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ABSTRACT
The decentralized, open-source architecture of blockchain technology, exemplified
by the Ethereum platform, has transformed online transactions by enabling secure
and transparent exchanges. However, this architecture also exposes the network to
various security threats that cyber attackers can exploit. Detecting suspicious
behaviors in account on the Ethereum blockchain can help mitigate attacks,
including phishing, Ponzi schemes, eclipse attacks, Sybil attacks, and distributed
denial of service (DDoS) incidents. The proposed system introduces an ensemble
stacking model combining Random Forest (RF), eXtreme Gradient Boosting
(XGBoost), and a neural network (NN) to detect potential threats within the
Ethereum platform. The ensemble model is fine-tuned using Bayesian optimization
to enhance predictive accuracy, while explainable artificial intelligence (XAI)
tools—SHAP, LIME, and ELI5—provide interpretable feature insights, improving
transparency in model predictions. The dataset used comprises 9,841 Ethereum
transactions across 52 initial fields (reduced to 17 relevant features), encompassing
both legitimate and fraudulent records. The experimental findings demonstrate that
the proposed model achieves a superior accuracy of 99.6%, outperforming that of
other cutting-edge methods. These findings demonstrate that the XAI-enabled
ensemble stacking model offers a highly effective, interpretable solution for
blockchain security, strengthening trust and reliability within the Ethereum
ecosystem.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Cryptography, Data
Mining and Machine Learning, Blockchain
Keywords Ethereum, Fraud detection, SMOTEENN, Machine learning algorithms, Bayesian
optimization, Ensemble stacking classifier

INTRODUCTION
Blockchain technology, valued for its decentralized, secure, and unalterable nature, has
become pivotal in strengthening security across sectors such as governance, healthcare,
financial systems, and urban development (Ramaiah et al., 2022; Padma & Ramaiah,
2024a). Ethereum stands out as a leading blockchain platform, utilizing smart contracts
and its native cryptocurrency for network operations. Ethereum relies on distinct account
identifiers to facilitate transactions, including externally owned accounts (EOAs) secured
by private keys and contract accounts governed by code. To maintain data integrity, it
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utilizes features such as the nonce, contract code hash, and storage root, with the Keccak-
256 hashing algorithm ensuring the authenticity of smart contracts (Siddique & Fatima,
2022). The Ethereum storage root, based on the Merkle Patricia Trie, serves as a unique
account identifier, ensuring efficient data encoding and verification (Wang et al., 2021) and
(Chen et al., 2020a).

As of August 2024, Ethereum has processed over 2.4 billion transactions (Etherscan,
2024), making its decentralized ledger a target for cyber threats. The anonymity within
Ethereum enables malicious activities such as money laundering and illicit goods sales.
Vulnerabilities within the Ethereum network, including P2P limitations and smart
contract exploits, expose it to attacks like phishing (Chen et al., 2020c; Kabla et al., 2022),
Ponzi schemes (Chen et al., 2019), the DAO attack, and 51% attack (Scicchitano et al.,
2020), as well as the exploitation of malicious contracts (Wen et al., 2021), accounts
(Kumar et al., 2020), eclipse attacks (Xu et al., 2020), and abnormal smart contracts (Liu
et al., 2022).

Ethereum’s blockchain technology is renowned for its transparency, resistance to
tampering, and immutable nature, offering robust security capabilities.Despite these
strengths, malicious actors have successfully identified and exploited vulnerabilities within
elements such as smart contracts (Kushwaha et al., 2022; Padma&Mangayarkarasi, 2022),
the Solidity programming language (Kaleem, Mavridou & Laszka, 2020) and the Ethereum
architecture (Chen et al., 2020b). However, a range of techniques and tools (Ramaiah et al.,
2022) has emerged to actively monitor and identify malicious activities within Ethereum
networks. Ongoing efforts focus on developing solutions to enhance the resilience of the
Ethereum ecosystem against potential threats. Despite the existence of vulnerabilities
within the Ethereum blockchain (Farrugia, Ellul & Azzopardi, 2020), continuous
advancements aim to strengthen security measures and minimize the occurrences of
fraudulent activities.

Researchers are actively engaged in addressing security concerns within Ethereum’s
system while ensuring optimal performance. The application of artificial intelligence (AI)
technology has tremendous potential for early identification of security vulnerabilities
(Padma & Ramaiah, 2024b). As highlighted by Kumar et al. (2020), machine
learning (ML) models were employed to distinguish between malicious and legitimate
Ethereum addresses, with a focus on externally owned accounts (EOAs) and smart
contract accounts. By extracting key transaction features, models like eXtreme Gradient
Boosting (XGBoost), Random Forest (RF), and K-nearest neighbors (KNN) demonstrated
strong performance in enhancing Ethereum security, particularly for smart contract
accounts. Also, Ponzi schemes represent significant financial threats, particularly in
vulnerable communities like Nigeria. A study by Onu et al. (2023) applies AI with ML
models, including RF, NN, and KNN, to detect these schemes on Ethereum by analyzing
transaction patterns. AI-driven models offer a promising approach to minimizing security
breaches effectively. The convergence of Ethereum and AI technologies aims to improve
the platform’s capabilities, bolster its security measures, and enhance the overall user
experience, delivering advantages to both individual users and businesses relying on the
Ethereum network. Aziz et al. (2023) explores strategies to optimize Ethereum transactions

Chithanuru and Ramaiah (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2630 2/24

http://dx.doi.org/10.7717/peerj-cs.2630
https://peerj.com/computer-science/


and successfully addresses deviations. Despite notable strides in AI-driven detection of
malicious activities within the Ethereum platform, substantial enhancements remain
necessary. Challenges ahead of AI enabled malicious activities detection system are suitable
feature engineering (Rahamathulla & Ramaiah, 2024) enough samples (Ramaiah et al.,
2024) and suitable hyperparameter (Zhao et al., 2023) searching technique.

