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ABSTRACT
Background. Brightness-mode (B-mode) ultrasound is a valuable tool to non-
invasively image skeletal muscle architectural changes during movement, but auto-
matically tracking muscle fascicles remains a major challenge. Existing fascicle tracking
algorithms either require time-consuming drift corrections or yield noisy estimates
that require post-processing. We therefore aimed to develop an algorithm that tracks
fascicles without drift and with low noise across a range of experimental conditions and
image acquisition settings.
Methods. We applied a Kalman filter to combine fascicle length and fascicle angle
estimates from existing and openly-available UltraTrack and TimTrack algorithms
into a hybrid algorithm called UltraTimTrack. We applied the hybrid algorithm to
ultrasound image sequences collected from the humanmedial gastrocnemius of healthy
individuals (N = 8, four women), who performed cyclical submaximal plantar flexion
contractions or remained at rest during passive ankle joint rotations at given frequencies
and amplitudes whilst seated in a dynamometer chair. We quantified the algorithm’s
tracking accuracy, noise, and drift as the respective mean, cycle-to-cycle variability, and
accumulated between-contraction variability in fascicle length and fascicle angle. We
expected UltraTimTrack’s estimates to be less noisy than TimTrack’s estimates and to
drift less than UltraTrack’s estimates across a range of conditions and image acquisition
settings.
Results. The proposed algorithm yielded low-noise estimates like UltraTrack and was
drift-free like TimTrack across the broad range of conditions we tested. Over 120
cyclical contractions, fascicle length and fascicle angle deviations of UltraTimTrack
accumulated to 2.1 ± 1.3 mm (mean ± sd) and 0.8 ± 0.7 deg, respectively. This
was considerably less than UltraTrack (67.0 ± 59.3 mm, 9.3 ± 8.6 deg) and similar
to TimTrack (1.9 ± 2.2 mm, 0.9 ± 1.0 deg). Average cycle-to-cycle variability of
UltraTimTrack was 1.4 ± 0.4 mm and 0.6 ± 0.3 deg, which was similar to UltraTrack
(1.1 ± 0.3 mm, 0.5 ± 0.1 deg) and less than TimTrack (3.5 ± 1.0 mm, 1.4 ± 0.5 deg).
UltraTimTrack was less affected by experimental conditions and image acquisition
settings than its parent algorithms. It also yielded similar or lower root-mean-square
deviations from manual tracking for previously published image sequences (fascicle
length: 2.3–2.6 mm, fascicle angle: 0.8–0.9 deg) compared with a recently-proposed
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hybrid algorithm (4.7 mm, 0.9 deg), and the recently-proposed DL_Track algorithm
(3.8 mm, 3.9 deg). Furthermore, UltraTimTrack’s processing time (0.2 s per image)
was at least five times shorter than that of these recently-proposed algorithms.
Conclusion. We developed a Kalman-filter-based algorithm to improve fascicle
tracking from B-mode ultrasound image sequences. The proposed algorithm provides
low-noise, drift-free estimates of muscle architectural changes that may better inform
muscle function interpretations.

Subjects Computational Biology, Computer Vision
Keywords Medial gastrocnemius, Muscle architecture, Fascicle length, Ultrasound imaging,
Ankle dynamometry, B-mode ultrasonography, Optical flow, Hough transform, Pennation angle,
Muscle contraction

INTRODUCTION
Brightness-mode (B-mode) ultrasonography, or ultrasound, is a non-invasive method
for looking under the skin to image the human body’s tissues, which can be applied to
study skeletal muscle function during movement (Rutherford & Jones, 1992; Fukunaga
et al., 2001). During passive movements and active muscle contraction, ultrasound can
be used to visualize the connective tissue around muscle fascicles—bundles of muscle
fibers—and their changes in length and orientation. Fascicle length and angle affect a
muscle’s force potential (Azizi, Brainerd & Roberts, 2008; Bohm et al., 2019) and metabolic
energy expenditure (Joumaa & Herzog, 2013; van der Zee, Lemaire & van Soest, 2019;
van der Zee & Kuo, 2021; Beck et al., 2022), thereby affecting movement performance
and economy (Fletcher & MacIntosh, 2017; Swinnen et al., 2021; Schwaner et al., 2024).
Consequently, quantifying fascicle length and angle changes is important for improving our
understanding of in vivomuscle-tendon function (Cronin & Lichtwark, 2013). Recent years
have hence seen an increase in algorithms to automate muscle ultrasound image analysis
and fascicle tracking, which had previously been limited by the laborious and subjective
nature of manual labelling (van Hooren, Teratsias & Hodson-Tole, 2020). However, existing
fascicle tracking algorithms are still error prone and have limitations that prevent complete
automatization (Ritsche et al., 2024). It would thus be helpful to develop an algorithm that
automatically and robustly tracks muscle architectural changes from ultrasound image
sequences to more quickly and easily interpret muscle-tendon function during movement.

Optical flow is a commonly used method to track muscle fascicles in a ‘semi-automated’
manner (Gillett, Barrett & Lichtwark, 2013). Optical-flow-based algorithms such as
UltraTrack (Farris & Lichtwark, 2016) make a best guess (i.e., least-squares approximation)
of the apparent motion between consecutive ultrasound images to track muscle fascicles
(Farris & Lichtwark, 2016; Drazan, Hullfish & Baxter, 2019). This method is relatively
insensitive to the speckle noise present in ultrasound images because comparing two
consecutive frames effectively removes common noise. However, small tracking errors can
occur in each frame, because of image brightness changes or variable local pixel motion.
Integrated over many frames, these tracking errors accumulate, causing fascicle length
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and fascicle angle estimates to ‘drift’ away from their original values (Magana-Salgado
et al., 2023). To correct for this drift, additional information (e.g., timing of external
forces) is required. Additionally, if there is substantial motion between consecutive frames,
manual corrections are required to avoid underestimation of fascicle length and fascicle
angle changes. Fascicles also need to be defined before tracking, which is typically done via
manual labelling. Consequently, while the noise insensitivity of optical-flow-basedmethods
is an important advantage for tracking small fascicle displacements (e.g., those that occur
during healthy postural sway (Day et al., 2017)) over a few frames, drift sensitivity and
manual labelling requirements limit their accuracy, objectivity, repeatability, and time
effectiveness in other conditions (e.g., large fascicle displacements during locomotion).

Unlike optical-flow-based methods, line-detection-based and artificial-intelligence
(AI)-based methods attempt to automatically identify line segments in individual muscle
ultrasound images. Line-detection-based algorithms such as TimTrack (van der Zee &
Kuo, 2022) analyse each ultrasound image independently, making them insensitive to drift
(Zhou & Zheng, 2008; Rana, Hamarneh & Wakeling, 2009; Zhou et al., 2012; Zhou, Chan &
Zheng, 2015; Marzilger et al., 2018; Ryan et al., 2019; Seynnes & Cronin, 2020; van der Zee
& Kuo, 2022). However, because similarities and differences between consecutive images
are not considered, these methods are sensitive to the speckle noise present in ultrasound
images. Similarly, recently-proposed AI-based algorithms (Bao et al., 2023; Ritsche et al.,
2024; Yuan et al., 2024) also analyse each image independently, yielding noisier estimates
compared with optical-flow-based methods (Ritsche et al., 2024). Both line-detection-
based and AI-based algorithms thus yield relatively noisy estimates of muscle architectural
changes during movement that require low-pass filtering within a trial or averaging over
multiple trials. Consequently, while line-detection-based and AI-based methods achieve
high degrees of automation favoring objectivity, repeatability, and time effectiveness, their
sensitivity to noise reduces tracking accuracy and usability. This may explain why recent
biomechanical studies (e.g., Swinnen et al., 2024; van Hooren et al., 2024; Beck, Schroeder
& Sawicki, 2024; Raiteri, Lauret & Hahn, 2024; Farris et al., 2024) still use UltraTrack for
tracking muscle architectural changes during movement, despite its manual labelling
requirements and drift sensitivity.

