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ABSTRACT

In contemporary transportation systems, the imperatives of route planning and
optimization have become increasingly critical due to vehicles’ burgeoning number
and complexity. This includes various vehicle types, such as electric and autonomous
vehicles, each with specific needs. Additionally, varying speeds and operational
requirements further complicate the process, demanding more sophisticated
planning solutions. These systems frequently confront myriad challenges, including
traffic congestion, intricate routes, and substantial energy consumption, which
collectively undermine transportation efficiency, escalate energy usage, and
contribute to environmental pollution. Hence, strategically planning and optimizing
routes within complex traffic milieus are paramount to enhancing transportation
efficacy and achieving low-carbon and environmentally sustainable objectives. This
article proposes a vehicle path low-carbon planning model, Adaptive Cooperative
Graph Neural Network (ACGNN), predicated on an adaptive multi-strategy ant
colony optimization algorithm, addressing the vehicle path low-carbon planning
conundrum. The proposed framework initially employs graph data from road
networks and historical trajectories as model inputs, generating high-quality graph
data through subgraph screening. Subsequently, a graph neural network (GNN) is
utilized to optimize nodes and edges computationally. At the same time, the global
search capability of the model is augmented via an ant colony optimization algorithm
to ascertain the final optimized path. Experimental results demonstrate that ACGNN
yields significant path planning outcomes on both public and custom-built datasets,
surpassing the traditional Dijkstra’s shortest path algorithm, random graph network
(RGN), and conventional GNN methodologies. Moreover, comparative analyses of
various optimization methods on the custom-built dataset reveal that the ant colony
optimization algorithm markedly outperforms the simulated annealing algorithm
(SA) and particle swarm optimization algorithm (PSO). The method offers an
innovative technical approach to vehicle path planning and is instrumental in
advancing low-carbon and environmentally sustainable goals while enhancing
transportation efficiency.
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INTRODUCTION

Traffic route planning constitutes one of the fundamental challenges in contemporary
transportation systems, a significance underscored by the ongoing urbanization and
escalating transportation demands. Traditional methods, such as Dijkstra’s shortest path
and A* algorithms, yield effective solutions under certain conditions. However, as urban
transportation networks grow increasingly complex and dynamic, these traditional
approaches reveal computational efficiency and adaptability limitations. Recent
advancements in intelligent transportation systems (ITS) have heralded new prospects for
transportation route planning (Hu et al., 2020). ITS combines advanced information, data
communication, and electronic sensing technology. This integration enables
comprehensive perception and intelligent processing of traffic information. As a result, ITS
provides more accurate and real-time support for traffic route planning (Njoku et al.,
2023). In the context of global green and low-carbon development, transportation route
planning must extend beyond driving time and distance considerations to encompass
environmental factors such as vehicle fuel consumption and carbon emissions. The advent
of low-carbon transportation route planning mitigates traffic congestion, enhances
transportation efficiency, and significantly curtails greenhouse gas emissions, marking a
pivotal contribution to environmental protection and sustainable development (Lin ef al.,
2020). Achieving the objectives of low-carbon environmental conservation through
scientifically and judiciously planned routes has emerged as a critical research trajectory in
the current transportation sector.

Deep learning and machine learning techniques have progressively emerged as potent
tools for addressing traffic route planning challenges, leveraging their robust data
processing and pattern recognition capabilities. The urban transportation network is
constantly changing over time, and unexpected situations such as traffic flow, road
closures, and accidents can affect the rationality of route selection. Secondly, real-time data
processing is the key to path planning, and it is necessary to quickly respond to data from
vehicles and sensors to ensure the real-time and accurate planning of the path. In addition,
environmental uncertainties such as weather and changes in road conditions also increase
the difficulty of path planning. These factors work together to make path planning a
computational challenge and a complex system optimization problem that requires
consideration of multiple dynamic variables. Deep learning methodologies adeptly
handle complex traffic environments and fluctuating road conditions by constructing
intricate neural network models that autonomously learn significant features and patterns
from vast traffic datasets (Huang, Xu ¢ Weng, 2020). Convolutional neural networks
(CNNs), renowned for their exceptional performance in image recognition and processing,
employ two-dimensional convolutional operations that have been adapted for feature
extraction and path optimization within traffic networks. Recurrent neural networks
(RNNs), particularly their variant long short-term memory networks (LSTM), excel in
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managing time-series data, rendering them suitable for predicting traffic flow and
travel times.

