Submitted 3 May 2024
Accepted 22 November 2024
Published 20 December 2024

Corresponding author
Ana Guasque, anguaor@ai2.upv.es

Academic editor
Chan Hwang See

Additional Information and
Declarations can be found on
page 19

DOI 10.7717/peerj-cs.2609

() Copyright
2024 Ortiz et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Allocation algorithms for multicore
partitioned mixed-criticality real-time
systems

Luis Ortiz, Ana Guasque, Patricia Balbastre and José Sim6

Instituto de Automatica e Informadtica Industrial (ai2), Universitat Politécnica de Valéncia,
Valencia, Spain

ABSTRACT

Multicore systems introduced a performance increase over previous monocore
systems. As these systems are increasingly finding application in critical domains, it
arises a necessity to develop novel methodologies for their efficient resource
allocation. In addition, it is particularly important to consider the criticality of
applications when scheduling such systems. In multicore systems, scheduling also
includes the allocation of tasks to cores. In architectures based on spatial and
temporal partitioning, it is also necessary to allocate partitions. Consideration of all
these variables when scheduling a critical multicore partitioned system is a major
challenge. In this article, a hypervisor partitioned framework for mixed-criticality
systems is proposed. In this sense, the allocation process has been split in two
different parts. The initial phase will allocate tasks to partitions according to the
criticality of the system. This is achieved through the implementation of a Mixed-
Integer Linear Programming (MILP) algorithm. The second phase involves the
allocation of tasks to cores, employing both, an additional MILP algorithm and a
modified worst fit decrease utilisation approach. Experimental results show that the
combination of both strategies leads to feasible scheduling and, in addition, to a
reduction of the overhead introduced by the hypervisor.

Subjects Computer Architecture, Real-Time and Embedded Systems
Keywords Mixed criticality, Partitioned systems, Allocation, Milp, Scheduling, Real-time

INTRODUCTION

The use of multicore processors has been widely spreading across embedded systems,
leveraging their processing capabilities to run applications on a single platform. The main
weakness of these systems lays on the possible contention of resources, that are not found
on monocore systems. This contention leads to alterations in the temporal behaviour of
the task (Dasari et al., 2013).

In hard real-time systems these new processors are also getting introduced, but are
impaired by these nondeterminisms. Specially since if a hard real-time task misses any
temporal constraint in high criticality applications, may be disastrous. Burns ¢ Davis
(2017) defines criticality as the degree of assurance required to safeguard a system
component against failure.

Partitioned systems in multicore processors, permit the division of the available cores
and resources into separate partitions. Partitioned systems serve as a safeguard mechanism
for temporal and spatial partitioning (TSP), wherein applications of different criticality can

How to cite this article Ortiz L, Guasque A, Balbastre P, Sim¢ J. 2024. Allocation algorithms for multicore partitioned mixed-criticality
real-time systems. Peer] Comput. Sci. 10:e2609 DOI 10.7717/peerj-cs.2609

http://dx.doi.org/10.7717/peerj-cs.2609
mailto:anguaor@�ai2.�upv.�es
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2609
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

PeerJ Computer Science

run isolated from each other within the same system. This isolation serves as a measure to
avert the propagation of errors within the system.

In some cases, these systems might need to get certified by an external organisation, to
prove that it behaves as expected. Commercial-off-the-shelf (COTS) components such as
this new multicore processors offer advantages such as cost-effectiveness and faster time-
to-market, their use in safety-critical applications raises concerns about reliability and
compliance with safety standards, Ye ¢ Kelly (2004) proposes a method for evaluating the
feasibility of the use of COTS in the development of safety-critical systems. Conformance
to a safety standard might be a requirement to get this certification, such as IEC 61508 for
electronic systems, IEC 880 for nuclear power plants, DO-178B for airborne civil avionics,
EN 50128 in European railways, ECSS for European space, efc. To mitigate the risk of
cascading faults and to avoid the need of a system re-certification if it has been slightly
modified, the employment of TSP is mandatory. TSP allows modification of systems
already certified, where a change in a partition results in the re-certification of just this
partition instead of the whole system.