Here, we propose to leverage the key advantages and overcome the main limitations
of existing fascicle tracking algorithms by combining existing techniques into a new
Kalman-filter-based fascicle tracking algorithm. We chose Kalman filtering (Kalman,
1960) because it is a popular sensor-fusion method that has been successfully employed to
correct drift (e.g., Lee & Jung, 2009) and reduce noise (e.g., Alfian, Ma’arif & Sunardi, 2021)
in robotics and other fields. The proposed algorithm combines estimates from a noise-
insensitive, but drift-sensitive, optical flow method (i.e., Kanade-Lucas-Tomasi optical
flow (Lucas & Kanade, 1981; Shi & Tomasi, 1994)) with drift-free, but noise-sensitive,
line-detection methods (i.e., object detection and Hough-transform methods (Duda &
Hart, 1972)) to yield improved estimates of muscle architectural changes (Fig. 1). We
re-used and modified open-source code from existing UltraTrack (Farris & Lichtwark,
2016) and TimTrack (van der Zee & Kuo, 2022) algorithms, and therefore coined the
proposed algorithm ‘UltraTimTrack’. The proposed algorithm and its parent algorithms
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Figure 1 Overview of the UltraTimTrack algorithm. Left panel: Sequence of Brightness-mode (B-
mode) ultrasound images. Middle panel: UltraTimTrack algorithm consists of an UltraTrack module, a
TimTrack module, and a Kalman filter. First, the TimTrack module detects lines in the image
corresponding to either aponeuroses or fascicles. The UltraTrack module then defines feature points
near TimTrack’s detected lines and calculates the optical flow that captures the displacement of these
points between the current and previous image. Optical flow and detected lines are input to the Kalman
filter. In each i-th iteration, the change in estimated state is obtained from optical flow to yield an a-priori
estimate, which is updated with detected lines in proportion to a Kalman gain K to yield an a-posteriori
estimate. State estimates yield estimates of the tracked fascicle and its length L and angle with the deep
aponeurosis ϕ. Right panel: Tracked muscle fascicle and aponeuroses displayed on the original images.

Full-size DOI: 10.7717/peerjcs.2636/fig-1

were tested on various B-mode ultrasound image sequences collected from the left-sided
medial gastrocnemius muscle of healthy human participants. The proposed algorithm
was also applied to two previously collected ultrasound image sequences from the human
tibialis anterior and medial gastrocnemius muscles and compared with two recently-
proposed algorithms. One of these algorithms considers a hybrid method that combines
optical-flow-based and line-detection-based algorithms (Verheul & Yeo, 2023), but lacks a
Kalman filter (here referred to as HybridTrack) and the other is the AI-based DL_Track
algorithm (Ritsche et al., 2024). We expected UltaTimTrack to be noise-insensitive like
optical-flow-based algorithms, and to be drift-free like line-detection-based and AI-based
algorithms. Portions of this manuscript were previously published as part of a preprint
(https://doi.org/10.1101/2024.08.07.607010).

METHODS
Synopsis
We developed a Kalman-filter-based fascicle tracking algorithm that combines tracking
estimates from existing and openly-available algorithms to yield improved estimates
of muscle fascicle length and fascicle angle changes during movement. The proposed
UltraTimTrack algorithm was evaluated using ultrasound image sequences collected
from the left-sided medial gastrocnemius muscle of healthy young adults during cyclical
submaximal voluntary fixed-end plantar flexion contractions at various frequencies with
varying activation levels, as well as during passive ankle rotations at various angular
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velocities. We first describe the algorithm before discussing the experimental methods,
expected outcomes and statistics.

Proposed algorithm
To improve the accuracy of the proposed UltraTimTrack algorithm, we first modified one
of its parent algorithms as discussed immediately below. We then describe the Kalman
filter, followed by the graphical user interface.

Parent algorithms of UltraTimTrack
The proposed algorithm has UltraTrack and TimTrack modules (Fig. 1), which are based
on the corresponding original algorithms. However, notable modifications were made to
UltraTrack to improve its fascicle tracking performance. Firstly, the UltraTrack module of
UltraTimTrack employs Kanade-Lucas-Tomasi optical flow (Shi & Tomasi, 1994), while
the original UltraTrack algorithm (Farris & Lichtwark, 2016) employs Lucas-Kanade optical
flow (Lucas & Kanade, 1981). Themain difference is that Kanade-Lucas-Tomasi only tracks
‘good feature points’ that can be tracked well (in our case, corner points), which improves
tracking accuracy while reducing computational cost. The Kanade-Lucas-Tomasi method
has been used in more recent optical-flow-based fascicle tracking algorithms (e.g., Drazan,
Hullfish & Baxter, 2019), including later and improved, but non-peer-reviewed, versions of
UltraTrack (Bakenecker et al., 2022; Raiteri, Lauret & Hahn, 2024; Tecchio, Raiteri & Hahn,
2024). Similar to these versions, MATLAB’s (MathWorks, Inc., Natick, MA, USA) built-in
detectMinEigenFeatures, the PointTracker and estimateGeometricTransform2D functions
were used to detect feature points and compute optical flow with an affine transformation
type, respectively. Optical flow parameters were set to values used in themost recent version
of UltraTrack (Raiteri, Lauret & Hahn, 2024). Secondly, unlike any previous UltraTrack
version, the UltraTrack module of UltraTimTrack separately computes optical flow for
fascicles and aponeuroses. It leverages TimTrack’s detection of fascicle and aponeurosis
locations to more precisely identify feature points that are specific to these structures. More
specifically, it uses the TimTrack module to identify superficial- and deep-aponeurosis
locations within user-specified regions (default: 5-30% and 30-70% of vertical image
range, with 0% referring to the top of the cropped ultrasound image). With the region of
interest (ROI) type (Fig. 2) set to ‘Hough-local’ (default), feature points are then selected
in distinct, local fascicle regions that are based on TimTrack’s detected fascicle locations.
These fascicle regions are rectangles of fixed width (default: 10 pixels), centered around
the locations of the most frequently occurring lines (default: 10) detected by TimTrack.
Alternatively, ROI type can be set to ‘Hough-global’ to allow feature points to be detected
within the whole ROI between aponeuroses. In both cases, regions outside the middle
portion (default: 80%) of the overall region between TimTrack’s aponeuroses are excluded
to avoid detecting feature points on aponeuroses, like in an existing algorithm (Drazan,
Hullfish & Baxter, 2019). A fixed number of feature points is selected within the remaining
fascicle region (default: 300) using MATLAB’s built-in selectStrongest function.
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Figure 2 Graphical user interface of the UltraTimTrack algorithm.Users can inspect the tracked fas-
cicle in the current ultrasound image, along with the fascicle length and fascicle angle estimates from the
entire sequence. The analyzed image indicates the tracked fascicle (red line), superficial aponeurosis (blue
line), deep aponeurosis (green line), and their respective feature points (red plus symbols). The aponeu-
roses are detected within specified regions (shaded blue and green areas to the left of the image). Users can
specify the settings (top left column) and run the algorithm (bottom left column) for either the entire im-
age sequence (Process all) or just the current frame (Detect fascicle). Settings are explained in the main
text.

Full-size DOI: 10.7717/peerjcs.2636/fig-2

Kalman filter
We now briefly describe the Kalman filter and then discuss how it was applied to track
muscle fascicles. The reader is referred to other literature for a more detailed description
of Kalman filters (Kalman, 1960), summarized in Article S1.

A Kalman filter considers the state (vector) z of a dynamical system at time i. It assumes
that the current state (vector) zi depends on state-transition model A, control-input model
B, the previous state (vector) zi−1, the current input ui, and the current process noise wi:

zi=Azi−1+Bui+wi. (1)

The process noise wi is unknown, and assumed to be drawn from a zero-mean normal
distribution with variance Qi. Because the process noise wi is unknown, state zi cannot be
computed directly. Instead, the Kalman filter can predict state zi, and update this prediction
using a measurement z̃i to yield an optimal state estimate ẑi.

In the proposed implementation, state zi is obtained through time-integrating a rate-
based input ui. Thus, the modelled system is an integrator, with the state-transition model
A equal to unity and the control-input model B equal to the time difference between i and
i−1.

