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ABSTRACT
Scene graph generation (SGG) aims to identify and extract objects from images and
elucidate their interrelations. This task faces two primary challenges. Firstly, the long-
tail distribution of relation categories causes SGG models to favor high-frequency
relations, such as “on” and “in”. Secondly, some subject-object pairs may have
multiple reasonable relations, which often possess a certain degree of semantic
similarity. However, the use of one-hot ground-truth relation labels does not
effectively represent the semantic similarities and distinctions among relations. In
response to these challenges, we propose a model-agnostic method named Mixup
and Balanced Relation Learning (MBRL). This method assigns soft labels to samples
exhibiting semantic ambiguities and optimizes model training by adjusting the loss
weights for fine-grained and low-frequency relation samples. Its model-agnostic
design facilitates seamless integration with diverse SGG models, enhancing their
performance across various relation categories. Our approach is evaluated on widely-
used datasets, including Visual Genome and Generalized Question Answering, both
with over 100,000 images, providing rich visual contexts for scene graph model
evaluation. Experimental results show that our method outperforms state-of-the-art
approaches on multiple scene graph generation tasks, demonstrating significant
improvements in both relation prediction accuracy and the handling of imbalanced
data distributions.
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INTRODUCTION
As computer vision technology progresses, people are no longer content with merely
detecting and recognizing objects within images. Instead, there is a growing desire for a
deeper level of understanding and reasoning about visual scenes. For example, when
presented with an image, it is desirable not only to identify the objects present but also to
generate textual descriptions based on the image content (image captioning) (Yang et al.,
2019; Gu et al., 2019) and to find similar images (image retrieval) (Johnson et al., 2015;
Wang et al., 2020; Wei et al., 2022). Additionally, machines may be expected to explain
what actions are being performed in the image, such as what a little girl is doing (Visual
Question Answering) (Antol et al., 2015; Teney, Liu & van Den Hengel, 2017; Xiao et al.,
2022; Li et al., 2022b). Achieving these tasks requires a more advanced level of
understanding and reasoning in image processing. Scene graphs are precisely such
powerful tools for scene understanding. A scene graph provides a structured
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representation of an image by identifying objects (e.g., “man”, “bike”) as nodes and their
relations (e.g., “riding”) as edges. At present, research related to scene graph generation
(SGG) (Johnson et al., 2015) is increasing rapidly. The SGG task can be divided into two
subtasks: (1) Object detection and classification: Identifying objects in the image and
assigning them to the correct categories; (2) relation prediction: Predicting the relations
between pairs of detected objects.

However, current SGG methods face two main challenges: long-tail distribution (Reed,
2001) and semantic ambiguity (Yang et al., 2021).

Long-tail distribution signifies that a small number of relations account for the majority
of samples, whereas a vast array of relations constitute only a minor portion of the dataset.
As shown in Fig. 1A, relations such as “on” and “in” appear tens of thousands of times in
Visual Genome (Krishna et al., 2017), whereas others like “laying on” and “growing on”
appear merely a few hundred times. As a result, model predictions often favor high-
frequency relations, many of which are trivial and offer limited informational value (e.g.,
“on”, “in”).

Semantic ambiguity signifies that many samples can be described as either general
relation category (e.g., “on”) or an informative one (e.g., “walking on”). Although these
relations are semantically close, their specific meanings vary. As illustrated in Fig. 1B, the
relation between “dog” and “sidewalk” can be described by “on” as well as “walking on”.
Both relations involve one object being above another, hence they are semantically similar.
However, “walking on” implies an act of movement, whereas “on” merely denotes a
position in relation to something else without suggesting any movement. Therefore,
accurately identifying and distinguishing these subtle semantic differences is crucial for
generating accurate scene graphs.

To address the aforementioned challenges, existing unbiased SGG strategies can be
broadly categorized into four main methods: (1) Re-sampling (Dong et al., 2022; Li et al.,
2021): This method involves sampling additional training samples from low-frequency
relations to balance the data distribution. (2) Re-weighting (Yu et al., 2020; Yan et al.,
2020): This method focuses on enhancing the impact of low-frequency relation training
samples in the loss calculation through various weighting strategies. (3) Biased-model-
based (Tang et al., 2020; Chiou et al., 2021): This method aims to distinguish unbiased
predictions within models that have been trained on biased data. (4) Data transfer (Zhang
et al., 2022; Li et al., 2022a): This method involves transferring high-frequency relations to
low-frequency relations and reassigning fine-grained labels to mitigate the unbalanced
distribution of relations. Although these strategies address the challenges of imbalanced
relation distribution and semantic ambiguity to some extent, they inadvertently diminish
accuracy in recognizing high-frequency relations. As a result, this significantly undermines
the overall performance of the model. The primary cause of this phenomenon is that these
strategies treat relation classification as a single-label task, utilizing one-hot vectors that
inadequately capture the semantic similarities and differences among relations. This
representation inadequately captures the semantic similarities and differences, limiting the
SGG model’s learning and reasoning capabilities in complex scenes.
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To address the previously discussed challenges, we propose a novel framework in this
article, termed Mixup and Balanced Relation Learning (MBRL), which can be seamlessly
integrated into existing SGG models. This framework comprises two components: (1)
Mixup relation learning (MRL) generates an enhanced dataset by merging semantically
similar relations found in each subject-object pair into soft labels, thereby guiding the
training process of the model. Unlike one-hot target labels, these soft labels provide a
probabilistic distribution across potential relations. They reflect the degree of similarity
and difference among the relations, allowing the model to more accurately address
semantic ambiguities within the samples. (2) Balanced relation learning (BRL) discerns
fine-grained relation samples using soft label scores and adjusts their weights accordingly.
Simultaneously, BRL also adjusts the weights for those low-frequency relation samples that
do not receive soft labels. Consequently, BRL not only improves the SGG model’s capacity
to discern fine-grained relations but also amplifies its focus on low-frequency relations,
which are easily neglected. Through these strategies, MBRL reduces the impact of
prediction errors and improves the SGG model’s overall performance.