Virtual machine technology can be considered the most secure and efficient way to
achieve TSP. A hypervisor or virtual machine monitor (VMM) is a layer of software (or a
mixture of hardware and software layer) that runs several partitions in a single computer.
A great disadvantage of hypervisors is that they introduce an overhead (Masmano et al,
2009). In general, the overhead can be modelled with two components: the effect of the
clock interrupt and the partition context switch (PCS). PCSs are defined as instances where
a currently executing task is interrupted to allow a higher-priority task to run. This
phenomenon occurs when a partition executing a lower-priority task is preempted by the
activation of a task with greater priority, thereby ensuring that more critical processes are
given immediate access to CPU resources.

The aim of this research is to optimize scheduling outcomes in the context of partition
context switching, with particular emphasis on the criticality of tasks. The work is focus on
critical systems, therefore scheduling will be static and migration between cores it is not
allowed. This is due to the fact that it is a requirement to acquire certification. The
scheduling on multicore partitioned platforms, is divided in two steps. Firstly, the tasks will
be allocated into partitions and into cores, this will be the core of the article. Secondly the
proper scheduling will be performed taking into account the data from the previous step,
the scheduler, Earliest Deadline First (EDF) (Liu ¢» Layland, 1973) slightly modified is
going to be used. EDF will generate the static plan (Hanen & Munier, 1993) indicating
where and when each task should be executed. One of the main advantages of the offline
scheduling is the low execution cost at run time.

Contribution

The main contributions presented in this article, are: a new method for allocating tasks to
partitions, considering the criticality of these. This allocator is based on the MILP
optimisation technique as well as one of the partitions to cores allocators explained in this
article. Also, another allocator of partitions to cores is presented, this one is based on
traditional bin packing techniques. Proposing both allocators allowed us to acquire

Ortiz et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2609 2/22

http://dx.doi.org/10.7717/peerj-cs.2609
https://peerj.com/computer-science/

PeerJ Computer Science

comparable data, since commonly used allocators does not take into account partitions.
Therefore, those allocators would provide completely different results. Our goal is to
generate allocations of tasks into cores in accordance with the systems safety requirements,
that are schedulable and that provide a reduction in the partition context switches.

The rest of the article is organised as follows: The following section presents the related
works found in literature. In the “Related works” the task model to be used and the
problem are defined; the new methods proposed are presented in “Task Model and
Problem Definition”; in the “Methods” an example is studied; the “Example” discusses the
results; and finally the conclusions are provided in the “Conclusions”.

RELATED WORKS

Considerable research has been devoted to scheduling in real-time multicore systems, with
one of the pivotal surveys in this domain being referenced as Davis ¢ Burns (2011). Within
multicore scheduling, there are primarily two branches distinguished by the level of
criticality demanded: partitioned and global scheduling. Given our focus on hard real-time
applications, we will henceforth adopt partitioned scheduling. Partitioned systems (e.g.,
those based on ARINC-653) are those in which migration of tasks between cores is not
allowed. In these systems, once an allocation of tasks to cores has been achieved, is possible
to use uniprocessor scheduling algorithms in most of the multiprocessor systems. This
approach to multicore scheduling entails two key phases: task-to-core allocation and task
scheduling for each core.

Bin packing algorithms are designed to address the NP-hard problem (Johnson, 1973;
Garey ¢ Johnson, 1979) associated with the allocation of tasks to distinct cores based on
their utilisation, with the goal of optimising computational efficiency. Two of the most
commonly used algorithms for solving this problem are First Fit (FF) and Worst Fit (WF)
(Coffman, Garey & Johnson, 1996).

o The First Fit (FF) algorithm is a task allocation approach in which each task is allocated
to the first core where it fits, without surpassing the utilisation threshold. In instances
where allocation is not feasible on the current core, a new core may be utilised. This
approach leads to an uneven distribution of the workload across the cores.

e The Worst Fit (WF) algorithm. Takes each task and allocates it into the core that leaves
more remaining utilisation, opening more cores than FF. This approach leads to an even
distribution of the workload.

The primary benefit of using a partitioning strategy in multicore scheduling is that once
tasks are allocated to processors, numerous real-time scheduling techniques and analyses
developed for monocore systems can be readily applied.

