985). Statistics in Geography. Blackwell Publishing, Hoboken, 2nd edition edition.

Ghandehari, M., Buttenfield, B. P., and Farmer, C. J. Q. (2019). Comparing the accuracy of es-
timated terrain elevations across spatial resolution. [International Journal of Remote Sensing,
40:5025-5049.

Guan, Q., Shi, X., Huang, M., and Lai, C. (2016). A hybrid parallel cellular automata model for
urban growth simulation over GPU/CPU heterogeneous architectures. International Journal of
Geographical Information Science, 30(3):494-514.

Gumus, K. and Sen, A. (2013). Comparison of spatial interpolation methods and multi-layer neu-
ral networks for different point distributions on a digital elevation model. Geodetski Vestnik,
57(3):523-543.

Khairnar, H. D., Shingare, P. S., Kale, S., and Ieee (2015). Accuracy Evaluation of Cartosat-1

27/29

Peer] Comput. Sci. reviewing PDF | (CS-2019:08:40151:2:1:NEW 15 Jan 2020)

Peer]

568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606

607

DEM using different Interpolation Techniques for Pune Area. 2015 International Conference on
Industrial Instrumentation and Control.

Krige, D. G. (1953). A Statistical Approach to Some Basic Mine Valuation Problems on the Wit-
watersrand. OR, 4(1):18-18.

Lancaster, P. and Salkauskas, K. (1981). Surfaces generated by moving least squares methods.
Math Compt, 37(155):141-158.

Lehmer, D. H. (1949). Mathematical Methods in Large-Scale Computing Units. Proc. of 2nd Symp.
on Large-Scale Digital Calculating Machinery, 26:141-146.

Lei, W., Xiong, R., Ma, S., Liang, L., and Ieee (2011). GPU Based Fast Algorithm for Tanner
Graph Based Image Interpolation. IEEE International Workshop on Multimedia Signal Process-
ing.

Lu, G. Y. and Wong, D. W. (2008). An adaptive inverse-distance weighting spatial interpolation
technique. Computers and Geosciences, 34(9):1044-1055.

Mallet, J. L. (1997). Discrete modeling for natural objects. Mathematical Geology, 29(2):199-219.

Mei, G. (2014). Evaluating the Power of GPU Acceleration for IDW Interpolation Algorithm.
Scientific World Journal.

Mei, G. and Tian, H. (2016). Impact of data layouts on the efficiency of GPU-accelerated IDW
interpolation. SpringerPlus, 5(1):104.

Mei, G., Xu, L., and Xu, N. (2017). Accelerating adaptive inverse distance weighting interpolation
algorithm on a graphics processing unit. Royal Society Open Science, 4(9).

Mei, G., Xu, N., and Xu, L. (2016). Improving GPU-accelerated adaptive IDW interpolation algo-
rithm using fast kNN search. Springerplus, 5.

Peng, X., Wu, Q., Cai, Y, Lou, L., Yu, Y., and Li, Q. (2019). The application of radial basis
function interpolation in reactor core power distribution on-line monitoring. Annals of Nuclear
Energy, 132:752-762.

Polat, N., Uysal, M., and Toprak, A. S. (2015). An investigation of DEM generation process based
on LiDAR data filtering, decimation, and interpolation methods for an urban area. Measurement,
75:50-56.

Powell, M. J. D. (1977). Restart procedures for the conjugate gradient method. Mathematical
Programming, 12(1):241-254.

Rishikeshan, C. A., Katiyar, S. K., Mahesh, V. N. V,, and Ieee (2014). Detailed evaluation of DEM
interpolation methods in GIS using DGPS data, series = 2014 6th International Conference on
Computational Intelligence and Communication Networks.

Shepard, D. (1968). A Two-Dimensional Interpolation Function for Irregularly-Spaced Data. Pro-
ceedings of the 1968 ACM National Conference, pp.:517-524.

Siu-Nganlam, N. (1983). Spatial interpolation methods: A review. American Cartographer,
10(2):129-150.

