
The impact of new package managers on
the library dependency ecosystem
Kristiina Rahkema1, Dietmar Pfahl1 and Rudolf Ramler2

1 Institute of Computer Science, University of Tartu, Tartu, Estonia
2 Software Competence Center Hagenberg, Hagenberg, Austria

ABSTRACT
Adding dependencies to third-party libraries through package managers is a
common practice in software development. The evolution of library dependency
networks has been analyzed for many package managers. There are, however, no
studies on how the library dependency networks of multiple package managers
behave in the same ecosystem. The library dependency network in the Swift
ecosystem encompasses libraries from CocoaPods, Carthage, and Swift Package
Manager (Swift PM). These three package managers are used when developing, for
example, iOS or macOS applications in Swift or Objective-C. In this study, we
analyze how the introduction of new package managers has affected the evolution of
the library dependency network of the Swift ecosystem. We found that overall the
popularity of using package managers has grown over time. We saw that the
introduction of Carthage and Swift PM had some but not a large influence on the
popularity of CocoaPods. Carthage users; however, are increasingly migrating to
Swift PM. This discrepancy could stem from the fundamental differences between
CocoaPods and the other two package managers, as well as similarities between
Carthage and Swift PM. Based on our observations, we speculate that Apple could
increase the popularity of Swift PM by adding features that have so far only been
available in CocoaPods, such as a central repository.

Subjects Mobile and Ubiquitous Computing, Software Engineering
Keywords iOS, Library dependencies, Package managers, Evolution

INTRODUCTION
Using third-party libraries is common practice in software development. Third-party
libraries allow developers to reuse existing solutions to common problems, which can
make the development process faster and easier.

The libraries themselves can have dependencies on other libraries, creating a potentially
complex network of library dependencies. Using a package manager is a convenient way to
handle these dependencies by simply declaring which dependencies on third-party
libraries exist in a project. The package manager resolves all dependencies and includes the
necessary libraries. The collection of all libraries that are available through a package
manager and their library dependencies creates a library dependency network (LDN) for
each package manager.

There is a package manager for almost every ecosystem, for example Maven for Java and
npm for JavaScript. In some ecosystems, developers can even choose between multiple
package managers. In the Swift ecosystem, for example, three package managers are

How to cite this article Rahkema K, Pfahl D, Ramler R. 2024. The impact of new package managers on the library dependency ecosystem.
PeerJ Comput. Sci. 10:e2617 DOI 10.7717/peerj-cs.2617

Submitted 9 February 2024
Accepted 27 November 2024
Published 20 December 2024

Corresponding author
Kristiina Rahkema,
kristiina.ra@gmail.com

Academic editor
Daniel Graziotin

Additional Information and
Declarations can be found on
page 23

DOI 10.7717/peerj-cs.2617

Copyright
2024 Rahkema et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.2617
mailto:kristiina.�ra@�gmail.�com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2617
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

available: CocoaPods, Carthage, and Swift Package Manager (Swift PM). These package
managers are used when developing iOS or macOS applications in Swift or Objective-C.
Package managers in the Swift ecosystem were introduced over time, CocoaPods in 2011
and Carthage in 2014. Swift PM is the official package manager by Apple that was most
recently introduced in 2017. No clear guidelines exist for developers on which package
manager should be chosen for a new project. On a superficial level CocoaPods seems to
provide access to most libraries, but this might be the case simply due to CocoaPods being
the only package manager with a central repository, making all available libraries directly
visible to users. A thorough analysis of the three LDNs might help make the package
manager ecosystem more clear for iOS and macOS developers.

In this study, we analyze how the introduction of new package managers has affected
the evolution of the library dependency ecosystem. The release of a new package manager
might cause users to migrate from an older package manager. The number of libraries in
dependency networks may grow. Developers not using any package manager may start
using one for managing dependencies on third-party libraries. Such insights are important
for developers of third-party libraries, for tool developers, as well as for their users.

Existing research, so far, has analyzed each package manager ecosystem separately. The
LDNs of many package managers have been studied and compared. For example, Kikas
et al. (2017) created a dependency dataset and studied the LDNs of JavaScript, Ruby and
Rust. Decan, Mens & Grosjean (2019) used the libraries.io dataset to study the growth of
LDNs of seven package managers. No study so far, however, has analyzed multiple package
managers co-existing in the same ecosystem.

Several ecosystems exist where multiple package managers are available. Sometimes a
non-official package manager is released that serves a niche subset of the ecosystem (e.g.,
Bioconductor (https://www.bioconductor.org) for Python that is used for bioinformatics-
related libraries). Sometimes a new package manager is released, but the underlying library
repository stays the same (for example, npm and Yarn for JavaScript (Yarn, 2023)). In
other cases, each package manager has its own separate library dependency network.

We choose to analyze the Swift ecosystem encompassing the three popular and actively
used package managers CocoaPods, Carthage, and Swift PM. The Swift ecosystem contains
libraries used in iOS and macOS development. It is a large and, to some extent, closed
ecosystem with a long history and a strong user base. The three package managers have
been introduced over the lifetime of the ecosystem, allowing us to analyze how the
introduction of each of the package managers influenced the library dependency network
of the entire ecosystem.

In our study, we investigate three research questions, asking (1) how the overall
popularity of package managers has evolved, (2) if the three package managers are used
concurrently, and (3) how the introduction of new package managers influences the
evolution of the ecosystem.

We found that overall the popularity of using package managers has grown over time.
We saw that the introduction of Carthage and Swift PM had some, but not a large,
influence on the popularity of CocoaPods. Carthage users, however, are increasingly

Rahkema et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2617 2/25

https://www.bioconductor.org
http://dx.doi.org/10.7717/peerj-cs.2617
https://peerj.com/computer-science/

migrating to Swift PM. This discrepancy could stem from the fundamental differences
between CocoaPods and the other two package managers, as well as similarities between
Carthage and Swift PM. Apple has made efforts to facilitate the use of package managers by
incorporating Swift PM seamlessly into Xcode, the main integrated development
environment (IDE) used in iOS and macOS development, increasing its adaption by
developers. Based on our observations, we speculate that Apple could increase the
popularity of Swift PM by adding features that have so far only been available in
CocoaPods, such as a central repository.

In the context of the iOS library dependency ecosystem, the contribution of our research
can be summarized as follows:

1. We provide insights into how the popularity of package managers has changed over
time.

2. We explore how package managers are used concurrently and provide insights into how
this changes over time.

3. We provide the first results of an analysis on how the release of new package managers
affects the evolution of the package manager ecosystem-in the iOS context and beyond.

4. We discuss properties of package managers that may increase their acceptance by
developers.

The rest of the article is structured as follows. In the Background Section, we describe
the iOS/macOS ecosystem, the three package managers, how dependencies are declared for
each package manager, and give an overview of the dataset used. In the Method Section, we
describe the research questions and how we analyzed the dataset for each research
question. In ‘Results’, we present answers to the three research questions and ‘Discussion’
discusses these answers. In ‘Threats to Validity’, we describe the threats to validity. In
‘Related Work’, we summarize related work and, in the ‘Conclusion’, we discuss promising
improvements of package managers and conclude the article.

Portions of this text were previously published as part of a PhD thesis by Rahkema
(2023) and a preprint by Rahkema & Pfahl (2023) of an earlier version of this article.

BACKGROUND
This section describes the iOS/macOS ecosystem, the selected package managers, and the
dataset we used in our analyses.

The iOS/macOS ecosystem
Apple has created a fairly unique ecosystem where software and the operating systems are
running on the hardware developed by the same company. The wide selection of Apple
devices ranging from personal computers to smartphones and smart watches provides
opportunities for the optimisation of hardware and software and the interoperability
between different devices. This unique closedness of the ecosystem (as opposed to for
example the openness of the Android ecosystem) makes it an interesting subject to study as
it allows to trace the evolution over time with only minimal influences from other
ecosystems.

