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The energy consumption of pure electric-driven plant protection robots in mountainous
environments has signiûcantly increased, seriously aûecting the eûciency of their
operations. To address this issue, this paper proposes a multi-objective improved A*-IWOA
robot path optimization method based on a 2.5D elevation grid map. Firstly, a work energy
consumption model considering robot slope energy consumption is established based on
robot kinematics and dynamics models. Then, based on a 2.5D elevation grid map, an
improved A* search method is established by searching for 8-domain diagonal distances
and introducing a cost function with cross product decision values. Then, with the robot's
motion trajectory as the constraint condition, the IWOA algorithm with dynamically
adjusted uniformly distributed population position and inertia weight is adopted to
optimize the vector cross product factor p with the goal of minimizing the operation9s
energy consumption and path curvature. Finally, in simulation and real mountainous
orchard scenarios, the application eûects of the improved algorithm in this paper are
compared with some excellent variants of the A* algorithm using the robot ROS2 operating
system as a platform. The experimental results show that this improved algorithm
described here could signiûcantly shorten the passage length of the robot, and improve
the path planning eûect and computational eûciency. This method largely meets the
requirements for driving accuracy and energy consumption of plant protection robots in
mountainous operation scenarios.
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14 Abstract

15 The energy consumption of pure electric-driven plant protection robots in mountainous 

16 environments has significantly increased, seriously affecting the efficiency of their operations. 

17 To address this issue, this paper proposes a multi-objective improved A*-IWOA robot path 

18 optimization method based on a 2.5D elevation grid map. Firstly, a work energy consumption 

19 model considering robot slope energy consumption is established based on robot kinematics and 

20 dynamics models. Then, based on a 2.5D elevation grid map, an improved A* search method is 

21 established by searching for 8-domain diagonal distances and introducing a cost function with 

22 cross product decision values. Then, with the robot's motion trajectory as the constraint condition, 

23 the IWOA algorithm with dynamically adjusted uniformly distributed population position and 

24 inertia weight is adopted to optimize the vector cross product factor p with the goal of 

25 minimizing the operation�s energy consumption and path curvature. Finally, in simulation and 

26 real mountainous orchard scenarios, the application effects of the improved algorithm in this 

27 paper are compared with some excellent variants of the A* algorithm using the robot ROS2 

28 operating system as a platform. The experimental results show that this improved algorithm 

29 described here could significantly shorten the passage length of the robot, and improve the path 

30 planning effect and computational efficiency. This method largely meets the requirements for 

31 driving accuracy and energy consumption of plant protection robots in mountainous operation 

32 scenarios.

33 Keywords: Plant Protection Robots, Path Planning, Multi-Objective, Improved A*-IWOA, 

34 Vector Cross Product Winning Value
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35 1 Introduction

36 The widespread application of agricultural robots has achieved deep integration of intelligent 

37 technology and agricultural machinery, greatly improving agricultural production efficiency and 

38 significantly reducing the labor intensity of farmers. Autonomous plant protection robots are 

39 widely used in farmland and orchards, and how to improve their operational accuracy, efficiency, 

40 and energy consumption is currently an important issue.

41 Autonomous operation and obstacle avoidance path planning are key technologies for plant 

42 protection robots. Plant protection robots provide reliable data for the rational planning of 

43 obstacle avoidance paths by sensing, detecting, and identifying obstacles through their own 

44 sensors. Farmland and orchards are typical unstructured scenes with characteristics such as 

45 uneven ground and a complex distribution of obstacles, which increase the difficulty of path 

46 planning. Li W et al. (2021) and SoundraPandian and Mathur (2010) have combined the A* 

47 algorithm with the DWA algorithm to obtain fewer path distances and inflection points. 

48 SoundraPandian and Mathur (2010) have moved the path points away from obstacles and used 

49 mixed A* to replan the path, improving the safe distance. Chen Y et al. (2023) have selected 

50 dynamic points on the line connecting the robot to the target point as feature vectors and planned 

51 to run the COA algorithm once per step until the target point was reached. Yuan Y et al. have 

52 proposed a combination matrix that combines energy consumption models and motion distances 

53 and applied it to the Dijkstra algorithm for path planning (Yuan et al., 2020; Wang D, 2012; 

54 Meng et al., 2023). An ECA* algorithm has been proposed that considers energy consumption 

55 constraints to solve the optimal energy consumption path planning problem in resource-limited 

56 situations (Zhai, Egerstedt & Zhou, 2022; Manca, Paternò & Santoro, 2021). Zakharov K et al. 

57 have proposed an LRLHD-A* algorithm for optimal path planning of robot energy consumption 

58 in three-dimensional map environments (Zakharov Saveliev & Sivchenko, 2020). The dynamic 

59 constraints during robot motion and their interaction with terrain are extremely complex, and the 

60 energy consumption model constructed by traditional methods has low accuracy. Lambert et 

61 al. (2024) have used a small amount of terrain perception data to train and generate more 

62 accurate energy consumption models through deep meta-learning algorithms.

63 From the above analysis, it can be concluded that the two key factors to consider in the path 

64 optimization process of plant protection robots are energy consumption and path optimization, 

65 which in turn affect each other. The length and smoothness of the path will both affect energy 

66 consumption. In our study, based on a 2.5-dimensional elevation grid map, a work energy 

67 consumption model considering the additional energy consumption of robot slopes is established, 

68 and an improved A *-IWOA path planning algorithm is designed with the kinematic constraints 

69 of robot motion trajectory as the boundary condition, ensuring a good balance between energy 

70 consumption and trajectory smoothness in the robot's work effect.