We evaluate our method using widely-used datasets: the Visual Genome dataset and the
Generalized Question Answering dataset (Hudson & Manning, 2019). Given that MBRL is
a model-agnostic debiasing strategy, it seamlessly integrates with various SGG models,
thereby enhancing their performance. Extensive ablations and results on multiple SGG
tasks and backbones have shown the effectiveness and generalization ability of MBRL.

In summary, our contributions are as follows:
(1) We introduce a novel model-agnostic method called MBRL, designed to assign soft

labels to samples exhibiting semantic ambiguities, thereby enriching the dataset.
Concurrently, MBRL enhances the efficacy of model training through adjusting the loss
weights for both fine-grained and low-frequency relation samples.

(2) We conducted evaluations of our method using the Visual Genome and the
Generalized Question Answering datasets, which significantly enhanced the performance

Figure 1 Examples of long-tail distribution and semantic ambiguity in visual genome dataset. Image
credit: the Visual Genome dataset archive at https://homes.cs.washington.edu/~ranjay/visualgenome/.

Full-size DOI: 10.7717/peerj-cs.2639/fig-1
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of benchmark models. The results demonstrate that MBRL can enable these models to
achieve a satisfactory trade-off in performance between different relations.

RELATED WORKS
Scene graph generation
SGG is dedicated to transforming visual images into semantic graph structures, thereby
playing a critical role in merging vision and language. Early methods such as VTransE
(Zhang et al., 2017) focused on identifying objects and relations using separate networks,
overlooking the wealth of contextual information. Subsequently, iterative message passing
(IMP) (Xu et al., 2017) introduced an iterative message-passing mechanism to refine object
and relation features, highlighting the substantial role contextual information plays in
enhancing relation prediction accuracy. Motifs (Zellers et al., 2018) emphasizes the critical
importance of contextual interplay among objects, utilizing BiLSTM to disseminate
contextual data effectively. Similarly, Transformer (Tang et al., 2020) captures rich
contextual representations of objects by encoding features through self-attention layers. To
address the challenges posed by noisy information during message passing, VCTree (Tang
et al., 2019) proposes a tree-structured method to efficiently leverage global contexts
among objects. Additionally, KERN (Chen et al., 2019) attempts to incorporate prior
knowledge into SGG models to improve the precision of relation predictions. Nonetheless,
these methods overlook the long-tail distribution in data, resulting in a propensity for
predictions to favor high-frequency relations. Such relations tend to be less informative,
thereby constraining the utility of these models for downstream tasks.

Unbiased scene graph generation
Unbiased scene graph generation methods aim to rectify the prediction biases stemming
from the long-tail distribution of data, with a particular focus on enhancing the model’s
performance across various relations. They can be broadly classified into four categories:
re-sampling (Dong et al., 2022; Li et al., 2021), re-weighting (Yu et al., 2020; Yan et al.,
2020), biased-model-based (Tang et al., 2020; Chiou et al., 2021), and data transfer (Zhang
et al., 2022; Li et al., 2022a). Stacked hybrid-attention and group collaborative learning
(SHA+GCL) (Dong et al., 2022) employs a median re-sampling strategy, adjusting the
sample rates to balance the training sets according to the median relation count within
each classification space. Bipartite graph neural network (BGNN) (Li et al., 2021) utilizes a
bi-level re-sampling method to achieve a balance in data distribution during the training
phase. CogTree (Yu et al., 2020) leverages semantic relations across different categories to
devise a loss function that rebalances the weights. Predicate-correlation perception
learning (PGPL) (Yan et al., 2020) dynamically identifies appropriate loss weights by
recognizing and leveraging relation category correlations. TDE (Tang et al., 2020)
calculates the difference between the original and counterfactual scenes to remove context
bias, ensuring unbiased scene graph generation. Dynamic label frequency estimation
(DLFE) (Chiou et al., 2021) dynamically estimates label frequencies by maintaining a
moving average of biased probabilities, allowing the model to recover unbiased
probabilities.