Rahkema et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2617 3/25

http://dx.doi.org/10.7717/peerj-cs.2617
https://peerj.com/computer-science/

Figure 1 gives an overview of some of the milestones in the evolution of the macOS/iOS
ecosystem. The first Mac OS X version (10.0) was released already in 2001. The X in the
name indicated that the operating system was a Unix system. The Macintosh computers
built by Apple at the time were based on PowerPC. In 2003, Apple released the first Xcode
version to improve the development of Mac OS X applications.

In 2007, Apple released the first iPhone and its operating system iPhone OS 1. A year
later the App Store was launched as distribution platform for iOS applications. The red
area in Fig. 1 shows the growth of the App Store as the number of iOS applications.

Following in 2011, the Mac App Store was launched for macOS applications. Mac OS X
was renamed to OS X in 2012 with the release of OS X 10.8. Later, in 2016, it was renamed
again to macOS with the release of macOS 10.12.

The official language for developing iOS and macOS applications was Objective-C. In
2014, Apple introduced Swift as the new official programming language for iOS, iPadOS,
macOS, tvOS, and watchOS. The first couple of years saw big changes in the language
design. In 2015, the Swift language, supporting libraries, and tools were made open-source.
Since the release of Swift 3.0 in 2016 the language stabilized.

With the growing number of available apps relying on evolving third-party libraries, the
need for systematic management of dependencies emerged. The events in blue in Fig. 1
show the release dates for the three package managers popular in the iOS ecosystem. A
description of these package managers is given in the following.

Figure 1 Timeline of the macOS/iOS ecosystem. The figure shows a timeline of the macOS/iOS eco-
system highlighting some important events. The red area shows the number of apps in the iOS app store
over time. Events with red titles show important events in the iOS ecosystem, events with green titles
show important events in the macOS ecosystem and events with blue titles show important events related
to package managers. Full-size DOI: 10.7717/peerj-cs.2617/fig-1

Rahkema et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2617 4/25

http://dx.doi.org/10.7717/peerj-cs.2617/fig-1
http://dx.doi.org/10.7717/peerj-cs.2617
https://peerj.com/computer-science/

Package managers
The focus of our research is on libraries that can be used in applications written in Swift,
such as iOS or macOS applications. Package managers used in Swift development are
CocoaPods, Carthage, and Swift Package Manager (Swift PM).

CocoaPods
CocoaPods (https://cocoapods.org) was released in September 2011 and is the oldest
package manager with around 88 thousand libraries. CocoaPods is a centralized package
manager. Dependencies are declared in a manifest file called Podfile. When CocoaPods is
executed it downloads and compiles all libraries declared in the Podfile. It generates a new
Xcode Workspace that has all libraries included. This makes CocoaPods very easy to use,
as there is no additional manual work needed.

Information on all libraries and library versions is uploaded to the central Spec
repository (https://github.com/CocoaPods/Specs). This means that it is possible to extract
information for all packages that have ever been available through CocoaPods. CocoaPods
matches libraries through the library name. Each Spec file stored on the central Spec
repository contains information on the library such as: library name, repository address,
and library version. The library name used within CocoaPods does not need to necessarily
match the actual project name.

CocoaPods dependencies are declared in the Podfile simply as follows.

pod <libraryName> <optional versionRequirement>

Resolved dependencies are listed in Podfile.lock under “PODS:” and are given in the
following format:

PODS:

- <libraryName> (<exactVersion>)

- <transitiveDependency> (= <version>)

- <transitiveDependency> (<exactVersion>)

DEPENDENCIES:

- <libraryName> (>= <version>)

Carthage

The package manager Carthage (https://github.com/Carthage/Carthage) was released in
November 2014 as a counterweight to the more heavyweight CocoaPods. Carthage is a
decentralized package manager that does not rely on an official central repository of
libraries. Libraries can be included through Carthage by simply adding a repository
address of a library to the Cartfile. Carthage downloads and compiles these libraries but
does not automatically include them in the app projects. Manual work of adding the library
to the app project is still needed. This makes using Carthage slightly more complicated
than CocoaPods, but it is also a lot more lightweight and developers are not forced to use a
generated app project.

Carthage manages about 4.5 thousand libraries (Libraries.io, 2022). This number,
however, is an estimate as no official list of repositories exists for this decentralized package

Rahkema et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2617 5/25

https://cocoapods.org
https://github.com/CocoaPods/Specs
https://github.com/Carthage/Carthage
http://dx.doi.org/10.7717/peerj-cs.2617
https://peerj.com/computer-science/

manager. Libraries.io (2022) provides a list of 4,498 Carthage libraries that are extracted
from Cartfiles hosted on GitHub.

Carthage dependencies are declared in a Cartfile. The dependencies are specified by
giving the type of source, name of library and the version requirement, for example:

github "<userName/projectName>" "<version>"

git "<repoAddress>" >= "<version>"

The manifest file Cartfile.resolved has a very similar format, but contains resolved
version numbers instead of version constraints.

Swift PM
The Swift Package Manager (Swift PM) (https://www.swift.org/package-manager/) was
released in December 2017. This release date is based on the date of the first release in the
Swift PM GitHub repository. Swift PM is the official package manager created by Apple.
Swift PM is a decentralized package manager like Carthage. Differently to the other two
package managers, Swift PM can also be used to create Swift packages that can be both
libraries or applications. This means that Swift PM can be used for example to create a new
command line application. Support for iOS applications was not added to Swift PM until
2019 (Elliott, 2020). Since 2019 it is also possible to use Swift PM directly through Xcode,
the main IDE for iOS and macOS development.

While Swift PM has no official centralized list of repositories, there are multiple
repositories containing information on Swift PM libraries. Libraries.io contains 4,207
libraries, swiftpackageregisty (https://swiftpackageregistry.com) contains 4,348 libraries,
and Swiftpack.co (https://swiftpack.co/) contains 12,143 Swift packages. Packages on
Swiftpack.co, however, do not seem to be all libraries.

Swift PM dependencies are declared in Package.swift files where the project is declared
as an instance of the Package object. The resolution file Package.resolved is a JSON file
containing information on all resolved dependencies, both direct and transitive:

{

"pins" : [

{

"identity" : "<libraryName>",

"kind" : "remoteSourceControl",

"location" : "<repoAddress>",

"state" : {

"revision" : "<revisionHash>",

"version" : "<exactVersion>"

}

}

]

}

Exact versions of dependencies can be extracted from the Package.resolved file.

Rahkema et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2617 6/25

https://www.swift.org/package-manager/
https://swiftpackageregistry.com
https://swiftpack.co/
http://dx.doi.org/10.7717/peerj-cs.2617
https://peerj.com/computer-science/

Package manager comparison
Similarities and differences between the three package managers are summarized in
Table 1.

Dataset of the swift library dependency network
In this subsection, we describe the Swift LDN dataset that we analyze to answer our
research questions. The dataset contains information on open source libraries that are
available through CocoaPods, Carthage and Swift PM. The dataset consists of libraries,
dependencies between libraries, and openly reported vulnerabilities for these libraries. The
dataset has been made available on Zenodo (Rahkema & Pfahl, 2022b). We have described
how we built the dataset previously in Rahkema & Pfahl (2022a).

The dataset is constructed as a graph database using neo4j (https://neo4j.com/), which
stores data as nodes and relationships between nodes. The database contains the following
nodes relevant to this study:

. Project (project including repository information)

. App (an analyzed project version)

. Library (library version that was referenced from a resolution file of a library)

. LibraryDependency (library version that was referenced from a manifest file of a library)

Nodes are connected via the following relationships:

. (Project)-[:HAS_APP]->(App)

. (App)-[:IS]->(Library)

. (App)-[:DEPENDS_ON]->(Library)

. (App)-[:DEPENDS_ON]->(LibraryDefinition)

A neo4j database was chosen due to its support for large graphs and it has been used
previously to create dependency graphs, for example by Benelallam et al. (2019).