71 2 Kinematic and energy consumption models of the plant protection robot

PeerJ Comput. Sci. reviewing PDF | (CS-2024:07:103774:0:1:NEW 26 Jul 2024)

Manuscript to be reviewedComputer Science

Year ?



72 This research object is a front wheel differential driven Ackermann steering plant protection 

73 robot working in unstructured orchard scenes. This robot coordinate system XYZ is defined in 

74 the geodetic coordinate system X0Y0Z0, where the X-axis points directly in front of the robot's 

75 operation, the Y-axis points forward towards the left side of the robot, and the Z-axis is 

76 perpendicular to the robot's moving platform, as shown in Fig. 1. Considering the influence of 

77 the robot's operational status and orchard terrain factors, the kinematic state space equations is 

78 established in this article for the movements in the three directions along X-axis, Y-axis, and Z-

79 axis and the lateral motion around the Z-axis.

80 2.1 Kinematic model 

81 This robot motion state variable is defined as , where  is the velocity component X = [

82 along the X-axis and  is the lateral angular velocity around the z-axis. is defined as U = [ l, r]

83 control variables, where  and  respectively represent the angular velocity of the left and l r

84 right drive wheels of the robot. The motion state equation of the robot could be expressed as:

85                                           (1)[ ] =
r[ 2

   
2 ][ l

r
]

86                                                        (2)z =

87 Where: r is the radius of the robot wheel. B is the robot track width. Z is the z-axis displacement 

88 of the robot.  is the road elevation.

89 The kinematic model of this robot is represented by its unilateral driving wheel motion state as 

90 (Zhang et al., 2023):

91                                      (3)+ ( , ) + ( ) =

92 Among them: , .= [ l, r], = [ l, r] = [Tl,Tr]

93 Where: M is the inertia matrix of the robot's driving wheel.  is the matrix of the ground )

94 rolling resistance moment of the driving wheel.  is the gravity matrix of the robot.  is the 

95 angular displacement vector of the left and right driving wheels of the robot.  is the angular 

96 velocity vector of the left and right driving wheels of the robot.  is the angular acceleration 

97 vector for the left and right driving wheels of the robot.  is the output torque matrix for the 

98 motor of the left and right drive wheels.

99 The correspondence between the robot control variable U and the output torque vector T of the 

100 driving wheel can be obtained through formulas (1) to (3), laying the foundation for the 

101 establishment of its energy consumption model.

102 2.2 Energy consumption model 

103 This pure E-driven plant protection robot uses power batteries as the power source, and the 

104 motor controller achieves speed control of the driving motor through PWM (Modulation and 
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105 Demodulation) methods. A portion of the power output from the driving motor is used to 

106 consume the internal resistance of the battery, while the other portion is output to the robot's 

107 moving platform.

108 The movement speed of the plant protection robot is relatively small, and the tire contact area 

109 is limited, so the air resistance and rolling resistance could be ignored. But the terrain of the 

110 orchard is undulating, and the total mass of the robot is relatively large, so the ramp resistance 

111 could not be ignored (Yin et al., 2019). Therefore, this paper defines that the energy consumption 

112 of operations consists of two parts, namely battery internal resistance loss and robot ramp 

113 resistance loss.

114 When the robot load and the motor output torque are constant, according to the direct 

115 proportional relationship between motor torque and armature current, it can be inferred that both 

116  and  are constant values. The armature voltage of the left and right drive motors could be 

117 expressed as:

118                                     (4)= + 0

119                                    (5)= + 0

120 Where:  and  are the armature currents of the left and right drive motors respectively.  is 

121 the internal resistance of the power batteries.  and  are the armature voltages of the left and 

122 right drive motors, respectively.  is the back electromotive force coefficient of the driving 

123 motor.  is the transmission ratio of the motor reducer.0

124 The output power of the left and right drive motors could be expressed as:

125                                               (6)=

126                                              (7)=

127 Substituting formulas (4) and (5) into formulas (6) and (7), it could be obtained as:

128                                    (8)=
2

+ 0

129                                    (9)=
2

+ 0

130 The internal resistance loss of the battery could be expressed as:

131                                 (10)= (
2

+
2
)

= 1

132 Where: N is the number of state nodes in the path search node space.  is the distance between 

133 adjacent state nodes.

134 Assuming the longitudinal ramp angle of the road surface is , the ramp resistance loss could 

135 be expressed as:

136                                            (11)=

PeerJ Comput. Sci. reviewing PDF | (CS-2024:07:103774:0:1:NEW 26 Jul 2024)

Manuscript to be reviewedComputer Science



137                               (12)=
+ 1

0
,    + 1

138 Where: m is the total mass of the robot, ignoring the changes in the mass during operation 

139 process. the value of coefficient D is related to the search logic, such as D=1 for straight line 

140 search and D=0 for diagonal search.  is the distance between the centers of adjacent cells in a 0

141 grid map.

142 So the ramp resistance loss could be expressed further as:

143                                 (13)=
0 = 1

( + 1 )

144 By summing formulas (10) and (13), the energy consumption model of the robot can be 

145 obtained as:

146                             (14)=
= 1

[A + Bÿ + 1 )]

147 Where: A and B represent constant coefficients related to the robot structural parameters and 

148 node search logic respectively.