In a real-time and embedded system, the concurrent execution of processes with varying
levels of criticality within the same platform is termed as a mixed criticality system (MCS)
(Burns & Davis, 2017). This represents a significant and current trend, particularly evident
in domains such as avionics and space exploration. Within these systems, applications with
higher criticality incur greater costs for design and verification. However, mixed criticality
systems offer several advantages, such cost-effectiveness, reduced space requirements,

Ortiz et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2609 3/22

http://dx.doi.org/10.7717/peerj-cs.2609
https://peerj.com/computer-science/

PeerJ Computer Science

lower weight, reduced power consumption and thus minimised heat generation. For
instance, consider an aircraft where the in-flight information system holds lower criticality
compared to the flight control systems, yet both operate within the same “mixed criticality”
framework.

Regarding to the task scheduling of each core in MCS, the model typically used is the
Vestal model. Vestal (2008) defined a task 7; as an implementation of different functions
and was defined, among others, by its criticality level and its worst case execution time
(WCET). The WCET is denoted as a vector of values of WCET, in which each value
corresponds to a criticality level. Typically, two levels of criticality are taken into account,
namely high (HI) and low (LO), denoted as C; = (C-°, CHl), with C!"! being more
conservative than C'°. During runtime, the system initiates execution in the LO operation
mode and must meet deadlines for both HI and LO tasks. If any HI task exceeds its CL©
allocation, the system will transition to the HI operation mode, and LO tasks will be
forfeited to ensure the deadlines of HI tasks are met.

This model relies on multiple execution times, and the underlying assumption is a topic
of debate due to its impact on the practical applicability of research findings (Ernst ¢
Natale, 2016). The measurement of two values of C; necessitates two distinct processes: a
simpler estimation process for C'° and a more rigorous one for C*/, incorporating more
pessimistic assumptions. The certification process, being a critical aspect, poses challenges
when dealing with the acceptance of two different C; values through separate processes.
For instance, if certification authorities (CAs) approve CiLO for a high-critical task, there
may be no need to introduce additional pessimism, and vice versa. However, if CAs
endorse CH! for a high-critical task, they are unlikely to accept a lower value like CF© that
could compromise the overall process.

The following works are based on Vestal model and apply bin packing techniques to
solve the allocation problem: Baruah et al. (2014) solves the partition-to-cores allocation
following the next criteria: first, the algorithm allocates HI tasks in cores using First-Fit
(FF) algorithm. Then, it repeats the operation with LO tasks. It has to be checked that
system utilisation per mode do not exceed 3/4. After mapping, Earliest Deadline First with
Virtual Deadlines (EDF-VD) (Baruah et al., 2012) scheduling is applied to each core.

Gu et al. (2014) first uses Worst-Fit (WF) packing strategy to allocate HI tasks and tune
the virtual deadlines to HI tasks in each processor. Then it uses FF to allocate LO tasks.

The main difference between these works and our work is that this work does not follow
Vestal model due to it is “hardly acceptable in practice” (Ernst ¢» Natale, 2016) and the
difficulty in the certification process. In this sense, our model considers different criticality
levels following safety standards such as DO-178B (Rierson, 2017) and considers a single
WCET for each task. Moreover, they use bin-packing algorithms to allocate tasks to cores,
in which tasks criticalities are not considered. Peng, Shin e Abdelzaher (1997) solves the
problem of allocating communicating periodic tasks to heterogeneous processing nodes in
a distributed real-time system. In this work, tasks are modeled with task graphs to cope
with precedence constraints, they work with heterogeneous distributed systems and
propose an optimal branch and bound approach for scheduling periodic task graphs,
which is out of the scope of this article and does not fit exactly to the characteristics of our

Ortiz et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2609 4/22

http://dx.doi.org/10.7717/peerj-cs.2609
https://peerj.com/computer-science/

PeerJ Computer Science

partitioned system with different criticalities. In this same line, Senoussaoui et al. (2020)
considers multiprocessor systems with identical cores, where each core has its own
scheduler and queue. So they work as if it were a single processor, that is, without
interference. We consider the problem of interference due to hardware shared resources,
which is one of the main challenges of multicore systems, and also consider tasks with
different criticalities.