Furthermore, GNN, a recent advancement in deep learning, is particularly adept at
processing graph-structured data. Traffic road networks inherently possess a graph
structure, with nodes representing intersections and edges symbolizing roads. GNNs
enhance the understanding of complex associations and traffic dynamics within road
networks by executing convolution operations on graph data, thereby providing more
precise inputs for route planning (Liu et al., 2020).

In addition to deep learning methodologies, meta-heuristic algorithms are pivotal in
path planning and network parameter optimization. The ant colony optimization (ACO)
algorithm, a quintessential meta-inspired algorithm, derives inspiration from the natural
foraging behavior of ants and their collaborative use of pheromones. ACO emulates this
process, leveraging the positive feedback mechanism of pheromones to reinforce the
selection of high-quality paths progressively. This approach is characterized by a robust
global search capability and adaptability, effectively circumventing the pitfalls of local
optima. The simulated annealing (SA) algorithm emulates the physical annealing process,
probabilistically accepting suboptimal solutions and gradually reducing the “temperature,”
making it well-suited for intricate optimization problems. Particle swarm optimization
(PSO) algorithms expedite the approach to the optimal solution by mimicking the foraging
behavior of bird flocks, utilizing information sharing and collaboration among particles.
Integrating these meta-heuristic algorithms into transportation route planning markedly
enhances optimization efficiency (Pustokhina et al., 2021). When combined with GNN, the
ACO algorithm further augments the model’s global search capacity and path
optimization performance. In path planning, the carbon emissions of different vehicles
critically impact environmental sustainability. Accurately identifying green paths and
optimizing routes to reduce travel distance and carbon emission costs is essential for
monitoring green carbon emissions. Consequently, this article proposes a novel adaptive
multi-strategy path planning method utilizing the ACO algorithm in conjunction with
GNN, with the following specific contributions:

1) A graph data structure was established based on the characteristics of path planning and
data attributes. Utilizing feature selection for subgraph screening facilitated the
generation of input data.

2) The GNN predicted the outputs of nodes and edges in the route planning process.
OptimOptimizingth planning and analytical identification, thereby it achieved optimal
path planning and analytical identification

3) Comparative analyses between public and self-built datasets demonstrated that the
proposed Adaptive Cooperative Graph Neural Network (ACGNN) framework yields
superior recognition results, underscoring the potential and advantages of the ant
colony optimization algorithm in ablation experiments.

The remainder of this article is organized as follows: “Related Works” introduces related
works on meta-heuristic algorithms and path planning. In “Methodology”, the ACGNN
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framework is established. “Experiment Result and Analysis” details the experiments and
result analysis. Discussion is provided in “Discussion”, followed by the conclusion.

RELATED WORKS

Optimization study based on meta-heuristic class algorithm

Ajeil et al. (2020) proposed an efficient path-planning technique for mobile robots
operating in known environments, utilizing simulated annealing neural networks to
describe obstacles directly. This method generates segmentally linear paths Yang ¢ Meng
(2021) introduced a genetic algorithm for global path planning of mobile robots, where
candidate path solutions are represented as individuals in the genetic algorithm and
evolved using evolutionary operators. In each generation, the genetic algorithm individuals
undergo local path refinement to correct and enhance the encoded paths. Yang &> Meng
(2023) addressed the instability of traditional genetic algorithms by proposing a new
population-based incremental learning algorithm for path planning, employing a node
probabilistic model and an edge library to generate promising paths. Xu (2022) presented a
path-planning method based on an adaptive multistate ant colony algorithm, which
utilizes an adaptive state transfer strategy to balance the relative importance of pheromone
strength and desirability. This method also employs a direction-determination approach to
resolve deadlocks, g the algorithm’s global search capability for goal planning and obstacle
avoidance. Sanchez-Ibanez, Pérez-del-Pulgar ¢ Garcia-Cerezo (2021) improved the
standard ant colony optimization, termed age-based ant colony optimization. This
enhanced ant colony algorithm, implemented alongside grid-based modeling of static and
dynamic environments, effectively addresses the path planning problem.