AI models produce outcomes, but we need clearer insights into how they reach those
conclusions. That’s where explainable artificial intelligence (XAI) comes into build trust in
AI decisions by shedding light on their reasoning and holding them accountable. XAI
pertains to the application of AI technology in a manner that allows human experts to
comprehend the outcomes of the solution. This differs from the concept of a “black box” in
machine learning, when even the developers are unable to explicate the reasoning behind a
single AI choice. XAI serves as an embodiment of the social right to an explanation. The
evolving field of XAI introduces various methods aimed at transforming the opaque nature
of models based on ML or deep learning (DL), thereby generating explanations that are
intelligible to humans. With the remarkable progress in ML and DL, researchers in the
fields of AI and ML are increasingly prioritizing the development and application of XAI.
Researchers have developed various tools to demystify black-box models, such as Local
Interpretable Model-Agnostic Explanations (LIME), Shapley Additive Explanations
(SHAP), Explain Like I am a 5-year old (ELI5), and InterpretML, among others (Buyuktepe
et al., 2023).

Due to the enhanced merits, XAI finds application in healthcare (Hauser et al., 2022),
cyber-attack detection (Kalutharage et al., 2023). These techniques are also used in various
fields like fraud detection (Biswas et al., 2023; Zhou et al., 2023), cyber security (Rjoub et al.,
2023), smart cities (Javed et al., 2023), Internet of Things (Kök et al., 2023), and intelligent
connected vehicles (Nwakanma et al., 2023).

The growing adoption of Ethereum has also heightened its susceptibility to various
cyber threats. While previous studies using ML models for anomaly detection have
demonstrated promise, they often face challenges with interpretability and scalability when
handling large transaction volumes. Moreover, current anomaly detection approaches face
challenges in balancing precision and computational efficiency, frequently operating as
“black-box” models that offer limited transparency.

Hence, the study presented in this article aims to develop comprehensive XAI-enabled
models that integrate the strengths of three ML models—RF, XGBoost, and NN—into an
ensemble stacking model. To improve prediction accuracy, a Bayesian optimization
technique has been proposed to optimize the control parameters of these ML models. To
address the sample imbalance issue, an appropriate oversampling technique has been
applied. Above all, the experiment leverages the advantages of XAI tools, including SHAP,
LIME, and ELI5, for feature interpretation. A well-designed ensemble ML model has been
constructed effectively detect fraudulent transactions, aiming to strengthen the Ethereum
network against possible security vulnerabilities. Through the examination of model
transparency and feature influence, this research seeks to enhance fraud detection on
Ethereum while improving the interpretability and trustworthiness of the proposed model.
This aligns with the growing demand for explainable AI in cybersecurity applications.
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Major contributions in this article

. To mitigate the data sample imbalance, oversampling technique is deployed.

. Bayesian optimization technique is implemented to decide the control parameters of the
ML models.

. Implementation of XAI techniques (SHAP, LIME, and ELI5) to interpret feature
importance, adding an explainability layer to the model and improving decision
transparency.

. An ensemble stacking model that combines XGBoost, RF, and NN to provide robust
fraud detection capabilities.

. Extensive experimental validation demonstrating a model accuracy of 99.6%,
benchmarked against existing state-of-the-art solutions.

Paper organization
The manuscript is organized as follows: “Literature Review” reviews related literature and
highlights its limitations. “Materials and Methods” outlines the materials and methods
employed in the proposed framework. “Results and Discussion” presents the framework’s
performance and compares it with existing methods. Finally, “Conclusion” concludes the
study and offers suggestions for future research directions.

LITERATURE REVIEW
Using smart contracts, Ethereum is a blockchain-based platform that lets one create
distributed apps and handle bitcoin transactions. The platform’s “pseudo-anonymous”
structure allows users to maintain multiple accounts under distinct cryptographic
identities, complicating the detection and attribution of fraudulent activity. High-profile
incidents, such as the Ethereum DAO attack—where hackers exploited a smart contract
vulnerability to steal cryptocurrency—underscore these challenges. Fraudulent activities
across multiple identities are significant security risks, highlighting the need for effective
monitoring to protect legitimate users. Kumar et al. (2020) tackles these challenges with
training supervised ML models to identify malicious and legitimate addresses on the
Ethereum network, focusing on EOAs and smart contract accounts. Malicious and
validated non-malicious addresses were acquired from various sources, followed by
extensive data preprocessing to differentiate and categorize EOAs and contract accounts.
Important features were retrieved from transaction data to train models including RF,
Decision Tree, XGBoost, and KNN for both account types. The approach XGBoost
achieved high accuracy rates 96.82% for smart contract accounts, demonstrating the
efficacy of ML in enhancing security within the Ethereum ecosystem.