In addition to bin-packing allocation algorithms, there are non-conventional techniques
to solve the multicore scheduling problem. For example, techniques such as Mixed Integer
Linear Programming (MILP), which is an optimisation technique that defines constraints
and an objective function and minimises/maximises different variables. Some works use
MILP to customise the allocation and scheduling problem to applications. In most cases,
task priority assignment will be defined as variables (Zhu et al., 2013; Rivas et al., 2024),
with the worst-case response time (WCRT) considered either as constraints or an objective
function. This setup aims to determine the optimal priority assignment to minimise
response time. Guasque et al. (2020) proposes an ILP method that obtains a static schedule
for periodic tasks and partitioned systems where temporal and spatial isolation is crucial.
However, they are focused on monocore systems and the reduction of task context
switches and not partitioning, as this article does. Other articles of the same authors
(Aceituno et al., 2021, 2022) extend the model to multicore systems, but they do not
consider partitioning models.

Despite the integration of advanced techniques into MILP solvers like CPLEX (Cplex ¢
IBM ILOG, 2009) or Gurobi (Gurobi Optimization, LLC, 2023), these solvers still struggle
to handle large-scale cases (Baruah, 2020). Zhao ¢ Zeng (2017) introduced several
problem-specific insights that serve as the basis for a more efficient framework. For
instance, while the calculation of WCRT is known to be NP-hard, it often proves to be
reasonably efficient in practice (Davis, Zabos ¢» Burns, 2008). However, conventional ILP
solvers fail to exploit this observation. The article also presents an efficient algorithm for
determining the maximum virtual deadline that renders the task system unschedulable. By
integrating these insights with a classic ILP solver, the framework achieves significant
efficiency gains.

Davare et al. (2006) considers a number of MILP approaches for solving the task
allocation and scheduling problem for a Xilinx FPGA platform. In this work, the MILP
formulation is customised for a multimedia case study which is out of the scope of this
article as we consider critical systems and moreover is applied to a specific platform, and
we consider a general model.

In Mangeruca et al. (2007), task precedence relations are taken into account. This study
utilises relaxed ILP techniques to derive an optimal assignment of priority/deadline for
preemptive dynamic priority scheduling while accommodating precedence constraints.
Additionally, Lisper ¢» Mellgren (2001) addresses the problem of response time calculation
and priority assignment using ILP, where the ceiling of the response time equation is
redefined as an ILP problem. Furthermore, an enhanced real-time schedulability test is
proposed in Zeng & Di Natale (2013), allowing for a more precise and efficient delineation
of the feasible region with fewer binary variables. These works consider monocore systems

Ortiz et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2609 5/22

http://dx.doi.org/10.7717/peerj-cs.2609
https://peerj.com/computer-science/

PeerJ Computer Science

and our work is extended to multicore systems. Furthermore, our objective extends beyond
merely identifying a feasible schedule; we aim to discover the improved schedule
considering various objectives.

TASK MODEL AND PROBLEM DEFINITION

A multicore system is supposed with m cores (Mo, My, Ms, ..., M,,—1), where a task set 7 of
n periodic and independent tasks should be allocated. Each task t; is represented by the
tuple:

T = (CiaDivTiaIiacri) (1)

where C; is the WCET, D; is the relative deadline, T; is the period, I; is the interference and
Cr; is the level of criticality of the task.

The term I; is the interference, defined as in Aceituno et al. (2021). It is the time the task
takes to access shared hardware resources. A typical case is the operation of reading and
writing in memory.

The term Cr; is meant to be the level of criticality according to a safety standard as
mentioned in the introduction section, in our case we will use three levels based on
DO-178B, that are A, B and C, being A top catastrophic, B mayor impact and C
non-critical. Note that although DO-178B has five criticality levels, we use only three for
the sake of simplicity.