149 3 An improved A* path searching method based on the constraints of 

150 operation conditions

151 The A* algorithm is a heuristic searching method to find the optimal path in a static obstacle 

152 environment (Jiang & Zhang, 2022). It searches in the robot's motion state space. Firstly, it 

153 evaluates the cost of each search position to obtain the state node with the smallest cost. Then it 

154 traverses the entire state space until the optimal solution is found. At last, it ends the cycle.

155 In this heuristic search process, the cost evaluation of state nodes is very important. And their 

156 cost function is generally expressed as:

157                                       (15)f(n) = g(n) + h(n)

158 Where: f(n) is the cost function from the initial state through the state n to the target state. g(n) is 

159 the actual cost from the initial state to the state n in the state space. h (n) is the estimated cost of 

160 the optimal path from the state n to the target state.

161 There are three common h(n) functions in 2D grid maps, namely euclidean distance, 

162 Manhattan distance, and diagonal distance methods as shown in Fig. 2 (Min et al., 2021). The 

163 euclidean distance is the shortest among them, but it can lead to a decrease in search efficiency 

164 when the environmental map is more complex. The search logic for Manhattan distance is simple, 

165 but the path distance is longer. In contrast, the diagonal distance method performs better in both 

166 search path distance and search efficiency (Shi et al., 2022).
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167 3.1 The improvement of A* based on the cost function of vector cross product 

168 winning value

169 In this paper, it is considered that the limitations of 2D grid information in describing the 

170 working environment and the high demand for computing resources in the 3D occupied grid map 

171 of the octree structure (Wu et al., 2022). In addition, based on the analysis above, energy 

172 consumption in mountainous environments is also a factor that cannot be ignored in path 

173 selection. Therefore, a 2.5D elevation grid map is selected to describe the robot's working 

174 environment accurately, as shown in Fig. 3. In Fig. 3(b), the numbers in each grid represent the 

175 vertical height from the horizontal plane at the center point of the divided grid, denoted as zn. 

176 This can ensure efficient representation of environmental information while also having lower 

177 maintenance costs and real-time performance (Kim & Kim, 2024). We can see that the planned 

178 path obtained in a 2.5D elevation grid map is completely different from the 2D grid environment 

179 without considering the vertical height of the mountains in the simulation results in Section 5.3 

180 of this paper.

181 According to the 8-domain diagonal distance search method (Saadatzadeh, Ali Abbaspour & 

182 Chehreghan, 2023), a cost function with a cross product winning value is introduced to make the 

183 planned path more inclined to follow the straight path from the initial point to the target point 

184 (Bays et al., 2024), as shown in Fig. 4. The specific definition is as follows:

185                              (16)dx1 = xn xgoal

186                              (17)dy1 = yn ygoal

187                              (18)dz1 = zn zgoal

188                            (19)dx2 = xstart xgoal

189                            (20)dy2 = ystart ygoal

190                            (21)dz2 = zstart zgoal

191 In the following,  and  represent the vector from the current point to the target point and the 

192 vector from the starting point to the target point, respectively:

193                               (22)= (dx1,dy1,dz1)

194                                (23)= (dx2,dy2,dz2)

195 To measure the deviation of the planned straight path between the current node and the 

196 starting and target points, the cross product vector of  and  is defined as follows:
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197                                                × = [
i         j         k

dx1     dy1      dz1
dx2     dy2      dz2] = (dy1 dz1,dz1 dz2,dx1 dx2)

198 (24)   

199 On this basis, define the vector cross product winning value as follows:                  

200                                                            cross =
2

(dy1 dz1)
2

+ (dz1 dz2)
2

+ (dx1 dx2)
2

201 (25)

202 Therefore, the cost function by introducing the vector cross product winning value is redefined 

203 as follows:                       

204                                 (26)h(n) = 1 + cross p

205 Where: (xn, yn, zn), (xstart, ystart, zstart), (xgoal,ygoal,zgoal) are the coordinates of the current state node, 

206 the starting point and the target point respectively. p is the vector cross product weight factor.

207 In Fig. 4, the parallelogram area composed of  and  vectors represents the value of the cross. 

208 The greater the deviation between the current path and the straight path from the starting point to 

209 the target point, the greater the value of this cross. According to the tendency of the cost function, 

210 the selection of path nodes tends to choose the direction closer to the straight path. In this case, 

211 when the p-value is selected properly and there are no obstacles, A* can not only search for very 

212 few state regions, but also find excellent paths. Assuming p is chosen as a fixed value, when a 

213 large number of obstacles appear, A* would produce strange results, as shown in Fig. 5 (Wang 

214 Wang & Liu, 2024). Therefore, in Section 3.2 below, the intelligent optimization algorithm 

215 WOA is adopted to intelligently optimize the vector cross product factor p with the goal of 

216 minimizing robot operation energy consumption and path curvature.