States and measurements The proposed fascicle tracking algorithm performs Kalman
filtering on both aponeuroses and fascicles. For aponeuroses, the states are the vertical
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(y) positions of the superficial (S) and deep (D) aponeuroses at the left (L) and right (R)
image boundaries (i.e., SL,y , SR,y , DL,y , DR,y). For the fascicle, the states are the fascicle
orientation (α, with respect to the horizontal) and the horizontal (x) position of a point
p on the fascicle (px). For both aponeuroses and the fascicle, UltraTrack’s optical flow
is treated as input u, and TimTrack’s line detection is treated as the measurement z̃ . An
a priori state estimate is obtained by applying UltraTrack to the previous state estimate
(equivalent to Azi−1+Bu), which is then updated using TimTrack to yield an a posteriori
state estimate. More specifically, aponeurosis locations and the fascicle orientation are
updated with TimTrack’s aponeurosis location estimates and fascicle orientation estimate,
respectively. The fascicle point estimate is updated using a constant that is equal to that
defined in the first frame. Finally, a Rauch-Tung-Striebel smoother (Rauch, Striebel &
Tung, 1965) is applied to smooth the state estimates (see Article S1 for details).

Fascicle and aponeurosis locations The vertical positions of the superficial aponeurosis,
deep aponeurosis, and fascicle can be computed from the states and expressed as functions
of horizontal (x) position, yielding S(x), D(x) and F (x), respectively:

S(x)= SL,y+
SR,y−SL,y

r
x (2)

D(x)=DL,y+
DR,y−DL,y

r
x (3)

F (x)= py+ tan(α)(x−px). (4)

Here, r is the image width and py is the vertical position of point p (Table 1 for symbol
definitions).

Fascicle tracking estimates Two main fascicle tracking estimates are derived from the
proposed method: (1) fascicle angle φ and (2) fascicle length L. Here, we define fascicle
angle φ as the angle of the fascicle relative to the straight-line projection of the deep
aponeurosis in the ultrasound image. First, the superficial and deep attachment points
[sx ,sy ] and [dx ,dy ] are found by solving F (x)= S(x) and F (x)=D(x), respectively. Next,
these attachment points are combined with the aponeurosis locations to compute fascicle
angle φ (i.e., with respect to the deep aponeurosis) and fascicle length L:

L=
√(

sy−dy
)2
+(sx−dx)2 (5)

φ= atan
(
sy−dy
sx−dx

)
−atan

(
DR,y−DL,y

r

)
. (6)

For UltraTrack, the second term of Eq. (6) was set to 0 because UltraTrack requires
additional inputs to track aponeuroses.

Noise estimation To determine the Kalman gain (see Article S1), the process noise and
measurement noise covariances need to be estimated. The measurement noise covariance
reflects the uncertainty in TimTrack’s line detection, which is affected by image (speckle)
noise. We estimated the covariance of this noise by taking the variance of the high-pass
filtered TimTrack aponeurosis locations and fascicle orientations, using a second-order
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Table 1 Variables of the UltraTimTrack algorithm.

Symbol Type Meaning

SL,y State Vertical position of the superficial aponeurosis at the left image boundary
SR,y State Vertical position of the superficial aponeurosis at the right image boundary
DL,y State Vertical position of the deep aponeurosis at the left image boundary
DR,y State Vertical position of the deep aponeurosis at the right image boundary
α State Fascicle orientation with respect to the horizontal
px State Horizontal position of the fascicle point p
py Constant Vertical position of the fascicle point p
r Constant Image width
sx Variable Horizontal position of the superficial fascicle attachment point
sy Variable Vertical position of the superficial fascicle attachment point
dx Variable Horizontal position of the deep fascicle attachment point
dy Variable Vertical position of the deep fascicle attachment point
L Variable Fascicle length
φ Variable Fascicle angle with respect to the deep aponeurosis

dual-pass Butterworth filter (default cut-off frequency fc : 2 Hz). The measurement noise
covariance of the horizontal position of the fascicle point p reflects how well the initial
position value reflects the instantaneous position value. A large covariance allows more
movement of this point, but at the cost of more drift (default: 1000 pixels). Considering
that optical flow is most accurate for small displacements, the process noiseQ was assumed
to increase with the square of the optical flow input u:

Qi= cu2i . (7)

The proportionality constant c is unknown, and it is chosen through trial-and-error
(default: 0.01). We later report on a sensitivity analysis on the effect of parameter c on
tracking accuracy.

Initial state estimate The initial state estimate ẑ1 is automatically determined by evaluating
the TimTrack module on a user-defined number of stationary initial frames (default: 1).
The initial state estimate ẑ1 equals the mean TimTrack module estimate over these initial
frames. Initial frames must be stationary (e.g., at a steady-state passive or active muscle
force during no muscle length change). If no stationary frames are available, the initial
state estimate ẑ1 should be determined based on the first frame only.

Graphical user interface
UltraTimTrack has a similar graphical user interface (GUI) as UltraTrack (Fig. 2). It
displays the current ultrasound image and the tracked muscle fascicle, alongside the
estimated fascicle lengths and fascicle angles from the image sequence. The algorithm can
be started using the ‘‘Process all’’ button and reset using the ‘‘Clear’’ button. The ‘‘Detect
fascicle’’ button detects a single fascicle from the current image, and the ‘‘Process folder’’
button allows all videos in a specified folder to be processed. Settings include the frame
rate and resolution (obtained from the video file), and the image depth to scale pixels
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to mm (note that if a TVD file is converted to an MP4 file using the provided function,
TVD2ALL.m, this information is stored in a MAT file and automatically loaded along
with the video). The image resolution can be optionally decreased with a specified factor
(‘‘Resolution reduction’’) to speed up TimTrack. Under Processing, the user can specify the
estimated optical flow process noise covariance parameter c (see ‘‘Noise estimation’’), the
cut-off frequency of the high-pass filtering, the superficial attachment point measurement
noise covariance, and the number of stationary frames (see ‘‘Initial state estimate’’). The
‘‘SA’’ button performs a sensitivity analysis on process noise covariance parameter c . Under
‘‘Options’’, the user can also check whether to perform parallel processing to speed up
computation, and whether to flip the image about its middle vertical axis. Currently, only
forward tracking from the first frame of the image sequence is supported.

Experimental methods
To test the UltraTimTrack algorithm, ultrasound images from the left-sided medial
gastrocnemius muscle of healthy human participants were collected during various active
and passive conditions performed within a dynamometer setup.

Participants
Wecollected data fromhealthy young adults (N = 8, fourwomen, age= 26± 3 years, height
= 174 ± 6 cm, weight = 70 ± 7 kg) during ankle plantar flexion contractions of various
speeds, various hold durations, and submaximal voluntary intensities. Participants were
included based on the following criteria: age 18-45 years, no pre-existing neuromuscular
conditions, and no injuries of the lower extremity in the last six months. The latter
was determined by a standardised questionnaire that was approved by the Local Ethics
Committee. Participants provided written informed consent prior to their voluntary
participation in the experiment. The experiment was approved by the Ethics Committee
of the Faculty of Sport Science at Ruhr University Bochum (reference: EKS V 19/2022).

Experimental setup
Participants were seated in a dynamometer chair (IsoMed2000, D&R Ferstl GmbH,
Berlin, Germany), with the sole of their left foot flush against the footplate attachment
of a motorized dynamometer while their left knee was extended. Their left foot had an
attachment above it that was padded to limit forefoot movement. A figure of eight strap
around the footplate attachment and participant’s lower shank was used to avoid heel lift.
The back of the dynamometer chair was reclined to an angle of about 60 deg to avoid
stretch of the hamstring muscles.

Net ankle joint torque and crank-arm angle were measured using the dynamometer
and sampled at 2 kHz using a 16-bit analog-to-digital converter (Power1401-3, Cambridge
Electronic Design Ltd., Cambridge, UK) with a ±5 V input range, and data collection
software (Spike2, 10.10 64-bit version, Cambridge Electronic Design Ltd).