The dataset was constructed in three steps as presented in Fig. 2. In the first step, we
identified an initial set of libraries to analyze for each package manager. Libraries for
CocoaPods were extracted from the CocoaPods central Spec repository. Libraries for
Carthage and Swift PM were queried from the libraries.io dataset.

For CocoaPods, repository URLs were extracted from the official CocoaPods Spec
repository. After filtering out erroneous values 73,321 repository addresses remained. For
Carthage and Swift PM we queried repository URLs from the libraries.io dataset, where the
project platform was either “Carthage” or “SwiftPM”. The query found 3,880 URLs for
Carthage and 4,207 URLs for Swift PM.

After the initial set of libraries was extracted, we analyzed the dependencies of these
libraries by parsing the manifest and resolution files of each library version. This analysis
was done using the three tools: the LibraryDependencyAnalysis (https://github.com/
kristiinara/LibraryDependencyAnalysis) shell script, the GraphfiyEvolution (https://github.
com/kristiinara/graphifyevolution) source-code analysis tool, and the dependency analysis
tool SwiftDependencyChecker (https://github.com/kristiinara/swiftdependencychecker).

Rahkema et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2617 7/25

https://neo4j.com/
https://github.com/kristiinara/LibraryDependencyAnalysis
https://github.com/kristiinara/LibraryDependencyAnalysis
https://github.com/kristiinara/graphifyevolution
https://github.com/kristiinara/graphifyevolution
https://github.com/kristiinara/swiftdependencychecker
http://dx.doi.org/10.7717/peerj-cs.2617
https://peerj.com/computer-science/

We analyzed the initial set of libraries for CocoaPods, Carthage and Swift PM. In total 3,094
Carthage, 2,118 Swift PM and 56,822 CocoaPods libraries were successfully analyzed.

After the initial set of libraries was analyzed, the three resulting databases were merged
together. The merged database contained 60,084 successfully analyzed libraries with 4,728
library dependencies (of which 1,047 were not analyzed).

The initial list of libraries for Carthage and Swift PM was from 2020. To include more
recent libraries as well, we queried all library dependencies from our dataset that had not
been analyzed yet. We then tried to analyze each of these libraries. Libraries that are not
open source still failed to analyze, but this process succeeded in analyzing newer libraries
that are referenced but not yet analyzed. This snowballing process added an additional 451
libraries. Of the initial list of library dependencies that were not analyzed, 311 were not
analyzable and for 274 libraries the library name did not match the correct “projectname/
username” format.

We give a more detailed description of the dataset in our technical report (Rahkema &
Pfahl, 2022c). The final database contains data on 60,533 libraries, 572,131 library versions,
and 23,419 dependencies between libraries.

METHOD
In this section, we first present the research questions that guided our study. Then we
describe what analyses we conducted on our dataset to answer each of the research

Figure 2 Dataset creation diagram. The figure shows how the database was constructed. It contains five
types of elements: data sources, automatic actions where three different tools were used and lastly actions
that were performed manually. First repository URLs were queried and library source code was down-
loaded for each library, then the dependencies declared through package managers were extracted. In a
third step the gathered datasets for each package manager were combined and a snowballing approach
was conducted to find any libraries that were referenced but had not been analysed yet.

Full-size DOI: 10.7717/peerj-cs.2617/fig-2

Table 1 Similarities and differences between package managers.

Package manager Centralised Library inclusion Changes in workflow Xcode integration

CocoaPods Yes In workspace Need to use work-space Partial integration

Carthage No No automatic inclusion No changes after manually including libraries No integration

Swift PM No Automatically included No changes Completely integrated

Rahkema et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2617 8/25

http://dx.doi.org/10.7717/peerj-cs.2617/fig-2
http://dx.doi.org/10.7717/peerj-cs.2617
https://peerj.com/computer-science/

questions. The Jupyter notebook containing analysis scripts can be found on GitHub
(https://github.com/kristiinara/LibraryDependencyAnalysis/blob/main/DataAnalysis/
notebook.ipynb).

Research questions
The use of package managers to handle the inclusion of third-party libraries and to
manage library versions and cascading dependencies has become an important concept and
best practice in software development. For this purpose, the following three package
managers are commonly used in the Swift ecosystem: CocoaPods, Carthage and Swift PM.
In this study, we investigated the following research questions (RQs) to better understand
the Swift ecosystem and the role that the three package managers play. Furthermore, we also
investigated how the introduction of the newest and official package manager for Swift
might have affected the Swift ecosystem.

. RQ1: How has the popularity of package managers evolved over time?

. RQ2: Are CocoaPods, Carthage and Swift PM used concurrently?

. RQ3: How does the introduction of new package managers influence the evolution of
package manager ecosystems?

– RQ3.1: Are existing libraries switching to the newest package manager?

– RQ3.2: Do new libraries prefer the newest package manager?

In the following, we describe the motivation for each research question.
RQ1: How has the popularity of package managers evolved over time?
Given the fast growing number of iOS and macOS applications as well as related

software development projects for over more than 10 years, we are interested in how the
overall popularity of package managers has evolved in this time-frame. Our assumption is
that over time a larger percentage of developers started using package managers for their
projects.

RQ2: Are CocoaPods, Carthage and Swift PM used concurrently?
After analysing the popularity of the package managers, we question if the three package

managers are used concurrently. Our assumption is that most popular libraries are
available through more than one package manager and are therefore also using multiple
package managers. For an average library, however, using multiple package managers
should not be necessary.

RQ3: How does the introduction of new package managers influence the evolution
of package manager ecosystems?

The first package manager in the Swift ecosystem, CocoaPods, was released in 2011,
followed by two more package managers in 2014 and 2017. We ask how the introduction
of new package managers influences the usage of all available package managers and the
evolution of the related ecosystems.

Rahkema et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2617 9/25

https://github.com/kristiinara/LibraryDependencyAnalysis/blob/main/DataAnalysis/notebook.ipynb
https://github.com/kristiinara/LibraryDependencyAnalysis/blob/main/DataAnalysis/notebook.ipynb
http://dx.doi.org/10.7717/peerj-cs.2617
https://peerj.com/computer-science/

It is probable that new package managers were released because of a lack of desired
features provided by the existing package managers. Hence, we see two possible evolution
patterns:

1. Each new package manager brings new users that adopt using third party libraries in
their applications.

2. New package managers introduce new features and take over users from existing
package managers.

To better understand the evolution of the package managers ecosystems, we first ask if
existing libraries are switching to the newest package manager and then ask if new libraries
prefer the newest package manager. Given that a migration between package managers
might be costly, we assume that there is little migration between package managers, but
that more and more new libraries would prefer the newest package manager.

Data analysis
In this section we describe our approach used to answer the three research questions.

RQ1: How has the popularity of package managers evolved over time?
For the years 2012 to 2021, we count the number of unique libraries that have declared a

dependency through CocoaPods, Carthage, Swift PM, or that were using no package
manager at all. For each year we find the newest version of each library and group unique
libraries by their use of package managers. If a library uses multiple package managers then
it is counted under each of the used package managers.

We calculate and report the percentage of libraries using CocoaPods, Carthage, Swift
PM, and no package manager for each year.

RQ2: Are CocoaPods, Carthage and Swift PM used concurrently?
Libraries can belong to a package manager in two different ways. They can either have

dependencies or dependents through a package manager. If a library has dependencies
through a package manager then the developers of that library actively use this package
manager. If a library has dependents through a package manager then developers of other
libraries include this library as a dependency through the given package manager.

