Peer.

Submitted 12 July 2024
Accepted 2 December 2024
Published 3 January 2025

Corresponding author
Yaxin Sun,
sunyaxin2005@foxmail.com

Academic editor
Hoang Nguyen

Additional Information and
Declarations can be found on
page 26

DOI 10.7717/peerj-cs.2622

() Copyright
2025 Ye and Sun

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Improving drug-target affinity prediction
by adaptive self-supervised learning

Qing Ye' and Yaxin Sun*”’

! School of Data Science and Artificial Intelligence, Wenzhou University of Technology, Wenzhou,
China

% School of Computer Science and Technology (School of Artificial Intelligence), Zhejiang Normal
University, Jinhua, China

? Department of Algorithm, Zhejiang Aerospace Hengjia Data Technology Co. Ltd., Jiaxing, China

ABSTRACT

Computational drug-target affinity prediction is important for drug screening and
discovery. Currently, self-supervised learning methods face two major challenges in
drug-target affinity prediction. The first difficulty lies in the phenomenon of sample
mismatch: self-supervised learning processes drug and target samples independently,
while actual prediction requires the integration of drug-target pairs. Another
challenge is the mismatch between the broadness of self-supervised learning
objectives and the precision of biological mechanisms of drug-target affinity (i.e., the
induced-fit principle). The former focuses on global feature extraction, while the
latter emphasizes the importance of local precise matching. To address these issues,
an adaptive self-supervised learning-based drug-target affinity prediction
(ASSLDTA) was designed. ASSLDTA integrates a novel adaptive self-supervised
learning (ASSL) module with a high-level feature learning network to extract the
feature. The ASSL leverages a large amount of unlabeled training data to effectively
capture low-level features of drugs and targets. Its goal is to maximize the retention of
original feature information, thereby bridging the objective gap between self-
supervised learning and drug-target affinity prediction and alleviating the sample
mismatch problem. The high-level feature learning network, on the other hand,
focuses on extracting effective high-level features for affinity prediction through a
small amount of labeled data. Through this two-stage feature extraction design, each
stage undertakes specific tasks, fully leveraging the advantages of each model while
efficiently integrating information from different data sources, providing a more
accurate and comprehensive solution for drug-target affinity prediction. In our
experiments, ASSLDTA is much better than other deep methods, and the result of
ASSLDTA is significantly increased by learning adaptive self-supervised learning-
based features, which validates the effectiveness of our ASSLDTA.

Subjects Bioinformatics, Computational Biology, Computational Science, Data Mining and
Machine Learning, Data Science

Keywords Drug-target affinity, Self-supervised learning, ROBERTa, Deep neural network, Feature
extraction

INTRODUCTION

The primary goal of drug-target affinity prediction (DTAP) is to predict the binding
affinity between a drug and its target protein, which determines the therapeutic effect and
safety of the drug. However, DTAP through experimental methods is often challenging
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and time-consuming. With the advancement of deep learning, introducing deep learning
into DTAP has become a hot research topic (Wang et al., 2024), which can significantly
accelerate drug development and reduce resource consumption.

Convolutional neural networks (CNN) can extract features from local windows. Deep
drug-target affinity (DTA) is a well-known CNN-based method, whose drugs and targets
are represented as matrixes by label encoding and embedding (Oztiirk, Ozgiir ¢ Ozkirimli,
2018). Based on the deep DTA, many improved methods have been proposed. Firstly, the
1D CNN in deep DTA has been replaced by other CNN structures, such as Dilated Gated
CNN (Zhu et al., 2023b), and ResNet (Zhang et al., 2024), residual gated CNN (Zhao et al,
2024), and 2D CNN (Han, Kang ¢ Guo, 2024). These CNN structures could extract more
complex features. Secondly, more features have been inputted into CNN, such as pocket
(Yang et al., 2024; Jin et al., 2023), atom coordinates and atom types (Wang, Wu ¢ Wang,
2024), the output of correlation of different biological sequences (Hua et al., 2023), pre-
training features (Kalemati, Zamani Emani & Koohi, 2024), and transform modules
(Wang et al., 2022), which can provide different information for the CNN. Thirdly, the
network parameters are initialized by transfer learning (Tanoori, Zolghadri Jahromi &
Mansoori, 2021) or the stacked autoencoders (Bahi ¢» Batouche, 2021), which can utilize a
large number of unlabeled training samples to initialize the CNN parameter. Fourthly,
CNN is used together with other networks, such as Transformer (Li et al., 2024), multi-
head attention layer (Chen et al., 2024), and graph convolutional networks (Deng et al.,
2024; Oztiirk, Ozkirimli & Ozgiir, 2019).

Graph convolutional networks (GCN) can extract effective features from graph-
structured data. Graph DTA is a well-known GCN-based method, whose drugs are
represented as graphs (Nguyen, Le ¢ Venkatesh, 2021). Based on graph DTA, several
improved methods have been proposed. Firstly, attention mechanisms have been added to
the GCN framework to obtain effective representations of the drug from different levels
(Tian et al., 2024; Wu et al., 2024). Secondly, GCN has been used with CNN (Nguyen, Le &
Venkatesh, 2021) or recurrent neural network (RNN) (Wang et al., 2023; Mukherjee,
Ghosh & Basuchowdhuri, 2022; Liu et al., 2015) to extract more features. Thirdly, a cross-
scale graph contrastive learning has been designed to combines features learned from the
molecular scale and the network scale to capture information from both local and global
perspectives (Wang et al., 2024), and the atomic-level protein pockets are taken as the
input (Lu et al., 2023). Fourthly, GCN has been used to extract features from the target (Xia
et al., 2023a; Ye, Zhang ¢ Lin, 2023), which can increase the diversity of target features.

There are two problems with the CNN and GCN methods mentioned above. One
problem is that the methods do not notice that DTAP is mainly determined by the core
fragments of the drug and the target. In CNN, the convolution kernel can extract features
for a local window, which can be viewed as a fragment of the input. However, the size of
the convolution kernel cannot be too large, as a larger convolutional kernel implies more
parameters, a greater number of kernels and a higher computational complexity
(Springenberg et al., 2014). The fragment divided by CNN is insufficient to describe the
core fragment. In GCN methods, graphs of GCN methods are created by the raw input but
not by the fragment, which makes the graph global. Another problem is that the high-level
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feature is directly extracted from raw input, which could be hard in DTAP, as the labeled
training samples are too limited.

Self-supervised learning (SSL) can be trained by a large number of unlabeled samples,
which can be used to overcome the problem of an insufficient training sample problem.
Most SSL models are based on A Robustly Optimized BERT Pretraining Approach
(RoBERTa) (Liu et al., 2019). GCN-BERT used two RoBERTa to extract features for the
drug and target (Lennox, Robertson ¢ Devereux, 2021). However, the result is not very
good, where the CIs of the GCN-BERT on Kiba and Davis are 0.888 and 0.896 (Lennox,
Robertson & Devereux, 2021). PortBERT (Elnaggar et al., 2020) and ProtALBERT
(Elnaggar et al., 2020) are also used to extract features for the target (Liu et al., 2021).
However, this method was not run on protein sequences longer than 1,000 (Liu et al,
2021) because of the limited resources of the computer. Furthermore, this method was only
evaluated on a subset of Kiba. The sequence representations of the drug and the target are
extracted by using the pretrained protein language model (Zhao et al., 2024), 300-
dimensional pre-training features of the drug are used together with other features (Wang
¢ Li, 2023). However, they are not evaluated on Kiba and Davis.

There are many reasons for the above phenomenon. Firstly, the output of RoBERTa
may not meet the needs of DTAP. The DTA may be mainly determined by the
substructure of the drug and target. However, the output of the above RoBERTa models
(Lennox, Robertson & Devereux, 2021; Liu et al., 2021) is the pooling of inputs, whose core
fragments could be overwhelmed. Secondly, the training goal of the RoBERTa is very
different from that of the DTAP. However, the RoBERTa is directly used to extract high-
level features. Thirdly, the input for text processing is very different from the input for
DTAP, where RoBERTa was first designed for text processing. For example, a sequence of
a target is much longer than a text sentence. The repetition probability of words in drugs
and targets is much higher than that in text processing.