The left-sided medial gastrocnemius muscle was imaged using a linear, flat, 128-element
ultrasound transducer (LV8-5N60-A2, Telemed Medical Systems srl, Milan, Italy) that
was attached to a PC-based ultrasound beamformer (ArtUS EXT-1H, Telemed Medical
Systems, Milan, Italy). Ultrasound images were captured with a 60 × 50 mm (width
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× depth) field of view at frame rates ranging from 33 images s−1 to 100 images s−1.
Image collection was synchronized with the collection of torque and crank-arm angle, as
previously described (Raiteri, Lauret & Hahn, 2024; Tecchio, Raiteri & Hahn, 2024).

The activity of the following four lower leg muscles was recorded using surface
electromyography (EMG): medial gastrocnemius, lateral gastrocnemius, soleus, and
tibialis anterior. EMG signals were recorded using a NeuroLog system (NL905, Digitimer
Ltd., Welwyn Garden City, UK). EMG signals were recorded at 2 kHz and synchronised
using the previously described analog-to-digital converter and data collection software.

Experimental procedure
Before performing the experiment, participants were prepared for the EMG and ultrasound
measurements. First, we located the muscly belly borders of the left-sided medial
gastrocnemius using ultrasound. To improve sound wave transmission, ultrasound gel was
applied over the participant’s skin. The desired location of the ultrasound transducer over
the muscle belly was marked using a red permanent marker. Generally, the ultrasound
transducer was placed over the most prominent bulge of the muscle. Next, the EMG
electrodes were placed over the skin covering the four muscles of interest according to
SENIAM guidelines (Hermens et al., 2000). For the medial gastrocnemius, the location
was shifted medially or laterally in case it overlapped with the desired location of the
ultrasound transducer. For each of the four muscles, an area of about 3-4 cm2 was shaved,
exfoliated and disinfected before electrode placement. EMG electrodes were placed with
an interelectrode center-to-center distance of 2 cm following SENIAM recommendations
(Hermens et al., 2000). Next, the ultrasound transducer was secured to the lower leg using
a custom-made case and self-adhesive bandage. Then the dynamometer chair was set up,
and the dynamometer axis of rotation was aligned to the participant’s ankle joint axis of
rotation (estimated as the transmalleolar axis) during a 50% MVC contraction at 0 deg
plantar flexion (i.e., sole of foot perpendicular to shank). Movement of the dynamometer
footplate was restricted to occur within the participant’s ankle joint range of motion using
both electrical and mechanical stops. After set-up was complete, participants were asked
to perform the three distinct experimental conditions described below.

Experimental conditions
The experiment involved three distinct types of conditions: (1) ∼3-s duration maximal
voluntary fixed-end contractions (MVCs) of plantar flexion and dorsiflexion at 0 deg
plantar flexion; (2) ten prolonged (80 s) bouts of submaximal cyclical fixed-end plantar
flexion contractions at different rates at 0 deg plantar flexion, and; (3) passive ankle joint
rotations over a 50 deg range of ankle angles at different velocities.

During the MVCs, the participants were verbally encouraged by the experimenter to
push or pull with the ball or top of their foot as hard as possible for at least 3 s. After
each MVC, participants rested for at least two minutes. For the plantar flexion MVCs, this
procedure was repeated until the maximal torque of the subsequent contractions differed
by less than 5%, or until five contractions were performed, whichever came first. Following
the plantar flexion MVCs, participants performed at least one dorsiflexion MVC.
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During the prolonged submaximal cyclical contractions, participants were asked to
match their net ankle joint plantar flexion torque to a visually displayed torque target for a
duration of 80 s in six sub-conditions. In four of those conditions, the target was to ramp
up and down from 0% MVC to 50% MVC, with a 1-sec hold phase at 50% MVC. Three
of these four ramp-and-hold conditions had a symmetric target trace that differed in ramp
rate (20% MVC ·s−1, 33% MVC ·s−1 and 100% MVC ·s−1). The fourth ramp-and-hold
condition involved a different ramp rate up (20% MVC·s−1) versus down (the instruction
was to relax as fast as possible). Each ramp-and-hold condition was repeated once to allow
for two ultrasound image qualities to be assessed, which resulted in at least eight prolonged
contraction bouts. So-called ‘‘high’’ and ‘‘low’’ quality images were obtained with line
density software settings of high and standard S, respectively. To reduce the chance of
fatigue, participants were given at least two minutes of rest between bouts. The order in
which ramp-and-hold conditions were performed was randomized across participants. In
the remaining two conditions, the target trace was a sinusoid with a frequency of 1.5 Hz that
was not repeated (only a high-image quality was used), which resulted in two prolonged
contraction bouts. These two sinusoidal conditions differed in their torque range (0-20%
MVC and 10-20% MVC) and their order of completion was randomized.

Following the cyclical contractions, participants were asked to sit still and relax while the
experimenter triggered the dynamometer to passively rotate their foot eight times over 50
deg within the participant’s ankle joint range of motion. Three passive rotation conditions
were performed, each at a different angular velocity in a randomized order: 5 deg·s−1,
30 deg·s−1, and 120 deg·s−1. The corresponding maximum and minimum ankle angles
were 41.6 ± 7.8 deg, 41.6 ± 7.9 deg and 41.7 ± 7.8 deg plantar flexion, and 5.9 ± 6.8 deg,
5.9 ± 6.7 deg and 6.0 ± 6.8 deg dorsiflexion (mean ± sd across participants).

Data processing
Torque and crank-arm angle were low-pass filtered using second-order dual-pass
Butterworth filters (fc = 10 Hz). EMG data were band-pass filtered (fc = 30–500 Hz)
(Hof & van den Berg, 1981), rectified and then low-pass filtered (fc = 10 Hz), again using
a second-order dual-pass Butterworth filter. The filtered EMG data were normalized with
respect to the corresponding maximum value obtained during the MVC trials. Finally,
filtered torque, angle and EMG data were resampled to a frequency of 100 Hz.

Expected outcomes
Comparison with UltraTrack and TimTrack
UltraTimTrack was compared with UltraTrack and TimTrack algorithms as available
from open-access GitHub repositories (i.e., https://github.com/brentrat/UltraTrack_v5_3
and https://github.com/timvanderzee/ultrasound-automated-algorithm, respectively).
Combining the experimental conditions allowed us to investigate the effect of three factors
on fascicle tracking estimates: (1) sequence duration; (2) image-to-image dissimilarity, and;
(3) image quality. UltraTrack was expected to be sensitive to sequence duration, as drift
accumulates over time. UltraTrack was also expected to be sensitive to image-to-image
dissimilarity, because optical flow assumes a small displacement between consecutive
images (Al-Qudah & Yang, 2023). TimTrack was expected to be primarily affected by
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image quality because its sensitivity to noise implies that it may perform better on high-
quality images. UltraTimTrack’s Kalman filter was expected to exploit UltraTrack’s and
TimTrack’s complementary dependencies. Specifically, UltraTimTrack was expected to be
less sensitive to sequence duration and to image-to-image dissimilarity than UltraTrack,
and less sensitive to image quality than TimTrack. We used default values for all algorithm
parameters, except for a resolution reduction of 2.

Outcome measures We estimated tracking accuracy, noise, and drift using a combination
of objective measures and comparisons with manual labelling.

Overall variability. Fascicle tracking estimates (i.e., fascicle lengths and fascicle angles)
from each contraction cycle were resampled as a percentage of contraction cycle (1%
spacing). Overall variability was estimated as the mean standard deviation of fascicle
tracking estimates across contraction cycles:

Overall variability =

∑M
j=1

√∑N
i=1

(
fi,j−f j

)2
N

M
. (8)

Here, fi,j is the fascicle tracking estimate (either fascicle length or fascicle angle) of the
ith contraction cycle and the jth resampled point, f j is the cycle-average fascicle tracking
estimate of the jth resampled point, N is the number of contraction cycles, and M is
the number of resampled points (set to 101, for 1% spacing). A portion of this overall
variability reflects ‘true’ variability (e.g., due to torque-matching inaccuracies during
cyclical contractions), with the remainder due to tracking errors of the algorithm. The
difference in overall variability provides an estimate of algorithm error when comparing
algorithms on the same ultrasound image sequences. Overall variability should increase
with both drift and noise of each algorithm’s estimates.