Drones and trajectory planning

Karaman & Frazzoli (2020) proposed a trajectory generation method based on the concept
of search within a discrete space closely related to the behavioral layer. This method
involves selecting the target configuration of the vehicle’s motion in the Frenet coordinate
system, using polynomials to derive a set of navigable trajectories, and selecting the
optimal trajectory as the predicted path. The safety of this path is then verified through
collision detection. Extensive experiments have demonstrated the practicality of this
approach in standardized road environments. Additionally, Karaman & Frazzoli (2020)
proposed an improved RRT* algorithm, addressing computational complexity and the
stability of feasible solutions, yielding significant optimization. Mashayekhi et al. (2020)
introduced the bidirectional RRT algorithm (RRT-Connect), which extends the random
tree from both the start and end points, substantially enhancing planning efficiency and
real-time performance. Yuan et al. (2019) proposed a dynamic path planning method
based on a gated recurrent unit-recurrent neural network model for unknown
environments. This method utilizes deep neural networks combined with sensor inputs to
generate a new control strategy, outputted to a physical model to control the robot’s
motion and avoid obstacles. Wu et al. (2020) developed a new deep neural network
(DNN)-based approach for real-time online path planning in unknown, cluttered
environments. Bahar, Ghiasi ¢ Bahar (2012) proposed a grid roadmap-based path
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planning method to reduce the time required for path planning. This method implements
a fast path planning strategy using a suggested roadmap and an artificial neural network
(ANN) corridor search, operable in static, dynamic, and invisible environments. Bozek
et al. (2020) investigated the development of an intelligent control system for wheeled
robots and proposed an artificial neural network-based path planning algorithm. The
control system comprises two artificial neural networks: one specifies the position and size
of obstacles, and the other processes received information, coordinates, and target point
orientation to form a continuous trajectory for obstacle navigation.

The studies above demonstrate substantial progress in applying metaheuristic
algorithms to path planning. Researchers have proposed various optimization algorithms,
including ant colony optimization, genetic algorithms, and population incremental
learning, significantly enhancing the efficiency and accuracy of path planning. Improved
ant colony and genetic algorithms, for instance, address traditional algorithms’ stability
and global search capability issues by incorporating novel strategies and optimization
steps. Concurrently, deep learning methods are gaining prominence in the path planning
domain. Researchers have devised numerous real-time dynamic path-planning algorithms
by integrating neural networks and deep learning techniques. Consequently, optimizing
machine learning methods through metaheuristic algorithms remains essential for
advancing path-planning research.

METHODOLOGY

Meta-inspired ant colony algorithm

ACO is a bio-inspired optimization algorithm derived from the foraging behavior of ants
in nature. It primarily addresses combinatorial optimization problems, such as the
Traveling Salesman Problem (TSP) and path planning. The ACO algorithm attains the
global optimal solution by emulating the information exchange and collaborative behavior
among individual ants. This algorithm excels in discovering optimal or near-optimal paths
within complex, multi-objective environments, making it well-suited for path planning in
both static and dynamic scenarios (Padmanaban & Sathiyamoorthy, 2020). Its path
selection mechanism, based on heuristic information and pheromone concentration,
enables the rapid identification of the optimal solution from among multiple potential
paths. Firstly, parameter initialization is performed by setting the number of ants m, the
initial value of pheromone 1y, the pheromone importance factor o, the heuristic
information importance factor f3, the pheromone volatility coefficient p, and the maximum
number of iterations T. The solution is then reconstructed, with each ant constructing the
solution independently. At each step of path selection, the ants determine the transfer
probability based on the pheromone concentration and heuristic information on the path.
For ant k the probability of transferring from node i to node jpf.‘]i is defined as.