For all libraries that have dependencies we count the number of libraries that include
dependencies through each package manager and each combination of package managers.
For all libraries that have dependents we count the number of libraries that are included as
dependencies through each package manager and each combination of package managers.
Library dependencies through different package managers are made comparable by using
the library repository address as the unique characteristic.

The percentages of all these combinations are calculated for four different years: 2016,
2018, 2020 and 2021. Each yearly snapshot is derived by only including libraries, that have
had updates in the given year and taking into account the last version of that library within
the year.

RQ3.1: Are existing libraries switching to the newest package manager?
We analyse how libraries migrate between package managers by recording yearly

changes of package manager use and drawing a Sankey diagram. For this, we group

Rahkema et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2617 10/25

http://dx.doi.org/10.7717/peerj-cs.2617
https://peerj.com/computer-science/

libraries by year and package manager. For each year, library, and package manager we
then record if the library used the same package manager in the previous year. If not, we
record if the library used a different package manager in the previous year. If yes, we count
this as a migration between package managers.

We then plot a Sankey diagram displaying the migrations between package managers
and between using a package manager and not using a package manager. We also plot the
percentage of libraries migrating from each of the package managers to using no package
manager or other package managers.

RQ3.2: Do new libraries prefer the newest package manager?
Based on the analysis for RQ2.2 we report how many new libraries use each package

manager for each year.

RESULTS
In the following, we present the answers to our research questions.

RQ1: How has the popularity of package managers evolved over time?
We analyzed how many libraries are using a package manager vs. not using a package

manager. Table 2 shows that the percentage of libraries using no package manager has
steadily decreased from 97.8% in 2012 to 84.3% in 2021. The number of libraries presented
in Table 2 for each year is calculated by finding libraries that were updated at least once
during the given year.

The overall number of actively maintained libraries in the Swift ecosystem grew up to
2018 and has been falling since.

Most libraries in the Swift ecosystem do not use a package manager. The percentage of
libraries using a package manager has increased steadily (from 2.2% in 2012 to 15.7% in
2021).

RQ2: Are CocoaPods, Carthage and Swift PM used concurrently?
For all analyzed libraries we counted how many libraries used no package managers,

one package manager or multiple package managers. We took into account the last version
of each library, in total 60,527 library versions.

We found 52,869 (87.3%) libraries not using any package manager. Of the 7,540
libraries that had dependencies, 4,718 (62.6%) libraries used only CocoaPods, 1,141
(15.1%) libraries used only Carthage, and 1,001 (13.3%) libraries used only Swift PM. In
total, thus, 6,860 (91.0%) of libraries with dependencies only use one package manager.
The remaining 680 (9%) libraries use multiple package managers, divided between
Carthage and Swift PM in combination with 352 (4.7%) libraries, Carthage and CocoaPods
with 162 (2.1%) libraries, CocoaPods and Swift PM with 126 (1.7%) libraries, and 41
(0.5%) libraries that use all three package managers.

We also calculated these numbers for four snapshots for the years 2016, 2018, 2020 and
2021. Years 2016 and 2018 were considered to capture the change in the LDNs after the
introduction of Swift PM in 2017. Years 2020 and 2021 were considered to see the current
trends in the LDNs. The snapshots were constructed by only considering the last version of

Rahkema et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2617 11/25

http://dx.doi.org/10.7717/peerj-cs.2617
https://peerj.com/computer-science/

a library for each year. If a library did not have any versions released during a specific year
it was not counted. The top row in Fig. 3 shows how the concurrent use of the three
package managers has evolved. In 2016, 63% of libraries with dependencies used
CocoaPods and 40% of libraries used the Carthage package manager, with a 3% overlap
between these two package managers. After Swift PM was introduced in 2017, more and
more libraries started using it. In the following years, 370 (14.5%), 857 (38.2%) and 857
(46.6%) of libraries used Swift PM in 2018, 2020 and 2021 respectively. Multiple package
managers were concurrently used by 62 (3%), 258 (11%), 377 (17%) and 317 (17%)
libraries in 2016, 2018, 2020 and 2021 respectively.

For the analysis of how libraries are included as a dependency, we analyzed all
dependencies between libraries and counted the number of libraries that are included
through each package manager. For each library, we took into account the last version of

Table 2 Percentage of libraries using each package manager for years 2012 to 2021.

Year None CocoaPods Carthage Swift PM # of Libraries

2012 97.8 2.7 1,067

2013 95.6 6.1 3,085

2014 93.6 8.5 0.5 5,837

2015 92.5 7.9 3.4 9,920

2016 91.6 7.3 5.5 15,068

2017 90.3 7.7 5.4 0.9 16,432

2018 88.5 8.0 5.1 2.2 16,523

2019 87.4 8.6 5.2 4.3 15,668

2020 86.3 8.4 4.7 6.7 12,667

2021 84.3 8.0 4.6 9.0 9,504

Figure 3 Evolution of the concurrent use of package managers (four snapshots). Four snapshots of Venn diagrams show how the use of the three
package managers has changed over time. Concurrent use of package managers can be seen in each snapshot. Most libraries, however, use and are
referenced by only one package manager. Full-size DOI: 10.7717/peerj-cs.2617/fig-3

Rahkema et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2617 12/25

http://dx.doi.org/10.7717/peerj-cs.2617/fig-3
http://dx.doi.org/10.7717/peerj-cs.2617
https://peerj.com/computer-science/

the dependent library. In total there were 3,891 libraries with dependents. We found that
2,410 libraries (61.9%) were only used through CocoaPods. Additionally, 562 (14.4%) and
469 (12.0%) libraries were only used through Carthage and Swift PM respectively. The
remaining 450 (11.6%) libraries were included through multiple package managers. This
number comprises of the following usages: 121 (3.1%) libraries through all three package
managers, 120 (3.1%) libraries through Carthage and CocoaPods, 103 (2.6%) libraries
through Carthage and Swift PM and 79 (2.0%) libraries through CocoaPods and Swift PM.
Overall 2,730 (70.2%) of libraries were used through CocoaPods, 906 (23.3%) of libraries
were used through Carthage and 799 (20.5%) of libraries were used through Swift PM.

We also analyzed the dependencies between libraries for the four snapshots for 2016,
2018, 2020 and 2021. The snapshots were calculated by only considering dependents that
had a released version in the given year. The last version of the dependent in each year was
taken into account. For each library that had dependents in the given year, we counted how
many of these dependents were declared through each package manager. The distribution
of libraries for these four different snapshots can be seen in bottom rows of Fig. 3. In 2016
721 (68.7%) of libraries were referenced through CocoaPods, 415 (39.6%) of libraries were
referenced through Carthage and 87 (8.3%) of libraries were referenced through both
package managers. After Swift PM was introduced in 2017 the percentage of libraries
referenced through Swift PM grew to 207 (14.5%) in 2018, 489 (33.1%) in 2020 and 508
(38.6%) in 2021. At the same time the number of libraries included through Carthage
shrunk from 415 (39.6%) in 2016 to 288 (21.9%) in 2021.

All package managers are used concurrently with some overlaps. A total of 9% of all
libraries use multiple package managers and 11.5% are referenced through multiple
package managers. However, most libraries are related to one package manager only. A
total of 62.6% of the libraries used only CocoaPods, 15.1% Carthage, and 13.3% Swift
PM. Of all libraries with dependents, 61.9% were only referenced through CocoaPods,
14.4% only through Carthage, and 12.0% only through Swift PM.

RQ3: How does the introduction of new package managers influence the evolution
of package manager ecosystems?

Carthage and Swift PM were introduced after CocoaPods. We analysed how the
introduction of new package managers has influenced the evolution of the Swift package
manager ecosystem by studying how libraries migrate between package managers and if
new libraries prefer the newest package managers.