To overcome the above problems, in this article, an adaptive self-supervised learning-
based drug-target affinity prediction is proposed, which contains a newly designed
adaptive self-supervised learning training, two 2D CNN, a GCN, and a fully connected
neural network.

In adaptive self-supervised learning, two RoBERTa models are trained on a large
number of unlabeled fragments but not the whole sequences, which can overcome the
input problem. Then, adaptive self-supervised learning can extract features with enough
information to reconstruct fragments and their neighbor relationships, which can
overcome the output problem. In the 2D CNN, the useful fragments and their neighbor
relationships can be highlighted, and the negative positional information among fragments
can be reduced, which can overcome the training goal problem. In the GCN, the feature of
the graph structure of the drug can be extracted, as drug molecules have a typical graph
structure. In the fully connected neural network, features extracted by two 2D CNN and a
GCN can be integrated to predict DTA.

The contribution of this article can be concluded as follows: We designed a two-stages
feature extraction method, which consists of an ASSL and a 2D CNN. The ASSL can learn
enough information to reconstruct fragments and to describe the relationship among their
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neighbors by unlabeled samples. The 2D CNN can further highlight the useful fragments
and their neighbor relationships by a small number of labeled training samples. This
method can bridge the objective gap between self-supervised learning and DTA prediction
and alleviate the sample mismatch problem, and each stage undertakes specific tasks, fully
leveraging the advantages of each model while efficiently integrating information from
different data sources, providing a more accurate and comprehensive solution for drug-
target affinity prediction.

PROPOSED METHOD

Data

The proposed model was first evaluated on five benchmark datasets of DT AP, namely, the
Kiba (Tang et al., 2014), Davis (Davis et al., 2011), DTC (Tang et al., 2018), Metz (Metz
et al., 2011), and Tox-Cast (US Environmental Protection Agency, 2015). The simple
statistics for the sample information of these datasets are given in Table 1. It can be seen
from Table 1 that there are only 2,111, 68, 5,983, 1,471, and 7,657 drugs and only 229, 442,
118, 170, and 328 targets on the above datasets. As a result, the prediction model could be
hardly well trained only by these samples.

The proposed model was also evaluated on three benchmark binary classification
datasets of compound-protein interaction (CPI) prediction, namely, the BindingDB (Gao
et al., 2018), C.elegans (Liu et al., 2015), and Human (Liu et al., 2015) datasets. The simple
statistics for the sample information of these datasets are given in Table 2. It can be seen
from Table 2 that there are only 852, 1,767, and 1,696 drugs, and only 1,052 and 1,876
targets on the Human and C.elegans datasets. Although there are 53,253 targets on
BindingDB, the used positive and negative samples are only 39,747 and 31,218. As a result,
the problem of sample shortage still exists in CPI.

Problems of SSL usd in DTAP and our solution strategy

SSL can utilize a large number of unlabeled samples to train the model, which can be used
to overcome the problem of sample shortage, where RoBERTa is a typical SSL framework
(Liu et al., 2019). RoBERTa was first used for text processing and got good results, which is
trained with dynamic masking and removed the next sentence predicts loss (Liu ef al,
2019). Because the simplified molecular input line entry system (SMILES) of the drug and
the sequence of the target are similar to the sentence of the text, ROBERTa is considered to
extract features for DTAP. However, RoBERTa cannot be directly used in DTAP, for the
following reasons:

Firstly, the input of self-supervised learning is very different with the input of DTA. Self-
supervised learning processes drug and target samples independently, while DTA
prediction requires the integration of drug-target pairs. Obviously, this gap makes that the
self-supervised learning hardly learns useful features for DTA prediction.

Secondly, the input is very different between text processing and DTAP. One difference
is that the lengths of the SMILES and sequence are much longer than that of the sentence
of the text. Simple statistics of lengths of SMILES and sequences are presented in Figs. 1
and 2, where the rectangle represents the interquartile range, top, median, and bottom
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Table 1 Simple statistics for the sample information of five DTA datasets.

Data sets Drugs Targets Used drug-targets pairs Affinity mean Affinity STD
Kiba 2,111 229 118,254 11.83 0.81
Davis 68 442 30,056 5.45 0.89
DTC 5,983 118 67,894 5.89 1.02
Metz 1,471 170 35,307 6.22 0.96
Tox-Cast 7,657 328 342,869 1.38 0.87

Table 2 Simple statistics for the sample information of three CPI datasets.

Data sets

Drugs

Used drug-targets pairs

Human
C.elegans
BindingDB

852
1,767
1,696

3,369(+)/3,359(-)
3,893(+)/3,893(-)
39,747(+)/31,218(-)
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Figure 1 Simple statistics for the length of the SMILES on five DTA datasets.

Full-size K&] DOT: 10.7717/peerj-cs.2622/fig-1

lines represent the upper limit, median, and lower limit of the lengths. It can be seen from
Fig. 1 that the median lengths of SMILESs are respectively about 46, 53, 48, 45, and 28. It
can be seen from Fig. 2 that the median lengths of sequences are respectively about 620,
632, 673, 631, and 479. Each word could be represented by a long vector in RoBERT4,

which makes that the dimension of the hidden state for a long sequence could be very high.
Another problem is that the repetition probability of words in SMILES and sequence are

much larger than that of the sentence, which makes the positional information very

important in training the RoBERTa, and then outputs of similar sequences with different
positions could be very different. As a result, the data distribution of DTAP is sparser.
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Figure 2 Simple statistics for the length of the sequence on five DTA datasets.
Full-size Ka] DOT: 10.7717/peerj-cs.2622/fig-2

Thirdly, the output of the RoOBERTa could be not meeting the needs of DTAP. The
positional feature for a sentence could be important in text processing, but the positional
feature for a SMILES or a sequence could be not very important in DTAP, as the DTAP is
mainly determined by core fragments of the SMILES and sequence (Lin, Zhang ¢ Xu,
2020; Jin et al., 2023), which is the principle of fragment-based drug design (Shi et al.,
2020). An example can be shown by Fig. 3, where the core fragment of the drug is marked
by a rectangle. It can be seen from Fig. 3 that the core fragment of the drug and the two
core fragments of the target mainly determine the DTA. As a result, only the inner
positional feature of the core fragment is important. Specifically, the positional feature
between the core fragment and other fragments is bad for DTAP. Furthermore, if the
pooling result of RoBERTa is used for DTAP, features of the core fragment could be
overwhelmed. And if the whole result of RoBERTa is used, the dimension of features could
be too high.

Fourthly, the training goal of the RoBERTa is very different from that of the DTAP. The
training goal of the RoBERTa is to fill the dynamic masking. But the training goal of the
DTAP is minimizing the mean square error between the prediction score and the actual
score. Furthermore, because labeled training samples are too limited, the pre-trained
RoBERTa is hardly fine-tuned by these labeled training samples. As a result, features
extracted by RoBERTa should be further processed by a supervised method and cannot be
directly used for DTAP. Specifically, features extracted by RoBERTa should own enough
ability to describe the input and cannot lose much information.

To overcome the input problem, RoBERTa should be trained on fragments that are
much shorter than the raw SMILES and sequence. To overcome the output problem, the
output should be features of fragments and their relationship. To overcome the training
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Figure 3 An example used to show the core fragment (Shi et al., 2020).
Full-size K&l DOT: 10.7717/peerj-cs.2622/fig-3

goal problem, RoBERTa should mainly extract low-level features, which should own
enough ability to describe the input and cannot lose much information.

Based on the above analysis, an ASSL based on RoBERTa is designed to extract low-level
features. In ASSL, RoBERTa is trained on a large number of unlabeled fragments, then the
feature is extracted by RoBERTa on the adaptive sliding window. As a result, the extracted
feature has enough ability to reconstruct the fragments and to describe the relationship
among the fragments. Furthermore, the features extracted by ASSL are further processed
by a 2D CNN to extract high-level features, as the ASSL is only used to extract low-level
features, where the 2D CNN can highlight the useful fragments and their neighbor
relationships, and reduce the negative positional features among fragments.