[z5(8)]" - {my}ﬁ
Zleallowed_nodes [Til(t)]a ’ [nzl]ﬂ

k _
pii =
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where 7;(t) is the pheromone concentration on the path (i, /) and 7; is the heuristic
information, usually the visibility of the path. Based on this pheromone update, the ant
needs to update the pheromone on the path after completing the construction of a solution
once. Pheromone updating includes pheromone volatilization and addition of new
pheromone. For the pheromone update on the path (i, ) the formula is as follows:

Ti(t+1) = (1 — p) - 1;i(t) + Aty (2)

where p is the pheromone volatilization coefficient (0 < p < 1), which indicates the decay
of pheromone over time. At;; is the amount of newly added pheromone, determined by the
sum of pheromone left by all ants on the path.

m
Aty = Z Arg. (3)
k=1
For the ant k, the amount of pheromone it leaves on the path (i, ) is as follows:

AT;_{S(, if k— (i,}) W
0, otherwise

where Q is a constant, and Ly is the total path length of the solution constructed by ant
kk — (i,j) represents that ant k has passed through point (i, j). Repeating the above
process of constructing the solution and updating the pheromone until a predetermined
maximum number of iterations T is reached or a satisfactory solution completes the
optimal path planning (Toaza ¢ Esztergdr-Kiss, 2023). Based on experience, we set the
maximum number of iterations for the ant colony to 100 and set the cut-oft condition for
model iteration as the difference between the two losses being less than 0.05.

Graph network path planning

GNN represents a class of neural network models adept at processing graph-structured
data. GNNs have found extensive applications in domains such as social network analysis,
chemical molecule modeling, and recommender systems by learning the representation of
graph data through the relationships between nodes and edges. These networks capture a
graph’s topology and node features by propagating and aggregating information among
the graph nodes, thereby enabling the deep learning of graph data (Shi ¢ Rajkumar, 2020).
A graph G = (V, E), consists of a set of nodes V and a set of edges E. Nodes are connected
by edges, and each node and edge can contain feature information. The main goal of a
graph network is to learn a representation (embedding) of each node in the graph that
reflects the node’s features and its position and relationship in the graph structure. For a
typical graph network, it is necessary to first initialize the nodes, the initial feature
representation of each node v € V' is 1", which can be the feature vector of the node. In
graph networks, each iteration consists of two main steps, message passing and
aggregation. Each node receives messages from its neighboring nodes. For node v the
received message in the first k iteration is denoted as
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m = 3 MR e, (5)

ueN(v)
where N(v) denotes the set of neighboring nodes of node v, M is the messaging function,
hg,kfl) and hi(,kfl) are the feature representations of node u and node v at round k — 1
respectively, and e,, is the feature of the edge between node u and node v. After the initial
message passing, further message aggregation is required, i.e., each node updates its own
representation based on the received messages. The representation of node v at round k
iteration is updated as

O = U (i, i) ©

v

where, U is the aggregation function which updates the representation of the node based
on the previous round of representation of the node and the received messages. After the
message delivery and aggregation, we can then perform the corresponding output. After K
rounds of iteration, the final representation of the node v is ). This representation
encompasses the node’s initial characteristics and the neighbor information aggregated
over multiple rounds of message passing, thereby reflecting the node’s comprehensive
information within the graph structure. Considering the subsequent path planning
problem involving multiple discrete points, this article employs the softmax activation

function to predict the discrete trajectories.
v, = softmax(W . hSK)> (7)

where W represents the corresponding weights. In this article we use the cross-entropy
function for the loss analysis of the model, and its specific calculation process is shown in

Eq. (8):

—o - logy/, =1
S B o ®
where y' is the output of the model, and y is the sample label. a, f§ are the weights of
positive and negative samples, respectively.