The utilisation of a task 7;, is expressed as the quotient of the computation time divided
by the period, U; = % Since the I; is modelled, the real utilisation would be:

U/ =U,; + Uiim, that includes the utilisation due to the interference. The utilisation of a
core M will be the sum of the utilisation of all the tasks assigned to this core,

Uer
all the tasks assigned to this core, U/er = > .em, U/ Therefore the total utilisation of the
system is the addition of all the utilisation of all the cores, U, =), U,

!
™y ‘

= > _..em, Ui- The real utilisation of a core My will be the sum of the real utilisation of

1, and the real
utilisation of the system is U, =), U

Since we are working with partitioned systems, prior to the allocation of tasks to cores,
tasks are allocated to partitions. Partitions are defined as P;. A partition aims to provide
spatial and temporal isolation from the rest of the system increasing therefore the security of
it. Spatial isolation refers to the allocation of dedicated memory to each partition, ensuring
that no other partition or subsystem can access it. On the other hand, temporal isolation
involves assigning a specific time window for the execution of each partition, preventing it
from exceeding its allocated time frame. A system may consist of as many partitions as
needed, denoted as Py, Py, P, ..., P;. Hypervisors are software layers capable of virtualising
the hardware in order to be able to create different virtual machines. They are in charge of
the partition management, ensuring the temporal and spatial partitioning (TSP).

As a consequence of the TSP, the phenomenon of partition context switches (PCS)
appear. PCS are characterised by the alternation of the execution of partitions, driven by
system requirements.

Therefore the primary objective of this study is to introduce an innovative methodology
for the allocation of tasks to partitions and subsequently to cores, focusing on minimising

Ortiz et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2609 6/22

http://dx.doi.org/10.7717/peerj-cs.2609
https://peerj.com/computer-science/

PeerJ Computer Science

the frequency of partition context switches. This wayj, it is intended to allocate tasks of the
same partition in the same core.

METHODS

This section presents the methodology to solve the allocation of tasks to cores problem,
considering the level of criticality of the tasks in order to form the appropriate partitions.
The first step consists of allocating the tasks to partitions. The second step consists of
applying any task allocation to cores algorithm for multicore systems. Different allocation
algorithms are proposed and compared in this step.

Tasks to partitions allocation
In this allocation problem, first, tasks are grouped into partitions, taking into account that
tasks of different criticality may not belong to the same partition. In this section, we will
first present a MILP model that provides the optimal allocation of tasks to partitions,
considering the criticality of the tasks. Table 1 introduces the different indices, parameters,
and variables used in the model.

According to the problem statement, the objective function is defined in Eq. (2), which
is maximising the number of tasks per partition maintaining the criticality condition.

max Obj = Z ajj - p; (2)
Vij

s.t:

Z a,~Ui =U; V]

; y] ' (3)
U <1, vj

vj

aj+ayi < 1 Viii € 1,Vjif Cry, # Cryandi> ii (5)
Z a; = Pj V] (6)
Vi
aij (S {0, 1} (7)
Uj, pj 2 0. ®

Equation (3) calculates the partition utilisation, which is the sum of the utilisations of
the tasks that belong to that partition. This utilisation must be less than or equal to 1. Each
task must belong to a single partition (Eq. (4)). Equation (5) ensures that two tasks with
different criticality are not grouped in the same partition. Equation (6) counts the number
of tasks in each partition. Equations (7) and (8) represent the decision variable domains.

Tasks to cores allocation

Once the tasks are grouped into partitions, the next step consists of allocating tasks to
cores. First, let us present some considerations about allocation algorithms and then, we
introduce our proposals.

Ortiz et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2609 7/22

http://dx.doi.org/10.7717/peerj-cs.2609
https://peerj.com/computer-science/

PeerJ Computer Science

Table 1 Model notation of the MILP task-to-partition allocation problem.

Sets and indices
i Tasks 7; € {0,1,2,...,n — 1}

j Partitions P; € {0,1,2,...,n — 1}
Parameters

U Utilisation of t;

Cr; Criticality of 7;

Decision variables

ai 1 if 7; is allocated to partition P; and 0 otherwise.
Ui Utilisation of t;.
p; Number of tasks allocated to partition P;.