In their study, Farrugia, Ellul & Azzopardi (2020) introduced an innovative approach
using the XGBoost model to detect illicit accounts on the Ethereum. The researchers
conducted an in-depth analysis of account details, such as addresses and transaction
histories, to uncover key insights for detecting suspicious activities. By employing a careful
feature selection process, they pinpointed the most influential factors affecting the model’s
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predictions. The study’s findings emphasized the significance of features like total ether
balance, transaction duration, and minimum transaction value in enhancing the model’s
performance. This novel approach has the potential to significantly reduce illegal activities
on the Ethereum network, including phishing, bribery, and money laundering.

To optimize classification performance, Zhou, Yan & Zhang (2022) observed sample
distribution using t-SNE and K-means clustering techniques.To detect the fraudulent
transaction on Ethereum platform, a CatBoost based ML model upon the data distribution
analysis by T-SNE and K-Means has been presented by following this analysis, they crafted
a ML model based on CatBoost to mitigate the impact of fraudulent transactions within
Ethereum accounts and used SHAP to find the feature importance.

Ethereum, as a digital currency, faces growing fraudulent activities like money
laundering and phishing, threatening transaction security. This research advocates the
application of the light gradient boosting machine (LGBM) algorithm for the identification
of fraudulent Ethereum transactions, juxtaposing it with RF and multi-layer perceptron
(MLP) models. A comparison of bagging models shows that LGBM and XGBoost achieve
the highest accuracies, with LGBM slightly outperforming XGBoost at 98.60%. By tuning
LGBM’s hyperparameters, an accuracy of 99.03% is achieved (Aziz et al., 2022). Ibrahim,
Elian & Ababneh (2021) proposed a fraud detection model for Ethereum using decision
tree, RF, and KNN algorithms. They selected six key features from a Kaggle dataset, and RF
outperformed the others in processing time and F-measure. This highlights RF
effectiveness in detecting Ethereum fraud.

Feichtner & Gruber (2020) introduced an XAI-enabled CNN model to connect app
descriptions with requested permissions, using LIME heatmaps to visualize word
significance. Hsupeng et al. (2022) developed an explainable flow-data categorization
system to detect malware attacks, utilizing SHAP for explainability.Hernandes et al. (2021)
applied XAI methods like LIME and explainable boosting machines for phishing detection.
Karn et al. (2020) advanced Cryptomining detection by combining SHAP, LIME, and an
LSTM auto-encoding approach for interpretability. Kalutharage et al. (2023) proposed an
XAI-based DDoS detection system, improving accuracy and attack certainty. Morichetta,
Casas & Mellia (2019) applied LIME to analyze encrypted YouTube traffic, providing clear
explanations of data clusters. An efficient deep neural network based models for detecting
the intruders in networks has been presented along with merits of XAI in Mane & Rao
(2021). XAI algorithms like the contrastive explanations method (CEM), SHAP, LIME,
ProtoDash and Boolean Decision Rules via Column Generation (BRCG) shed light on the
“black box” of the NN, revealing which features trigger attack flags and to what extent. By
applying these tools to the NSL-KDD dataset, the researchers demonstrate how XAI
empowers security professionals to understand and trust the IDS’s reasoning, boosting
confidence in its defenses.

Zebin, Rezvy & Luo (2022) focused on analyzing encrypted traffic with the goal of
accurately detecting DoH (DNS over HTTPS) attacks. A balanced stacked RF classifier was
proposed as an effective solution for identifying such attacks. The research prioritized
achieving high accuracy while ensuring transparency in the model’s decision-making
process. Performance improvements were largely attributed to the data split strategy and
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the parallel development of sub-models, which led to a threefold reduction in training
time. Moreover, an explainable artificial intelligence (XAI) model using SHAP was
included to show each feature contributions to the classification decisions of the model.
Building a bridge between performance and interpretability in ML, Rabah, Le Grand &
Pinheiro (2021) proposed a novel framework. This framework boosts performance by
addressing noisy, scattered, incomplete, and unbalanced data through the preprocessing
phase. Notably, the Synthetic Minority Oversampling Technique (SMOTE) technique
tackles data imbalance. To enhance interpretability, the framework leverages LIME for
local explanations and permutation feature importance for global insights. Trust is further
built by employing XAI techniques to reveal the features influencing individual
predictions. Most of the security breaches. Targeting the transaction are carried out by the
account holder in Ethereum platform. Hence, the monitoring the activities of account
holder may greatly prevents the possible security breaches.

Table 1 reports various AI-enabled models with and without integrating XAI, alongside
other essential components such as resampling techniques and hyperparameter
optimization (HPO), all of which influence the mitigation of malicious activities and the
prevention of cyber-attacks on networks. This table also highlights significant works by
Farrugia, Ellul & Azzopardi (2020), and Zhou, Yan & Zhang (2022), who used XAI and
HPO tools to mitigate malicious activities in Ethereum-based applications. Aziz et al.
(2022) alone applied an oversampling technique to address the data sample imbalance. The
remaining works presented in Table 1 leverage the merits of XAI, with some also
incorporating data sampling techniques and HPO tools, though not all studies include
these components. According to the analysis in Table 1, few studies have focused on
designing interpretable ML models for detecting suspicious activities on permissionless
Ethereum platform. Additionally, Table 1 presents details on the number of samples
considered in the studies, the features used, and the different machine learning models
employed. Upon analyzing the AI-enabled methods reported in various studies, the key
takeaways are as follows: A comprehensive AI model should integrate essential
components, such as feature interpretability tools, data resampling methods, and feature
engineering techniques. Hence, this study addresses this gap by applying Explainable AI
tools, oversampling technique and a simple hyperparameter optimization technique for
designing the ensemble stacking model, balancing both performance and transparency,
and setting a new direction for fraud detection research in blockchain security.