Zhong et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2639 4/20

http://dx.doi.org/10.7717/peerj-cs.2639
https://peerj.com/computer-science/


Although these methods alleviate bias and improve low-frequency relations
performance, they often compromise high-frequency relations performance and neglect
the semantic ambiguity inherent in visual relations. Recent works (Zhang et al., 2022;
Li et al., 2022a) argue that semantic ambiguity could be alleviated if there is a reasonable
and sound dataset. IETrans (Zhang et al., 2022) introduces an Internal and External Data
Transfer method to achieve the transfer of high-frequency to low-frequency relations and
the relabeling of relations for unannotated samples. NoIsy label correction (NICE) (Li
et al., 2022a) redefines SGG as a noisy label learning issue, presenting a strategy for noisy
labels correction aimed at bias mitigation. It effectively cleanses noisy dataset annotations
to equalize the data distribution.

These methods treat relation classification as a single-label problem and use one-hot
target labels to train the relation classifier in SGG models. In one-hot target labels, each
relation is represented as a binary vector where only one relation is set to 1 (indicating the
target relation), and all other relations are set to 0. This method is highly effective for clear
and mutually exclusive classification tasks. However, it fails to capture the nuances in
scenes with semantic ambiguities, where relations are not mutually exclusive. In contrast,
soft labels assign a probability to each relation, indicating the likelihood that the sample
belongs to each relation and revealing the subtle differences between them. Our proposed
method improves upon this by generating a training label distribution that considers
semantic similarities and differences between relations. This method achieves balanced
performance across both high-frequency and low-frequency relations in the model.

Label smoothing and label confusion
Label smoothing (Szegedy et al., 2016) is a regularization technique designed to prevent
overly confident predictions on training examples. It achieves this by mixing one-hot label
vectors with a uniform noise distribution. However, this method of generating soft labels,
primarily by introducing noise, fails to capture the semantic ambiguity within samples.
Label confusion learning (Guo et al., 2021) was proposed for text classification tasks,
introducing a label confusion model that calculates the similarity between instances and
labels during training. This model generates a probability distribution, superseding the
traditional one-hot label vectors. In addition, label semantic knowledge distillation (LS-
KD) (Li et al., 2023) dynamically generates soft labels for each subject-object pair by
merging the model’s relation label prediction distribution with the original one-hot labels.
However, the prevailing long-tail distribution skews the model’s predictions towards more
frequent relations, making it challenging to generate soft labels that accurately reflect the
differences between relations. In contrast to these methods, we measure the similarity and
differences between relations by calculating the amount of information for each relation.
This method ensures that the generated soft labels more accurately reflect the similarities
and differences between relations, leading to improved model performance and better
handling of low-frequency relations.
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METHOD
This section offers a detailed outline of our method. In standard SGG pipelines, objects are
first detected, followed by the prediction of relations between them. Our proposed MBRL
framework is specifically designed for the relation prediction stage.

Figure 2 illustrates the overall process of the MBRL framework. Initially, training
samples are input into a pre-trained SGG model to obtain the relational probability
distribution for each sample. Subsequently, for each category of relational triplets, the MRL
module aggregates the relational probability distributions of corresponding samples and
discerns relations that are semantically close to the ground-truth label. It then allocates soft
labels to samples with the same subject-object pairs that exhibit relations semantically
close to the ground-truth label. In this way, MRL generates an enhanced training dataset.
Finally, the BRL module identifies fine-grained relation samples through soft label scores
and modifies their loss weights during the training of the SGG model. It also adjusts the
loss weights of low-frequency relation samples that have not been assigned soft labels.

Figure 2 The pipeline of MBRL. (A) MRL: for each relation triplet ðcs; r�; coÞ, the MRL module identifies triplets with semantic similarities and
assigns soft labels to them. (B) BRL: for all samples, the BRL module identifies fine-grained and low-frequency relation triplets, adjusting their loss
weights accordingly. Image credit: the Visual Genome dataset archive at https://homes.cs.washington.edu/~ranjay/visualgenome/.

Full-size DOI: 10.7717/peerj-cs.2639/fig-2
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Problem definition
The task of SGG is to construct a scene graph G for a given image I 2 RH�W�3. This graph
G comprises a set of objects O ¼ fðbi; ciÞgNo

i¼1 and a set of relation triplets

E ¼ fðsi; ri; oiÞgNe
i¼1, collectively denoted as G ¼ ðO;EÞ. Each object in O, represented by

ðbi; ciÞ, includes an object bounding box bi 2 R4 and an object category ci, which is part of
the pre-defined object category set C. Furthermore, each relational triplet ðsi; ri; oiÞ is
composed of a subject si 2 O, an object oi 2 O, and a relation ri between them, where ri is a
member of the predefined set of relation categories R.