217 3.2 Constraints of operation trajectory

218 As shown in Fig. 6, the operation trajectory of the plant protection robot is divided into straight 

219 and curved segments. The search logic of the straight section is simple and will not be repeated 

220 in the text. The points Q0~Q6 in the figure represent seven consecutive state nodes in the search 

221 space of a certain curve segment trajectory, where Q0 (x0, y0) and Q6 (x6, y6) are the starting and 

222 target points, respectively. Q1 (x1, y1) and Q5 (x5, y5) are the segmentation points. To simplify the 

223 turning logic trajectory, it is symmetrically distributed along the center line. Therefore, changing 

224 the positions of Q2 (x2, y2) and Q4 (x4, y4) could improve the smoothness of the trajectory. Due to 

225 the special working environment and structural parameter limitations of robots, the following 

226 requirements are proposed for the motion trajectory in the path planning process:

227 (1) The curvature of any point on the trajectory , where  is the minimum turning 
1

Rmin
Rmin

228 radius of the robot.
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229 (2) Front wheel turning angle of the robot , where .max max = arctan
L

Rmin

230 (3) The trajectory curvature must be continuous. To avoid situations such as sharp turns and 

231 emergency stops during the operation, it is necessary to ensure the curvature of the trajectory is 

232 continuous. Therefore, the point Q2 should be located above the line connecting Q1 and Q3, 

233 otherwise the trajectory curvature changes too much, which is not conducive to tracking (Zhai et 

234 al., 2024). Ignoring the influence of smaller elevation parameters in a 2.5-D elevation grid map, 

235 the curvature continuity condition can be expressed as:

236                           (27)2

3 1

3 1
( 2 1) + 1

237 (4)The angular velocity constraints of robot front wheel :

238                            (28)=
)

239 This paper uses cubic B-spline curves to fit trajectories (Ardestani, Safdari & Mallah 2023), 

240 and the above trajectory constraints can be summarized as follows:

241                    (29){
=

'
( )

''
(

'
( )

''
( )

(
'2

( ) +
'2

( ) +
'2

( ))

3

2

1

Rmin

2

3 1

3 1
( 2 1) + 1

)

242 Where:  is the node vector of the cubic B-spline curve.  is the forward viewing distance of the 

243 robot.  is the heading angle between the current position of the robot and the target point.

244 4 Multi-objective optimization of the vector cross product weight factors

245 4.1 A brief introduction to WOA

246 The WOA algorithm is a meta-heuristic algorithm that simulates the hunting behavior of 

247 humpback whales in the ocean. It simulates the three stages of whale hunting, such as searching 

248 for prey, surrounding targets, and spiral bubble net predation. Compared to the other intelligent 

249 algorithms, it has the advantages of fewer parameters, simpler principles, and stronger multi-

250 objective optimization ability (Guo et al., 2021). The three stages of whale hunting can be 

251 described by mathematical models as follows (Rahimnejad, Akbari & Mirjalili, 2023):

252 (1)The surrounding preys stage. Other whale individuals in the population use formulas (30) to 

253 (34) to update their positions and approach to the optimal whale individual.
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254                       (30)
+ 1

= 1

255                        (31)1 = | |

256                             (32)=

257                                  (33)= 2

258                                (34) =

259 Where:  is the location of the whale individual that searched for the optimal solution of the 

260 t-th generation population.  is the position of the i-th individual in the t-th iteration.  1

261 indicates the enclosing step size. A and C are the coefficient vectors.  is the maximum number 

262 of iterations. r is a random number between [0, 1].

263 (2)The bubble net attack stage. It simulates the process of whales protruding the bubble net along 

264 the spiral line and approaching their preys using formulas (35) to update individual positions:

265                       (35)  
+ 1

= 2 +

266 Where: express b iD2 = |X t
best X

t
i| the distance between whales and prey;

267 ls the spiral shape coefficient;  is a random number between [0,1].

268 (3)The searching for prey stage. WOA selects an individual from the population as the target for 

269 position updates randomly, and updates the model as shown in equation (36),

270               (36)
+ 1

= { 3 < 0.5;

2 + 0.5

271                                   (37)3 = | |

272 Where:  is a randomly selected individual position from the whale population.

273 4.2 Improvement of IWOA based on dynamic adjustment of uniformly 

274 distributed population position and inertia weights

275 When initializing the WOA algorithm population, randomly generated population positions can 

276 easily lead to an uneven distribution of individual positions, limited search range, slow 

277 convergence speed, and falling into local optima (Yang & Liu, 2022; Li et al., 2017). In response 

278 to the shortcomings of the aforementioned WOA algorithm, this paper uses Circle mapping to 

279 generate uniformly distributed population positions, increasing the diversity of whale individual 
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280 positions and improving the performance of WOA (Zhou et al., 2017).

281 The definition of Circle mapping is as follows:

282                                 (38)X
t + 1

i = mod(X
t
i +

0.5
X

t
i),1)

283 Where:  represents the position vector of the i-th whale in the whale population at the t-th X
t
i

284 position update.

285 Dynamic adjustment for inertia weight of fitness Ë based on  inverse incomplete function (Li, 

286 2024), with the specific form as follows:

287                                (39)=
max min

×
t

T
)

288 Where:  is a MATLAB  function which is max = 0.8, min = =

289  is a random variable with a value of 0.2. t is the current number of 
0
e t dt 0)

290 iterations. T is the maximum number of iterations. By dynamically adjusting, the inertia weight 

291 Ë decreases non-linearly with the increase of iteration times. Based on this, the improved IWOA 

292 position update formula is as follows:

293                    (40)
+ 1

= {
| | < < 0.5;            

,   | | < 0.5    

( ) + 0.5     

294 Where:  represents the position vector of whales randomly selected from the whale X
t

rand

295 population in the t-th position updating.  represents the optimal whale position vector from 

296 the whale population in the t-th position updating. p represents the probability of choosing to 

297 reduce the enclosure and update the spiral rotation position during whale hunting. D =

298 ;  (   represents the position vector of whales |C | Drand = |C |
299 randomly selected from the population). b represents the constant of the spiral equation, is 1 in 

300 this paper. l is random numbers between [-1,1]. A and C are two random parameters, defined as 

301 follows:

302                                            (41)A = 2ar1 = 2r2

303 Where: and are random numbers between [0, 1]. a is a parameter that decreases from 2 to 0 as r1 r2

304 the number of iterations increases, it defined as: 

305                                                      (42)a =

306 Perform the search steps following the pseudo code of the improved IWOA algorithm shown 

307 in Table 1. 