Before training the GNN, it is essential to create appropriate graph data. The process of
creating the graph data in this article is illustrated in Fig. 1:

By preprocessing the data from the distance network and the historical traffic
trajectories, the road network used for the path planning experiments in this article is
filtered from the global map data based on the coordinate range of the trajectory dataset.
This constitutes the initial step of subgraph screening. However, further screening of the
connectivity subgraphs from the road networks is necessary. Sub-figure screening helps to
mitigate the category imbalance problem and accelerates subsequent model training.
When handling large datasets, GNNs excel at feature extraction and modeling complex
relationships within graph structures; however, their computational complexity increases
significantly with larger data volumes, leading to higher processing costs. This study’s

Guo et al. (2025), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2611 719


http://dx.doi.org/10.7717/peerj-cs.2611
https://peerj.com/computer-science/

PeerJ Computer Science

- |
o fmm———————— 4
Road Network
. |
Data processing |
|

Feature selection —»

| [ ]
Sub-eraph selection | | Graph data generation
S |

Trajectory L

Figure 1 The process for the graph data generation.  Full-size Kal DOI: 10.7717/peerj-cs.2611/fig-1

dataset is relatively small, reducing computational demands and enabling GNNs to operate
efficiently for path-planning tasks. The smaller data scale decreases the time required for
model training and inference and enhances resource utilization, ensuring real-time
applicability and practicality in path optimization.

The establishment of the ACGNN

Based on “Meta-inspired Ant Colony Algorithm” and “Graph network path planning”, it is
evident that the essence of the path planning problem is to find the shortest or most
efficient path according to the users’ preferences. Using graph data is particularly effective
in accomplishing the corresponding route planning task. This article proposes a route
planning network, ACGNN, which leverages the generation of graph data and GNN. The
overall structure of this network is illustrated in Fig. 2:

Figure 2 illustrates the data processing process of the entire path optimization
framework. The network first uses the corresponding graph data from the road network
and historical trajectories. After selecting the required graph data based on subgraphs, this
article uses the generated graph data as input to the model. Following the generation of the
necessary graph data through subgraph filtering, this graph data is used as input for the
model. The GNN serves as the computational network for optimizing the nodes and edges,
and the optimization is carried out using the ant colony algorithm to obtain the final
optimized output.

Consequently, the recommended nodes and edges are computed to generate the
optimized paths. The combination of the ant colony algorithm and GNN is mainly
reflected in the feature extraction of graph structure and the optimization of the path
search strategy. Firstly, the node and edge features of the path graph are extracted using
GNN to construct a spatial representation and generate preliminary path planning. Then,
based on the graph structure information output by GNN, the ant colony algorithm
utilizes a pheromone update mechanism and heuristic strategy to optimize path selection
in the graph gradually. Ant colony algorithm utilizes global search capability to adjust
paths, strengthen the selection of high-quality paths, and continuously optimize the
distribution of pheromones, making the GNN model more accurate and efficient in the
path planning process, thereby achieving global optimization of paths.
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EXPERIMENT RESULT AND ANALYSIS

Experiment setup and dataset description

In this article, the input trajectory data is compared with the final formation of the actual
optimal trajectory to complete the corresponding binary classification task for analysis
(https://zenodo.org/records/3243562, doi: 10.5281/zenodo.3243562). If the prediction of
the nodes and the edited nodes are consistent, the prediction is considered accurate;
otherwise, it is deemed inaccurate. Node and edge prediction results are utilized to evaluate
the model’s effectiveness. Given that the GNN classification model addresses the
trajectory-based path planning problem and encounters significant category imbalance,
this article employs extended recall, extended precision, and extended F1-score metrics for
evaluation (Battaglia et al., 2018).