Bin-packing algorithms

As mentioned in the related works section, bin packing algorithms only consider the
utilisation of the tasks, what makes them sensitive to the order in which tasks are sorted.
Therefore, new variants of these algorithms can be produced based on that, i.e., decreasing
or increasing utilisation. The allocating heuristics known as First Fit Decreasing Utilisation
(FFDU) and Worst Fit Decreasing Utilisation (WFDU) (Oh ¢ Son, 1995; Coffman, Garey
& Johnson, 1996) arrange tasks, 7;, in a descending order based on their utilisation U;.
Therefore, these heuristics prioritise tasks with higher utilisation values.

Algorithm based on WFDU, WFDU’

As stated before Worst Fit Decreasing Ultilisation, arrange tasks according to their
utilisation on the system. In the course of our investigations, we opted to implement a
slightly adapted variant called WFDU’. In this modified version, the task utilisation’s are
aggregated within each partition, based on the partition assignation from the first MILP
algorithm, and subsequently, the partitions are allocated to the cores based on their total
utilisation. Such implementation provides us with another allocation method comparable
to the MILP presented below.

Integer Linear Programming based algorithm

Once the tasks are grouped into partitions, the next step consists of allocating tasks to
cores, considering the partition to which the task belongs. Table 2 introduces the different
indices, parameters, and variables used in the model. According to the problem statement,
the objective function is defined in Eq. (9), which is minimising the number of partitions
per core.

min Obj = quk 9)
ik

S.t

ZO,’kUi = UerVk
Vi (10)

U, < 1Vk

Ortiz et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2609 8/22

http://dx.doi.org/10.7717/peerj-cs.2609
https://peerj.com/computer-science/

PeerJ Computer Science

Table 2 Model notation of the MILP task-to-core allocation problem.

Sets and indices
i Tasks 7; € {0,1,2,...,n — 1}

k Cores My € {0,1,2,...,m — 1}

j Partitions P; € {P;,,...,P; _}
Parameters

U; Utilisation of t;

P, Partition to which the task 7; belongs

Decision variables

Ok 1 if 7; is allocated to core My and 0 otherwise.
U, Utilisation of core M.
My
. 1 if tasks that belong to partition P; are allocated to core My and 0 otherwise.

qjk j
D ox=1 Vi (11)
Yk
gk =1 Vi, j, kif oge =1andj = Py (12)
Oik, q]k S {07 1} (13)
Uer > 0. (14)

Equation (10) calculates the core utilisation, which is the sum of the utilisations of the
tasks that are allocated to that core. This utilisation must be less than or equal to 1. Each
task must belong to a single core (Eq. (11)). Equation (12) builds an array that relates cores
and partitions. If a task i is allocated to a core k, i.e., 0jx = 1, then the partition to which
that task i belongs will belong to that core. Equations (13) and (14) represent the decision
variable domains.

EXAMPLE

This section aims to provide with an example a simple comparison between both
allocators. This example consist of a system with eight tasks that must be grouped in
partitions and allocated to two cores, as the one defined in Table 3.

Due to their level of criticality and utilisations, tasks are grouped in three partitions as
described in Fig. 1.

Once tasks are grouped into partitions considering the criticality, tasks must be
allocated to cores.

Tasks allocation with WFDU’
As explained before, the first step is to rearrange the table according to the utilisation of the
tasks, as seen in Table 4.

Hence, the first task to be assigned would be T2, and it will be assigned to Core 1,
followed by the rest of the tasks from the same partition. Subsequently, the ensuing task in
the allocation sequence is T0, which is allocated to Core 0, along with the allocation of all

Ortiz et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2609 9/22

http://dx.doi.org/10.7717/peerj-cs.2609
https://peerj.com/computer-science/

PeerJ Computer Science

Table 3 Example of a set of tasks to group in partitions and allocate to cores.

Criticality Utilisation

TO A 0.45

T1 B 0.08

T2 C 0.467

T3 A 0.15

T4 C 0.032

T5 C 0.05

T6 C 0.0575

T7 C 0.035
Partmon 0 Partition 1 Partition 2

) @ G

(a) Representation of the partitions

Tasks L.eyel (.)f Total utilisation
criticality
Partition 0 Tl B 0.08
Partition 1 TO, T3 A 0.6
Partition 2 | T2, T4, TS, T6, T7 C 0.6412

(b) Definition of partitions and utilisations.