ASSLDTA structure

The structure of ASSLDTA is shown in Fig. 4. It can be seen from Fig. 4 that ASSLDTA
consists of five parts, such as ASSL, 2D CNN, GCN, and fully connected neural network
(FCNN). In ASSL, low-level features of drugs and targets are extracted, which can be used
to reconstruct fragments and their neighbor relationships. In the 2D CNN, the high-level
features of drugs and targets are further extracted, which can highlight useful fragments
and their neighbor relations. In GCN, graph-based high-level features of drugs are
extracted since drug molecules have a typical graph structure. In FCNN, the high-level
features extracted by two 2D CNNs and one GCN are integrated to predict the DTA. Here,
it’s worth noting that ASSL specifically focuses on extracting low-level features rather than
directly tackling high-level ones, due to four identified issues with the current application
of self-supervised learning (SSL) directly to DTA prediction.

Features extracted by ASSL together with 2D CNN
ASSL consists of ASSL training and ASSL-based feature extraction. The ASSL training is
first introduced. According to the motivation in “Problems of SSL usd in DTAP and Our
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Figure 4 ASSLDTA structure.

Full-size K&l DOT: 10.7717/peerj-cs.2622/fig-4

Solution Strategy”, the data prepared for RoOBERTa should be the fragments of the drug or
the target, and the lengths of fragments cannot be too large. However, it is still difficult to

automatically divide appropriate fragments for the drug and target. Specifically, the lengths

of automatically divided fragments may be very different, which also adversely affects the
training of the model. As a result, fixed-length fragments of the SMILES and sequence are
prepared for the RoBERTa. We opted for RoBERTa over BERT due to our implementation
of a two-phase feature extraction approach. In the pre-training phase, our objective is to

optimally preserve the intrinsic characteristics of individual fragment. Conversely, the

interaction and relationship among these fragments, which constitute the inter-fragment
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features, are intended to be developed and refined during the subsequent supervised
training phase.

Given a training sequence d; = [d; 1, d;2, . .., d; ] whose length is p;, the length of the
fragment /, the k-th fragment of d; can be defined as:

¥ = [digets digsirry - - - s Digerrio] (1)

It can be seen from Eq. (1) that d; is divided into p;/I non-overlapping fragments. The
adjacent fragments do not overlap, for the reason that the same word would be masked in
one fragment but not masked in neighbor fragments when adjacent fragments overlap
with each other.

After processing all training drugs by Eq. (1), the RoBERTa modelfT of the drug can be
trained by hugging face toolbox (Transformer, https://github.com/huggingface). The
CHEMBL (Gaulton et al., 2017) dataset is used for training, which contains 2,105,464
drugs. Similarly, after processing all training targets by Eq. (1), the RoBERTa model f ;. of
the target also can be trained by the Hugging Face toolbox (Transformer, https://github.
com/huggingface). The Swiss-Port (Swiss-Port dataset, http://www.gpmaw.com/html/
swiss-prot.html) dataset is used for training, which contains 565,928 targets. Because fT
and f ; are trained on the fragments, they have enough power to extract the features for the
fragment. -

After training the]‘T and f ;, they can be used to extract the low-level features for the
drug and target. The processing is named as ASSL based feature extraction. In the feature
extraction, fixed-length fragments of the SMILES and sequence also should be prepared for
the fT and f .

Given a testing sequence di = [d;,d;,, ..., d;,] whose length is p;, the length of the
fragment /, the sliding offset l;i, the k-th fragment of d; can be defined as:

Kk
i = |dikebis difrbit1s - - > dijsbii—1] (2)

It can be seen from Eq. (2) that d; is divided into p;/b; overlap fragments by the adaptive
sliding window. The reasons that the adjacent fragments overlap with each other are as
follows. Firstly, it can increase the probability that the core fragment is only distributed in a
fragment. Secondly, it can increase the variety of fragments, which can extract more
features for the sequence. Thirdly, the fragment is not be dynamically masked in the
feature extraction, so the overlap does not affect the model. Lastly, the number of
fragments can be controlled by setting different b;. This is important, as dimensions of
inputs of many deep neural networks needs to be the same, such as the CNN and FCNN.

To make that numbers of fragments divided for different sequence are the same, b is
calculated by:

b; = pi/K (3)

where K is the number of fragments. It can be seen from Eqs. (2) and (3) that regardless of
the length of a sequence, the number of fragments divided by Eq. (3) is K.
After processing a SMILES by Eq. (2), low-level features of this drug can be extracted by:
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P R R 7 K
Oi = [fr(s;).fr(si)s - fr(s)] (4)
where Eil , 51-2, . ,E,K are fragments of i-th drug divided by Eq. (2), fT is the trained
RoBERTa model of the drug, O; € R**X is the extracted low-level features of i-th drug,
]?T(Ef) is the output of j?T whose dimension is u x 1.

After processing a sequence of j-th target by Eq. (2), low-level features of this target can
be extracted by:

=~ 21 72 - K
Oj: [fT(Sj)’fT(Sj)v"'va(Sj )] (5)
where E; , ‘51-2, e ,EJK are fragments of j-th target divided by Eq. (2), jva is the trained

RoBERTa model of the target, O; € R**X s the extracted low-level features of j-th target.

Extracting features by Egs. (4) and (5) has three advantages. Firstly, the extracted
features own enough information to reconstruct the fragments. This is the property of the
RoBERT4a, as RoBERTa has a strong ability to fill the mask. Secondly, the extracted features
own the relationships among fragments. As shown in Eqs. (4) and (5), (5,- and éj contain
features of all fragments and the positional information of these fragments. Thirdly, the
extracted features are the low-level features. ROBERTa is only used to extract the features
for fragments, and which fragments and what relationships among fragments benefit for
DTAP are further processed in the next steps. Therefore, the problem that the training goal
of RoBERTa is very different from that of the DTAP can be overcome.

(A),» and E)j are low-level features, so another deep neural network should be designed to
further extract the high-level features. Because fragments are divided by an adaptive sliding
window (see Eq. (2)), the core fragment could be distributed in several adjacent fragments.
Therefore, the deep neural network should be able to extract relationships among adjacent
fragments. Furthermore, features of a fragment extracted by RoBERTa may also need to be
weighted. As a result, a 2D CNN is further used to extract the high-level features.

RoBERTa is only used to learn the low-level features. Firstly, RoBERTa is a pre-trained
model that requires a large number of training samples, but DTAP has fewer training
samples, making it difficult to fully train the model. Secondly, it is difficult to define
suitable tokens for RoBERTa that are used to obtain high-level features because species of

fT(Ef) and ]?T(EJK) may be infinite, which may be hardly used as the token.

Given the low-level features O; and (3j of the i-th drug and the j-th target, the high- level
features can be extracted by:

(0) (6)
el j) (7)

where J?c and J;c are two 2D CNN, k; and Ej are 2D CNN-based high-level features of a
drug and a target.

fc and ]?c contain three 2D CNN layers. Each 2D CNN layer contains a 2D
convolutional sublayer, a 2D batch normalization sublayer, and a rectified linear unit
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activation function. The reasons that only three 2D CNN layers are used here are as
follows: Firstly, 2D CNN is only used for learning high-level features from low-level
features, so it does not need too many layers. Secondly, there are too few labeled training
samples, and 2D CNN with too many layers is easy overfitting.

The features extracted by Eqs. (6) and (7) have three advantages. Firstly, core fragments
can be highlighted by the convolution kernel, as the fragment benefits for DTAP can get a
larger response value. Secondly, the relationship benefit for DTAP can be extracted by the
convolution kernel, as the convolution kernel has a strong ability to extract local positional
relationships. Thirdly, meaningless positional information among fragments can be
reduced by 2D CNN, as the field of view is getting bigger and bigger from the lower level to
the upper level.

Features extracted by GCN and DTA score learned by FCNN

GCN is also used to extract high-level features for the drug. The reasons are as follows:
Firstly, drug molecules have distinct graph structures, and the GCN can extract many
useful features. Secondly, some special words are existed in SMILES, such as ‘., \’, /’, ‘7,
‘8%, ‘6’, ), 5" and ‘4’, which may affect the effectiveness of ROBERTa.