Mixup relation learning
To tackle semantic ambiguity, the Mixup relation learning (MRL) module enriches the
dataset by allocating soft labels to samples of relation triplets that exhibit semantic
ambiguities. These soft-labeled samples are subsequently employed in the training of SGG
models.

Following Zhang et al. (2022), we first identify confusion pairs as semantically similar
relation pairs, since informative relation categories are easily confused with general ones.
Specifically, for each relation triplet category ðcs; r�; coÞ, we use a pre-trained baseline
model to predict relation labels of all samples belonging to ðcs; r�; coÞ in the training set,
and average their score vectors. Subsequently, relations with a predicted score higher than
that of the ground-truth relation are regarded as semantically similar to the ground-truth
relation r�. This is formalized as Rsim ¼ frijpri > pr�g, where pri is the predicted score for
the i-th relation and pr� denotes the predicted score for the ground truth relation r�. Based
on this, we collect all samples in the training set satisfying Eq. (1):

Tsim ¼ fðsj; rj; ojÞ j ðcsj ¼ csÞ ^ ðrj 2 RsimÞ ^ ðcoj ¼ coÞg (1)

where ^ denotes the logical conjunction operator. We quantify the information contained
in r� and rj within the subject-object pair. Soft labels are then assigned to all samples in Tsim

based on the proportion of information content between rj and r�, replacing the original
one-hot labels rj.

To achieve this, we use an attraction factor (Zhang et al., 2022) to calculate the amount
of information contained in the relation within each relational triplet, as defined in Eq. (2):

Aðcs; r�; coÞ ¼ Nðcs; r�; coÞP
ci;cj2C Iðci; r�; cjÞ � Nðci; r�; cjÞ (2)

where Nðcs; r�; coÞ denotes the number of samples of the relation triplet ðcs; r�; coÞ within
the training set, and Iðci; r�; cjÞ indicates whether the triplet category ðci; r�; cjÞ exists in the
training set. Iðci; r�; cjÞ returns 1 if the relation triplet ðci; r�; cjÞ is present in the training
set, and 0 otherwise. A higher Aðcs; r�; coÞ indicates that the relation triplet is relatively
more unique or carries more information within the entire dataset. This is because it
represents a larger proportion among all triplets with relation r�. Based on this, we assign
the relation r� from ðcs; r�; coÞ to each relation triplet in Tsim. Specifically, for each relation
triplet ðsj; rj; ojÞ in Tsim, we compute its semantic similarity to the target relation r� and
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generate the corresponding soft labels rsof tj and rsof t� by normalization. These two soft labels
represent the similarity between rj and r�, as defined in Eqs. (3) and (4):

rsof tj ¼ Aðcs; rj; coÞ
Aðcs; rj; coÞ þ Aðcs; r�; coÞ (3)

rsof t� ¼ Aðcs; r�; coÞ
Aðcs; rj; coÞ þ Aðcs; r�; coÞ (4)

The denominator represents the total amount of information contained in the two
relations, r� and rj, within the same subject-object context. The resulting quotient produces
a score that falls within the range of 0 to 1, reflecting their semantic similarity and
differences. Higher scores indicate greater similarity, while lower scores indicate significant
differences. Next, soft labels rsof t� and rsof tj are assigned to all samples in Tsim. However, not
all samples receive soft labels. As the confusion matrix in Fig. 3 shows, the relation “flying

Figure 3 Confusion matrix for the motifs model in the VG training set, featuring “plane” as both the
subject and the object. Full-size DOI: 10.7717/peerj-cs.2639/fig-3

Zhong et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2639 8/20

http://dx.doi.org/10.7717/peerj-cs.2639/fig-3
http://dx.doi.org/10.7717/peerj-cs.2639
https://peerj.com/computer-science/


in” is not incorrectly assigned to other categories. This indicates that “flying in” is
distinctive enough to be clearly identifiable, thus making soft labeling unnecessary and
potentially misleading for such unique cases.

Balanced relation learning
In this module, our objective is to address the challenges presented by the long-tail
distribution by modifying the loss weights for each fine-grained and low-frequency
relation sample. Fine-grained relations usually offer more specific and detailed
information than coarse-grained relations, thus possessing greater informational value in
numerous contexts. To effectively differentiate between these two types of relations and
utilize this distinction to improve model performance, we set a threshold h. Soft label
scores that exceed h are considered fine-grained relations. Upon classifying a relation as
fine-grained, we adjust its loss weight by applying the loss balancing hyperparameter a,
ensuring that these relations receive appropriate attention and emphasis during the model
training process. During training, we adjust the cross-entropy loss to accommodate soft
label training, as defined in Eq. (5):

Lsof t ¼ �
XN
i¼1

wir
sof t
i logðpiÞ (5)

where N denotes the total number of relation categories, rsof ti represents the score of the
i-th relation category in the soft label, pi indicates the prediction probability of the i-th
relation category, and wi is the weight assigned to each relation label. The weight wi as
defined in Eq. (6):

wi ¼ a; if rsof ti � h
1; otherwise

�
: (6)

In model training, low-frequency relations that appear in only a small number of
samples are often neglected, which can result in these relations receiving less emphasis
during the learning process. Nevertheless, these low-frequency relations may carry unique
and valuable information that contributes to the model’s overall performance. In the MRL
module, not all low-frequency relation samples are assigned soft labels. To ensure that all
low-frequency relation samples are given adequate consideration during training, we apply
the loss balancing hyperparameter a to adjust the loss weights for these single-label
samples, as defined in Eq. (7):

Lsingle ¼ �a
XN
i¼1

logðpiÞri (7)

where r adopts a one-hot representation, meaning
PN

i¼1 ri ¼ 1 and ri ¼ 1 for the correct
relation category, which denotes the ground-truth relation.