Figure 1 Partitions for the task set defined in Table 3. Full-size K] DOI: 10.7717/peerj-cs.2609/fig-1

Table 4 Table ordered by decreasing utilisation.

Criticality Utilisation

T2 C 0.467

TO A 0.45

T3 A 0.15

T1 B 0.08

T6 C 0.0575

T5 C 0.05

T7 C 0.035

T4 C 0.032

tasks originating from the same partition. Finally, following the principles of Worst-Fit
(WF), given the utilisation metrics of the cores, U, = 0.6415 and U, = 0.6, task T1 is
directed to Core 0. Leading to the allocation presented in Fig. 2.

Ortiz et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2609 10/22

http://dx.doi.org/10.7717/peerj-cs.2609/fig-1
http://dx.doi.org/10.7717/peerj-cs.2609
https://peerj.com/computer-science/

PeerJ Computer Science

Figure 2 Solution of core allocation. Full-size K] DOT: 10.7717/peerj-cs.2609/fig-2

Core 0 Core 1
T1, T2, T4,
Tasks TO, T3 T5. T6, T7

Core 0 o
Partitions P1 PO, P2
Total partitions
in core ! 2
Summatory 3
partitions assigned
(a) Solution 1
(b) Solution 1
Core 0 Core 1
T2, T4, T5,
Core 0 Core 1 Tasks TO, T1, T3 T6. T7
= Partitions PO, P1 P2
.T ..T T, Total partitions
T incore ? :
Summatory 3
(c) Solution 2 partitions assigned
(d) Solution 2

Figure 3 Two solutions for the allocation problem. Full-size 4] DOT: 10.7717/peerj-cs.2609/fig-3

Tasks allocation with MILP

As stated before, this problem minimises the number of different partitions allocated to
cores, in order to minimise the number of partition context switches. For this purpose, the
objective function in Eq. (9) minimises the sum of the g array. However, there may be
multiple solutions with the same objective value. As seen in Fig. 3, there are two possible
solutions for the same allocation problem, and both of them provide the same objective
value. The total partition context switches is equal to 3. Therefore, which is the best
solution in terms of total partition context switches? The actual total number of context
switches is determined once the scheduling phase is done. In order to select the solution
that reduces them as much as possible, let us present the proposed methodology in
Algorithm 1.

Once the task set 7 has been grouped into partitions (lines 1-5), tasks must be allocated
to cores. The algorithm (line 6) receives the task set, the number of available cores and the
partition to which each task belongs. Then, the model is created and the variables and
constraints are added (lines 7-8). The number of solutions (nSol) to be found is established
(line 9) and then the search starts (line 10). If the solution is reached, the task set is
evaluated with the resulting allocation of task to cores and the scheduling plan is obtained.
Then, the actual number of partition context switches is measured and the schedulable
solution with the least number of context switches is stored.

Ortiz et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2609 11/22

http://dx.doi.org/10.7717/peerj-cs.2609/fig-2
http://dx.doi.org/10.7717/peerj-cs.2609/fig-3
http://dx.doi.org/10.7717/peerj-cs.2609
https://peerj.com/computer-science/

PeerJ Computer Science

Algorithm 1 MILP algorithms.

1: procedure TASKS INTO PARTITIONS ALGORITHM: T
Create the MILP model. Add variables.
Apply Egs. (2)-(8) to group tasks into partitions considering the level of criticality
Set objective and optimise — {P,,...,P;,_ };

return {P,,....P; . };

Create the MILP model. Add variables.

2

3

4

5

6: procedure TASKS TO CORES ALGORITHM: (T, M, {Pq,, ..., P, | })
7

8 Apply Egs. (9)-(14) to allocate tasks 7 to m cores.

9

Select mode for exploring the MILP search tree and find the nSol best solutions (with no relative gap for stored solutions).