MATERIALS AND METHODS
The creation of a cyber-attack detection model requires a systematic approach to guarantee
its efficacy and dependability. This section outlines the process involved in building the
proposed model. The architecture view as mentioned in Fig. 1, outlines the proposed XAI-
enabled ensemble stacking-based cyber-attack detection framework intended to find
security breaches on the Ethereum platform. ML models hyper-parameters are improvised
through Bayesian optimization after the pre-processing. The ensemble stacking model is
built upon leveraging the merits of RF, XGBoost, and NN. Since the MLmodels are worked
on using a black box approach, to interpret their decisions in order to influence the
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Table 1 Technical specifications of cutting-edge methods.

Ref. Blockchain
used or not

Features Samples
count

XAI/RT HPO Attack ML XAI RT

Kumar et al.
(2020)

☑ 44 5,450 – – Malicious
accounts

LR, SVM, RF, AdaBoost,
stacking

☒ ☒

Farrugia, Ellul &
Azzopardi
(2020)

☑ 42 4,681 SHAP Grid search cv Malicious
account

XGBoost ☑ ☒

Kalutharage
et al. (2023)

☒ 14 66,793 SHAP – DDoS Autoencoder ☑ ☒

Zhou, Yan &
Zhang (2022)

☑ 42 4,681 SHAP Catboost
hyperparameter
optimization

Malicious
account

CatBoost ☑ ☒

Aziz et al. (2022) ☑ 17 9,841 SMOTE – Malicious
account

LGBM ☒ ☑

Ibrahim, Elian &
Ababneh
(2021)

☑ 42 7,809 – – Malicious
account

KNN ☒ ☒

Morichetta,
Casas & Mellia
(2019)

☒ 477 10,654
YouTube
videos

LIME – Network
traffic

Agglomerative_Wardizes,
Agglomerative_Single, K-
Means BIRCH

☑ ☒

Mane & Rao
(2021)

☒ 122 125,972 SHAP,
LIME,
CEM,
ProtoDash
and BRCG

– DoS, Probe,
R2L, U2R

DNN ☑ ☒

Zebin, Rezvy &
Luo (2022)

☒ 82 2.1 million SHAP/
SMOTE

– DoH RF ☑ ☑

Rabah, Le Grand
& Pinheiro
(2021)

☒ 115 652,100 LIME/
SMOTE

Default
parameters

Mirai and
Bashlite
Malware

DT, KNN, SVM, MLP, RF, and
ET

☑ ☑

Wang et al.
(2020)

☒ 41 125,972 SHAP &
LIME/
SMOTE

– DoS, Probe,
R2L, U2R

One-vs-All classifier/
multiclass classifier

☑ ☒

Wali & Khan
(2023)

☒ 78 16,000,000 SHAP Randomized
search

DoS HULK,
DoS
SlowHTTP,
SSH Brute
Force,
DoS HOIC,
FTP Brute
Force,
DoS LOIC-
UDP

RF ☑ ☒

Sarhan, Layeghy
& Portmann
(2022)

☒ 170 109,700,000 SHAP – Network
attacks

DFF, RF ☑ ☒

Le et al. (2022) ☒ 169 2,889,295 SHAP Default
parameters

DoS, Web-
based

Ensemble tree ☑ ☒

Alani (2022) ☒ 35 1,503,895 SHAP – Botnet attack XGB ☑ ☒

(Continued)
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Table 1 (continued)

Ref. Blockchain
used or not

Features Samples
count

XAI/RT HPO Attack ML XAI RT

Proposed ☑ 17 12,411 SHAP &
LIME &
ELI5

Bayesian
optimization

Malicious
accounts

Ensemble stacking classifier ☑ ☑

Note:
XAI = eXplainable Artificial Intelligence; RT = Resampling Technique.

Figure 1 Architectural view of the candidate framework. Full-size DOI: 10.7717/peerj-cs.2630/fig-1
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prediction, the XAI tool has been included. And the feature importance derived through
diverse XAI enabled stacking model has been used to train the proposed model.

Dataset description and preprocessing
The dataset used for experimentation, as documented from Aliyev (2020), comprises 9,841
entries encompassing both benign and malign Ethereum transactions. Initially, dataset
consists of 52 fields, the preprocessing steps removed irrelevant columns. And the resultant
columns descriptions can be found in Table 2.

The dataset, featuring 17 selected columns relevant to anomaly detection (Chithanuru,
2023), includes a binary target variable, Flag, with 0 indicating non-illicit accounts and 1
indicating illicit accounts. It was divided in an 80:20 ratio between training and testing sets.
Class distribution analysis revealed significant imbalance, with legitimate transactions
dominating. To address this, SMOTEENN (Synthetic Minority Oversampling Technique-
Edited Nearest Neighbors) was applied to balance the dataset (Isangediok & Gajamannage,
2022). The method produces synthetic examples for the underrepresented class, improving
both accuracy and generalizability. After resampling, the dataset comprised 6,055 non-
illicit and 6,356 illicit samples.