We used a different variability measure for the passive ankle rotations because the
cycle time and number of cycles were variable. We binned each fascicle tracking estimate
into 1-degree joint angle bins and computed the standard deviation for each bin. Overall
variability was defined as the average of these standard deviations among joint angle bins.

Cycle-to-cycle variability. The difference in estimates between two consecutive contraction
cycles was determined for each resampled point and for each pair of consecutive cycles,
yielding a two-dimensional difference matrix δ (M -by-[ N -1]). Cycle-to-cycle variability
of each algorithm’s tracking estimates was quantified using the standard deviation of
the cycle-to-cycle difference in fascicle tracking estimates, and averaged over contraction
cycles:

Cycle-to-cycle variability =
N−1∑
i=1

√∑M
j=1(δi,j−δi)2

M

N −1
. (9)

Here, δi,j is the difference in fascicle tracking estimates of the jth resampled point within
the ith cycle pair, and δi is the average difference across resampled points of the ith cycle
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pair. Because this measure only compares two consecutive contraction cycles, it does not
capture the drift that happens over longer time scales. Instead, it mostly reflects noise and
is less affected by drift.

Cumulative deviation. Cumulative deviation of the tracking estimates was quantified using
the cumulative rectified mean cycle-to-cycle difference of each algorithm’s fascicle tracking
estimates. Cumulative deviation was evaluated at the final contraction cycle:

Cumulative deviation =

√√√√√(N−1∑
i=1

δi

)2

. (10)

As this measure only compares the mean difference between contraction cycles, it does
not reflect noise over short time scales (i.e., within a cycle). Instead, it mostly reflects drift
and is less affected by noise.

Comparison to HybridTrack and DL_Track
We also compared the tracking accuracy and processing time of UltraTimTrack with that
of two recently-proposed ultrasound tracking algorithms: HybridTrack (Verheul & Yeo,
2023) and DL_Track (Ritsche et al., 2024). Unlike UltraTrack and TimTrack, the more
recent HybridTrack and DL_Track algorithms have not yet been compared to manual
tracking estimates across a large range of image sequences. It is therefore unclear how their
algorithm parameters would need to be adjusted to yield the best tracking accuracy for
a given image sequence. We thus chose to test UltraTimTrack against these algorithms
on the image sequences of the accompanying publications, for which parameter values
had been tuned by their developers. The selected image sequences were from the human
tibialis anterior (Verheul & Yeo, 2023) and the medial gastrocnemius (Ritsche et al., 2024).
We compared tracking estimates from all three algorithms with estimates from manual
observers (N = 3) for a subset of images. For the tibialis anterior, 100 equidistantly-spaced
images in the sequence (i.e., every 6th image) were selected. For the medial gastrocnemius,
84 equidistantly-spaced images in the sequence (i.e., every 2nd image) were selected.
Custom MATLAB code was used to manually track selected images in sequential order.
Manual observers had several years of training and experience in ultrasonography and
manual tracking. Agreement with manual tracking was quantified using the root-mean-
square deviation (RMSD) between algorithm and manual estimates. Processing time was
also compared between algorithms, and a sensitivity analysis was performed on the effect
of the unknown process noise covariance parameter c . We used default values for all
algorithm parameters, except for a process noise covariance parameter c of 0.001.

Statistics
We evaluated fascicle tracking noise and drift for algorithm estimates from the 0-20%
MVC sinusoidal trial using cycle-to-cycle variability and cumulative deviation measures,
respectively. These measures were statistically compared between algorithms using paired
t-tests withHolm-Bonferroni corrections (Holm, 1979) for comparingmultiple algorithms.
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Linear mixed-effects regression models were used to test effects of sequence duration,
image-to-image dissimilarity, and image quality, using algorithm type as a fixed effect and
participants as a random effect to account for between-participant differences. The effect
of sequence duration was tested by comparing overall variability from the 10th contraction
cycle to overall variability from the final contraction of the sinusoidal trials. The effect of
image-to-image dissimilarity was tested by comparing the change in overall variability with
(1) a larger torque range during sinusoidal trials, (2) faster ramp rates during symmetric
ramp-and-hold trials, and (3) faster rotation rates during passive trials. The effect of image
quality was tested by comparing overall variability between low- and high-image quality
sequences of the ramp-and-hold trials. These effects were tested by including fixed effects
for cycle number and torque range (sinusoidal trials), ramp rate and image quality (ramp-
and-hold trials), and rotation rate (passive trials) and their interaction with algorithm
type in the linear mixed-effects regression models. These regressions were performed with
MATLAB’s fitlme function, using default settings (including Cholesky parameterization
and maximum likelihood estimation) and parameters. Results are provided as mean ±
standard deviation (sd), with sd referring to between-participants variability unless stated
otherwise.

RESULTS
Participants produced an average ankle plantar flexion MVC torque of 114.5 ± 47.7 N·m
at 0 deg plantar flexion, and produced mean torques similar to the mean target torques
(Table S1) in the sinusoidal trials and ramp-and-hold trials (Fig. 3). Muscle activity
changed cyclically over time (Fig. S1), similarly to torque (Table S1). As expected during
the sinusoidal trials, UltraTrack’s estimates drifted, TimTrack’s estimates were noisy, while
UltraTimTrack’s estimates were insensitive to both drift and noise (Fig. 3A). Similar results
were obtained from the ramp-and-hold (Fig. 3B) and passive trials (Fig. 4).

UltraTimTrack’s estimates had lower or similar cycle-to-cycle variability and cumulative
deviation compared with estimates of TimTrack and UltraTrack (Fig. 5). Cycle-to-cycle
variability of UltraTimTrack’s fascicle length and fascicle angle estimates (1.4 ± 0.4 mm
and 0.6 ± 0.3 deg, respectively) was smaller (p= 0.001 and p= 0.002, paired t-tests with
Holm-Bonferroni corrections) than TimTrack’s (3.5 ± 1.0 mm and 1.4 ± 0.5 deg), but
not different (p= 0.082 and p= 0.195) from UltraTrack’s (1.1 ± 0.3 mm and 0.5 ± 0.1
deg). UltraTimTrack’s cumulative deviation of fascicle length and angle estimates during
0-20% MVC sinusoidal contractions (2.1 ± 1.3 mm and 0.8 ± 0.7 deg) was smaller
(p= 0.018 and p= 0.028, respectively) than UltraTrack’s (67.0 ± 59.3 mm and 9.3 ±
8.6 deg), but not different (p= 0.623 and p= 0.476) from TimTrack’s (1.9 ± 2.2 mm
and 0.9 ± 1.0 deg). Unlike its parent algorithms, UltraTimTrack’s estimates had both low
cycle-to-cycle variability and low cumulative deviation, indicating insensitivity to noise
and drift, respectively.

Overall variability of fascicle tracking estimates from UltraTimTrack was generally
comparable to or lower than that of its parent algorithms, and less sensitive to sequence
duration, image-to-image dissimilarity, and image quality (Fig. 6). For sinusoidal trials,
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Figure 3 Typical example of active plantar flexion torques and fascicle tracking estimates during si-
nusoidal trials and ramp-and-hold trials. In both types of trials, participants produced cyclical torques
at given frequencies and ranges for a duration of 80 s (first 8 s shown). Produced torque (green solid line)
resembled the desired torque (grey dashed line). TimTrack (red), UltraTrack (blue) and the proposed Ul-
traTimTrack (purple) algorithms yielded estimates of fascicle length and fascicle angle. (A) Sinusoidal tri-
als with a large torque range (left) and a small torque range (right). UltraTrack’s drift was most apparent
for the fascicle length output during the large torque range trial (indicated with a double-sided arrow).
TimTrack’s noisiness for both fascicle tracking estimates was apparent throughout. UltraTimTrack’s fas-
cicle tracking estimates were low-noise and drift-free. (B) Ramp-and-hold trials with different ramp rates
(slow, moderate, fast, asymmetric). UltraTrack’s fascicle angle estimates appear offset because UltraTrack
does not consider the angle of the aponeurosis; TimTrack’s estimates were noisy. MVC, Maximal Volun-
tary Contraction.