In order to handle both soft-labeled and single-labeled samples effectively, we compute
the total loss by combining the individual losses for each type of sample. The final total loss
function as seen in Eq. (8):
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Ltotal ¼
�PMsof t

msof t¼1

PN
i¼1 wir

sof t
i logðpðmsof tÞ

i Þ �PMsingle

msingle¼1 a
PN

i¼1 logðp
ðmsingleÞ
i ÞrðmsingleÞ

i

� �
Msof t þMsingle

: (8)

Here, Msof t and Msingle represent the total number of soft-labeled and single-labeled
samples, respectively.

EXPERIMENTS
In this section, we describe the experimental framework, including datasets, tasks,
evaluation metrics, and implementation details. The effectiveness and generalization
ability of the proposed method are then demonstrated through comparisons with various
baseline models across different SGG datasets. We follow with ablation studies to evaluate
the impact of each component and discuss the choice of hyperparameters. Finally,
visualizations illustrate the method’s ability to enhance the model’s accuracy.

Experimental settings
Visual Genome dataset
Experiments were conducted on the Visual Genome (VG) dataset, comprising 108k
images, 75k objects, and 37k relations. Following previous work (Li et al., 2021; Yu et al.,
2020; Xu et al., 2017; Zellers et al., 2018; Tang et al., 2020), the widely-used VG150 split (Xu
et al., 2017) was selected, encompassing the most frequent 50 relation categories and 150
object categories. Additionally, based on Li et al. (2021), relations were classified into three
categories according to the number of samples in the training set: head (greater than 10k),
body (0.5k to 10k), and tail (less than 0.5k). The VG150 dataset’s allocation was 70% for
training, 30% for testing, with 5k training images reserved for validation.

Generalized Question Answering dataset
Another dataset utilized in our experiments is the Generalized Question Answering
(GQA) dataset, designed for vision-language tasks and featuring over 3.8 million relation
annotations across 1,704 object categories and 311 relation categories. We conducted
experiments on the GQA200 split (Dong et al., 2022), which consists of the Top-200 object
categories and Top-100 relation categories. Similarly to VG150, the GQA200 dataset’s
allocation was 70% for training, 30% for testing, with 5k training images reserved for
validation.

Tasks
Following previous work (Xu et al., 2017; Zellers et al., 2018; Tang et al., 2020), we evaluate
our method on three conventional tasks: (1) Predicate classification (PredCls) predicts the
relations between objects given their labels and bounding boxes. (2) Scene graph
classification (SGCls) predicts object categories and the relations between them, given
bounding boxes. (3) Scene graph detection (SGDet) predicts object categories and the
relations between them, starting with detecting object bounding boxes in images. In our
experiments, the MRL module utilizes a pre-trained SGG model from the PredCls task to
generate an enhanced dataset. The SGG model is then trained on this enhanced dataset for
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each of the three tasks (PredCls, SGCls, SGDet) separately, with the BRL module adjusting
loss weights during training. This approach ensures that the improvements in relation
prediction are carried over to all tasks.

Metrics
Following previous works (Li et al., 2021; Zhang et al., 2022; Li et al., 2022a), we use
Recall@K (R@K), mean Recall@K (mR@K), and a composite metric called mean as our
evaluation metrics. R@K calculates the percentage of top-K confidently predicted relation
triplets that match the ground-truth. The formula is defined as:

R@K ¼ jG \ XK j
jGj (9)

where G represents the set of ground-truth triplets, and XK represents the top-K predicted
triplets. This metric measures the percentage of ground-truth relations that are successfully
retrieved in the top K predictions. In contrast, mR@K calculates R@K for each individual
relation category and subsequently computes the average R@K across all relation
categories. The formula is defined as:

mR@K ¼ 1
jR0j

X
r2R0

jGðrÞ \ XKðrÞj
jGðrÞj (10)

where R0 is the subset of relation categories present in the ground truth triplets, GðrÞ and
XKðrÞ are the ground truth and predicted triplets for relation r, respectively. This metric
ensures that rare relations are not overshadowed by common ones. However, optimizing
based solely on mR@K may cause the model to overemphasize low-frequency relations
while neglecting more prevalent relations. Though theoretically promoting a balanced
performance distribution, this method may not accurately evaluate the model’s ability to
identify more common and essential real-world relation categories. Therefore, we adopt
the mean metric, which averages the R@K and mR@K scores, to provide a more balanced
evaluation of performance.