Exploratory data analysis and scaling
To prepare the data for modeling, we conducted an exploratory data analysis (EDA) to
understand the sample distribution and feature characteristics. EDA revealed that scaling
the features was necessary to ensure uniformity across data ranges, which enhances the

Table 2 Dataset description.

S.no Feature name Description

1 FLAG Indicates whether the transaction is fraud or not

2 Avg min between sent tnx_F1 Average time between sent transactions for the account in minutes

3 Avg min between received tnx_F2 Average time between received transactions for the account in minutes

4 Time Diff between first and last(Mins)_F3 Time difference between the first and last transaction in minutes

5 Sent tnx_F4 Total number of sent normal transactions

6 Received tnx_F5 Total number of received normal transactions

7 Number of Created Contracts_F6 Total Number of created contract transactions

8 Max Value Received_F7 Maximum value in Ether received

9 Avg Value Received_F8 Average value in Ether received

10 Avg Val Sent_F9 Average value of Ether sent

11 Total Ether Sent_F10 Total Ether sent from the account address

12 Total Ether Balance_F11 Total Ether Balance after all transactions

13 ERC20 Total Ether Received_F12 Total ERC20 token received transactions in Ether

14 ERC20 Total Ether Sent_F13 Total ERC20 token sent transactions in Ether

15 ERC20 Total Ether Sent Contract_F14 Total ERC20 token transfer to other contracts in Ether

16 ERC20 Uniq Sent Addr_F15 Number of ERC20 token transactions sent to unique account addresses

17 ERC20 Uniq Rec Token Name_F16 Number of Unique ERC20 tokens received

Chithanuru and Ramaiah (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2630 9/24

http://dx.doi.org/10.7717/peerj-cs.2630
https://peerj.com/computer-science/


model’s ability to learn effectively. Based on our findings, min-max normalization was
chosen for scaling. This normalization technique rescales feature values to a specific range,
typically [0, 1], which helps prevent certain features from disproportionately influencing
the model. The candidate dataset, with its comprehensive set of features and adjustments
for class imbalance, provides a robust foundation for detecting fraudulent Ethereum
transactions.

Features that captures essential transactional and behavioral data that support detecting
suspicious activities in network or blockchain contexts is highly needed. For instance, in
the resultant 17 columns, the “Time Difference between First and Last Transactions” helps
identify bursts of activity often associated with DoS or botnet attacks. Tracking “Unique
ERC20 Token Names Received” and “Total Ether Received” can reveal unusual token
interactions or abnormal transaction volume, which may suggest phishing or laundering
attempts. Monitoring “Average Time between Received Transactions” and “Average
Transaction Value Received” can highlight irregular transaction patterns, a common sign
of account compromise. Additionally, observing “Total Ether Balance” and “Total Ether
Sent” allows for spotting unexpected inflows or outflows of funds, often indicating fraud or
malicious behavior. These metrics together offer a detailed profile of normal vs. potentially
harmful transactional behaviors, enhancing accuracy in attack detection.

Hyperparameter tuning with Bayesian optimization
The ML model’s behavior and performance are significantly influenced by the external
configuration settings referred to as hyperparameters. Bayesian optimization is a technique
used in hyperparameter tuning for ML models. This iterative approach seeks to identify
the best set of hyperparameters by effectively balancing the exploration and exploitation of
the hyperparameter space (Demircioğlu & Bakır, 2023; Paudel, Montoya &Mandal, 2023).
Exploration involves searching the hyperparameter space widely to discover new regions
that may contain better-performing hyperparameter configurations. Exploitation involves
focusing on areas of the hyperparameter space that are currently believed to be more likely
to contain optimal or high-performing hyperparameter configurations (Demir & Sahin,
2023; Albahli, 2023). The process of selecting the hyperparameters using the Bayesian
optimization as follows and shown in the below Fig. 2.

1) Initial sampling: Bayesian optimization starts with an initial set of hyperparameter
configurations, often chosen randomly or using a simple heuristic.

2) Modeling the objective function: Bayesian optimization leverages a surrogate model,
often a Gaussian process, to represent the objective function—such as validation
accuracy or loss—based on hyperparameters. This surrogate model offers predictions of
the objective function and its associated uncertainty.
The Gaussian process (GP) regression model is commonly used as a surrogate model in
Bayesian optimization. Given a set of observed data points (xi, yi) where xi are
hyperparameter configurations and yi are corresponding objective function values, the
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GP model predicts the objective function f(x) at point x newly as a Gaussian
distribution:

FðxÞ ¼ NðlðxÞ; r2ðxÞÞ (1)

where:
µ(x) is the GP mean function, representing predicted objective function value at x.
σ2(x) is variance function of the GP, representing the uncertainty or confidence in the
prediction at x.