Given a drug d; = [d;1,d;,, . .., d;,] whose length is p;, a global pooling GCN (Zhang
et al., 2021) is used to learn GCN based high-level features for the drug, which can be
calculated by:

hi = fG(d;) (8)

where f'G is a GCN, which contains three GCN layers. For a GCN, the most crucial aspect is
determining the graph vertices and edges. Similar to the approach in Zhang et al. (2021),
the vertices in the graph representing a drug molecule correspond to atoms, and the
features of these vertices are represented using one-hot encoding. The edges of the graph
for a drug molecule are formed based on its chemical bonds, which are obtained utilizing
the RDKit tool (RDKit: open-source cheminformatics, https://www.rdkit.org). If a bond
exists between two atoms, it signifies the presence of an edge; otherwise, no edge is formed.
Once the graph is constructed, PyTorch Geometric (https://pytorch-geometric.
readthedocs.io/en/latest/) can be employed to run the GCN.

After extracting high-level features for a drug and a target by Eqs. (6)-(8), features of
this drug-target pair can be concatenated by il,', h; and ]:l,- as follows:

h; = [ﬁiy ];i, }Alz] 9)

The compatibility of I;i, ;Li and fzi in concatenating h; can be guaranteed for the following
reasons. One is that the activation functions in 2D CNN and GCN can limit the output of
neurons within a certain range. Another is that the last layer of our 2D CNN and GCN is a
fully connected layer, which can adjust the output dimension.

The DTA score of the drug-target pair can be calculated as following:

a; = fp(h;) (10)
where fp is a FCNN.
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In the training, the DTA score of the drug-target pair is known, andfc, fo fg, fp can be
trained by the mean-square error between the prediction score and actual score.

The proposed ASSLDTA model

ASSLDTA consists of the ASSL training, supervised DTAP training, and supervised DTAP
testing. ASSL training consists of step 1 and step 2. Supervised DTAP training consists of
steps 3 to 9, where steps 3 and 4 can be concluded as ASSL-based feature extraction, step 5
is the 2D CNN-based high-level feature extraction, step 6 is the GCN-based high-level
feature extraction, steps 7 to 9 can be concluded as DTA score learned by FCNN. These
have been introduced in detail in “Parametric Analysis of the ASSLDTA” and “Results of
DTA on Kiba”. Supervised DTAP testing consists of step 10 to step 15, which contain
similar processes to supervised DTAP training. The code is available at https://github.com/
yeqing0713/ASSLDTA.

In ASSLDTA, ASSL is used to learn the low-level features. Compared with other
artificially defined low-level features, such as protein domains (Wang, Wu ¢» Wang, 2024),
motifs (Wang, Wu & Wang, 2024), recurrent neural network (RNN) (Hua et al., 2023),
similarity matrixes (Ye, Zhang ¢ Lin, 2022), 3D interaction information (Han, Kang ¢
Guo, 2024), lots of traditional features (Kalemati, Zamani Emani ¢ Koohi, 2024), and one-
shot vector (Zhang et al., 2021), ASSL can utilize a large number of unlabeled training
samples to learn more effective and comprehensive features. In ASSLDTA, two RoBERTa
models are trained on fragments of drugs and targets and used to extract features for
fragments. Compared with other pre-trained methods (Liu et al., 2019; Lennox, Robertson
& Devereux, 2021; Elnaggar et al., 2020; Liu et al., 2021), ASSLDTA can overcome three
problems of pre-trained methods mentioned in the “Problems of SSL usd in DTAP and
Our Solution Strategy”. In ASSLDTA, ASSL together with 2D CNN is utilized. Compared
with supervision methods (Oztiirk, Ozgiir ¢ Ozkirimli, 2018; Zeng et al., 2021; Wang, Wu
& Wang, 2024; Aleb, 2021), ASSLDTA can extract low-level features by a large number of
unlabeled samples, and extract high-level features that highlight the core fragments and
their relationships by limited labeled samples.

Architectural parameter
ASSLDTA consists of two ASSL, two 2D CNN, a GCN, and an FCNN. Many architectural
parameters exist in these neural networks, whose values are shown in Table 3.

ASSL primarily consists of ROBERTa. In ASSL, the number of attention heads and the
number of hidden layers of RoBERTa are respectively set to 6 and 3, as the numbers of
tokens are only 62 and 25 in the drug and target, which makes that a small RoBERTa
model has enough power to extract features for these tokens. The hidden size of ROBERTa
is set to 60, as this value must be a multiple of the number of attention heads. The pooler
fully connected size is set to 60, which determines the dimension u of O; and 6]-. The u
cannot be too big, as setting a larger input size for 2D CNN usually requires deeper
networks or larger convolution kernels, which could be overfitting when training samples
are not enough. Batch size is set to 128, as our model is smaller than the default model and
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Table 3 Architectural parameters settings of ASSLDTA.

Model Parameters Values
RoBERTa Max position embeddings 512
Number of attention heads 6
Number of hidden layers 3
Pooler fully connected size 60
Hidden size 60
Mlm probability 0.15
Batch size 128
2D CNN Number of filters 64, 128, 256
Kernel size 53,3
Kernel stride 2
Max pool size 3
FC layer 1-1 output 1,024
FC layer 2-1 output 2,048
Max pool stride 2
GCN Hidden size 78
Output dimension 1,280
FC layer 1 output 1,024
Dropout ratio 0.1
FCNN Hidden size 1,024, 512, 1
Dropout ratio 0.1
Global parameters Batch size 1,024
Learning rate (LR) 0.001
Number of epoch 2,000

can be trained by more samples in the same time. Other parameters are set to the default
values in the Hugging Face toolbox (Transformer, https://github.com/huggingface). Since
ASSL is a pre-trained model that requires extensive training time and is only used for
extracting low-level features, the parameters have a limited impact on the experimental
results within a wide range. Therefore, most of the ASSL parameters are set to fixed values
based on the above analysis.

In the 2D CNN, the numbers of filters for three 2D CNN layers are respectively set to 64,
128, and 256. A total of 256 is set for the third 2D CNN layer, as the dimension of the
output can be 2560, which is a bit larger than the dimension of the output of the FC layer
1-2. The kernel sizes are respectively set to 5, 3, and 3, as some useful features should be
extracted in a larger field of view in the first layer. Dimensions of the output of FC layer 1-1
and FC layer 1-2 are set to 1,024 and 2,048, as the high-level features of the drug are
extracted by two methods and that of the target is only extracted by a method.

The reasons of setting parameters for the GCN, FCNN, and global parameters are
similar to that for the GCN and FCNN in Zhang et al. (2021).
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EXPERIMENTS AND RESULTS

Experimental setting

Five datasets listed in Table 1 are used to validate the method, such as Kiba, Davis, DTC,
Metz, and Tox-Cast. The Human, C.elegans, and BindingDB datasets are used to validate
the effectiveness of CPI. To verify generalization ability, our experiments split the dataset
into training, validation, and test sets in a ratio of 8:1:1. Five-fold cross-validation was used,
and the process was executed five times. The number of samples in the training, validation,
and test sets for each dataset are presented in Table 4.

The concordance index (CI), mean squared error (MSE), r2, and area under the
precision-recall curve (AUPR) are used as the metrics for DTA, where CI measures the
rank of the predicted binding affinity (Mukherjee, Ghosh ¢ Basuchowdhuri, 2022), and
MSE measures the difference between the vector of predicted values and the vector of the
actual value (Zhang et al., 2021), rfn calculated as the ratio of the sum of squared differences
between the predicted values and the mean of the dependent variable to the total sum of
squared differences between the actual values and the mean of the dependent variable
(Xia et al., 2023b), AUPR measures the area under the curve that plots precision
against recall (Ye, Zhang & Lin, 2023). The area under the ROC curve is used as the metric
for CPI, where AUROC is the area under the receiver operating characteristic curve (Ye,
Zhang ¢ Lin, 2022). Precision is used as the metric for the fill masking of ASSL. Let P and
N are the numbers of positive samples and negative samples of a dataset. TP and TN
denote numbers of true positives and true negatives. FP and FN denote numbers of false
positives and false negatives. Precision can be defined as:

Precisi TP (11)
recision = ———
TP + FP

Parametric analysis of the ASSLDTA
It can be seen from Algorithm 1 that three parameters should be set for ASSLDTA, such as

1,1 and K. They are set according to the lengths of SMILESs and targets on five DTA
datasets, which are presented in Figs. 1 and 2.