Steve, J. L. (2011). Linear Algebra with Applications (Sth Edition). Prentice Hall.

Tan, L., Wan, G., Li, F.,, Chen, X., and Du, W. (2017). GPU based contouring method on grid DEM
data. Computers & Geosciences, 105:129-138.

28/29

Peer] Comput. Sci. reviewing PDF | (CS-2019:08:40151:2:1:NEW 15 Jan 2020)

Peer]

608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630

631

Wang, H., Guan, X., and Wu, H. (2017). A Hybrid Parallel Spatial Interpolation Algorithm for
Massive LiDAR Point Clouds on Heterogeneous CPU-GPU Systems. Isprs International Journal
of Geo-Information, 6(11).

Wasza, J., Bauer, S., Hornegger, J., and Ieee (2011). Real-time Preprocessing for Dense 3-D Range
Imaging on the GPU: Defect Interpolation, Bilateral Temporal Averaging and Guided Filtering.
2011 Ieee International Conference on Computer Vision Workshops.

Watson, D. F. (1981). Computing the n-dimensional delaunay tessellation with application to
voronoi polytopes. Computer Journal, 24(2):167-172.

Wu, J., Deng, L., and Jeon, G. (2018). Parallel constrained Delaunay triangulation on the GPU.
IEEE Transactions on Industrial Informatics, 14:426-436.

Yan, C., Liu, J., Zhao, G., Chen, C., and Yue, T. (2016). A high accuracy surface modeling method
based on GPU accelerated multi-grid method. Transactions in Gis, 20(6):991-1003.

Yan, C., Zhao, G., Yue, T., Chen, C., Liu, J., Li, H., and Su, N. (2015). Speeding up the high-
accuracy surface modelling method with GPU. Environmental Earth Sciences, 74(8):6511-6523.

Yin, K., Sun, F,, Zhou, S., and Zhang, C. (2014). PAR Model SAR Image Interpolation Algorithm
on GPU with CUDA. Iete Technical Review, 31(4):297-306.

Zhang, G., Zhu, A., and Huang, Q. (2017). A GPU-accelerated adaptive kernel density estima-
tion approach for efficient point pattern analysis on spatial big data. International Journal of
Geographical Information Science, 31(10):1-30.

Zhang, J. (2013). Research on DEM Interpolation Algorithm Adaptability with Local Terrain Fea-
tures. International Conference on Geoinformatics.

Zhou, G., Liu, X., Fu, S., and Sun, Z. (2017). Parallel identification and filling of depressions
in raster digital elevation models. International Journal of Geographical Information Science,
31(6):1061-1078.

29/29

Peer] Comput. Sci. reviewing PDF | (CS-2019:08:40151:2:1:NEW 15 Jan 2020)

PeerJ Computer Science Manuscript to be reviewed

Figure 1

An illustration of the process of the kNN search algorithm

Original 0.3 8.6 1.5 5 6.2 (A)
Sorted | 0.3 1.5 5 6.2 8.6 (B)
Replaced 0.3 1.5 5 6.2 4.2 (©)
Swapped 0.3 1.5 5 4.2 6.2 (D)
Desired 0.3 1.5 4.2 5 6.2 (E)

Peer] Comput. Sci. reviewing PDF | (CS-2019:08:40151:2:1:NEW 15 Jan 2020)

PeerJ Computer Science Manuscript to be reviewed

Figure 2

The selected Zone 1 and Zone 2.

(A) 2.5D model of the Zone 1 study area and (B) 2.5D model of the Zone 2 study area.