Figures 4 and 5 provide an overview of the evolution of the package managers. For both
figures the width of the connecting lines is proportional to the number of libraries that
migrated between the given package managers. Figure 4 shows the evolution for all
libraries. We see, as discussed earlier, that most libraries do not use a package manager.
There are, however, migrations of libraries between package managers and, furthermore,
libraries from not using a package manager to using a package manager and the other way
around.

Rahkema et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2617 13/25

http://dx.doi.org/10.7717/peerj-cs.2617
https://peerj.com/computer-science/

Figure 5 zooms into the same picture by discarding libraries that neither use a package
manager nor participate in migrations between using a package manager and not using a
package manager. We can see that there are rather large migrations from Carthage to Swift
PM between the years 2018 and 2021. In the following sections we analyse these migrations
in more detail.

RQ3.1: Are existing libraries switching to the newest package manager?
We analysed the number of libraries that migrate to other package managers for each of

the package managers. Figure 6 shows the migrations of package manager users from
CocoaPods to not using a package manager (labeled as “to None”) and to using newer
package managers, i.e., Cartage (since 2014) and Swift PM (since 2017). While most
libraries keep using CocoaPods over time, the data suggests that there is a growing trend to
migrate from CocoaPods to not using a package manager at all until 2016. The appearance
of Carthage in 2015 seems to stop and even revert this trend until it stabilizes from 2018
onward. In addition, Carthage manages to attract libraries from CocoaPods during the first
years after its introduction. However, when Swift PM appears in 2018, the attraction of
Carthage for libraries managed by CocoaPods seems to stall and is replaced by that of Swift
PM. Moreover, the percentage of libraries migrating from CocaPods to Swift PM seems to
be slowly growing.

Figure 7 shows migrations from Carthage. In contrast to CocoaPods, there is a large
percentage of libraries migrating away from Carthage from the beginning. This is

Figure 4 Sankey diagram for all libraries. The Sankey diagram shows how libraries migrate between
package managers. Gray lines show libraries that keep using the same package manager, orange lines
show libraries migrating between package managers and green lines show new libraries that started using
a package manager. Full-size DOI: 10.7717/peerj-cs.2617/fig-4

Figure 5 Sankey diagram for libraries that use a package manager. The Sankey diagram shows how
libraries migrate between package managers. Gray lines show libraries that keep using the same package
manager, orange lines show libraries migrating between package managers and green lines show new
libraries that started using a package manager. Only libraries that at some point during its lifetime use a
package manager are included in the Figure. Full-size DOI: 10.7717/peerj-cs.2617/fig-5

Rahkema et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2617 14/25

http://dx.doi.org/10.7717/peerj-cs.2617/fig-4
http://dx.doi.org/10.7717/peerj-cs.2617/fig-5
http://dx.doi.org/10.7717/peerj-cs.2617
https://peerj.com/computer-science/

particularly visible in 2015, the first year after Carthage was introduced. Almost one third
migrates to CocoaPods and another third stops using a package manager. After the release
of Swift PM, the largest migration is towards Swift PM with an increasing growth pattern.

Figure 6 Percentage of libraries migrating from CocoaPods. The bars show the percentage of libraries
using different package managers that migrated from CocoaPods in each given year. The red part of the
bar shows percentage of libraries that kept using CocoaPods this year. Gray part of the bar shows libraries
that stopped using a package manager all-together. The blue and yellow part of the bar shows libraries
that migrated to Carthage and Swift PM, respectively. Full-size DOI: 10.7717/peerj-cs.2617/fig-6

Figure 7 Percentage of libraries migrating from Carthage. The bars show the percentage of libraries
using different package managers that migrated from Carthage in each given year. The blue part of the
bar shows percentage of libraries that kept using Carthage this year. Gray part of the bar shows libraries
that stopped using a package manager all-together. The red and yellow part of the bar shows libraries that
migrated to CocoaPods and Swift PM, respectively. Full-size DOI: 10.7717/peerj-cs.2617/fig-7

Rahkema et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2617 15/25

http://dx.doi.org/10.7717/peerj-cs.2617/fig-6
http://dx.doi.org/10.7717/peerj-cs.2617/fig-7
http://dx.doi.org/10.7717/peerj-cs.2617
https://peerj.com/computer-science/

Figure 8 shows the migrations from Swift PM. There are small migrations towards
Carthage and CocoaPods. The majority of the libraries using Swift PM, however, continues
using Swift PM.

Most libraries that use a package manager keep using CocoaPods. However, given the
large portion of libraries not using a package manager at all, there seems to be room for
an alternative to CocoaPods. Although Carthage gained some attraction after its
introduction, the more successful new package manager seems to be Swift PM as it does
not only attract Carthage users but also seems to have little losses.

RQ3.2: Do new libraries prefer the newest package manager?
We analyzed which package managers are used by new libraries. Figure 9 shows how the

percentage of libraries using each package manager has changed over time. After Carthage
was released in 2014 the percentage of libraries using CocoaPods has stayed between 50%
and 70%. Most popular years among new libraries for Carthage were 2015, 2016, and 2017.
After the release of Swift PM in 2017 its popularity among new libraries has steadily
increased.

CocoaPods keeps its position as the most popular package manager to choose for new
libraries. However, since its release in 2017, Swift PM, is growing in popularity. The
appearance of Carthage seems to have been a temporary alternative to the more
complex CocoaPods.

Figure 8 Percentage of new libraries using each of the package managers. The bars show the per-
centage of libraries using each of the three package managers each year. Colors red, blue, and yellow are
used for CocoaPods, Carthage, and Swift PM, respectively. Libraries using multiple package managers are
not included. Full-size DOI: 10.7717/peerj-cs.2617/fig-8

Rahkema et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2617 16/25

http://dx.doi.org/10.7717/peerj-cs.2617/fig-8
http://dx.doi.org/10.7717/peerj-cs.2617
https://peerj.com/computer-science/

DISCUSSION
In the following, we discuss the results of the three research questions.

RQ1: How has the popularity of package managers evolved over time?
We saw that the percentage of libraries not using a package manager decreased from

97.8% in 2012 to 84.3% in 2021. We compared this trend to package managers from other
ecosystems. Therefore, we additionally calculated the percentage of libraries with
dependencies over time for 10 other package managers with sufficient dependency data in
Libraries.io (2022): Maven, Packagist, NPM, CPAN, Hex, NuGet, Pub, Puppet, PyPI, and
Rubygems. We found that for all 10 package managers the percentage of libraries with
dependencies grew over time. Different from the Swift ecosystem, however, the general
trend is significantly steeper with most libraries using package managers to declare
dependencies by 2020. The only package managers with a slightly similar trend to the Swift
ecosystem are Maven and PyPI with 43.1% and 28.5% of libraries declaring dependencies
through a package manager for Maven and PyPI respectively. However, libraries in these
package managers still declare dependencies more often than in the Swift ecosystem. This
might be because developers in the Swift ecosystem seem rather conservative in declaring
dependencies, a sentiment that can also be observed in developer forums (Kutjelul, 2022).
This sentiment has developed in big part due to the instability of Swift when the language
was young. The Swift syntax changed frequently with new versions, making it difficult to
migrate from one library version to another. It was also not possible to stay with old
versions as Apple requires the use of the latest Swift version to be able to release

Figure 9 Percentage of libraries migrating from Swift PM. The bars show the percentage of libraries
using different package managers that migrated from Swift PM in each given year. The yellow part of the
bar shows percentage of libraries that kept using Swift PM this year. Gray part of the bar shows libraries
that stopped using a package manager all-together. The red and blue part of the bar shows libraries that
migrated to CocoaPods and Carthage, respectively. Full-size DOI: 10.7717/peerj-cs.2617/fig-9

Rahkema et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2617 17/25

http://dx.doi.org/10.7717/peerj-cs.2617/fig-9
http://dx.doi.org/10.7717/peerj-cs.2617
https://peerj.com/computer-science/

applications on the App Store. Additionally, Swift comes with fairly rich system libraries,
compared with other ecosystems, such as the very lightweight JavaScript.