It can be seen from Fig. 1 that most lengths of SMILESs are distributed in 14 to 75, and
lower quartile lengths of SMILESs are respectively 39, 45, 41, 37, and 18 on five DTA
datasets. These lengths are not very larger than the lengths of sentences in the text. As a
result, [ should be set to the value that the fragment with this length contains enough
information for DTA. In our experiment, 1 is set to 16, as 16 is slightly larger than 14,
which makes that most core fragments can appear in one fragment and numbers of
fragments divided for most SMILESs are not too big.

It can be seen from Fig. 2 that most lengths of sequences are distributed in 215 to 1,732,
and lower quartile lengths of SMILESs are respectively 450, 479, 479, 464, and 407. These
lengths are very larger than the lengths of sentences in the text. As a result, there are three
factors to consider when setting 1, such as the lengths of the core fragments, the model
processing power, and the number of fragments divided for most sequences. In our
experiment, [ is set to 128, which is slightly larger than the half of 215.
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Table 4 Simple statistics for the training, validation, and test sets for each dataset of eight datasets.

Data sets ~ Number of used drug-targets pairs Number of training samples Number of validation samples Number of testing samples

Kiba 118,254 94,604 11,825 11,825
Davis 30,056 24,044 3,006 3,006
DTC 67,894 54,316 6,789 6,789
Metz 35,307 28,243 3,532 3,532
Tox-Cast 342,869 274,296 34,287 34,286
Human 6,728 5,382 673 673
C.elegans 7,786 6,228 779 779
BindingDB 70,965 56,772 7,096 7,097

Algorithm 1 Steps of ASSLDTA

Steps of ASSLDTA
Input: Pre-training drugs D= [31, ;iz, ce Qn]T, pre-training targets T = [;1, ?2, R fm]T, training drugs D = [d}, d,, . .. ,dn}T, training targets

T =[t,ty,...,tu]", the DTA score Y, the length of the fragment of the drug 1, the length of the fragment of the target 1, the number of fragments K,
a test drug d and a test target .

Output: the predicted DTA score of d and ¢.

Steps:

Stage 1: ASSL training

1: Divided fragments for D= [31, Ziz, e an]T and T = [‘21, ?2, ce Z,,JT by s8 = [disset, Bigatits - Digstri1]-
2: Trained drug RoBERTafT by drug fragments and trained target RoBERTafT by target fragments.

Stage 2: supervised DTAP training
k

" by sf

3:  Divided drug fragments and target fragments for D = [d;,d,, .. ., d,,]T and T = [t1, 6, ..., ty =
4 Extracted low-level features for drugs and targets by O; = [fT(E:),fT(E?), . 7fT(s\IK)] and 5j = [}‘T(s]l)
5: Extracted 2D CNN-based high-level features for drugs and targets by h; = fc(é,) and }vz,- = fc(b])

6: Extracted GCN based high-level features for drugs by ; = fo(d;).

(i joxvir difesbiov1s - - - > @i fobii—1)-

o5 fr (5]

7: Calculated the drug-target pair features by h; = [h;, hi, hy.

8: Calculated the DTA scores A by a; = fp(h;).

9: Training the fc’fc’ fe» fo by minimizing the mean-square error between A and Y.

Stage 3: supervised DTAP testing

10: Divided drug fragments and target fragments for d and ¢ by sf = [diesbi, dijorbic1s-- - Diksbivi—1)-

11: Extracted low-level features for d and t by O; = [fT(’§:),fT(§f)7 . ,]?T(Ef)] and éj = [fT(E;),fT(E;), . ,fT(sj )]
12: Extracted 2D CNN-based high-level features for d and f by h; :fc(é,-) and iij :fc(bj).

13: Extracted GCN based high-level features for d by h; = f5(d;).

14: Calculated the drug-target pair features by h; = [h;, ﬁ,-, hy).

15: Calculated the DTA scores a by a; = fp(h;).
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Table 5 Results of ASSLDTA by setting 16, 24, and 32 for K on Kiba and Davis. The bold indicates the

best results of ASSLDTA when K takes different values.

Metrics K Kiba Davis Mean
CI 16 0.907 (0.003) 0.910 (0.002) 0.9085
24 0.908 (0.002) 0.910 (0.002) 0.9090
32 0.906 (0.003) 0.909 (0.003) 0.9075
MSE 16 0.124 (0.002) 0.196 (0.003) 0.1600
24 0.123 (0.002) 0.197 (0.002) 0.1600
32 0.124 (0.002) 0.199 (0.003) 0.1615
rﬁqT 16 0.786 (0.005) 0.758 (0.004) 0.7720
24 0.785 (0.004) 0.758 (0.004) 0.7715
32 0.783 (0.005) 0.755 (0.005) 0.7690
AUPR?T 16 0.846 (0.004) 0.802 (0.005) 0.8240
24 0.846 (0.004) 0.803 (0.005) 0.8245
32 0.844 (0.005) 0.802 (0.006) 0.8230

In fact, | and [ can be set in a wide range, as lengths of core fragments vary over a wide
range. Specifically, if the core fragment is spread across multiple fragments, features of this
core fragment can be further extracted by the 2D CNN. If the core fragment is too short,
features of this core fragment can be further extracted by weighting features of the
corresponding fragment, which also can be extracted by 2D CNN. Furthermore, the
RoBERTa needs to be trained on large-scale data, so I and I are hardly set by the
experiment. As a result, I and [ are simply set to 16 and 128 according to above analyses
but not according to the experiment.

Next, the principle of setting K is introduced. K should be set to the value that most
words are distributed in one or more fragments. Therefore, K 1 and K * [ should be
respectively larger than 81 and 1,732, which are the upper limit of most drugs and targets
presented in Figs. 1 and 2. Furthermore, some overlap should exist among the neighbor
fragments. As a result, K should be larger than 13.5 which is 1,732/128, and results of
ASSLDTA whose K is set to 16, 24, 32 are presented in Table 5, where the best of each
group on each dataset is shown in bold.

It can be seen from Table 5 that CIs, MSE and AUPR of ASSLDTA are the best when K
is set to 24, and rfn of ASSLDTA are the best on most datasets when K is set to 16.
Furthermore, results of ASSLDTA when K is set to 32 are much worse than results of
ASSLDTA when K is set to 16 and 24, the reason may be that low-level features extracted
by ASSL contain too much positional information when K is too large. As a result, K is set
to 24 in the next experiments, as K set to 24 is the balance for the number of the fragments
and the positional information. Additionally, Table 5 also indicates that adjusting K within
a wide range does not significantly impact the results. The primary reason is that K only
affects the degree of window overlap, and the subsequent 2D CNN can adapt to different
degrees of window overlap to a certain extent. We set the same K value for all databases,
which to some degree demonstrates the good generalization ability of ASSLDTA.
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Results of DTA on Kiba

In this subsection, ASSLDTA is compared with many recent works on Kiba, such as
DeepDTA (Oztiirk, Ozgiir & Ozkirimli, 2018), MATT (Zeng et al., 2021), WideDTA
(Oztiirk, Ozkirimli ¢ Ozgiir, 2019), MAM (Aleb, 2021), AttentionDTA (Zhao et al., 2019),
SAG-DTA (Zhang et al., 2021), GraphDTA (Nguyen, Le ¢» Venkatesh, 2021),
MGraphDTA (Pan et al., 2023), DeepGS (Lin, 2020), DGraphDTA (Chen et al., 2020),
GLCNDTA (Gao et al., 2018), TDGraphDTA (Zhu et al., 2023a), DeepGLSTM
(Mukherjee, Ghosh ¢ Basuchowdhuri, 2022), GCN-BERT (Lennox, Robertson ¢ Devereux,
2021), and DGDTA (Yang et al., 2022). To comprehensively consider the role of each
module in ASSLDTA, ASSLDTA is also compared with MAM, 2DCNN-GCN, 2DCNN-
BERT, MPBERT and CPBERT, where the backbone network of MAM is 2DCNN, the
network structure of 2DCNN-GCN is similar with ASSLDTA but its input is one-hot
vector, the input of 2DCNN-BERT is consistent with ASSLDTA but it does not have GCN.
MPBERT employees Mol-BERT (Xia et al., 2023b) to extract features for drugs, while
ProteinBERT (Brandes et al., 2022) is utilized to capture features for targets. CPBERT
employees ChemBERTa-2 (Ahmad et al., 2022) to extract features for drugs, while
ProteinBERT (Brandes et al., 2022) is utilized to capture features for targets. The model
evaluations of the DTA on Kiba are listed in Table 6, where the best of each group on each
dataset is shown in the bold font. It can be seen from Table 6 that ASSLDTA is the best
among all compared methods on Kiba.