I TPN + TPE ©
_precision —
P (TPN + FPN) + (TPE + FPE)
TPN + TPE
EX recall = + (10)

(TPN + FNN) + (TPE + FNE)

2 - EX recall - EX precision
EX_recall + EX _precision

EX_F1-score = (11)

TPN (true positive on nodes) denotes actual examples in node results, FNN (false
negative on nodes) denotes false negative examples in node results, and FPN (false positive
on nodes) denotes false positive examples in node results. TPE (true positive on edges)
denotes actual cases on edge results, FNE (false negative on edges) denotes false negative
cases on edge results, and FPE (false positive on edges) denotes false positive cases on edge
results. Extended recall and extended precision essentially compute the overlap between
the actual trajectory path and the predicted path. Under the problem of class imbalance,
traditional precision and recall tend to lean towards the majority class, resulting in
insufficient performance evaluation of the minority class. The use of extended recall rate,
extended precision rate, and extended F1 value can more effectively measure the prediction
quality of minority classes, making the evaluation indicators fairer in the case of class
imbalance, ensuring that the model can focus on the performance of minority classes when

Guo et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2611 9/19


https://zenodo.org/records/3243562
http://dx.doi.org/10.5281/zenodo.3243562
http://dx.doi.org/10.7717/peerj-cs.2611/fig-2
http://dx.doi.org/10.7717/peerj-cs.2611
https://peerj.com/computer-science/

PeerJ Computer Science

Table 1 The experiment environment information.

Environment Information
CPU 17-14700F
GPUs RTX 3060Ti
Language Python 3.5
Framework TensorFlow

dealing with trajectory-based path planning problems. These extended indicators enhance
the model’s reliability in real-world applications, providing a more accurate and balanced
evaluation method for path planning. Additionally, given the involvement of a deep
learning model, we constructed the experimental environment with specific parameters
detailed in Table 1.

For the selection of public datasets, this article utilizes the publicly available vehicle
trajectories from DiDi (Wang et al., 2020) for model testing under public datasets.
Additionally, we selected route shortest optimization and deep learning algorithms
commonly used in the field for the comparison model. The main comparison methods
include Dijkstra’s shortest path algorithm (Chen, 2022), random graph network (RGN)
(Yu, Guo & Chen, 2020), and the GNN algorithm without ant colony optimization for data
analysis. Dijkstra’s shortest path algorithm serves as the traditional graph theory algorithm
baseline.

Method comparison and result analysis

After constructing the model and confirming the dataset, we proceeded with the training
and analysis of the model using the public dataset. The training activity and the
corresponding changes in the indicators under the public dataset are illustrated in Fig. 3:

In Fig. 3, we observe that due to the model optimization performed via the ant colony
algorithm for the GNN parameters after each iteration, the proposed ACGNN method
exhibits superior and faster convergence performance. Compared to traditional shortest-
path planning, better results are achieved through the graph network. The main
computational indexes are presented in Fig. 4.

Figure 4 shows that under metrics such as Ex_precision, the ACGNN method proposed
in this article performs significantly better than methods like RGCN and GNN. While it
shows only a 15% improvement over the traditional shortest path method under the three
metrics, the results are still noteworthy. Besides these quantitative indicators, we also
analyzed and calculated the training time of the model. The time distribution table in Fig. 4
reveals that although ACGNN is not optimal under the public dataset, its overall time
consumption remains acceptable for path planning research requiring high accuracy and
stringent standards. In addition to analyzing the public dataset, we also conducted further
study using a self-built dataset, which will be discussed in detail in the following
subsection.
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Figure 3 The training process on the public datasets.