To ensure that the small number of dependencies is not due to small libraries that are
not used by other developers we performed a small check on especially popular libraries.
We searched for the best iOS libraries and went through the libraries in the first found list
of libraries (Antino, 2024). We matched each of these libraries to libraries in our dataset
through the repository URL. We then queried the number of dependencies from our
dataset. The results are listed in Table 3. We were not able to match two of the ten libraries.
Other libraries confirm our previous results.

The overall number of libraries in the combined Swift ecosystem has surprisingly
decreased since 2018. Swift PM is the only package manager where the absolute number of
libraries has increased over this time, indicating an increased adaption by new libraries.
The decrease in the number of libraries for CocoaPods has a disproportionate effect on the
overall number of libraries due to the difference in how libraries are discovered for the
three package managers. The CocoaPods central repository allows the inclusion of all
libraries available through the package manager, including small and unused libraries.
Libraries for Carthage and Swift PM on the other hand have no central repository. The
increase in the adaption of Swift PM could be attributed to efforts by Apple, such as
integrating Swift PM directly into Xcode and significantly facilitating the adaption of the
package manager.

RQ2: Are CocoaPods, Carthage and Swift PM Used Concurrently?
Three package managers are used in the Swift ecosystem: CocoaPods, Carthage and

Swift PM. We expected that the LDNs of these ecosystems overlap, but that there are also
libraries that are available only through CocoaPods, Carthage or Swift PM respectively.
This assumption proved to be true.

Another, more silent, assumption was that CocoaPods is the largest package manager.
The assumption was based on the number of libraries reported by different sources,
claiming the number of libraries served by CocoaPods to be around 89,000 and the number
of libraries served by Carthage and Swift PM to be around 4,500 each. Our analysis showed

Table 3 Number of dependencies for top 10 libaries.

Library name Number of dependencies Number of GitHub stars

RxSwift N/A 24 k

Kingfisher 1 22.9 k

SwiftyBeaver 0 5.9 k

Nimble 1 4.8 k

Realm N/A 16.2 k

Snapkit 0 19.8 k

Eureka 0 11.8 k

Spring 0 14.1 k

Starscream 3 8.2 k

CocoaLumberjack 1 13.1 k

Rahkema et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2617 18/25

http://dx.doi.org/10.7717/peerj-cs.2617
https://peerj.com/computer-science/

that although this is true, the difference between the package managers is not as big as
assumed. In 2016 63% of libraries with dependencies used CocoaPods and 40% of libraries
used Carthage. In 2021 48% of libraries with dependencies used CocoaPods and 47% of
libraries used Swift PM.

An explanation for the smaller difference is that, while CocoaPods has an official central
repository, Carthage and Swift PM do not. Therefore, it is not possible to gather all libraries
served through Carthage and Swift PM. At the same time the official CocoaPods repository
has many incorrect references to libraries. When looking at libraries that either use or are
referenced through a package manager the difference between package manager sizes is
significantly smaller.

This is an interesting insight for developers who might choose CocoaPods with the
expectation of it providing access to 10 times more libraries. We saw that this expectation
might not hold true for libraries that are referenced and popular.

RQ3: How does the introduction of new package managers influence the evolution
of package manager ecosystems?

Over time the popularity of CocoaPods remains stable. Some libraries switch from
CocoaPods to other package managers, but the percentage of these libraries is relatively
low. Many libraries, on the other hand, switch away from Carthage. Over time more
projects switch from Carthage to Swift PM than from Carthage to CocoaPods, which
might be due to the underlying similarity of Carthage and Swift PM. Additionally, Swift
PM is integrated into Xcode, making it very easy for developers to use.

In conclusion, the introduction of a new package manager does not necessarily make
libraries switch to the newest package manager. The difference in which features are
supported by a package manager have an effect on if library developers switch between
package managers. Unique features of a package manager can provide stable popularity
among developers. If Apple wants to bring more libraries to Swift PM, it might be
beneficial to add some features that only exist for CocoaPods so far, for example, a
centralized repository (or perhaps a repository for officially vetted libraries).

Summary
While our observations are not sufficient to give a conclusive answer to what makes a
package manager attractive, our answers to RQ1, RQ2, and RQ3, shed light on what
aspects might contribute to making new package manager attractive to developers. While
RQ1 and RQ2 provide relevant background on how the dependency ecosystem has evolved
over time, RQ3 provides insights on library developer migration between the package
managers showing when developers migrated to new package managers and hence which
newly developed features might have impacted the decision to migrate. This includes the
following aspects:

. Ease of use:

–Integration with the default development environment.

–Integration into the existing workflow.

Rahkema et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2617 19/25

http://dx.doi.org/10.7717/peerj-cs.2617
https://peerj.com/computer-science/

–Finding libraries to include as dependencies (e.g., a central repository).

–Adding new libraries.

. New features that are not available in existing PMs.

. Implementation of popular features of existing PMs.

The good adoption of Swift PM can be explained by the package manager fulfilling most
of the ease of use categories. It is integrated with the default development environment, it is
integrated in the existing workflow, and adding new libraries is made very easy. The only
aspects where it lacks in comparison to CocoaPods is a missing central repository for easier
finding of new libraries and a smaller number of supported libraries to due CocoaPods
being the oldest package manager.

THREATS TO VALIDITY
In this section, we discuss the potential limitations of how our dataset was constructed and
analyzed.

Construct validity
We only look at libraries declared through package managers. It might be possible that
some projects are using dependencies, but through other means (e.g., by manually
downloading them). Our analysis is based on third-party libraries. Additional analyses are
needed to confirm if our results can be generalized to all projects written in Swift, including
apps.

Internal validity
The Swift LDN dataset includes open-source libraries only. Additionally, some libraries
were excluded as the repository contained no tags.

The library dependency data mostly relies on package manager resolution files. Not
every library that uses a package manager includes the corresponding resolution files in the
repository. For such repositories, the package manager manifest files are parsed, and the
dependency requirements are resolved.

Building the dependency graph by only declaring the exact version of a dependency
means that transitive dependencies could in practice be resolved differently. When a
transitive dependency is resolved at a later date then it is possible that the actual version of
the transitive dependency would not match the version in our dataset. The data on the
version ranges does, however, exist in the dataset and could be checked as future work.

External validity
We claim that our results hold for all open-source libraries in the LDNs of the Swift
ecosystem, i.e., all open-source libraries that are available through CocoaPods, Carthage
and Swift PM. For CocoaPods, the official repository that contains information on libraries
available through CocoaPods was used. For Carthage and Swift PM, the information on
libraries.io was used as the initial set of libraries. To make sure that newer libraries than
2020 are included and that we do not rely solely on libraries.io, snowballing was used to

Rahkema et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2617 20/25

http://dx.doi.org/10.7717/peerj-cs.2617
https://peerj.com/computer-science/

analyze referenced dependencies that were not analyzed in our dataset yet. This additional
step should ensure that we also include libraries that should be in the dataset but that did
not exist in the initial set of libraries.

We analyzed the LDNs of the Swift ecosystem between September 2011 and December
2021. We make no claims to how the LDNs might evolve in the future. We saw in our
analysis that the introduction of a new package manager can disrupt any trends that might
have existed before.

All data and all tools are open source and available on public repositories. We tried to
describe each manual process as detailed as possible. Therefore, our study should be
reproducible.

RELATED WORK
Many studies have been conducted analyzing technical lag in library dependencies
(Zerouali et al., 2018, 2019; Decan, Mens & Constantinou, 2018a; Salza et al., 2020; Huang
et al., 2019; Stringer et al., 2020) and vulnerabilities in different LDNs (Decan, Mens &
Constantinou, 2018b; Zerouali et al., 2022; Düsing & Hermann, 2021; Li et al., 2021;
Zimmermann et al., 2019; Alfadel et al., 2020, 2023; Prana et al., 2021). There are no studies
analyzing multiple package managers in the same ecosystem. However, studies have
compared LDNs of different ecosystems. This section summarises the related work that
compares LDNs of multiple ecosystems.