Firstly, ASSLDTA is much better than all CNN-based methods. The CI, MSE, rfn and
AUPR of ASSLDTA are much higher than that of the compared CNN-based methods.
Specifically, the CI of ASSLDTA is 0.01 higher than the CI of MAM, and the MSE of
ASSLDTA is 0.011 less than the MSE of MAM, where MAM is the best method among
CNN-based methods. They prove that using ASSL to learn low-level features for drugs and
targets is better for DTAP.

Secondly, ASSLDTA is much better than all GCN- and CNN-based methods. The CI,
MSE, 72, and AUPR of ASSLDTA are much higher than that of the compared GCN- and
CNN-based methods. Specifically, the CI of ASSLDTA is 0.004 higher than the CI of
DGraphDTA, and the MSE of ASSLDTA is 0.002 less than the MSE of DGraphDTA,
where DGraphDTA is the best method among GCN- and CNN-based methods. They
prove that using ASSL together with 2D CNN to learn high-level features is better.

Thirdly, ASSLDTA is much better than other pre-trained model-based methods. There
are seven pre-trained models for comparison, including DeepGLSTM, GCN-BERT,
SubMDTA, TransVAEDTA, 2DCNN-BERT, MPBERT, and CPBERT. The CI, MSE, rfn
and AUPR of ASSLDTA are much higher than that of other pre-training model-based
methods. Specifically, the CI, MSE, 7',211 and AUPR of ASSLDTA are 0.004, —0.004, 0.019
and 0.016 higher than the CI of CPBERT, where CPBERT is the best method among the
pre-trained model-based methods by using different pre-training methods. They prove
that the effectiveness of our improved RoBERTa for SMILES data and protein sequences
compared to other architectures. The possible reason is as follows: other methods use the
entire drug and target as training data, which may obscure the fragment features that play a
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Table 6 Results of DTA on Kiba.

Method Drug Target CIt MSE| 21 AUPR?
CNN-based method
DeepDTA (Oztiirk, Ozgiir ¢ Ozkirimli, 2018) 1D-CNN 1D-CNN 0.863 (0.002) 0.194 0.673 (0.009) 0.788 (0.004)
MATT (Zeng et al., 2021) 1D-CNN 1D-CNN 0.889 (0.004) 0.150 0.756 (0.011) —
WideDTA (Oztiirk, Ozkirimli & Ozgiir, 2019) 1D-CNN 1D-CNN 0.875 (0.001) 0.179 (0.008) 0.692 (0.009) —
AttentionDTA (Zhao et al., 2019) 1D-CNN 1D-CNN 0.882 (0.004) 0.162 (0.003) 0.755 (0.017) 0.829 (0.005)
GCN- and CNN-based method
SAG-DTA (Zhang et al., 2021) GCN 1D-CNN 0.892 0.130
GraphDTA (Nguyen, Le & Venkatesh, 2021) GCN 1D-CNN 0.891 0.139 0.736 (0.028) 0.823 (0.009)
MGraphDTA (Yang et al., 2022) GCN 2D-CNN 0.902 (0.001) 0.128 (0.001) - -
DeepGS (Lin, 2020) GCN, BiGRU 2D-CNN 0.860 0.193 - -
DGraphDTA (Chen et al., 2020) GCN GCN 0.904 0.126 - -
GLCNDTA (Gao et al., 2018) GCN GCN 0.899 0.127 - -
TDGraphDTA (Zhu et al., 2023a) GCN CNN 0.899 0.121 - -
Pre-training model based method
DeepGLSTM (Mukherjee, Ghosh ¢ GCN LSTM 0.897 0.133 - -
Basuchowdhuri, 2022)
GCN-BERT (Lennox, Robertson ¢ Devereux, 2021) GCN BERT 0.888 (0.001) 0.149 (0.001) 0.761 (0.009) 0.838 (0.003)
SubMDTA (Pan et al., 2023) Pre-trained GIN BiLSTM 0.898 0.129 0.793
TransVAEDTA (Zhou et al., 2024) VAE Transformer  0.822 (0.002) 0.253 0.632 (0.001) 0.701 (0.004)
Ablation method
MAM (Aleb, 2021) 2D-CNN 2D-CNN 0.898 0.135 - -
2D-CNN-GCN GCN+2D-CNN 2D-CNN 0.902 (0.003) 0.131 (0.003) 0.752 (0.007) 0.826 (0.005)
2DCNN-BERT BERT+2D-CNN  BERT+2D-  0.907 (0.002) 0.125 (0.002) 0.780 (0.005) 0.841 (0.005)
CNN
MPBERT Mol-BERT ProteinBERT ~ 0.903 (0.003) 0.130 (0.003) 0.769 (0.006) 0.825 (0.005)
CPBERT ChemBERTa-2 ProteinBERT  0.904 (0.002) 0.128 (0.003) 0.766 (0.005) 0.830 (0.004)
ASSLDTA GCN, BERT+2D- BERT+2D- 0.908 0.124 0.785 0.846
CNN CNN (0.002) (0.002) (0.005) (0.004)
Note:

Values in bold represent the results of the proposed method.

crucial role in drug-target affinity. In contrast, our pre-training approach focuses on

feature extraction from fragments, enabling better preservation of local fragment features

favorable to drug-target affinity, thus facilitating the subsequent application of supervised

methods for highlighting these features.

Fourthly, the module of BERT is the most important in ASSLDTA. It can be seen from
Table 6 that the CI of ASSLDTA is respectively 0.010, 0.006, 0.01 0.005 and higher than
that of 2DCNN-BERT, 2D-CNN-GCN, MAM and GBERT. The MSE of ASSLDTA is
0.002, 0.008, 0.012 and 0.006 less than that of 2DCNN-BERT, 2D-CNN-GCN and MAM.
Furthermore, 2, and AUPR of ASSLDTA are also much higher than these ablation
methods. They demonstrate that ASSL can significantly enhance the performance of
DTAP, while GCN has limited impact on enhancing DTAP.
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Results of DTA on Davis

In this subsection, ASSLDTA is compared with many recent works on Davis, such as
DeepDTA (Oztiirk, Ozgiir & Ozkirimli, 2018), MATT (Zeng et al., 2021), WideDTA
(Oztiirk, Ozkirimli ¢ Ozgiir, 2019), MAM (Aleb, 2021), AttentionDTA (Zhao et al., 2019),
SAG-DTA (Zhang et al., 2021), GraphDTA (Nguyen, Le ¢» Venkatesh, 2021),
MGraphDTA (Pan et al., 2023), DeepGS (Lin, 2020), DGraphDTA (Chen et al., 2020),
GLCNDTA (Gao et al., 2018), TDGraphDTA (Zhu et al., 2023a), DeepGLSTM
(Mukherjee, Ghosh ¢ Basuchowdhuri, 2022), GCN-BERT (Lennox, Robertson ¢ Devereux,
2021), and DGDTA (Yang et al., 2022). To comprehensively consider the role of each
module in ASSLDTA, ASSLDTA is also compared with MAM, 2DCNN-GCN, 2DCNN-
BERT, MPBERT and CPBERT, where the backbone network of MAM is 2DCNN, the
network structure of 2DCNN-GCN is similar with ASSLDTA but its input is one-hot
vector, the input of 2DCNN-BERT is consistent with ASSLDTA but it does not have the
GCN. GBERT employees Mol-BERT (Xia et al., 2023b) to extract features for drugs, while
ProteinBERT (Brandes et al., 2022) is utilized to capture features for targets. CPBERT
employees ChemBERTa-2 (Ahmad et al., 2022) to extract features for drugs, while
ProteinBERT (Brandes et al., 2022) is utilized to capture features for targets. The model
evaluations of the DTA on Davis are listed in Table 7, where Davis was often used to
evaluate DTAP. It can be seen from Table 6 that ASSLDTA is the best among all compared
methods on Davis.