Implementation details
Following previous work (Dong et al., 2022; Li et al., 2021; Zhang et al., 2022; Tang et al.,
2020), we adopted a pre-trained Faster R-CNN with ResNeXt-101-FPN provided by Tang
et al. (2020) as the object detector, which was trained on the VG dataset. For MBRL,
parameters h and a were empirically set to 0.95 and 5, respectively, after exhaustive
experimentation demonstrated these values consistently yielded optimal performance
outcomes. Table 1 shows the specific parameter settings. Other training settings follow
(Zhang et al., 2022). All experiments are conducted on an A5000 GPU.

Compared methods
To prove its performance, we compare it with state-of-the-art methods. These include
classic feature- and relation-based models like motifs (Zellers et al., 2018) and VTransE
(Zhang et al., 2017), more structurally complex approaches like Transformer (Tang et al.,
2020) and VCTree (Tang et al., 2019), and knowledge-augmented models such as KERN
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(Chen et al., 2019). Additionally, we evaluate against recent unbiased SGG methods,
including SHA+GCL (Dong et al., 2022), BGNN (Li et al., 2021), and PCPL (Yan et al.,
2020), which aim to address data bias challenges and improve generalization. Given the
model-agnostic nature of our framework, we further compare it with other model-agnostic
methods like group collaborative learning (GCL) (Dong et al., 2022), total direct effect
(TDE) (Tang et al., 2020), DLFE (Tang et al., 2020), CogTree (Yu et al., 2020), IETrans
(Zhang et al., 2022), and NICE (Li et al., 2022a), to illustrate its seamless integration
capability and performance improvements.

Comparison with state-of-the-art methods
VG150
Table 2 shows the comparison results of motifs combined with our MBRL. From the
results, the enhancements in mR@K and mean metrics demonstrate that our method
improves the model’s capacity to identify a broader range of relations. While MBRL shows
a reduction in the R@100 metric (from 66.9 to 58.3 for PredCls), the decrease can be

Table 1 Experimental settings for object detectors and SGG models.

Model Dataset Batch size Learning rate Optimizer Momentum Additional parameters

Faster R-CNN with ResNeXt-101-FPN GQA 8 8� 10�3 SGD 0.9

Faster R-CNN with VGG16 VG 8 8� 10�3 SGD 0.9

Motifs, VCTree VG, GQA 12 0.12 SGD 0.9 Faster R-CNN with ResNeXt-101-FPN

Motifs, VCTree VG 12 0.012 SGD 0.9 Faster R-CNN with VGG16

Transformer VG, GQA 16 0.008 SGD 0.9 Faster R-CNN with ResNeXt-101-FPN

Transformer VG 16 0.008 SGD 0.9 Faster R-CNN with VGG16

Table 2 Performance (%) comparison of different methods on the VG150 dataset. Bold entries indicate the best results.

Model PredCls SGCls SGdet

R@50/100 mR@50/100 Mean R@50/100 mR@50/100 Mean R@50/100 mR@50/100 Mean

BGNN 59.2/61.3 30.4/32.9 46.0 37.4/38.5 14.3/16.5 26.7 31.0/35.8 10.7/12.6 22.5

PCPL 50.8/52.6 35.2/37.8 44.1 27.6/28.4 18.6/19.6 23.6 14.6/18.6 9.5/11.7 13.6

VTransE 65.7/67.6 14.7/15.8 41.0 38.6/39.4 8.2/8.7 23.7 29.7/34.3 5.0/6.1 18.8

KERN 65.8/67.6 17.7/19.2 42.6 36.7/37.4 9.4/10.0 23.4 27.1/29.8 6.4/7.3 17.7

SHA+GCL 35.1/37.2 41.6/44.1 39.5 22.8/23.9 23.0/24.3 23.5 14.9/18.2 17.9/20.9 18.0

Motifs 64.9/66.9 15.0/16.4 40.8 38.0/38.9 8.7/9.3 23.7 31.0/35.1 6.7/7.7 20.1

+GCL 42.7/44.4 36.1/38.2 40.4 26.1/27.1 20.8/21.8 24.0 18.4/22.0 16.8/19.3 19.1

+CogTree 35.6/36.8 26.4/29.0 32.0 21.6/22.2 14.9/16.1 18.7 20.0/22.1 10.4/11.8 16.1

+IETrans 53.0/55.0 30.3/33.9 43.1 32.9/33.8 16.5/18.1 25.3 25.4/29.3 11.5/14.0 20.1