Peer] Comput. Sci. reviewing PDF | (CS-2019:08:40151:2:1:NEW 15 Jan 2020)

PeerJ Computer Science Manuscript to be reviewed

4.140E+6
Elevation (m)
148
46
4.135E+6 - 44
- 42
- 40
- 38
- 36
34
32
A Y 4.130E+6 30
28
26
24
22
20
4.125E+6 8
e 16
14
4.120E+6

3.380E+5 3.430E+5 3.480E+5 3.530E+5 3.580E+5

3.310E+6

Elevation (m)

— 5600
- 5400
— 5200
= 5000
— 4800
4600
4400
4200
4000
3800
3600

5.600E+5 5.650E+5 5.700E+5 5.750E+5 5.800E+5
X

Peer] Comput. Sci. reviewing PDF | (CS-2019:08:40151:2:1:NEW 15 Jan 2020)

PeerJ Computer Science Manuscript to be reviewed

Figure 3

The distribution patterns determined by the Average Nearest Neighbor analysis.

(A) Regularly distributed and (B) irregularly distributed.

Significance Level Critical Value Significance Level Critical Value
(p-value) (z-score) (p-value) (z-score)
0.01 gmm <-2.58 001 gmm <-2.58
0,05 EE -2.58--1.96 005 @EE -258--1.96
010 [-1.96--1.65 010 [-1.96--1.65
m— 3 -1.65-1.65 o] -1.65-1.65
010 3 1.65 - 1.96 010 =3 1.65-1.96
0.05 @E3 1.96 - 2.58 005 B3 1.96 - 2.58
0.01 [> 2.58 0.01 N >2.58
«— > — —
Significant Significant Significant Significant
v w| = B
r wmo G L
LT . i)
* - i " x O
o5 . i
£1 i 'k -
Clustered Random Dispersed Random Dispersed

Peer] Comput. Sci. reviewing PDF | (CS-2019:08:40151:2:1:NEW 15 Jan 2020)

PeerJ Computer Science

Figure 4

Manuscript to be reviewed

Interpolation accuracy of GPU-accelerated interpolation algorithms in the Flat zone.

(A) Regularly distributed and (B) irregularly distributed.

3.0x10%

2.5x10

2.0x10 o

NRMSE

1.0x10% 4

5.0x107%

0.0

Peer] Comput. Sci. reviewing PDF | (CS-2019:08:40151:2:1:NEW 15 Jan 2020)

1.5x107 o

. Original MLS Onhogonal MLS Lamster s MLS

KNNAIDW kNNIDW

Size 1 Size 2 Size 3 Size 4

Data Set

3.0x10%

- 2.5x10

- 2.0x10

- 1.5x10™

- 1.0x10"

- 5.0x10°

- 0.0

3.0x10%

2.5x10 4

2.0x10™* o

NRMSE

1.0x107% 4

5.0x107 4

0.0

Original MLS [JJl Orthogonal MLS|:| Lancaster's MLS [_] kNNREF
KNNAIDW [| KNNIDW

parda || kNNShepard b

3.0x10%

1.5x10 4

Size 3
Data Set

B

- 2.5x10%

- 2.0x10*

- 1.5x10*

- 1.0x10*

- 5.0x10°

- 0.0

PeerJ Computer Science Manuscript to be reviewed

Figure 5

Interpolation accuracy of GPU-accelerated interpolation algorithms in the Rugged zone.

(A) Regularly distributed and (B) irregularly distributed.

[Original MLS Il Orthogonal MLS [Lancaster’s MLS [[__] kNNRBF Original MLS Orthogonal MLS Lancaster's MLS KNNRBF
I KNNAIDW [T KNNIDW [kNNSheparda [|kNNShepard b KNNAIDW KNNIDW kNNShepard 3 hepard b
5.0x107 5.0x10° 5.0x107 5.0x10%
4,0x10° -4.0x10° 4.0x10° - 4,0x10°
3| . -3 -3] - -3
o 30x10° 3.0x10° , 3.0x10 3.0x10
[72] L7
E =
g g
2.0x10° 4 -2.0x10° " 2.0x107 - 2.0x10°
1.0x107 4 - 1.0x10° 1.0x107 - 1.0x10°%
0.0 —JJL_:MIL 0.0 0.0 - L 0.0
Size 1 Size 2 Size 3 Size 4 Size 5 Size 1 Size 2 Size 3 Size 4 Size 5
Data Set Data Set

B

Peer] Comput. Sci. reviewing PDF | (CS-2019:08:40151:2:1:NEW 15 Jan 2020)

PeerJ Computer Science Manuscript to be reviewed

Figure 6

Comparison of the speedups of the parallel implementations developed on a multicore
CPU in the Flat zone.