308 4.3 Process of multi-objective IWOA based on optimal solution evaluation

309 The distance between any two adjacent state nodes in the robot path:
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310              (43)= [ + 1 )^2 + + 1 )^2 + + 1 )^2]^
1

2

311 During the operation of the plant protection robot, the longitudinal speed change is relatively 

312 small and can be considered to have a certain value. Therefore, substituting formula (43) into (14) 

313 can obtain the energy consumption of the robot from the starting point to any point:

314                                  (44)Q =
= 1

[A + Bÿ + 1 )]

315 Where: when ; else .zi + 1 zi, B 0 zi + 1 < zi, B = 0

316 The general parameter equation of the trajectory curve in three-dimensional space can be 

317 expressed as:

318                                       (45)x = x(t), y = y(t), z = z(t)

319 The curvature of any point on the robot's operation path can be expressed as:

320                                        (46)=
' '' ' ''

(
'2

+
'2

+
'2

3

2

321 Therefore the two fitness functions are established of the IWOA algorithm, which are: 

322                              (47)1( , , ) = 2( , , ) =

323 This paper uses the search logic selected by the optimal solution evaluation to search for non 

324 inferior optimal solutions (Cai et al., 2024). By and jointly guiding the 1( , , ) 2( , , )

325 whale's position in the decision variable space, it can fall into the non-inferior optimal target 

326 domain. This logic of selecting this optimal solution evaluation can be explained as this updating 

327 logic could cause and  to change in different directions that increase at the 1( , , ) 2( , , )

328 same time. Ultimately, the whale's position is dispersed in a set of non inferior optimal solutions, 

329 which can prevent individual whales from falling into the optimal solution region of a certain 

330 fitness function, reflecting the constraint relationship between the two fitness functions. The 

331 specific process is shown in Fig. 7.

332 5 Experiments and analysis

333 Our experimental subject is a wheeled plant protection robot independently developed by our 

334 university, as shown in Fig. 8. The visual sensor of this robot platform adopts the OBI 

335 Zhongguang global shutter binocular depth camera, which has a depth frame rate of 90 fps. The 

336 16-line LiDAR uses the Raytheon M10P, with a measurement radius and sampling frequency of 

337 30 m and 20000 Hz, respectively. The processor uses NVIDIA's Orin Nano NX 8 GB and is 

338 equipped with the Ubuntu 18.04 LTS operating system. The overall functional design is 
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339 completed based on ROS 2. The operating speed of the robot platform is 2-5 km/h. 

340 5.1 Experimental methods

341 In order to verify the robustness of the algorithm proposed in this paper and the improvement 

342 effect of path planning in typical job scenarios, the experiment is conducted in three parts. First, 

343 the improvement effect of the IWOA algorithm based on the dynamic adjustment of uniformly 

344 distributed population position and inertia weight in a simulation environment was compared 

345 with that of the Whale Optimization Algorithm (WOA), the Whale Optimization Algorithm 

346 (LWOA) using Levy aircraft to optimize and update position (Zhao & Peng, 2023), the Whale 

347 Optimization Algorithm (MWOA) based on probability selection (Niu, Zhai & Ji, 2024), the 

348 Whale Optimization Algorithm (HSWOA) introducing the hunger concept (Liang, Hong & Yu, 

349 2023), the Whale Optimization Algorithm (CamWOA) using correction factors to reduce 

350 iteration step size (Saha et al., 2022), and the Whale Optimization Algorithm (WWOA) 

351 incorporating adaptive weights (Cheng et al., 2022). At the same time, 20 comparative 

352 experiments are conducted under six typical benchmark test functions to objectively reflect the 

353 robustness and effectiveness of the algorithm improvement through the average convergence 

354 curve of the fitness function. Secondly, in a simulation environment, six environmental maps 

355 with different starting points, target points, and the number and location of obstacles are selected 

356 as the testing scenarios for improving the A*-IWOA algorithm's path planning. The effectiveness 

357 of the algorithm was verified by comparing it with the traditional A* algorithm's path planning 

358 performance in terms of running time, running length, number of turning points, and energy 

359 consumption. Finally, to verify the effectiveness of the A*, standard A*-IWOA, and the 

360 improved A*-IWOA algorithms, a physical experiment is conducted in a mountainous orchard 

361 scene in Gansu.

362 5.2 Performance testing of improved IWOA algorithm

363 In this experiment, six commonly used benchmark test functions from the IEEE CEC benchmark 

364 test set are used, covering unimodal, multimodal, and composite functions, as shown in Table 2 

365 (Huang et al., 2023). Set the population size to 30 and the maximum number of iterations to 500. 

366 Due to the fact that the dimension of an algorithm is an important factor affecting its 

367 optimization ability, the dimensions of the six test functions mentioned in Table 2 vary from 2 to 

368 30 dimensions, which can more comprehensively test the algorithm's solving ability from low to 

369 high dimensions.