+NICE 55.1/57.2 29.9/32.3 43.6 33.1/34.0 16.6/17.9 25.4 27.8/31.8 12.2/14.4 21.6

+DLFE 52.5/54.2 26.9/28.8 40.6 32.3/33.1 15.2/15.9 24.1 25.4/29.4 11.7/13.8 20.1

+TDE 46.2/51.4 25.5/29.1 38.1 27.7/29.9 13.1/14.9 21.4 16.9/20.3 8.2/9.8 13.8

+MBRL 56.4/58.3 33.7/37.2 46.4 33.6/34.4 19.7/21.4 27.3 27.2/31.5 13.3/16.1 22.0
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attributed to MBRL’s emphasis on learning fine-grained and infrequent relations. This
trade-off is intentional: our method aims to distribute the model’s learning capacity more
evenly across all relations, rather than overfitting to the head relations that dominate
R@100 scores. As a result, our approach effectively mitigates the common bias towards
head relations, leading to a more balanced and comprehensive scene graph generation.
Moreover, our method can also be adapted to different baseline models with various object
detector backbones, with their PredCls results reported in Table 3. We have applied our
method to three popular baseline models: motifs, Transformer, and VCTree. The baseline
models feature various architectural designs: Motifs utilizes the conventional LSTM
structure, VCTree utilizes a tree structure, and Transformer utilizes self-attention layers.
Additionally, VCTree combines both reinforcement learning and supervised training.
Despite the diversity in model architectures and training methods, our method
consistently enhances all models’ performance on the mR@50/100 and the mean metrics.
The main cause is that through our proposed MBRL, the performance of body and tail
relations is significantly enhanced, while the performance of head relations experiences
fewer drops.

GQA200
We also applied MBRL to the more complex GQA200 dataset, as shown in Table 4. From
the results, it is validated that MBRL significantly enhances the model’s performance on
the mR@K metric while keeping the reductions in R@K scores relatively modest, resulting
in optimal overall performance on the mean metric. For example, the mean scores of
Motifs+MBRL for the three tasks are 44.7, 22.7, and 20.5, respectively. This proves the
generalization capabilities of MBRL across various data distributions.

Table 3 Performance (%) of our method applied to three different baseline models with various object detector backbones for the PredCls task
on the VG150 dataset. Bold entries indicate the best results.

Backbone SGG model PredCls

R@50/100 mR@50/100 Mean Head mR@100 Body mR@100 Tail mR@100

ResNeXt-101-FPN Motifs 64.9/66.9 15.0/16.4 40.8 66.8 14.1 2.5

+MBRL 56.4/58.3 33.7/37.2 46.4 58.4 34.4 33.0

Transformer 63.5/65.5 18.4/20.0 41.8 65.4 19.3 6.2

+MBRL 54.6/56.6 32.1/36.1 44.8 57.6 32.6 32.6

VCTree 64.7/66.6 17.2/18.7 41.8 66.7 18.4 3.8

+MBRL 56.4/58.1 34.7/38.3 46.9 58.3 34.5 35.5

VGG16 Motifs 64.4/66.6 14.5/16.0 40.3 66.0 13.5 2.4

+MBRL 56.3/58.2 33.1/37.0 46.2 58.5 34.3 32.7

Transformer 62.0/64.2 15.6/16.9 39.7 62.7 16.1 3.2

+MBRL 54.8/56.8 33.8/37.9 45.9 57.7 34.8 34.6

VCTree 64.8/66.9 17.1/18.8 41.9 66.3 17.2 5.3

+MBRL 56.1/57.9 33.9/37.5 46.3 58.8 33.7 34.3
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Ablation studies
MBRL consists of two components: Mixup relation learning (MRL) and balanced relation
learning (BRL). As shown in Table 5, we evaluate the impacts of each component of
MBRL, which is based on Motifs, in the PredCls task on the VG150 dataset. From the
results, we observe that MRL significantly improves the performance in terms of mR@50/
100 metric and mean metrics. This demonstrates the effectiveness of MRL in accurately
classifying certain coarse-grained relations into their corresponding fine-grained ones.
Furthermore, BRL contributes more significantly to improvements in Tail R@100 metric
compared to MRL, indicating that BRL plays a crucial role in predicting diverse tail
relations. This method effectively protects the learning of tail relation samples and reduces
the impact on head relation samples.

Hyperparameter analysis
Influence of h
We investigate the impact of different thresholds h, ranging from 0.75 to 1, on model
performance. As shown in Fig. 4, the R@100 metric shows an increasing trend as the value
of h increases. Before h reaches 0.95, the mR@100 metric remains relatively stable,
suggesting that the model maintains consistent performance across tail relations. Once h
exceeds 0.95, the mR@100 metric significantly decreases. Therefore, based on the results of
the mean metrics, we select 0.95 as the optimal threshold.

Influence of a
We experiment with different a values from 2 to 9 to assess the effect of the loss balancing
hyperparameter on the model’s performance. As shown in Fig. 5, an increase in the value

Table 5 Ablation studies on each component of MBRL. Bold entries indicate the best results.