Full-size DOI: 10.7717/peerjcs.2636/fig-3
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Figure 4 Typical example of passive plantar flexion torques and fascicle tracking estimates during pas-
sive rotation trials. Columns show trials with different passive rotation rates (slow, moderate, and fast).
Participants relaxed while the experimenter rotated their left ankle joint through its range of motion (first
16 s shown). TimTrack (red), UltraTrack (blue) and the proposed UltraTimTrack (purple) algorithms
yielded estimates of fascicle length and fascicle angle. UltraTrack’s fascicle angle estimates were offset be-
cause UltraTrack does not consider the angle of the aponeurosis; TimTrack’s estimates were noisy.

Full-size DOI: 10.7717/peerjcs.2636/fig-4

UltraTimTrack was less sensitive to both the sequence duration and image-to-image
dissimilarity than UltraTrack, as indicated by significant interaction effects between cycle
number and torque rangewith algorithm type on fascicle length and fascicle angle variability
(linear mixed-effects regression with repeated measures, Table 2). For sinusoidal trials,
UltraTimTrack had lower overall variability than TimTrack as indicated by independent
effects of algorithm, but there were no significant interactions with algorithm type (Table 3).
For symmetric ramp-and-hold trials, UltraTimTrack was less sensitive to image-to-image
dissimilarity thanUltraTrack, as indicated by interactions between ramp rate and algorithm
type on overall variability (Table 2). There was no significant interaction between image
quality and algorithm type on overall variability, which indicates that UltraTimTrack and
UltraTrack had a similar sensitivity to image quality. For ramp-and-hold trials and in
comparison to TimTrack, UltraTimTrack had lower overall variability as indicated by
independent effects of algorithm, but was more sensitive to both image quality for fascicle
length estimates and to image-to-image dissimilarity for fascicle angle estimates (Table
3). For the asymmetric ramp trial, UltraTimTrack had a lower fascicle length and angle
variability than both UltraTrack (Table 2) and TimTrack (Table 3), with no differences
in sensitivity to image quality (Tables 2–3). For the passive rotation trials, UltraTimTrack
was less sensitive to image-to-image dissimilarity than UltraTrack for fascicle length and
angle estimates (Table 2). UltraTimTrack had lower overall variability than TimTrack
for passive trials, but there was no significant difference in sensitivity to image-to-image
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Fascicle length Fascicle angle

Figure 5 Noise and drift of UltraTimTrack, UltraTrack and TimTrack fascicle tracking algorithms.
Cycle-to-cycle variability and cumulative deviation of fascicle length (left) and fascicle angle (right) esti-
mates from the proposed UltraTimTrack (UTT, purple) algorithm, and its parent algorithms: TimTrack
(TT, red) and UltraTrack (UT, blue). Data are shown for sinusoidal contractions with a large torque range
(0–20%MVC). Top row: Cycle-to-cycle variability (var.) for all contraction cycles (lines) and averaged
over contraction cycles (violin plots). Cycle-to-cycle variability is sensitive to noise. Bottom row: Cumula-
tive (cum.) deviation of all contraction cycles (lines) and the last cycle (violin plots). Cumulative deviation
is sensitive to drift. UltraTimTrack had lower cumulative deviation than UltraTrack, and lower cycle-to-
cycle variability than TimTrack; asterisks indicate significant differences (p < 0.05). Lines indicate mean
between participants; shaded area indicates mean± standard deviation.

Full-size DOI: 10.7717/peerjcs.2636/fig-5

dissimilarity (Table 3). Compared with UltraTrack, UltraTimTrack was less sensitive to
image-to-image dissimilarity in all three types of conditions (Table 1 and Fig. S2). Overall,
UltraTimTrack had similar or lower overall variability than its parent algorithms across a
range of conditions, indicating robust fascicle tracking.

UltraTimTrack also compared favorably against recently-proposed HybridTrack and
DL_Track fascicle tracking algorithms for the example videos that accompanied these
publications (Figs. 7 and 8). Despite notable out-of-plane motion in the tibialis anterior
video, both UltraTimTrack and HybridTrack yielded low-noise (i.e., smooth) and drift-
free fascicle tracking estimates, but with different amplitudes (Fig. 7). For the medial
gastrocnemius video, both UltraTimTrack and DL_Track agreed relatively well with
manual tracking, but UltraTimTrack had considerably less noise (Fig. 8). For both videos,
UltraTimTrack yielded a smaller RMSDrelative tomanual estimates than bothHybridTrack
and DL_Track (Table 4). A sensitivity analysis revealed that UltraTimTrack yielded smaller
RMSD’s than both HybridTrack and DL_Track for a range of estimated process noise
covariance parameter c values spanning at least ∼4 orders of magnitude (Fig. 9). Videos
of fascicle tracking by UltraTimTrack, HybridTrack and manual observers are available as
Supplemental files (Videos S1–S2). UltraTimTrack’s processing time was 0.2 s per image
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Figure 6 Overall fascicle tracking variability of UltraTimTrack, UltraTrack and TimTrack algorithms.
Overall variability of fascicle length (left) and fascicle angle (right) estimates from the proposed Ultra-
TimTrack (UTT, purple) algorithm, and its parent algorithms: TimTrack (TT, red) and UltraTrack (UT,
blue). Top row: Overall variability (var.) increased with longer sequence duration. Each violin plot shows
the collective estimates of both sinusoidal trials (i.e., small and large torque range), either evaluated up to
the 10th contraction cycle (i.e., short duration) or across all 120 cycles (i.e., long duration). Middle row:
Overall variability increased with larger image-to-image dissimilarity. Each violin plot shows the collec-
tive estimates of one sinusoidal trial, one ramp-and-hold trial, and one passive trial, from image sequences
with either small or large image-to-image dissimilarity. For sinusoidal, ramp-and-hold and passive trials,
small versus large image-to-image dissimilarity shown here corresponds to small versus large torque range,
slow versus fast ramp rate, and slow versus fast passive rotation rate, respectively. Bottom row: Overall
variability increased with lower image quality. Each violin plot shows the collective estimates of all four
ramp-and-hold trials, from image sequences with either low quality or high quality. Statistics are provided
in Tables 2–3.

Full-size DOI: 10.7717/peerjcs.2636/fig-6
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Table 2 Overall estimate variability of UltraTimTrack compared with UltraTrack.Outcomes of linear mixed-effects regression, with comparison
between UltraTimTrack (UTT) and UltraTrack (UT) for fascicle length (L) and fascicle angle (φ).

Overall estimate variability Coefficient Standard error p-value

L φ L φ L φ

Sinusoidal contractions (DF= 58)
Algorithm (UT vs. UTT) −5.660 −0.652 3.245 0.366 0.086 0.080
Cycle number −4 · 10−4 −7 · 10−5 0.022 0.003 0.986 0.976
Torque range (large vs. small) 0.432 0.127 2.573 0.290 0.867 0.663
[Algorithm]× [Cycle number] 0.095 0.020 0.032 0.004 0.004 9 · 10−7

[Algorithm]× [Torque range] 9.789 1.167 3.639 0.411 0.009 0.006

Symmetric ramp-and-hold (DF= 90)
Algorithm (UT vs. UTT) −0.113 −0.183 0.339 0.284 0.739 0.521
Image quality (high vs. low) −0.156 −0.091 0.236 0.198 0.511 0.647
Ramp rate (% MVC/s) 0.001 −0.001 0.003 0.003 0.708 0.799
[Algorithm]× [Image quality] 0.072 −0.001 0.334 0.280 0.829 0.997
[Algorithm]× [Ramp rate] 0.012 0.022 0.005 0.004 0.015 4 · 10−7

Asymmetric ramp-and-hold (DF= 28)
Algorithm (UT vs. UTT) 3.809 8.443 0.862 1.970 1 · 10−4 2 · 10−4

Image quality (high vs. low) −0.199 −0.043 0.862 1.970 0.819 0.983
[Algorithm]× [Image quality] −1.906 −4.79 1.219 2.787 0.129 0.097

Passive rotations (DF= 44)
Algorithm (UT vs. UTT) −0.609 −0.322 0.333 0.195 0.075 0.106
Rotation rate (deg/s) 0.019 0.007 0.003 0.002 5 · 10−7 0.001
[Algorithm]× [Rotation rate] 0.010 0.007 0.005 0.003 0.044 0.009

Notes.
Significant p-values effects are shown in bold font.
DF, Degrees of freedom; MVC, Maximal Voluntary Contraction.