Kikas et al. (2017) analyzed the evolution of LDNs of three languages: JavaScript, Ruby,
and Rust. They found that for each package manager the number of libraries is growing.
Similarly, the number of direct dependencies and total dependencies per project is
increasing. The increase was especially concerning for JavaScript, where the average
number of total dependencies grew from one per project to almost 60 between 2011 and
2016. Decan, Mens & Claes (2017) analyzed the LDNs of three package managers npm,
CRAN and RubyGems. They found that proportionally there are more packages with
dependencies in CRAN (70%) than in npm and RubyGems (60%). They also found that on
average there are few direct dependencies and a much higher number of transitive
dependencies. The median number of transitive dependencies for CRAN was five, for
RubyGems 8, and for npm 22.

Decan, Mens & Grosjean (2019) analyzed the evolution of seven package manager
LDNs. They defined and calculated three metrics describing the LDN evolution: the
Changeability Index, the Re-usability Index, and the P-Impact Index. They used the
libraries.io dataset to analyze how these package manager LDNs change over time. They
found that the growth of the number of libraries and dependencies depends on the package
manager. Some LDNs have grown linearly, as others have grown exponentially. For most
package managers 50% of libraries were updated within 2 months and libraries that are
referenced by other libraries are updated significantly more often than libraries, that are
not referenced by other libraries. They also found that 26% to 33% of libraries were never
updated. They showed that the number of transitive dependencies is significantly higher
than the number of direct dependencies. For some of the package managers, the ratio
between transitive and direct dependencies is growing. They also pointed out that the

Rahkema et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2617 21/25

http://dx.doi.org/10.7717/peerj-cs.2617
https://peerj.com/computer-science/

average dependency depth is between three and six, depending on the package manager.
The libraries.io data set includes partial data about CocoaPods, Carthage, and Swift
Package Manager (the three package managers used in iOS development), but this data
was incomplete and therefore, these three package managers were excluded from the
analysis.

Bogart et al. (2021) analyzed the policies and practices for 18 LDNs. Their analysis
showed that ecosystems share values on stability and compatibility, but other values tend
to differ. The three top values cited by developers for CocoaPods were quality, stability, and
compatibility. Blanthorn, Caine & Navarro-López (2019) used tensor decomposition to
study different communities within LDNs. They found big differences between package
managers, particularly between Elm and R and the more widespread Python, Java, and
JavaScript ecosystems. Korkmaz et al. (2020) found that libraries with a higher number of
dependencies tend to have less impact in the LDN.

Kula et al. (2018) analyzed dependency updates in 4,600 Java projects. They found that
81.5% of the studied projects did not update their outdated dependencies. They plotted
library usage curves and discovered that new library versions are mostly used by new
dependent projects.

Finally, Domínguez-Álvarez, Gorla & Caballero (2022) analyzed the evolution of the
CocoaPods library ecosystem by looking at the dominant programming language of
libraries. They found that although Swift has gained popularity, most libraries in
CocoaPods are still written in Objective-C.

CONCLUSION
We analysed the Swift LDN to understand what properties make a newly proposed
package manager attractive to developers. We first analyzed how the use of the three
package managers used in the Swift ecosystem (CocoaPods, Carthage, and Swift PM) has
evolved over time. We then analyzed how the package managers are used concurrently
and, lastly, we analyzed how the introduction of new package managers has influenced the
package manager ecosystem.

We found that most libraries in the Swift ecosystem do not use a package manager.
However, the percentage of libraries using a package manager has increased over time
(from 2.2% in 2012 to 15.7% in 2021). The percentage of libraries using Carthage peaked in
2016 at 5.5%, the percentage of libraries using CocoaPods has been steadily around 8%
since 2018. The percentage of libraries using Swift PM, however, has an increasing trend
and reached 9% in 2021. Of all libraries using package managers, 9% use multiple package
managers concurrently. We found that some libraries are switching to the newest package
manager, CocoaPods, however, is keeping most of its users.

Whether libraries switch between package managers is dependent on the features
of the package managers involved. Unique features of a package manager can
provide stable popularity among developers. The introduction of a new package
manager can be successful if it provides enough features that are lacking from existing
solutions. If Apple wanted to bring more libraries to Swift PM, it might be beneficial to

Rahkema et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2617 22/25

http://dx.doi.org/10.7717/peerj-cs.2617
https://peerj.com/computer-science/

add some features that only exist for CocoaPods so far, for example, a centralized
repository.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The research reported in this article has been funded by BMK, BMAW, and the State of
Upper Austria in the frame of the SCCH Competence Center INTEGRATE (FFG grant no.
892418) part of the FFG COMET Competence Centers for Excellent Technologies
Programme, as well as by the European Regional Development Fund, and grant PRG1226
of the Estonian Research Council. There was no additional external funding received for
this study. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
BMK, BMAW, and the State of Upper Austria.
SCCH Competence Center INTEGRATE: 892418.
European Regional Development Fund: PRG1226.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
. Kristiina Rahkema conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

. Dietmar Pfahl conceived and designed the experiments, authored or reviewed drafts of
the article, and approved the final draft.

. Rudolf Ramler conceived and designed the experiments, authored or reviewed drafts of
the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The data is available at Zenodo: Rahkema, K., & Pfahl, D. (2022). Dependency Networks
of Open Source Libraries Available Through CocoaPods, Carthage and Swift PM (1.1.0)
[Data set]. 19th International Conference on Mining Software Repositories (MSR ’22),
Pittsburgh, PA, USA. Zenodo. https://doi.org/10.5281/zenodo.6641875.

REFERENCES
Alfadel M, Costa DE, Mokhallalati M, Shihab E, Adams B. 2020.On the threat of npm vulnerable

dependencies in Node.js applications. ArXiv DOI 10.48550/arXiv.2009.09019.

Alfadel M, Costa DE, Shihab E. 2023. Empirical analysis of security vulnerabilities in python
packages. Empirical Software Engineering 28(3):59 DOI 10.1007/s10664-022-10278-4.

Rahkema et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2617 23/25

https://doi.org/10.5281/zenodo.6641875
http://dx.doi.org/10.48550/arXiv.2009.09019
http://dx.doi.org/10.1007/s10664-022-10278-4
http://dx.doi.org/10.7717/peerj-cs.2617
https://peerj.com/computer-science/

Antino. 2024. Best iOS libraries to check out In 2024. Available at https://www.antino.com/blog/
best-ios-libraries-to-check-out-in-2021.

Benelallam A, Harrand N, Soto-Valero C, Baudry B, Barais O. 2019. The maven dependency
graph: a temporal graph-based representation of maven central. In: 2019 IEEE/ACM 16th
International Conference on Mining Software Repositories (MSR). Piscataway: IEEE, 344–348.

Blanthorn OA, Caine CM, Navarro-López EM. 2019. Evolution of communities of software: using
tensor decompositions to compare software ecosystems. Applied Network Science 4(1):1–22
DOI 10.1007/s41109-019-0193-5.

Bogart C, Kästner C, Herbsleb J, Thung F. 2021. When and how to make breaking changes:
policies and practices in 18 open source software ecosystems. ACM Transactions on Software
Engineering and Methodology (TOSEM) 30(4):1–56 DOI 10.1145/3447245.

Decan A, Mens T, Claes M. 2017. An empirical comparison of dependency issues in oss packaging
ecosystems. In: 2017 IEEE 24th International Conference on Software Analysis, Evolution and
Reengineering (SANER). Piscataway: IEEE, 2–12.