370 In Fig. 9, the average convergence curves of the fitness functions have been obtained by 

371 running 6 benchmark test functions 20 times each are shown. The f1 and f5 curves evaluate the 

372 algorithm's development ability (Figure 9(a-b)), the f8 and f13 curves evaluate the algorithm's 
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373 search ability (Figure 9(c-d)), and the f15 and f17 curves evaluate the algorithm's comprehensive 

374 ability (Figure 9(e-f)). It can be seen that, due to the introduction of Circle mapping for 

375 uniformly distributed population positions and inertia dynamic adjustment of weights, the 

376 algorithm is more prone to jumping out of local optima. The improved IWOA algorithm has 

377 better convergence speed and accuracy in solving unimodal, multimodal, and composite 

378 functions than other algorithms, reflecting the effectiveness of the improved algorithm.

379 Table 3 reflects the running results data of the above test functions, where the optimal value, 

380 worst value, and average value usually reflect the optimization ability and effectiveness of the 

381 algorithm, and the standard deviation reflects the stability of the algorithm. As shown in Table 3, 

382 when solving the unimodal function f1, multiple indicators of improved IWOA reached their 

383 theoretical value of 0, and the time consumption was the shortest. When solving the multimodal 

384 function f13, the improved IWOA significantly accelerates its convergence speed by 20% 

385 compared to other excellent variants of WOA algorithms. When solving the composite function 

386 f15, the improved IWOA randomly calculates the changes in dimensions, and its multiple 

387 indicators also approached the theoretical value of 0.1484. Although the time consumption 

388 increased slightly, it is still the fastest among these algorithms. It can be seen that the 

389 optimization performance and time efficiency of the improved IWOA are significantly improved 

390 by dynamically adjusting the position and inertia weight of the uniformly distributed population 

391 using circle mapping.

392 5.3 Path planning testing in 2.5D elevation grid map simulation 

393 This algorithm simulation experiment uses a Windows 10 system, 32 GB of running memory, a 

394 2.9 GHz CPU, and a Matlab R2021b programming workstation. The kinematic parameters of 

395 this robot and the initial parameter settings of the improved A*-IWOA are shown in Tables 4 and 

396 5, respectively. We use 20×20 and 30×30, these two kinds of grid maps, respectively. Each cell 

397 array represents the horizontal, vertical, and elevation values at the center point of the cell, 

398 respectively. In the simulation process, we use the hue H value in the HSV model (Ren et al., 

399 2013) to represent the cell elevation value, and the greater the hue H value, the greater the 

400 elevation value. For example, the elevation value of a purple cell is greater than that of a red cell. 

401 According to the path search logic described in this paper, in the main search area of the path 

402 nodes, we use the method of randomly distributing cell elevation values for the simulation test 

403 (Akay B & Karaboga, 2010; Akyol & Alatas, 2020; Al-Dabbagh RD et al., 2014; 

404 Aragón, Esquivel & Coello, 2010). Here, six representative scenarios of plant protection robots 

405 are constructed. The A*, standard A*-IWOA, and improved A*-IWOA were used for path 

406 planning simulation testing, and the test results are shown in Fig. 10.

407 In Fig. 10(a)~(e), the occupancy rate of obstacles in the robot passage area is 20%. We use 
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408 20×20 grid maps in Fig. 10(a)~(d) and (f), respectively 30×30 grid maps in Fig. 10(e). The solid 

409 black lines represent the path planned by the A* algorithm. The red dotted lines represent the 

410 path planned by the standard A*-IWOA algorithm. The green dotted lines represent the path 

411 planned by the improved A*-IWOA algorithm. It can be seen that the improved A*-IWOA 

412 algorithm performs significantly better than the other two algorithms in terms of the number of 

413 turning points, the total distance of the path, and the search time. The relevant experimental 

414 results are shown in Table 6. In Fig. 10(e), according to the search logic of the 8-domain cross-

415 product decision value adopted by the improved A*-IWOA, the search failed at the second node 

416 in the path search space. Therefore, from the test results, it can be seen that the improved A*-

417 IWOA has certain limitations and requirements for application scenarios; that is, it is best not to 

418 have too many obstacles near the starting point of the path. Alternatively, it is not suitable to use 

419 grid maps that are too small in size. In Fig. 10(f), we increase the obstacle occupancy rate to 30%. 

420 The total distance, number of turning points, and search time planned by the improved A*-

421 IWOA are reduced by an average of 26%, 40%, and 31% compared to the other two algorithms.

422 In order to provide a more realistic representation of the inter-row working environment of 

423 fruit trees in mountainous environments, we use a 10×10 2.5D elevation grid map, where black 

424 obstacles represent the inter-row positions of fruit trees and different colors of the grid 

425 distinguish the vertical heights of their positions. The green grid represents the starting position 

426 of the robot, and the yellow grid represents the target position of the robot. On the Matlab 

427 R2021b programming workstation, we test the path planning effect of improved A*-IWOA both 

428 using 2D and 2.5D maps, respectively. The experimental results are shown in Fig. 11. We can 

429 see that the paths planned by the two are completely different. In Fig. 11(b), due to the difference 

430 in vertical height of the road surface, robots tend to choose the direction of low-lying terrain to 

431 move forward.  