3) Acquisition function: Using the surrogate model, an acquisition function such as
Expected Improvement or Upper Confidence Bound is employed to select the next set
of hyperparameters for evaluation. This function manages the trade-off between

Figure 2 Flowchart of Bayesian optimization. Full-size DOI: 10.7717/peerj-cs.2630/fig-2
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exploring new configurations and exploiting the most promising ones. Commonly used
acquisition functions include:
(a). Expected improvement (EI):

EI xð Þ ¼ E max 0; fmin � f xð Þð Þ½ � ¼ l xð Þ � fminð Þ� zð Þ þ r xð Þf zð Þ (2)

where, fmin is the minimum observed objective function value. � zð Þ is the cumulative
distribution function of the standard normal distribution. f zð Þ is the probability density
function of the standard normal distribution. z ¼ l xð Þ � fmin

r xð Þ is the standardization of

the predicted improvement.
(b). Upper confidence bound (UCB):

UCB xð Þ ¼ l xð Þ þ br xð Þ (3)

where, b is a tunable parameter that balances exploration (higher values of b) and
exploitation (lower values of b).
(c). Probability of improvement (PI):

PI xð Þ ¼ �
l xð Þ � fmin � n

r xð Þ
� �

(4)

where, n is a parameter that controls the trade-off between exploitation and
exploration.

4) Evaluation: The selected hyperparameter configuration is evaluated using the actual
objective function (e.g., training on a subset of data and validating on a separate
validation set).

5) Update surrogate model: The surrogate model is refined using the newly acquired data
point, which includes the hyperparameter configuration and its corresponding objective
function value.

6) Iterate: Steps 3–5 are continuously executed until a predefined convergence criterion is
satisfied, such as reaching a specific number of iterations.

Machine learning models
This section briefs the designing process involved in building the ensemble stacking
models. Models like RF, XGBoost and NN are considered as a base models for the
presented experimentation.

Random forest
Random Forest is a highly effective ensemble machine learning method commonly used
for both classification and regression tasks. In contrast to a single decision tree, which can
easily overfit and display high variance, RF creates multiple decision trees during the
training process and combines their outcomes. This approach enhances both accuracy and
generalization.
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eXtreme gradient boosting
XGBoost stands out as a top ML algorithm, known for its speed and ability to tackle
various problems. It takes a unique approach to gradient boosting, making it efficient and
accurate. XGBoost shines in its ability to handle different data types and uncover complex
patterns within them. It achieves this by combining multiple, simple models (often
decision trees) and progressively refining its predictions.

Neural network
Neural networks, inspired by the structure and functionality of the human brain, are a
powerful type of machine learning model frequently applied to tasks such as classification,
regression, and clustering. They consist of interconnected nodes organized into layers,
including an input layer, one or more hidden layers, and an output layer. Each node
processes input data by applying weights, summing the weighted inputs, and passing the
result through an activation function to produce an output. The weights between nodes
determine the influence of one node on another, while activation functions, such as ReLU
(rectified linear unit), sigmoid, tanh (hyperbolic tangent), and softmax, introduce non-
linearity, allowing the network to capture complex data patterns. Neural networks are
trained using optimization techniques like gradient descent and its variants (e.g., Adam
and RMSprop), which iteratively update the weights to minimize the error between
predicted and actual values, as defined by a loss function. Backpropagation is a critical
algorithm used during training to compute gradients efficiently and adjust the weights
accordingly.

Ensemble stacking model
Stacking stands out as a potent ensemble learning method that amalgamates the
predictions generated by several individual models, culminating in a final prediction that is
not only more resilient but also more accurate (Chen et al., 2020a; Nayyer et al., 2023).
Training ensemble model includes two levels. Firstly, base learners are the individual
models trained on the original data. In this case, we consider three different models
XGBoost, NN, and RF. The main element of ensemble stacking is meta-learner. Upon the
completion of training for the base learners, their predictions are employed as input to
facilitate the training of a meta-learner. The meta-learner is trained to integrate predictions
from the base learners to produce a final output. Elastic Net (ELNet) is used in this with
meta-learner. ELNet regularization is a technique utilized for both regression and
classification that integrates L1 and L2 regularization methods. The combination of these
two techniques often results in improved performance compared to using each one
individually. ELNet regularization helps minimize the variance of the final model,
enhancing its robustness to noise and outliers. Additionally, ELNet models provide
coefficients that reflect the relative importance of each feature, making them more
interpretable compared to other ensemble models such as RF.

XAI techniques is an efficient as well as reliable tool in order to interpret the decisions
made by ML models. In particular, feature importance derived through the XAI tool offers
better insights to detect the anomalous activities (Capuano et al., 2022). For the candidate
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framework, merits of the XAI tools, SHAP, Lime, and ELI5 have been included to enhance
the interpretability of the presented ensemble stacking model. SHAP’s unique approach
guarantees fairness in attributing responsibility for the model’s fraud detection to
individual features (Mane & Rao, 2021; Zebin, Rezvy & Luo, 2022). LIME fits an
interpretable model around a given instance to produce locally faithful explanations for
model predictions. Work presented by Morichetta, Casas & Mellia (2019), Mane & Rao
(2021), Rabah, Le Grand & Pinheiro (2021) leverages the merits of LIME to generate local
explanations for its intended tasks. ELI5 is model-agnostic, allowing it to be utilized with a
variety of machine learning models. Utilizing ELI5 allows for the visualization and
interpretation of the significance of various features within a dataset, contributing to the
identification of the anomalous entity. Incorporating XAI tools—SHAP, LIME, and
ELI5—into the candidate model allowed for a deeper analysis of feature importance and
model transparency. SHAP values provided a global perspective on feature impacts across
the dataset, showing how transaction frequency and account existence contribute to fraud
detection. LIME further enabled local explanations by fitting interpretable models around
individual predictions, illustrating how features like Ether volume and timing of
transactions affect specific accounts. ELI5 helps to visualize and validate the significance of
various features within the dataset, thereby enhancing the model’s interpretability and
accountability. In contrast, the presented experiment integrates the features produced by
all three libraries. The XAI libraries like SHAP, LIME, and ELI5 consistently identified
features F2, F3, F4, F8, F12, and F16 as significant. Additionally, SHAP highlighted features
F5, F7, F10, and F11 were included due to their valuable insights into both global and local
feature importance, as well as their ability to effectively handle feature interactions as
described in Table 2. Hence, the demonstrated influential features upon the Feature
importance derived through the various XAI tools, SHAP, LIME, and ELI5, is displayed in
Figs. 3A–3C.