(A) Reqgularly distributed and (B) irregularly distributed.

_ Original MLS gonhogml MLS Lancaster's MLS KNNRBF l .Orig-inal MLS. Onrthogonal MLS ; Lancaster’s MLS KNNRBF |
KNNAIDW KNNIDW KNNShepard a KNNShepard b KNNAIDW [| kNNIDW kNNShepard a KNNShepard b
60 60 60 60
50 4 - 50 50 4 - 50
40 - 40 40 - 40
o o
2 30 30 2 30 30
7] 73]
20 - 20 20 - 20
10 + - 10 10 H - 10
0- -0 0- -0
Size 1 Size 2 Size 3 Size 4 Size 5 Size 1 Size 2 Size 3 Size 4 Size 5
Data Set Data Set

B

Peer] Comput. Sci. reviewing PDF | (CS-2019:08:40151:2:1:NEW 15 Jan 2020)

PeerJ Computer Science Manuscript to be reviewed

Figure 7

Comparison of the speedups of the parallel implementations developed on a multicore
CPU in the Rugged zone.

(A) Reqgularly distributed and (B) irregularly distributed.

Original MLS Orthogonal MLS Lancaster’s MLS KNNRBF ‘ Original MLS Orthogonal MLS Lancaster’s MLS KNNRBF ‘
kNNAIDW kNNIDW kNNShepard a kNNShepard b KNNAIDW KNNIDW kNNShepard a kNNShepard b)
60 60 60 60
50 - 50 50 - 50
40 - 40 40 - - 40
E) g
QSO- - 30 QBO- - 30
7] 5]
20 4 - 20 20 20
10 - 10 10 - 10
0- -0 0- -0
Size 1 Size 2 Size 3 Size 4 Size 5 Size 1 Size 2 Size 3 Size 4 Size 5
Data Set Data Set

B

Peer] Comput. Sci. reviewing PDF | (CS-2019:08:40151:2:1:NEW 15 Jan 2020)

PeerJ Computer Science Manuscript to be reviewed

Figure 8

Comparison of the speedups of the parallel implementations developed on a single GPU
in the Flat zone.

(A) Reqgularly distributed and (B) irregularly distributed.

Original MLS Drﬁmgoml MLS Lancaster's MLS kKNNRBF ‘ Original MLS Orthogonal MLS Lancaster's MLS kNNRBF ‘
kNNAIDW ICNNIDW kNNShepard a kNMShepard b kKNNAIDW [|kNNIDW kNNShepard a kNNShepard b
60 60 60 60
50 - 50 50 4 - 50
40 - 40 40 - 40
£ e
iSU- - 30 §30- - 30
1] L /7]
20+ - 20 20+ - 20
B) lo -lm_m_lm_lm_m_]0
0- Lo 0- Lo
Size 1 Size 2 Size 3 Size 4 Size 5 Size 1 Size 2 Size 3 Size 4 Size 5
Data Set Data Set

B

Peer] Comput. Sci. reviewing PDF | (CS-2019:08:40151:2:1:NEW 15 Jan 2020)

PeerJ Computer Science Manuscript to be reviewed

Figure 9

Comparison of the speedups of the parallel implementations developed on a single GPU
in the Rugged zone.

(A) Reqgularly distributed and (B) irregularly distributed.