MRL BRL PredCls

R@50/100 mR@50/100 Mean Head mR@100 Body mR@100 Tail mR@100

64.9/66.9 15.0/16.4 40.8 66.8 14.1 2.5

✓ 58.5/60.3 30.7/33.9 45.9 60.0 33.3 26.2

✓ ✓ 56.4/58.3 33.7/37.2 46.4 58.4 34.4 33.0

Table 4 Performance (%) comparison of different methods on the GQA200 dataset. Bold entries indicate the best results.

Model PredCls SGCls SGdet

R@50/100 mR@50/100 Mean R@50/100 mR@50/100 Mean R@50/100 mR@50/100 Mean

SHA+GCL 42.7/44.5 41.0/42.7 42.7 21.4/22.2 20.6/21.3 21.4 14.8/17.9 17.8/20.1 17.7

VTransE 55.7/57.9 14.0/15.0 35.7 33.4/34.2 8.1/8.7 21.1 27.2/30.7 5.8/6.6 17.6

VCTree 63.8/65.7 16.6/17.4 40.9 34.1/34.8 7.9/8.3 21.3 28.3/31.9 6.5/7.4 18.5

Motifs 65.3/66.8 16.4/17.1 41.4 34.2/34.9 8.2/8.6 21.5 28.9/33.1 6.4/7.7 19.0

+GCL 44.5/46.2 36.7/38.1 41.4 23.2/24.0 17.3/18.1 20.7 18.5/21.8 16.8/18.8 19.0

+MBRL 55.5/57.2 31.9/33.9 44.7 28.8/29.6 15.9/16.6 22.7 25.0/28.7 12.6/15.8 20.5
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of a results in a decline in the performance of head relations, while simultaneously
enhancing the performance of tail relations. Once the hyperparameter a exceeds 5, the
model begins to overfit on tail relations, resulting in diminishing performance gains for
these categories. Therefore, based on the mean metric results, the optimal value for a is
determined to be 5.

Visualization results
To demonstrate the effectiveness of our proposed MBRL in accurately identifying relations,
we visualize several PredCls examples generated from motifs (with a purple background)
and motifs combined with our proposed MBRL (with a blue background) in Fig. 6.
Comparing the results of the Motifs, we find that our method can detect more fine-grained
relations, such as “walking on”, “eating”, “growing on”, and “laying on”. MBRL effectively
mitigates ambiguity issues and reduces prediction errors in relation recognition by enabling
the model to discern subtle differences among relations. Thus, over-confident predictions of
head relations under a long-tail distribution can be alleviated to some extent. To illustrate
the discriminatory capabilities of MBRL against semantically similar relations, we present

Figure 4 Influence of h on our method. The results are based on the use of motifs for the PredCls task on the VG150 dataset.
Full-size DOI: 10.7717/peerj-cs.2639/fig-4

Figure 5 Influence of a on our method. The results are based on the use of motifs for the PredCls task on the VG150 dataset.
Full-size DOI: 10.7717/peerj-cs.2639/fig-5
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the PredCls results of Motifs+MBRL in Fig. 7. Observations indicate that Motifs+MRL leads
to enhancements in most relations. However, for challenging predictions, such as “flying in”
and “mounted on”, Motifs+MRL is susceptible to errors due to the long-tail distribution.
Conversely, BRL significantly bolsters the model’s ability to distinguish between fine-

Figure 6 Visualization results of motifs (with a purple background) and motifs + MBRL (with a blue background) for the PredCls task.
Relations colored in red represent errors, meaning they are not ground-truth relations. Conversely, relations colored in green are correct, indi-
cating that they match the ground-truth relations. Image credit: the Visual Genome dataset archive at https://homes.cs.washington.edu/~ranjay/
visualgenome/. Full-size DOI: 10.7717/peerj-cs.2639/fig-6

Figure 7 Comparison of Recall@100 among motifs, motifs+MRL, and motifs+MBRL for each relation category of the PredCls task on the
VG150 dataset. The frequencies of relations decrease from left to right. Full-size DOI: 10.7717/peerj-cs.2639/fig-7
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grained and infrequent relations. These results demonstrate that our proposed MBRL can
enhance scene graph generation by generating more reasonable relations.

CONCLUSION
In this article, we introduce the MBRL framework designed to mitigate semantic ambiguity
and address the long-tail distribution challenges in SGG. Our method enhances the
training data by assigning soft labels to samples with semantic ambiguity and optimizes
model performance through adjustment of loss weights for fine-grained and low-
frequency relation samples. MBRL effectively mitigates the bias towards frequently
occurring but less informative relations. Moreover, the model-agnostic design of MBRL
allows seamless integration with various SGG architectures, including motifs,
Transformer, and VCTree, independent of their underlying object detector backbones.
However, MBRL focuses primarily on relation prediction and does not directly address
imbalances in object category distributions, which could affect overall scene
understanding. To overcome these limitations, future work will extend MBRL to address
object category imbalances, aiming for robustness in both object detection and relation
prediction under long-tail distributions. Finally, we plan to explore the application of
MBRL in downstream tasks, such as image caption generation and visual question
answering, to further demonstrate its versatility.
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