Introducing an ElasticNet meta-learner within the ensemble stacking framework
effectively balances complexity, especially with high-dimensional data, by reducing
computational overhead. Bayesian optimization further enhances this framework by fine-
tuning hyperparameters, achieving an optimal trade-off between exploration and
exploitation. XAI tools validate the contributions of base models, mitigating overfitting
while ensuring computational efficiency. This integration enables the meta-learner to
combine predictions efficiently, capitalizing on the strengths of each base model and
mitigating their weaknesses, ultimately producing a robust and efficient model. Key
features influencing fraudulent transaction detection include ERC20 total ether received
and ERC20 unique received token names, with higher values strongly indicating fraud.
Features like time difference between first and last transaction and average minutes
between received transactions also significantly impact predictions, with context-
dependent effects. Metrics such as average value received and total ether sent further aid in
identifying suspicious activities. The ranking of features highlights ERC20 unique received
token names as the most influential, followed by time difference between first and last
transaction, emphasizing their critical roles in determining transaction legitimacy. The
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Figure 3 Feature importance through XAI-enabled stacking model: (A) SHAP, (B) LIME, (C) ELI5.
Full-size DOI: 10.7717/peerj-cs.2630/fig-3
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hyperparameters of ML, ensemble stacking classifier, and XAI control parameters are
depicted in Table 3.

RESULTS AND DISCUSSION
The effectiveness of the proposed ensemble learning model was assessed by benchmarking
it against several well-known models using quantitative performance metrics, including
precision (Pr), recall (Re), F1-score (F1), and accuracy (Ac). These metrics were derived

Table 3 Hyperparameters of machine learning and XAI.

Hyperparameters Range RF XGBoost NN Ensemble stacking classifier

n_estimators [80, 150] 123 131 – –

max_depth [3, 10] 10 10

max_features [0.1, 1.0] 0.3139 – – –

min_samples_leaf [2, 20] 1.7307 – – –

min_samples_split [1, 10] 14.0528 – – –

colsample_bytree [0.8, 1.0] – 0.8 – –

learning_rate [0.01, 1.0] – 1.0 – –

min_child_weight [1, 10] – 1 – –

subsample [0.8, 1.0] – 0.8 – –

activation [relu, sigmoid] – – Relu –

batch_size [32, 64, 128] – – 32 –

epochs [10, 20, 30] – – 30 –

num_hidden_layers [1, 2, 3] – – 3 –

num_units [32,64, 128] – – 64 –

optimizer [adam, sgd] – – adam –

l1_ratio [0, 1] – – – [0.5]

alphas [0.0001, 10.0] – – – [0.1]

Cv 5 5 5 5 5

max_iter [100, 5,000] – – – 1,000

Tol [1e−5, 1e−3] – – – 0.0001

fit_intercept [True, False] – – – True

selection Cyclic, random – – – Cyclic

n_jobs [1, −1] – – – −1

XAI control parameters

Range SHAP LIME XAI –

Method – TreeExplainer LimeTabularExplainer explain_weights –

model_output [raw, probability, predict_proba, predict] Raw – –

feature_perturbation [random, interventional, none] Interventional – – –

kernel_width [0.1, 1.0] – 0.4 – –

feature_selection [auto, none] – auto – –

discretize_continuous [true, false] – True – –

sample_around_instance [true, false] – False – –

importance_type [weight, shap, permutation, gain] – – gain –
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from the counts of true positives (Tp), true negatives (Tn), false positives (Fp), and false
negatives (Fn).The experiments were conducted using the dataset (Aliyev, 2020;
Chithanuru, 2023) and implemented with the Keras and TensorFlow libraries in Python
3.3.4. The experimental setup consisted of a Windows 10 operating system, an Intel Core
i5-8250U processor, and 32 GB of RAM.

Table 4 shows the performance of ML models (RF, XGB, NN, and Stacking) for
detecting fraudulent accounts on Ethereum, comparing results before and after applying
SMOTEENN. The models exhibit improved performance after resampling. A comparison
of ML models with the ensemble stacking model shows an accuracy of 99.6%. The
improved performance is attributed to efficient feature selection using XAI tools. Features
like number of created contracts and ERC20 unique sent address help detect spam
contracts, phishing, and money laundering. Transaction behavior features such as time
difference between first and last transaction and average value received highlight

Table 4 Tested results.