Decan A, Mens T, Constantinou E. 2018a. On the evolution of technical lag in the npm package
dependency network. In: 2018 IEEE International Conference on Software Maintenance and
Evolution (ICSME). Piscataway: IEEE, 404–414.

Decan A, Mens T, Constantinou E. 2018b. On the impact of security vulnerabilities in the npm
package dependency network. In: Proceedings of the 15th International Conference on Mining
Software Repositories, 181–191.

Decan A, Mens T, Grosjean P. 2019. An empirical comparison of dependency network evolution
in seven software packaging ecosystems. Empirical Software Engineering 24(1):381–416
DOI 10.1007/s10664-017-9589-y.

Domínguez-Álvarez D, Gorla A, Caballero J. 2022. On the usage of programming languages in
the iOS ecosystem. In: 2022 IEEE 22nd International Working Conference on Source Code
Analysis and Manipulation (SCAM). Piscataway: IEEE, 176–180.

Düsing J, Hermann B. 2021. Analyzing the direct and transitive impact of vulnerabilities
onto different artifact repositories. Digital Threats: Research and Practice 3(4):38
DOI 10.1145/3472811.

Elliott T. 2020. Swift package manager for iOS. Available at https://www.raywenderlich.com/
7242045-swift-package-manager-for-ios (accessed 21 January 2022).

Huang J, Borges N, Bugiel S, Backes M. 2019. Up-to-crash: evaluating third-party library
updatability on android. In: 2019 IEEE European Symposium on Security and Privacy
(EuroS&P). Piscataway: IEEE, 15–30.

Kikas R, Gousios G, Dumas M, Pfahl D. 2017. Structure and evolution of package dependency
networks. In: 2017 IEEE/ACM 14th International Conference on Mining Software Repositories
(MSR). Piscataway: IEEE, 102–112.

Korkmaz G, Kelling C, Robbins C, Keller S. 2020.Modeling the impact of python and r packages
using dependency and contributor networks. Social Network Analysis and Mining 10(1):1–12
DOI 10.1007/s13278-019-0619-1.

Kula RG, German DM, Ouni A, Ishio T, Inoue K. 2018. Do developers update their library
dependencies? Empirical Software Engineering 23(1):384–417 DOI 10.1007/s10664-017-9521-5.

Kutjelul. 2022. Are iOS developers more purist than other types of software engineers? Reddit.
Available at https://www.reddit.com/r/iOSProgramming/comments/ugvrta/are_ios_developers_
more_purist_than_other_types/ (accessed 1 March 2023).

Rahkema et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2617 24/25

https://www.antino.com/blog/best-ios-libraries-to-check-out-in-2021
https://www.antino.com/blog/best-ios-libraries-to-check-out-in-2021
http://dx.doi.org/10.1007/s41109-019-0193-5
http://dx.doi.org/10.1145/3447245
http://dx.doi.org/10.1007/s10664-017-9589-y
http://dx.doi.org/10.1145/3472811
https://www.raywenderlich.com/7242045-swift-package-manager-for-ios
https://www.raywenderlich.com/7242045-swift-package-manager-for-ios
http://dx.doi.org/10.1007/s13278-019-0619-1
http://dx.doi.org/10.1007/s10664-017-9521-5
https://www.reddit.com/r/iOSProgramming/comments/ugvrta/are_ios_developers_more_purist_than_other_types/
https://www.reddit.com/r/iOSProgramming/comments/ugvrta/are_ios_developers_more_purist_than_other_types/
http://dx.doi.org/10.7717/peerj-cs.2617
https://peerj.com/computer-science/

Li Q, Song J, Tan D, Wang H, Liu J. 2021. Pdgraph: a large-scale empirical study on project
dependency of security vulnerabilities. In: 51st Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). Piscataway: IEEE, 161–173.

Libraries.io. 2022. Supported package managers. Available at https://libraries.io
(accessed 17 February 2022).

Prana GAA, Sharma A, Shar LK, Foo D, Santosa AE, Sharma A, Lo D. 2021. Out of sight, out of
mind? how vulnerable dependencies affect open-source projects. Empirical Software Engineering
26(4):1–34 DOI 10.1007/s10664-021-09959-3.

Rahkema K. 2023. Quality analysis of iOS applications with focus on maintainability and security
aspects. PhD thesis, University of Tartu, Tartu, Estonia.

Rahkema K, Pfahl D. 2022a. Dataset: dependency networks of open source libraries available
through cocoapods, carthage and swift pm. In: 2022 IEEE/ACM 19th International Conference
on Mining Software Repositories (MSR). Piscataway: IEEE.

Rahkema K, Pfahl D. 2022b. Dataset: dependency networks of open source libraries available
through CocoaPods, Carthage and Swift PM. In: 2022 IEEE/ACM 19th International Conference
on Mining Software Repositories (MSR). Piscataway: IEEE, 393–397
DOI 10.1145/3524842.3528016.

Rahkema K, Pfahl D. 2022c.Quality analysis of iOS applications with focus on maintainability and
security. In: 2022 IEEE International Conference on Software Maintenance and Evolution
(ICSME). Piscataway: IEEE, 602–606.

Rahkema K, Pfahl D. 2023. Analysis of dependency networks of package managers used in ios
development. TechRxiv DOI 10.36227/techrxiv.20088539.v1.

Salza P, Palomba F, Di Nucci D, De Lucia A, Ferrucci F. 2020. Third-party libraries in
mobile apps: when, how, and why developers update them. Empirical Software Engineering
25(3):2341–2377 DOI 10.1007/s10664-019-09754-1.

Stringer J, Tahir A, Blincoe K, Dietrich J. 2020. Technical lag of dependencies in major package
managers. In: 2020 27th Asia-Pacific Software Engineering Conference (APSEC). Piscataway:
IEEE, 228–237.

Yarn. 2023. Migrating from npm. Available at https://classic.yarnpkg.com/lang/en/docs/migrating-
from-npm/ (accessed 20 April 2023).

Zerouali A, Constantinou E, Mens T, Robles G, González-Barahona J. 2018. An empirical
analysis of technical lag in npm package dependencies. In: New Opportunities for Software
Reuse: 17th International Conference, ICSR 2018, Madrid, Spain, May 21–23, 2018, Proceedings
17, 95–110.

Zerouali A, Mens T, Decan A, De Roover C. 2022. On the impact of security vulnerabilities in the
npm and rubygems dependency networks. Empirical Software Engineering 27(5):1–45
DOI 10.1007/s10664-022-10154-1.

Zerouali A, Mens T, Gonzalez-Barahona J, Decan A, Constantinou E, Robles G. 2019. A formal
framework for measuring technical lag in component repositories—and its application to npm.
Journal of Software: Evolution and Process 31(8):e2157 DOI 10.1002/smr.2157.

Zimmermann M, Staicu C-A, Tenny C, Pradel M. 2019. Small world with high risks: a study of
security threats in the npm ecosystem. In: 28th USENIX Security Symposium (USENIX Security
19), 995–1010.

Rahkema et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2617 25/25

https://libraries.io
http://dx.doi.org/10.1007/s10664-021-09959-3
http://dx.doi.org/10.1145/3524842.3528016
http://dx.doi.org/10.36227/techrxiv.20088539.v1
http://dx.doi.org/10.1007/s10664-019-09754-1
https://classic.yarnpkg.com/lang/en/docs/migrating-from-npm/
https://classic.yarnpkg.com/lang/en/docs/migrating-from-npm/
http://dx.doi.org/10.1007/s10664-022-10154-1
http://dx.doi.org/10.1002/smr.2157
http://dx.doi.org/10.7717/peerj-cs.2617
https://peerj.com/computer-science/

	The impact of new package managers on the library dependency ecosystem
	Introduction
	Background
	Method
	Results
	Discussion
	Threats to validity
	Related work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