Original MLS Oﬂhogonsl MLS Lancaster’s MLS KNNRBF ‘ . Original MLS [JJi] Orthogonal MLS Lancaster’s MLS KNNRBF ‘

kKNNAIDW kNN[DW kNNShepard a kNNShepard b kNNAIDW kNNIDW kN'NSIlepEJd a kNNShepard b

60 60 60 60

50 1 - 50 50 50

40 40 40 - 40
g)
2 30 -30 8 30+ - 30
2 o

20 - 20 204 - 20

R) lﬂm_lﬂm_mmm

i Lo

Size 1 Size 2 Size 3 Size 4 Size 5 Size 1 Size 2 Size 3 Size 4 Size 5
Data Set Data Set

A B

Peer] Comput. Sci. reviewing PDF | (CS-2019:08:40151:2:1:NEW 15 Jan 2020)

PeerJ Computer Science Manuscript to be reviewed

Figure 10

Comparison of the speedups of the parallel implementations developed on multi-GPUs
in the Flat zone.

(A) Reqgularly distributed and (B) irregularly distributed.

Original MLS Orthogonal MLS Lancaster's MLS kNNRBF Original MLS Orthogonal MLS Lancaster’s MLS kNNRBF
KNNAIDW [JKNNIDW KNNShepard a KNNShepard b KNNAIDW KNNIDW KNNShepard a KNNShepard by
60 60

60

50 =50 504 - 50

Speedup
8
1

Size 1 Size 2 Size 3 Size 4 Size 5 Size 1 Size 2 Size 3 Size 4 Size 5
Data Set Data Set

A B

Peer] Comput. Sci. reviewing PDF | (CS-2019:08:40151:2:1:NEW 15 Jan 2020)

PeerJ Computer Science Manuscript to be reviewed

Figure 11

Comparison of the speedups of the parallel implementations developed on multi-GPUs
in the Rugged zone.

(A) Reqgularly distributed and (B) irregularly distributed.

Original MLS i IMLS 's MLS KNNRBF Original MLS hogonal MLS s MLS KNNRBF
KNNAIDW kNNlDW kN‘NShepard a KNNShepard b KNNAIDW kNNI.DW kNN KNNShepard b
60 60

0- 0
Size 1 Size 2 Size 3 Size 4 Size 5 Size 1 Size 2 Size 3 Size 4 Size 5
Data Set Data Set

Peer] Comput. Sci. reviewing PDF | (CS-2019:08:40151:2:1:NEW 15 Jan 2020)

PeerJ Computer Science Manuscript to be reviewed

Figure 12

Comparison of the running time of the parallel implementations developed on multi-
GPUs in the Flat zone.

(A) Reqgularly distributed and (B) irregularly distributed.

Original MLS Orthogonal MLS Lancaster's MLS kNNRBF Original MLS Orthogonal MLS Lancaster’s MLS kNNRBF
KNNAIDW [l KNNIDW kNNShepard a kNNShepard b kNNAIDW [] kNNIDW KNNShepard a kNNShepard bl

1.6x10° 1.6x10% 1.6x10° 1.6x10%
1.4x10° 4 M - 1.4x10° 1.4x10° 4 - 1.4x10°
1.2x10° - 1.2x10° 1.2x10° 4 - 1.2x10°
- 1.0x10° il - 1.0x10° = l.o;uo’-‘ - 1.0x10°
£ £
o 8.0x10% -8.0x10° ¢ 8.0x10° - 8.0x10°
E E]
[= =
6.0x10% - 6.0x10% 6.0x10% - 6.0x10°
4.0x10° 1 - 4.0x10% 4.0x10° 1 - 4.0x10°
2.0x10% |:| H I][Il-z,nxln2 2.0x10% - 2.0x10°
0.0 L 0.0 0.0 - L 0.0
Size 1 Size 2 Size 3 Size 4 Size 5 Size 1 Size 2 Size 3 Size 4 Size 5
Data Set Data Set

A B

Peer] Comput. Sci. reviewing PDF | (CS-2019:08:40151:2:1:NEW 15 Jan 2020)

PeerJ Computer Science

Figure 13

Manuscript to be reviewed

Comparison of the running time of the parallel implementations developed on multi-

GPUs in the Rugged zone.

(A) Reqgularly distributed and (B) irregularly distributed.