Model Sample Recall Precision F1-score Accuracy

RF Actual 0.9265 0.9606 0.9433 0.9761

RF SMOTE + ENN 0.9951 0.9935 0.9943 0.9943

XGB Actual 0.9454 0.9637 0.9545 0.9807

XGB SMOTE + ENN 0.9967 0.9959 0.9963 0.9963

NN Actual 0.9250 0.8777 0.9007 0.9558

NN SMOTE + ENN 0.9412 0.9421 0.9411 0.9412

Proposed Actual 0.9532 0.9465 0.9432 0.9843

Proposed SMOTE + ENN 0.9963 0.9962 0.9952 0.9960

Figure 4 Ensemble stacking output before (A) and after (B) applying resampling techniques. Full-size DOI: 10.7717/peerj-cs.2630/fig-4
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suspicious activity patterns indicative of fraud. Figure 4 also provides snapshots of the
confusion matrices, which is highly appreciated in the examination of the malicious
Ethereum accounts.

Computational cost analysis
From a computational cost and uncertainty perspective, RF and the ensemble stacking
model stand out as the most effective choices, with the ensemble model being particularly
reliable as shown in Table 5. RF is highly efficient, with low training and testing times,
minimal memory usage (1.29–1.59 MB), and stable predictions characterized by a small
standard deviation in mean predictions, indicating low uncertainty. It performs
consistently well across both 17 and 10 features, showcasing its adaptability and scalability.
The ensemble stacking model, on the other hand, excels by leveraging the strengths of
multiple models, achieving robust predictions with minimal computational overhead. Its
training and testing times are fast, and memory usage is negligible, while the low standard
deviation of predictions demonstrates its ability to minimize uncertainty, making it the
most balanced and reliable approach. In contrast, the NN requires significantly more
resources, with high memory consumption (up to 12 MB) and longer training times, and it
exhibits increased uncertainty, particularly when the number of features is reduced, as
shown by the sharp rise in standard deviation. This suggests that the NN might be
overfitting or struggling to generalize with fewer features, requiring further optimization of
its architecture or hyperparameters. While NN has potential for complex patterns, its
computational cost and uncertainty make it less suitable for resource-constrained
environments or applications demanding consistent predictions. Therefore, for scenarios
where computational efficiency and prediction stability are critical, RF and the ensemble
stacking model are superior choices, with the latter being the most robust and

Table 5 Computational cost.

Training time
(in sec)

Memory used during training
(MB)

Testing time
(in sec)

Average mean
prediction

Average standard
deviation

For 17 features

RF 3.72 1.59 0.04 0.4981 0.0073

XGB 1.93 1.53 0.01 0.4979 0.0086

NN 4.85 12.94 0.41 0.3523 0.2632

Ensemble
stacking

0.21 0.0 0.21 0.5073 0.0168

For 10 features

RF 2.16 1.29 0.03 0.4984 0.0079

XGB 1.36 1.29 0.02 0.4982 0.0100

NN 4.66 11.76 0.36 0.3121 0.2378

Ensemble
stacking

0.20 0.00 0.21 0.5113 0.0057
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cost-effective due to its ability to aggregate and mitigate individual model uncertainties
while maintaining excellent performance.

Performance comparison with state-of-the-art methods
This subsection assesses the accuracy of the proposed ensemble stacking model by
benchmarking it against leading-edge techniques. The findings shown in Table 6, once
again confirmed that the presented XAI enabled Ethereum malicious account detection is
superior than that of it counter-part techniques.

Limitations and future directions
The results of the presented Ethereum-based fraudulent activity detection model are
superior in terms of various quantitative metrics. The dataset used for experimentation
contains transaction details from the years 2017 to 2019. Recently, the landscape of
dynamic threats has been increasing day by day. Therefore, to make reliable predictions in
the coming years, continuous learning is necessary, along with the inclusion of new attack
sample vectors.

Future research could compile a new dataset by including various attack features
collected after 2019. The inclusion of other possible features that could better describe the
attacks would also be investigated. Designing deep learning techniques requires more
samples; therefore, an effort will be made to collect a larger number of samples.

CONCLUSION
This research focuses on proactively examining user behavior on the Ethereum platform, a
permissionless blockchain, to reduce potential cyber threats like eclipse attacks, phishing,
sybil attacks, Ponzi schemes, and DDoS attacks. The proposed framework tackles
overfitting and underfitting issues using suitable data sampling techniques.
Hyperparameters are critical variables that greatly affect the performance of machine
learning models. Therefore, we utilize Bayesian optimization to optimize these
hyperparameters. Furthermore, XAI tools are employed to identify key features that boost
the reliability of predictions made by the ensemble stacking model. This model, enhanced
by XAI-derived features, is trained and validated on an Ethereum dataset. The findings
show that the proposed framework achieves an impressive 99.6% accuracy, surpassing

Table 6 Benchmarking results against cutting-edge techniques.

Reference Models Number of features Accuracy

Kumar et al. (2020) XGB 10 96.8

Farrugia, Ellul & Azzopardi (2020) XGB 42 96.3

Zhou, Yan & Zhang (2022) CatBoost 43 94.0

Aziz et al. (2022) LGBM 43 99.0

Ibrahim, Elian & Ababneh (2021) KNN 42 98.7

Ibrahim, Elian & Ababneh (2021) J48 6 97.9

Proposed XAI-ensemble stacking classifier 10 99.6
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other evaluated frameworks. To gain a deeper understanding of anomalous account
behavior on the Ethereum platform, future research will include transaction data from
2021, 2022, and 2023. This extended dataset will enable us to explore the potential of deep
learning techniques for even more effective anomaly detection.
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