432 5.4 Experiment on robot operation path planning in real orchard 

433 To verify the effectiveness of the above-improved algorithm, a physical experiment is conducted 

434 in a mountainous orchard scene in Gansu, as shown in Fig. 12. In this orchard, the plant spacing 

435 is 20�30 cm, and the row spacing is 70�80 cm. By adjusting the camera and radar-ranging height 

436 of the plant protection robot, ensure that there are no less than five plants in the camera's field of 

437 view within the robot's speed limit range. The K-means clustering method is used to obtain the 

438 position of the main trunk of the fruit tree (as shown in Fig. 13), and the navigation line is 

439 planned by delineating the communicable area through the central area. By comparison, the 

440 variation within the width range of 70�80 cm has a relatively small impact on the recognition 

441 error of the central area. In this experiment, the maximum error of the navigation line is 7.07 cm, 

442 the minimum error is 0.5 cm, and the average error is 3.1 cm.
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443 In the physical environment, the A*, standard A*-IWOA, and improved A*-IWOA algorithms 

444 are loaded onto the robot ROS2 platform, respectively, and the path planning effects obtained are 

445 shown in Fig. 14. In this figure, the improved A*-IWOA chose a more direct and non-detour 

446 path. On the contrary, the other two algorithms chose a longer path to detour outside the 

447 obstacles.

448 6 Conclusions

449 For the unstructured work scenario of plant protection robots in mountainous orchards, this paper 

450 proposes an 8-domain A*path search algorithm that introduces a vector cross-product decision 

451 value based on the robot energy consumption model in a 2.5D elevation grid map environment. 

452 The dynamic weight factor is optimized using the IWOA algorithm based on the dynamic 

453 adjustment of uniform population position and inertia weight, which significantly improves the 

454 path planning effect and computational efficiency.

455 The performance testing and path planning experiments of this improved algorithm have been 

456 conducted on both the Matlab R2021b simulation environment and the actual orchard operation 

457 scenario based on the ROS2 system in this paper. We compare the robustness and effectiveness 

458 of our algorithm and those of WOA, LWOA, MWOA, HSWOA, et al. through the average 

459 convergence curve of the fitness function under six typical benchmark test functions. Meanwhile, 

460 we conduct path planning simulation testing for the A*, standard A*-IWOA, and improved A*-

461 IWOA on six representative scenarios. Especially, we have tested the differences in path 

462 planning between 2D and 2.5D grid maps. Finally, to verify the effectiveness of our algorithm, a 

463 physical experiment is conducted in a mountainous orchard scene in Gansu province. The results 

464 of these experiments effectively demonstrate that this algorithm has significant advantages in 

465 computational accuracy, convergence speed, and efficiency. At the same time, the planned path 

466 greatly meets the energy consumption and path planning requirements of working robots in 

467 unstructured mountain scenes.

468 Our future research will focus on the following areas:

469 (1)Improve the algorithm to enhance its path planning effectiveness further.

470 (2)How to achieve detection and navigation of plant protection robot operation channels under 

471 various environmental factors interference.

472 (3)Implement autonomous navigation operations for plant protection robots based on 

473 neuroscience.
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Figure 1
Front wheel diûerential drive Ackermann steering robot coordinate system.

(a) 2D schematic operation diagram; (b)3D space schematic operation diagram.
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Figure 2
Path planning results comparison of three distance functions.

(a) Non-obstacle situation; (b)Obstacle situation.
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Figure 3
2.5D elevation grid map.

(a) Vertical height of mountain orchard ground; (b) 2D grid map
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Figure 4
Deûnition of the cross product.
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Figure 5
The path of ûxed p-factor cross product.
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Figure 6
Schematic diagram of the operation trajectory.
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Figure 7
IWOA multi-objective optimization process based on optimal selection.
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Figure 8
Structure of wheeled plant protection robot.

1. 16 line LiDAR; 2. GNSS navigation system; 3. lithium battery; 4. chassis controller.
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Figure 9
Average convergence curve of ûtness of test function.

(a) f1 curves (b) f5 curves; (c) f8 curves; (d) f13 curves; (e) f15 curves; (f) f17 curves
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Figure 10
The path planning test results.

(a) Scene 1; (b) Scene 2; (c) Scene 3; (d) Scene 4; (e) Scene 5; (f) Scene 6.
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Figure 11
Comparison of planning eûects on 2D and 2.5D maps.

(a)2D map planned path; (b) 2.5D map planned path.
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Figure 12
Real environment.

PeerJ Comput. Sci. reviewing PDF | (CS-2024:07:103774:0:1:NEW 26 Jul 2024)

Manuscript to be reviewedComputer Science



Figure 13
Real orchard point clouds.
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Figure 14
Comparison of three algorithms for path planning in real orchard.
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Table 1(on next page)

Improved IWOA algorithm pseudo code.
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1 Table 1. Improved IWOA algorithm pseudo code.