Original MLS !Onheaenal MLS Lancaster's MLS

KNNAIDW KNNIDW kNNShepard a kN‘N’Shward b
1.6x10° 1.6x10°
1.4x10° = - 1.4x10°
1.2x10° - 1.2x10°
= 1.0x10° - 1.0x10°
El | !
o 8.0x10% - 8.0x10%
E ;
[_'
6.0x10° - - 6.0x10%
4.0x10% - 4.0x10%
- .JL:_I:IL:_[lll]l]ﬂlw
0.0 4 L 0.0

Size 1 Size 2 Size 3
Data Set

A

Size 4

Size 5

Original MLS
KNNAIDW

Orthogonal MLS
KNNIDW

Elanm'le.SEkNN‘RBF |
*NNShepard 8 KNNShepard b

1.6x10°
1.4x10°
1.2x10°

1.0x10°

Time (ms)

8.0x10° 4
6.0x10%
4.0x10?

2.0x10° 4

0.0 =

Size 1

Peer] Comput. Sci. reviewing PDF | (CS-2019:08:40151:2:1:NEW 15 Jan 2020)

Size 2

Size 3
Data Set

Size 4

Size 5

L6x10°
- 1.4x10°
- 1.2x10°
- 1.0x10°
- 8.0x107
- 6.0x10°
- 4.0x10°

- 2.0x10°

- 0.0

PeerJ Computer Science Manuscript to be reviewed

Figure 14

Frequency distribution of the Relative Error for the parallel implementation developed
on a single GPU in the Flat zone.

(A) Reqgularly distributed and (B) irregularly distributed. The size of data points: Size 1.

6 6
—=—MLS ——MLS
ol =esRBEl o] ~-*- RBF
IDW IDW
44 4
3 4 34
5 %
24 24
14 . 14
LR
04 “e 04
T T 1 1 L Ll I T L T T T T
000 002 004 006 008 010 012 0.14 0.6 0.0 0.1 0.2 0.3 0.4 0.5
Relative Error e (%) Relative Error e (%)

Peer] Comput. Sci. reviewing PDF | (CS-2019:08:40151:2:1:NEW 15 Jan 2020)

PeerJ Computer Science Manuscript to be reviewed

Figure 15

Frequency distribution of the Relative Error for the parallel implementation developed
on a single GPU in the Rugged zone.

(A) Regularly distributed and (B) irregularly distributed. The size of data points: Size 1

6 6
—=—MLS —=—MLS
--e-- RBF --e-- RBF
IDW|| 51 IDW
4 <
%3
2 4
\“ .
N 14 '\
3
T T T] Ll T T T T 0 T T T T T T
00 02 04 06 08 10 12 14 16 18 0 2 4 6 8 10
Relative Error e (%) Relative Error e (%)

Peer] Comput. Sci. reviewing PDF | (CS-2019:08:40151:2:1:NEW 15 Jan 2020)

PeerJ Computer Science Manuscript to be reviewed

Figure 16

Comparison of the running time cost in the kNN search procedure.

(A) Sequential version on single CPU and (B) Parallel version on single GPU.

[Regularly-distributed [0 irregularly-distributed] [Regularly-distributed [0 Irregularly-distributed]
1.2x10* 1.2x10° 8.0x10* 8.0x10°
7.0x10° - - 7.0x10?
1.0x10* - 1.0x10*
6.0x10% - - 6.0x10%
8.0x10° - - 8.0x10° .
E . 5.0x10% - 5.0x10°
‘:E,' 6.0x10° - 6.0x10° o 4.0x10? - - 4.0x10?
= =
3.0x107 - - 3.0x10°
4.0x10% - 4.0x10°
2.0x10° - - 2.0x10°
2.0x10° - 2.0x10° i
1.0x10? - - 1.0x10?
0.0 - i 0.0 -
Flat zone Rugged zone Flat zone Rugged zone
Data set Data set

Peer] Comput. Sci. reviewing PDF | (CS-2019:08:40151:2:1:NEW 15 Jan 2020)