Firstly, ASSLDTA is much better than all CNN-based methods. The CI, MSE, rfn and
AUPR of ASSLDTA are much higher than that of the compared CNN-based methods.
Specifically, the CI of ASSLDTA is 0.017 higher than the CI of AttentionDTA, and the
MSE of ASSLDTA is 0.017 less than the MSE of AttentionDTA, where AttentionDTA is
the best method among CNN-based methods. They prove that using ASSL to learn low-
level features for drugs and targets is better for DTAP.

Secondly, ASSLDTA is much better than all GCN- and CNN-based methods. The CI,
MSE, 72, and AUPR of ASSLDTA are much higher than that of the compared GCN- and
CNN-based methods. Specifically, the CI of ASSLDTA is 0.004 higher than the CI of
TDGraphDTA, where TDGraphDTA is the best method among GCN- and CNN-
based methods. They prove that using ASSL together with 2D CNN to learn high-level
features is better.

Thirdly, ASSLDTA is much better than other pre-trained model-based methods. There
are seven pre-trained models for comparison, including DeepGLSTM, GCN-BERT,
SubMDTA, TransVAEDTA, 2DCNN-BERT, MPBERT, and CPBERT. The CI, MSE, rfn
and AUPR of ASSLDTA are much higher than that of other pre-training model-based
methods. Specifically, the CI, MSE, 7',211 and AUPR of ASSLDTA are 0.007, —0.002, 0.009
and 0.008 higher than the CI of CPBERT, where CPBERT is the best method among the
pre-trained model-based methods by using different pre-training methods. They prove
that the effectiveness of our improved RoBERTa for SMILES data and protein sequences
compared to other architectures. The possible reason is that other methods use the entire
drug and target as training data, which may obscure the fragment features that play a
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Table 7 Results of DTA on Davis.

Method Drug Target CIt MSE| 21 AUPR?
CNN-based method
DeepDTA (Oztiirk, Ozgiir ¢ Ozkirimli, 2018) 1D-CNN 1D-CNN 0.878 (0.004) 0.261 0.630 (0.017) 0.714 (0.010)
MATT (Zeng et al., 2021) 1D-CNN 1D-CNN 0.891 (0.003) 0.227 0.683 (0.009) —
WideDTA (Oztiirk, Ozkirimli & Ozgiir, 2019) 1D-CNN 1D-CNN 0.886 (0.003) 0.262 (0.009) 0.633 (0.007) —
AttentionDTA (Zhao et al., 2019) 1D-CNN 1D-CNN 0.893 (0.005) 0.216 0.677 (0.024) 0.776 (0.024)
GCN- and CNN-based method
SAG-DTA (Zhang et al., 2021) GCN 1D-CNN 0.903 0.209
GraphDTA (Nguyen, Le & Venkatesh, 2021) GCN 1D-CNN 0.893 0.229 0.656 (0.014) 0.710 (0.006)
MGraphDTA (Yang et al., 2022) GCN 2D-CNN 0.900 (0.004) 0.207 (0.001) - -
DeepGS (Lin, 2020) GCN, BiGRU 2D-CNN 0.882 0.252 - -
DGraphDTA (Zhang et al., 2019) GCN GCN 0.904 0.202 - -
GLCNDTA (Gao et al., 2018) GCN GCN 0.903 0.215 - -
TDGraphDTA (Zhu et al., 2023a) GCN CNN 0.906 0.199 - -
Pre-training model based method
DeepGLSTM (Mukherjee, Ghosh & GCN LSTM 0.895 0.232 - -
Basuchowdhuri, 2022)
GCN-BERT (Lennox, Robertson ¢ Devereux, 2021) GCN BERT 0.896 (0.002) 0.199 (0.003) 0.741 (0.002) 0.806 (0.007)
SubMDTA (Pan et al., 2023) Pre-trained GIN BiLSTM 0.894 0.218 0.719 -
TransVAEDTA (Zhou et al., 2024) VAE Transformer  0.869 (0.008) 0.332 0.571 (0.001) 0.662 (0.003)
Ablation method
MAM (Aleb, 2021) 2D-CNN 2D-CNN 0.891 0.183 - -
2D-CNN-GCN GCN+2D-CNN 2D-CNN 0.904 (0.003) 0.206 (0.004) 0.735 (0.006) 0.788 (0.005)
2DCNN-BERT BERT+2D-CNN  BERT+2D-  0.908 (0.002) 0.201 (0.003) 0.752 (0.003) 0.801 (0.005)
CNN
MPBERT Mol-BERT ProteinBERT ~ 0.902 (0.004) 0.202 (0.003) 0.746 (0.003) 0.793 (0.004)
CPBERT ChemBERTa-2 ProteinBERT  0.903 (0.003) 0.201 (0.003) 0.749 (0.003) 0.795 (0.004)
ASSLDTA GCN, BERT+2D- BERT+2D- 0.910 0.199 0.758 0.803
CNN CNN (0.002) (0.002) (0.004) (0.005)
Note:

Values in bold represent the results of the proposed method.

crucial role in drug-target affinity. In contrast, our pre-training approach focuses on
feature extraction from fragments, enabling better preservation of local fragment features
favorable to drug-target affinity, thus facilitating the subsequent application of supervised
methods for highlighting these features.

Fourthly, the module of BERT is the most important in ASSLDTA. It can be seen from
Table 7 that the CI of ASSLDTA is respectively 0.002, 0.006, 0.019 and 0.008 higher than
that of 2DCNN-BERT, 2DCNN-GCN, MAM and GBERT. The MSE of ASSLDTA is
0.002, 0.007 and 0.003 less than that of 2DCNN-BERT, 2DCNN-GCN and GBERT. They
demonstrate that ASSL can significantly enhance the performance of DTAP, while GCN
has limited impact on enhancing DTAP.

Furthermore, although the MSEs of GCN-BERT and MAM are better than that of
ASSLDTA on Davis, MSEs, the CIs of GCN-BERT and MAM are much worse than those
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of ASSLDTA on Kiba, and the CIs of GCN-BERT and MAM are much worse than those of
ASSLDTA on Davis. They prove that GCN-BERT and MAM are not stable and ASSLDTA
are also much better than GCN-BERT and MAM.

Results of DTA on other three datasets

In this subsection, ASSLDTA is compared with GraphDTA and DeepGLSTM on DTC,
Metz, and Tox-cast. Only GraphDTA and DeepGLSTM are compared, as few deep
methods are currently validated on these three databases. Results are presented in

Figs. 5 and 6.

It can be seen from Fig. 5 and 6 that our method is also the best. Firstly, the CI of
ASSLDTA is respectively 0.025, 0.015, and 0.008 higher than that of GraphDTA, and the
MSE of ASSLDTA is respectively 0.034, 0.038, and 0.027 less than that of GraphDTA on
DTC, Metz, and Tox-Cast. Secondly, the CI of ASSLDTA is respectively 0.006, 0.005, and
0.004 higher than that of GraphDTA and the MSE of ASSLDTA is respectively 0.007,
0.015, and 0.016 less than that of GraphDTA on DTC, Metz, and Tox-Cast. They prove
that using ASSL together with 2D CNN to learn high-level features for the drug and target
is better for DTAP and demonstrates the good generalization ability of ASSLDTA.

Results of CPI

In this subsection, the binary classification task of CPI is also used to evaluate the
ASSLDTA. ASSLDTA is compared with MGraphDTA (Wang et al., 2024), GraphDTA
(Nguyen, Le ¢~ Venkatesh, 2021), SAG-DTA (Zhang et al., 2021), SVM (Chen et al., 2020),
TransformerCPI (Chen et al., 2020), GNN-CNN (Zhao et al., 2024), and TrimNet (Li et al.,
2021). The results are presented in Table 8, where our method is shown in bold.