(Intel Core i7-10700 CPU @ 2.90 GHz), and thereby 5 times and 8 times shorter compared
with HybridTrack (1.0 s per image), and DL_Track (1.7 s per image), respectively (Table
4). When parallel processing was employed (8 cores), UltraTimTrack’s processing time
was reduced to 0.1 per image, and thereby 10 times and 17 times shorter compared
with these algorithms, respectively. UltraTimTrack thus yields better agreement with
manual tracking compared with openly-available state-of-the-art algorithms, at lower
computational cost.

DISCUSSION
We proposed a Kalman-filter-based fascicle tracking algorithm that combines optical-
flow-based methods with line-detection methods to improve muscle fascicle tracking in
ultrasound image sequences. The proposed UltraTimTrack algorithm employs existing
UltraTrack and TimTrack algorithms as modules for optical flow estimation and line
detection, respectively, and combines outputs from both algorithms to reduce the time
burden of fascicle tracking. Unlike existing algorithms, UltraTimTrack’s fascicle length and
fascicle angle estimates are low noise and drift free and are obtained at a low computational
cost.
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Table 3 Overall estimate variability of UltraTimTrack compared with TimTrack.Outcomes of linear mixed-effects regression, with comparison
between UltraTimTrack (UTT) and TimTrack (TT) for fascicle length (L) and fascicle angle (φ).

Overall estimate variability Coefficient Standard error p-value

L φ L φ L φ

Sinusoidal contractions (DF= 58)
Algorithm (TT vs. UTT) 1.147 0.593 0.294 0.157 3 · 10−4 4 · 10−4

Cycle number −4 · 10−4 −7 · 10−5 0.002 0.001 0.844 0.945
Torque range (large vs. small) 0.432 0.127 0.233 0.125 0.069 0.313
[Algorithm]× [Cycle number] 0.003 0.001 0.003 0.002 0.363 0.409
[Algorithm]× [Torque range] −0.243 −0.290 0.330 0.177 0.464 0.105

Symmetric ramp-and-hold (DF= 90)
Algorithm (TT vs. UTT) 1.782 0.940 0.215 0.126 1 · 10−12 5 · 10−11

Image quality (high vs. low) −0.156 −0.091 0.150 0.088 0.301 0.302
Ramp rate (% MVC/s) 0.001 −0.001 0.002 0.001 0.555 0.566
[Algorithm]× [Image quality] −0.453 −0.213 0.212 0.124 0.035 0.089
[Algorithm]× [Ramp rate] −0.005 −0.005 0.003 0.002 0.097 0.009

Asymmetric ramp-and-hold (DF= 28)
Algorithm (TT vs. UTT) 1.679 0.717 0.458 0.167 0.001 2 · 10−4

Image quality (high vs. low) −0.199 −0.043 0.458 0.167 0.667 0.799
[Algorithm]× [Image quality] 0.051 −0.009 0.648 0.236 0.938 0.970

Passive rotations (DF= 44)
Algorithm (TT vs. UTT) 1.412 0.804 0.206 0.155 2 · 10−8 5 · 10−6

Rotation rate (deg/s) 0.019 0.007 0.002 0.002 3 · 10−12 6 · 10−5

[Algorithm]× [Rotation rate] −0.006 −0.002 0.003 0.002 0.055 0.327

Notes.
Significant p-values effects are shown in bold font.
DF, Degrees of freedom; MVC, Maximal Voluntary Contraction.

The proposed fascicle tracking algorithm yielded estimates without the drift of
UltraTrack and without the noise of TimTrack. Less noise and drift were observed for
time series from a representative participant (Figs. 3–4) and from participant-average
summary measures (Figs. 5–6). Unlike TimTrack, UltraTimTrack’s Kalman filter exploits
information from optical flow to reduce noise. This allows UltraTimTrack’s estimates to
be smooth even for data from a single contraction. UltraTrack also uses this optical flow
information, but without an automatic update step to correct drift. UltraTrack’s estimates
therefore drift with each contraction, causing its contraction average to be offset compared
with drift-free algorithms (Fig. 3). Averaged over participants, UltraTimTrack had less
drift than UltraTrack and less noise than TimTrack (Fig. 5). Less noise and drift resulted in
similar or lower overall variability of UltraTimTrack’s estimates across contraction cycles
compared with its parent algorithms (Fig. 6). Furthermore, the proposed algorithm was
generally less sensitive to factors that are known to affect tracking performance, including
sequence duration, image-to-image dissimilarity, and image quality. UltraTimTrack thus
provides robust estimates of fascicle length and angle changes during movement compared
with existing algorithms.

van der Zee et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2636 20/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2636


50

55

60

65

70

F
as

ci
cl

e 
le

ng
th

 (
m

m
)

F
as

ci
cl

e 
an

gl
e 

(d
eg

)

50

55

60

65

70

F
as

ci
cl

e 
le

ng
th

 (
m

m
)

12

14

F
as

ci
cl

e 
an

gl
e 

(d
eg

)

0 5 10 15 20

Time (s)

40

60

80

F
as

ci
cl

e 
le

ng
th

 (
m

m
)

0 5 10 15 20

Time (s)

20

30

F
as

ci
cl

e 
an

gl
e 

(d
eg

)

Fascicle length Fascicle angleUltraTimTrack

HybridTrack

DL_Track

Manual

Manual

Manual

RMSD = 2.6 mm RMSD = 0.8 deg

RMSD = 4.7 mm RMSD = 0.9 deg

RMSD = 8.0 mm RMSD = 4.8 deg

12

14

Figure 7 UltraTimTrack and two recently proposed fascicle tracking algorithms compared with man-
ual tracking estimates for a tibialis anterior image sequence. A published ultrasound image sequence
from the human tibialis anterior muscle during fixed-end dorsiflexion contractions (Verheul & Yeo, 2023)
was tracked with the proposed UltraTimTrack algorithm (purple, top row), recently proposed Hybrid-
Track (blue, middle row) and DL_Track algorithms (green, bottom row), and manually by three indepen-
dent observers (grey, all rows). Fascicle length estimates (left column) and fascicle angle estimates (right
column) were compared between algorithms and the mean outputs from manual tracking, using the root-
mean-square deviation (RMSD). HybridTrack estimates were obtained from the associated publication
that included this image sequence. UltraTimTrack had a smaller RMSD from manual tracking estimates
than either previously published tracking algorithm. Manual tracking outputs are shown as mean (thick
grey lines) and range (light grey shaded areas) across observers. Note that the manual tracking outputs are
the same for each algorithm comparison but appear different because of different scaling of the vertical
axis to accommodate each algorithm’s outputs.

Full-size DOI: 10.7717/peerjcs.2636/fig-7

The proposed fascicle tracking algorithm also performed well compared with a recently-
proposed fascicle tracking algorithm that also combined optical flow and line detection
procedures. Like UltraTimTrack, a recently-proposed hybrid method (Verheul & Yeo,
2023), here referred to as HybridTrack, yielded low-noise and drift-free estimates, albeit
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Figure 8 UltraTimTrack and two recently proposed fascicle tracking algorithms compared with man-
ual tracking estimates for a medial gastrocnemius image sequence. A published ultrasound image se-
quence from the medial gastrocnemius muscle during ‘‘calf raise’’ contractions (Ritsche et al., 2024) was
tracked with the proposed UltraTimTrack algorithm (purple, top row), recently proposed HybridTrack
(blue, middle row) and DL_Track algorithms (green, bottom row), and manually by three independent
observers (grey, all rows). Fascicle length estimates (left column) and fascicle angle estimates (right col-
umn) were compared between algorithms and the mean outputs from manual tracking, using the root-
mean-square deviation (RMSD). UltraTimTrack had a smaller RMSD from manual tracking estimates
than either previously-published tracking algorithm. Manual tracking outputs are shown as mean (thick
grey lines) and range (light grey shaded areas) across observers.