Full-size K&l DOT: 10.7717/peerj-cs.2611/fig-3

Model deployment and test
After completing the data collection under the public dataset, we further analyzed the data
from this region, which still originates from the public database of DiDi. We selected path
information from different periods within five days in this region as the test data, collecting
over 5,000 valid data points. This data was used to complete the model training and the
corresponding analysis. The results of our tests under this dataset are shown in Fig. 5.
In Fig. 5, the results are presented based on the training dataset. We opted not to use the
usual 7:3 or 8:2 ratio for the training process but instead divided the data by a 5:5 ratio to
address the imbalance in the overall sample data. The 5:5 split was chosen to ensure that
training and validation sets had a representative distribution of different sample types. By
doing so, we aimed to create a more balanced evaluation framework that would more
accurately reflect the model’s performance, preventing any one class from
disproportionately influencing the results during training and helping to mitigate
overfitting. The results indicate that the ACGNN method employed exhibits
superior and faster path planning performance. The overall edge and node fitting
performance better aligns with the optimal path repeatability, achieving an
Ex-precision of over 0.85. Furthermore, the ACGNN method outperforms traditional
methods in the other two indicators. Regarding running time comparison, the
ACGNN method operates within seconds, suggesting that smaller data samples can
achieve excellent path-planning capabilities with lower computational resource
consumption. To further test the optimization capability of ACO algorithms for
models in path planning studies, we conducted a comparative analysis of several
standard meta-heuristic optimization algorithms. The results of this analysis are shown
in Fig. 6.
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In comparing meta-inspired algorithms, we selected two widely used and classical
algorithms, simulated annealing and PSO, for comparison. As shown in Fig. 6, compared
to a single GNN method, the overall path planning performance is enhanced by optimizing
meta-heuristic algorithms. Among these, the ACO algorithm demonstrates superior
optimization performance over the other two algorithms. While the PSO method performs
better under the precision index, the ACO algorithm achieves the best overall optimization
results.
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We examined the computation time of different meta-inspired optimization algorithms
and various optimization steps to analyze the optimization performance further. The
comprehensive results of this analysis are displayed in Fig. 7.

Regarding overall model running time, models optimized through meta-heuristic
algorithms achieve faster convergence speeds and a significant performance improvement.
The ant colony algorithm exhibits the best optimization effect and the quickest speed.
Additionally, we varied the number of optimizations during the training process, setting it
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to 5, 10, 15, up to 30 times, and updated every five times to observe the final results. The
results, illustrated in the boxplot, show that the ant colony algorithm demonstrates
superior performance in updating, consistently outperforming other methods at different
time steps. The ACGNN model has broad potential value in practical application
scenarios, especially in intelligent transportation systems. By combining path optimization
and real-time decision-making, ACGNN can analyze dynamic data in transportation
networks, provide optimal route planning, help alleviate congestion, improve road traffic

Guo et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2611 14/19


http://dx.doi.org/10.7717/peerj-cs.2611/fig-6
http://dx.doi.org/10.7717/peerj-cs.2611/fig-7
http://dx.doi.org/10.7717/peerj-cs.2611
https://peerj.com/computer-science/

PeerJ Computer Science

efficiency, and achieve efficient vehicle scheduling and management. In intelligent
transportation applications, deploying ACGNN models can significantly improve fuel
efficiency and reduce idle time for vehicles on congested roads, thereby reducing carbon
emissions and achieving energy-saving and emission-reduction goals. In addition, through
precise control of path planning, this model can optimize the scheduling of emergency
vehicles, improve accident response speed, and ensure the safety and smoothness of urban
traffic. Overall, the application of ACGNN in intelligent transportation improves travel
efficiency and has high environmental and social benefits, which profoundly impact the
future construction of smart cities.

DISCUSSION

This article analyzes the optimal route planning problem in unmanned and autonomous
driving and related navigation path planning research, proposing a particle swarm
optimization-based ACGNN framework. This framework ensures the diversity and
accuracy of the input data by utilizing graph data generated from road networks and
historical trajectories as model inputs, along with generative graph data and subgraph
filtering techniques. Compared to traditional path planning methods, ACGNN optimizes
the computation of nodes and edges through GNN, allowing the model to capture complex
road network structures and dynamically changing traffic information. Furthermore,
introducing the ACO algorithm provides a robust optimization mechanism for GNN.
With its excellent global search ability and adaptability, ACO efficiently explores and
reinforces the optimal path, avoiding local optima by simulating the ants’ foraging
behavior and leveraging the positive feedback mechanism of pheromones. This results in
superior performance and stability compared to SA and PSO in complex path planning
problems, significantly enhancing the GNN’s node and edge computation optimization
performance. Experimental comparisons on public and self-constructed datasets
demonstrate that ACGNN outperforms Dijkstra’s shortest path algorithm, RGN, and
traditional GNN methods in path planning, highlighting its superiority in path
optimization.