01   Set population size as N, maximum number of iterations as T

02  According to formula (38), initialize the population position 

following the Circle map and calculate the fitness of each individual to 

determine the optimal individual position

03  Calculate the inertia factor according to formula (39), and update 

A and C according to formulas (41) to (42)

04  While(tW��

05  for each individual

06    Calculation parameters , , , ,pÿ ý ÿ ý
07    if pWp��

08     if |ý| < 1

09        Update individual position using formula (40-1)

10      else  

11        Update individual position using formula (40-2) 

12        end if

13      else

14       Update individual position using formula (40-3)

15    end if

16    end for

17  Recalculate individual fitness according to formula (29) 

boundary constraint processing

18   Update Best Individual

19   t=tt�

20  end while

21  Output global optimal solution and optimal fitness

22  end

2
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List of benchmark function parameters.
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1

2 Table 2. List of benchmark function parameters.

Benchmark Functions Dimension Range Theoretical 

Minimum Value

 ÿ1(ý)= 3ÿÿ= 1
ý2ÿ 30 [-100,100] 0

 ÿ5(ý)= 3ÿ21ÿ= 1
[100(ýÿ+ 12ý2ÿ)2 + (ýÿ21)2] 30 [-30,30] 0

 ÿ8(ý)= 3ÿÿ= 1
2ýÿýÿÿ( |ýÿ|) 30 [-500,500] 0

ÿ13(ý)= 0.1

{ýÿÿ2(3ÿý1) + 3ÿÿ= 1
(ýÿ21)2[1 + ýÿÿ2(3ÿýÿ+ 1) + (ýÿ21) ýÿÿ (2ÿýÿ 3ÿÿ ÿ(ýÿ �

 

30 [-50,50] 0

ÿ15(ý)= 113ÿ= 1

[ÿÿ2ý1(ÿ2ÿ + ÿ1ý2)ÿ2ÿ + ÿ1ý3 + ý4]2 4 [-5,5] 0.1484

ÿ17(ý)= (ý225.1

4ÿ2ý21 + 5ÿý126)2 + 10(12 18ÿ)ýýýýÿ
 + 10

2 [-5,5] 0.3

3
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Test results data.
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1 Table 3. Test results data.

Function Algorithms Optimal Worst Average Standard Consuming/s

Improved IWOA 0.00e0�� 0.00e0��  0.00e0�� 0.00e0��   1.0233

WOA 1.47e-178 3.01e-161  2.35e-173 4.38e-170   1.9038

LWOA 0.89e-121 2.75e-149  1.78e-151 8.41e-201   1.7544

MWOA 1.02e-130 7.88e-171  6.07e-154 1.34e-149   1.7068

HSWOA 1.02e-131 2.00e-161  2.32e-158 5.18e-180   1.2331

CamWOA 6.67e-118 3.01e-152  8.35e-133 3.47e-170   1.1138

   f1

WWOA 3.47e-150 5.71e-131  2.39e-143 7.33e-172   1.1189

Improved IWOA 0.00e0�� 0.00e0��  0.00e0�� 0.00e0��   0.8724

WOA 1.32e-201 3.81e-191  7.55e-193 3.18e-200   1.2008

LWOA 0.78e-181 2.21e-169  1.18e-171 2.40e-206   1.0044

MWOA 1.41e-200 7.01e-181  9.11e-194 1.34e-221   1.0068

HSWOA 3.01e-191 7.36e-164  2.31e-178 5.10e-200   1.2071

CamWOA 8.67e-218 3.71e-152  8.31e-183 3.47e-190   1.1130

   f13

WWOA 3.41e-190 6.93e-211  2.32e-203 7.33e-221   0.9189

Improved IWOA 0.20e0�� 0.09e0��  0.10e0�� 0.03e-02   0.9331

WOA 1.32e0�� 7.12e0�� 1.39e0�� 1.18e-110   1.7328

LWOA 0.73e0�� 0.99e0�� 0.80e0�� 2.40e-106   1.1114

MWOA 0.71e0�� 1.21e0�� 1.01e0�� 1.14e-121   1.2260

HSWOA 0.43e0�� 0.93e0�� 0.99e0�� 2.91e-100   1.2099

CamWOA 0.67e0�� 1.91e0�� 1.45e0�� 1.47e-090   1.9130

    f15

WWOA 0.49e0�� 0.88e0�� 0.78e0�� 5.49e-121   1.1181

2
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The kinematic parameters of the robot.
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1 Table 4. The kinematic parameters of the robot.

MaM���� L���	 V
���

Maximum linear speed 1.5

Maximum angular velocity 0.8

Maximum angular acceleration 0.3

Maximum linear acceleration 0.4

2

3
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The initial parameter settings of improved A*-IWOA.
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1 Table 5. The initial parameter settings of improved A*-IWOA.

I
����� P��������� �����

Grid environment 20×20/30×30

Starting point coordinates 35

End point coordinates 285

Initial population size 30

Maximum Number Of Iterations 500

2
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Road planning result data for 6 scenes.
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1 Table 6. Road planning result data for 6 scenes.

SS���� AlgoritA�� T���� distanS� T !�"�# points T"��$�

 A* 33.0 8 1.30

standard A*-IWOA 33.4 9 1.21

1

improved A*-IWOA 27.0 5 0.79

 A* 30.1 11 1.27

standard A*-IWOA 30.3 11 1.20

2

improved A*-IWOA 29.0 8 0.88

 A* 37.4 13 1.28

standard A*-IWOA 34.2 10 1.27

3

improved A*-IWOA 30.0 6 0.81

 A* 33.4 9 1.29

standard A*-IWOA 30.0 7 1.20

4

improved A*-IWOA 27.0 3 0.96

 A* 30.0 11 1.14

standard A*-IWOA 30.0 10 1.10

5

improved A*-IWOA 28.4 8 0.84

 A* 31.0 8 0.77

standard A*-IWOA 30.0 9 0.80

6

improved A*-IWOA 29.0 6 0.79

2
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