It can be seen from Table 8 that AUROC of ASSLDTA is the best on all datasets.
AUROCs of ASSLDTA are respectively 0.005, 0.003 and 0.006 higher than that of SAG-
DTA, MGNN-MCNN and SAG-DTA on the Human, C.elegans and BindingDB datasets,
where SAG-DTA, MGraphDTA and SAG-DTA are respectively the second best methods
on these three datasets. They prove that ASSLDTA is also benefit for CPI, which also prove
the good generalization ability of ASSLDTA.

Fill mask evaluations of the ASSL
In this subsection, the filling mask task on five DTA datasets is used to evaluate the
effectiveness of ASSL. In the padding mask task, the second to last character of a SMILES
or a sequence is masked sequentially. The RoBERTa model is then used to predict the
masked characters. The more accurate the prediction of the character, the better the model
can extract the features of the drug or target. The predicted precisions of the characters are
presented in Figs. 7 and 8, where the characters around the perimeter have been sorted
according to the top-1 precisions. The overall prediction precisions for the masked
characters are presented in Figs. 9 and 10. Top-p indicates that the masked character is in
the set of characters with top-p prediction scores.

ASSL trained on drug fragments has a strong ability to reconstruct drug fragments. It
can be seen from Fig. 7 that the Top-3 precisions of most characters are greater than 0.6.
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Figure 6 MSEs of DTA on DTC, Metz and Tox-Cast. Full-size K&l DOI: 10.7717/peerj-cs.2622/fig-6

Table 8 Results of CPI.

Method Human C.elegans BindingDB
MGraphDTA (Wang et al., 2024) 0.983 0.991 -
GraphDTA (Nguyen, Le & Venkatesh, 2021) 0.960 0.974 0.929
SAG-DTA (Zhang et al., 2021) 0.984 - 0.963

SVM (Chen et al., 2020) 0.910 0.894 -
TransformerCPI (Chen et al., 2020) 0.973 0.988 0.951
GNN-CNN (Zhao et al., 2024) 0.970 0.978 -

TrimNet (Li et al., 2021) 0.974 0.987 -
ASSLDTA 0.989 0.994 0.969

Note:

The bold represents the results of our method.

Specifically, the Top-10 precisions of most characters are greater than 0.95. It can be seen
from Fig. 9 that the overall Top-1, Top-3, Top-5 and Top-10 precisions of the SMILES are
respectively larger than 0.624, 0.855, 0.917, and 0.967, where the number of different
characters is greater than 28. They support the validity of the features extracted by ASSL
for drugs.

The ASSL trained on fragments of the target also has a strong ability to reconstruct the
fragment of the target. It can be seen from Fig. 8 that the Top-1 precisions of most
characters are greater than 0.4. Specifically, the Top-10 precisions of most characters are
greater than 0.80. It can be seen from Fig. 10 that the overall Top-1, Top-3, Top-5, and

Ye and Sun (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2622 I 22/30


http://dx.doi.org/10.7717/peerj-cs.2622/fig-5
http://dx.doi.org/10.7717/peerj-cs.2622/fig-6
http://dx.doi.org/10.7717/peerj-cs.2622
https://peerj.com/computer-science/

PeerJ Computer Science

Top-1 Top-3 Top-5 Top-10

Figure 7 Prediction precisions of each character of SMILES on five DTA datasets.
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Figure 8 Prediction precisions of each character of sequences on five DTA datasets.
Full-size K&] DOT: 10.7717/peerj-cs.2622/fig-8

Ye and Sun (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2622 I ]23/30


http://dx.doi.org/10.7717/peerj-cs.2622/fig-7
http://dx.doi.org/10.7717/peerj-cs.2622/fig-8
http://dx.doi.org/10.7717/peerj-cs.2622
https://peerj.com/computer-science/

PeerJ Computer Science

—0— Top-1 —8—Top-3 Top-5 —e—Top-10

1
——o— o o—*

0.95
0.9 ~
0.85
0.8
0.75
0.7

0.65
0.6

Kiba Davis DTC Metz Tox-Cast

Figure 9 Mean prediction precisions of characters of SMILES on five DTA datasets.
Full-size &) DOTI: 10.7717/peerj-cs.2622/fig-9

—@— Top-1 ——Top-3 Top-5 —e&— Top-10

0.95
0.9 ———¢——¢— ¢ I

0.85

0.8
0.75

0.7 "\l—./'/.
0.65

0.6

0.55 w
0.5
0.45
Kiba Davis DTC Metz Tox-Cast

Figure 10 Mean prediction precisions of characters of sequences on five DTA datasets.
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Top-10 precisions of the sequence are respectively larger than 0.508, 0.696, 0.780, and
0.905, where the number of different characters is greater than 20. They support the
effectiveness of the features of the target extracted by the ASSL.

Furthermore, it can be seen from Figs. 7-10 that the prediction precisions of SMILESs
are better than that of the sequence. However, in ASSLDTA, GCN is also used to extract
features for SMILES. The reasons are as follows: Firstly, the Top-1 precisions of many
characters are very low, which may have a negative impact on the quality of drug feature
extraction. It can be seen from Fig. 7 that the Top-1 precisions of about 1/3 characters are
smaller than 0.4, such as ., V', */’, 7, ‘8’,6’, ), °5” and ‘4’. Secondly, the molecular structure
of a drug is a typical graph structure, and then effective drug features can be extracted by
using a GCN.
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DISCUSSION

Pre-training typically involves using unsupervised learning techniques to train the model
on a large amount of unlabeled data, which has been successfully applied in many fields.
However, there are still some problems with directly applying pre-training to DTAP. A
drug and a target should be provided for DTAP, but there is no way to provide sufficient
drug target pairs for pre-training. One optional approach is to pre-train separately

for drugs and targets. However, from the principle of drug design, the DTAP is mainly
determined by core fragments of the SMILES and sequence (Lin, Zhang ¢» Xu, 2020; Zhang
et al., 2019). As a result, it is difficult to improve the DTAP effect by directly utilizing the
high-level features learned through separate pre-training strategies (Liu et al., 2019;
Lennox, Robertson & Devereux, 2021; Elnaggar et al., 2020; Liu et al., 2021).

In order to better apply pre-trained models to DTAP, we consider first using pre-trained
models to learn the features of drug and target fragments, and then using 2D CNN to
further learn high-level features in a supervised manner. Thus, guided by the label,
2DCNN does not need to learn the features of the fragments from scratch, but only needs
to highlight the features of the core fragments, which is necessary in DTAP where the
number of training samples of DTAP is still very small.

Our experiments and results are validated and reflected the effectiveness of ASSLDTA.
ASSLDTA performs much better than CNN-based methods, suggesting that using ASSL to
prepare better inputs for CNN can improve the performance of DTA. ASSLDTA performs
much better than GCN and CNN-based methods, showing that ASSL together with 2D
CNN can learn effective drug features and target features. ASSLDTA performs much better
than GCN and pre-trained model-based methods, indicating that it is important to
improve SSL based on the characteristics of DTA. ASSLDTA is not parameter sensitive
and ASSLDTA can improve the effectiveness of CPI, which indicates that ASSLDTA has
good generalizability of our method and can be easily used in drug screening.

Although our method has a better overall performance than the compared method, its
improvement is limited. This is because there are still some limitations in our research
work. For example, SSL is utilized to extract low-level features but not directly improved to
overcome the problems of existing SSL methods. DTA is determined by core fragments of
drugs and targets, but we did not directly design a method that can precisely divide the
core fragments. These works open room for future investigations. One of the further works
will be to design a new training goal for pre-training to directly overcome the problems of
existing pre-training methods. As another further work, a better segmentation method will
be designed to allow each fragment to have a specific function, and then the features
extracted from each fragment by the pre-training would be more meaningful.

CONCLUSION

In this article, we propose an ASSLDTA for DTA prediction that can leverage a large

number of unlabeled segments to learn low-level features by ASSL and further leverage a
small number of labeled samples to learn high-level features by 2DCNN. In particular, we
have changed the way of using pre-trained models in DTAP, which can overcome three
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problems of commonly usage strategy, such as the gap between the input of pre-training
and DTAP, the gap between the output of pre-training and the need of DTAP, and the gap
between training goals of pre-training and DTAP. In addition, GCN is also used to extract
graph features, where drug molecules have typical graph structures. Experiments have
been conducted to verify that ASSLDTA is a competitive method compared to previous
methods.
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