Full-size DOI: 10.7717/peerjcs.2636/fig-8

with smaller amplitudes of fascicle length and angle changes (Figs. 7–8). We believe that
HybridTrack yields smaller amplitudes because it (1) filters the Hough angle quite heavily,
and (2) it uses the similarity transform instead of the affine transform. Its filtering of Hough
angles includes a smoothing spline curve, and a 10-point moving average. Employing a
similarity transform instead of an affine transformmay yield smaller fascicle displacements
because shear is neglected, which can be an important contributor to fascicle length and
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Table 4 Algorithm root-mean-square deviations frommanual tracking and processing times. Root-mean-square deviations (RMSDs) of Ultra-
TimTrack, HybridTrack and DL_Track algorithm estimates from the mean of manual tracking by three independent observers, and correspond-
ing algorithm processing times. Both total processing time for the sequence, and processing time per image are shown (Intel Core i7-10700 CPU @
2.90GHz). ‘Processing time-parallel’ indicates UltraTimTrack’s processing time when parallel processing was enabled.

UltraTimTrack HybridTrack DL_Track

Tibialis anterior sequence from Verheul & Yeo (2023)
RMSD fascicle length 2.6 mm 4.7 mm 8.0 mm
RMSD fascicle angle 0.8 deg 0.9 deg 4.8 deg
Processing time–regular 124 s 597 s 1046 s
Per image 0.2 s 1.0 s 1.7 s
Processing time–parallel 72 s – –
Per image 0.1 s – –

Medial gastrocnemius sequence from Ritsche et al. (2024)
RMSD fascicle length 2.3 mm 5.8 mm 3.8 mm
RMSD fascicle angle 0.9 deg 7.9 deg 3.9 deg
Processing time–regular 32 s 181 s 293 s
Per image 0.2 s 1.1 s 1.7 s
Processing time–parallel 19 s – –
Per image 0.1 s – –

fascicle angle changes (Finni et al., 2017). We would like to point out that this may be
an error in HybridTrack, because the accompanying publication mentions that an affine
transformation was used. Compared with HybridTrack, UltraTimTrack generally yielded
better agreement with manual tracking, while processing time was 5 times shorter (i.e.,
0.2 s versus 1.0 s per image, Table 4). UltraTimTrack thus improves upon both tracking
accuracy and processing time compared with a state-of-the-art hybrid method.

The proposed fascicle tracking algorithm also performed well compared with a recently-
proposed fascicle tracking algorithm that employed machine learning. The recently-
proposed DL_Track algorithm (Ritsche et al., 2024) is highly automated, but its estimates
are quite noisy (Figs. 7–8). DL_Track’s sensitivity to noise may originate from the fact that
it tracks multiple (and different) fascicles in each image. The heterogeneity between line
segments of the same and different fascicles can yield a noisy estimate of the dominant
fascicle angle and subsequently of fascicle length. DL_Track performed better on the image
sequence of medial gastrocnemius (Fig. 8) from its accompanying publication, compared
with the image sequence of tibialis anterior (Fig. 7) from the HybridTrack publication
(Verheul & Yeo, 2023). For the latter sequence, DL_Track could not detect a single fascicle
or the deep aponeurosis in some images and misidentified the aponeurosis in others. Its
performance on this sequence may be expected to improve when optimizing some built-in
parameters and when re-trained on similar data, but this would require (1) those data being
available, and (2) manual labelling. In contrast to DL_Track, UltraTimTrack showed good
agreement with manual tracking in both image sequences (Table 4), despite using the same
set of parameters. Furthermore, UltraTimTrack’s processing time was eight times shorter
than that of DL_Track (i.e., 0.2 s versus 1.7 s per image, Table 4). Overall, UltraTimTrack
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Figure 9 Sensitivity analysis on the effect of the process noise covariance parameter on tracking ac-
curacy. Process noise covariance parameter c was varied, while all other parameter values were kept con-
stant. For a range of c values spanning 7 orders of magnitude, root-mean-square deviation (RMSD) of
fascicle length (left) and fascicle angle (right) from manual tracking changed less than 3-fold. Top row:
Fascicle length and fascicle angle RMSD of UltraTimTrack (purple solid line) and HybridTrack (blue
dashed line) for the tibialis anterior ultrasound image sequence from Verheul & Yeo (2023). UltraTim-
Track yielded lower RMSD for a broad range of c values, including the selected value (black dashed line).
Bottom row: Fascicle length and fascicle angle RMSD of UltraTimTrack (purple solid line) and DL_Track
(green dashed line) for the medial gastrocnemius ‘‘calf raise’’ ultrasound image sequence from Ritsche et
al. (2024). UltraTimTrack yielded lower RMSD for a broad range of c values, including the selected value
(black dashed line).

Full-size DOI: 10.7717/peerjcs.2636/fig-9

appears to have clear advantages compared with a state-of-the-art AI-based algorithm in
terms of both fascicle tracking accuracy and computational cost.

Ultrasound-based estimates of muscle architectural changes have many potential
applications in muscle physiology and movement science fields. For example,
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musculoskeletal simulations (Falisse et al., 2019; D’Hondt, De Groote & Afschrift, 2024)
may benefit from empirical estimates of muscle architectural changes, which could inform
model parameters (Delabastita et al., 2020; van der Zee, Wong & Kuo, 2024) or improve
model predictions (Dick, Biewener & Wakeling, 2017; Zhang et al., 2022). On the other
hand, ultrasound trackingmay also benefit from insights obtained throughmusculoskeletal
simulations. For example, future versions of Kalman-filter-based ultrasound tracking
algorithms may leverage insights into the dynamics of muscle force development derived
from musculoskeletal simulations (van der Zee, Wong & Kuo, 2024) to predict muscle
architectural changes from measurements of muscle excitation. Such algorithms could
complement existing machine learning algorithms that predict muscle excitations, joint
angles and joint torques from ultrasound data (Cunningham & Loram, 2020). Considering
the low computational cost (i.e., 0.1–0.2 s per image) and high apparent accuracy of the
proposed algorithm (Table 4), ultrasound-derived estimates may also be used as real-time
feedback to help control movements, either by a user or an external controller. The
feasibility of such a ‘muscle-in-the-loop’ approach was previously shown for a machine-
learning algorithm (Rosa et al., 2021). Altogether, ultrasound-based computational
methods appear key to understanding the relation between muscle architectural changes
and the biomechanics of human movement.

UltraTimTrack has limitations that could be addressed in future updates of the algorithm.
For example, the algorithm assumes that fascicles and aponeuroses are straight lines, while
theymay be curved in certain cases (e.g., at rest and low activation levels (Rana, Hamarneh &
Wakeling, 2014; Heieis et al., 2023)). Furthermore, while UltraTimTrack is less sensitive to
image-to-image dissimilarity and image quality compared with UltraTrack and TimTrack,
respectively, the algorithm still requires clearly identifiable fascicles and aponeuroses. It
therefore remains important to capture ultrasound images with both high frame rate
and high line density, to allow both small image-to-image dissimilarity and high image
quality. If users need to choose between high frame rate and high line density, this decision
should be based on the anticipated rate of change in fascicle length and fascicle angle.
For image sequences with poor contrast, high levels of blur, and large image-to-image
dissimilarities, manual tracking may be necessary. Another limitation is that both the
process noise covariance parameter c and superficial aponeurosis measurement noise
covariance parameter are unknown. While UltraTimTrack yielded good agreement with
manual tracking for a range of parameter c values (Fig. 9), it may be better to inform
parameter c based on independent data rather than through trial-and-error. Furthermore,
we assumed a constant measurement noise covariance, even though it may be expected
to vary between images. In future versions of the algorithm, measurement noise may be
estimated for each image individually (e.g., using the variance of a certain number of Hough
angles).

CONCLUSION
We developed a Kalman-filter-based fascicle tracking algorithm that combines existing
optical-flow-based and line-detection-based algorithms to yield low-noise and drift-free
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estimates of fascicle length and fascicle angle from B-mode ultrasound image sequences.
The proposed UltraTimTrack algorithm has a low computational cost compared with state-
of-the-art algorithms, and may be adapted for real-time fascicle tracking. UltraTimTrack
is openly available to facilitate its continuous improvement, and to allow users to utilize its
benefits and make modifications to address their specific needs.
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