Path planning is a crucial technical tool for achieving efficient logistics and traffic
management in modern transportation systems. The ACGNN method introduces a more
intelligent and precise computational model for path planning by integrating generative
graph data and GNN. While effective in specific environments, traditional path planning
methods, such as Dijkstra’s shortest path algorithm, RGN, and traditional GNN
approaches, often fall short when confronted with complex and dynamic road networks
and traffic conditions. Conversely, ACGNN significantly enhances the accuracy and
efficiency of path planning by using graph data generated from road networks and
historical trajectories as inputs, creating high-quality graph data through subgraph filtering
techniques, and then optimizing the computation of nodes and edges with GNN.
Compared to SA and PSO algorithms, the ACO algorithm performs better in avoiding
local optima, making it particularly suitable for complex and variable path optimization
problems. With increasingly stringent global requirements for carbon emission control
and environmental protection, the transportation industry is under significant pressure to
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reduce emissions. ACGNN can effectively minimize vehicle mileage and time through
intelligent path optimization, thus lowering fuel consumption and carbon emissions.
Additionally, optimized path planning can alleviate traffic congestion, improve
transportation efficiency, and reduce emissions caused by vehicle idling and frequent
stops. Therefore, beyond providing crucial decisions for optimizing traffic flow allocation
and efficient urban traffic management, ACGNN holds substantial significance for the
low-carbon and green development of entire cities.

CONCLUSION

The vehicle path low-carbon planning model ACGNN based on an adaptive multi-strategy
ant colony optimization algorithm proposed in this study offers an effective solution to the
path planning problem in complex traffic environments. By integrating GNN and the ant
colony optimization algorithm and incorporating a strategy for generating graph data, an
optimization system capable of processing and analyzing the characteristics of complex
road networks is constructed. This system successfully realizes efficient low-carbon path
planning. The experimental results confirm the superior performance of the model in
practical applications, with its path optimization effect and other evaluation metrics
significantly surpassing those of traditional methods such as Dijkstra’s shortest path
algorithm, RGN, and conventional GNN methods. In tests on public and self-built
datasets, ACGNN achieves notable improvements in path planning accuracy,
demonstrating clear advantages over traditional methods in various optimization
scenarios. The model’s accuracy improves by 15% compared to the basic shortest path
algorithm, showcasing its potential application in intelligent transportation systems. This
research advances the development of intelligent transportation technology and provides
new technical means and strategic support for the design and low-carbon optimization of
transportation systems.

In our future research, we aim to broaden the application of our model by integrating a
more decadent array of traffic scenario data, including high-density urban areas, varying
traffic flow conditions, and unique road types such as mountainous and rural routes. This
will allow the model to account for a broader range of real-world situations, thus
enhancing its robustness and utility across diverse environments. Additionally, we plan to
incorporate advanced Al methodologies, such as deep reinforcement learning for real-time
decision-making in unpredictable traffic, and evolutionary algorithms to optimize model
parameters dynamically in response to changing road conditions.

To improve adaptability, we will focus on developing a hybrid approach that combines
our current framework with CNNs to capture spatial patterns in traffic flow and integrate
GANS to simulate potential traffic scenarios for enhanced model training. Refining the
model’s architecture and introducing self-learning mechanisms, we aim to support more
complex and scalable path-planning solutions prioritizing low-carbon objectives.
Ultimately, these advancements will provide sustainable, efficient, and adaptive technical
support for intelligent transportation systems, advancing environmental and operational
goals.
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