10: Set objective and optimise > Allocation Oxy,.
11: if model is infeasible then
12: Exit;
13: else
14: nSol=model.SolCount >Get the number of solutions
15: for s; € nSol do
16: Obtain scheduling plan of 7 allocated to m cores, O,
17: Calculate the number of context switches from the scheduling plan, nCC;,
18: if nCC,,<minCC then
19: minCC = nCCs;
20: return Allocation O, with minCC
21: procedure MAIN:
22: INPUT: Task set with n tasks characterised by (C,D,T,L,Cr)
23: OUTPUT: Allocation of tasks into partitions and cores with minimisation of partition context switches
24: {Pq,, ..., P, ,} = TASKS INTO PARTITIONS ALGORITHM (7).
25: O = TASKS TO CORES ALGORITHM (7, m, {P;,, ..., Py, , }).
RESULTS

Experimental conditions
Figure 4 illustrates the simulation environment utilized in our study. The simulation process
is initiated with load generation, and since we are working on a hypervisor framework is
followed by task allocation, which is conducted in two stages: initially to partitions and
subsequently to the specific core designated for execution. Following task allocation, the task
set undergoes scheduling and validation to ensure the accuracy and reliability of the results.
Each of these processes is elaborated in detail in the subsequent sections.

Load generation. The load is produced through a synthetic task generator, with the
allocation of tasks to cores influencing both the number of tasks in each set and the overall
system utilisation. The distribution of utilisation among tasks follows the UUniFast

Ortiz et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2609 12/22

http://dx.doi.org/10.7717/peerj-cs.2609
https://peerj.com/computer-science/

PeerJ Computer Science

tmp 1
allocation

Scheduler

MILP
algorithm
Task to
E:tk partition
allocation
WFDU' WFDU
allocation

Figure 4 Experimental simulation environment. Full-size Ka] DOT: 10.7717/peerj-cs.2609/fig-4

(Validator H Results /

discard algorithm of Davis ¢ Burns (2009), based on the given total system utilisation
and the number of tasks per set. Randomly generated periods fall within the range
[20,1000], and computation times are derived from the system utilisation, while
deadlines are constrained to be less than or equal to the corresponding periods. Also
for the sake of simplicity of the task-set creation process, Cr; term will be assigned
randomly.

Table 5 outlines the experimental parameters for the evaluation process.

The theoretical utilisation spans from 50% to 75% of the system’s maximum load
capacity. For instance, in a four-core system with a maximum load of 4, the initial
utilisation for evaluation is set at 2.1 (=50%) and 3 (75%).

The percentage of broadcasting tasks is established at 25% of the total task count, except
for scenarios 1-6 (two cores), where it is set at 50%. This adjustment accounts for the
absence of interference when only one task is broadcasting. Each configuration of cores
and utilisation is assessed with 10%, 20%, and 30% interference over the WCET. It is
noteworthy that while not all tasks within a set share the same interference value, they all
experience the same percentage of interference relative to the WCET.

Allocation phase. First, tasks are allocated to partitions following the algorithm
described with Eqs. (2)-(8). Then, tasks are allocated to cores following WFDU and MILP
algorithms described with Egs. (9)-(14). Therefore, two possible allocations are generated.

Scheduling phase. Each task set moves to the scheduling step, where a scheduling plan
is generated for each of the proposed allocations, i.e., a MILP plan and a WFDU’ plan.

The scheduling phase employs the contention-aware scheduling algorithm introduced
in Aceituno et al. (2021). This is a scheduling algorithm that considers the exact
interference produced for each task. It is based on a priority-based algorithm, to select the
task to run on each core. More details can be found in Aceituno et al. (2021). Given that any
priority-based algorithm can serve as the foundation for this approach, we have opted for
EDF algorithm (Liu ¢» Layland, 1973). The scheduler produces a temporal plan, detailing
the scheduling of tasks for each core at each point in time. This plan undergoes validation
to ensure that all temporal constraints are met.

The actual utilisation of the system is defined as U’. and is determined after the
scheduling phase, when the actual interference is measured by comparing if different tasks
on different cores activate at the same time. This utilisation is always greater or equal than

Ortiz et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2609 13/22

http://dx.doi.org/10.7717/peerj-cs.2609/fig-4
http://dx.doi.org/10.7717/peerj-cs.2609
https://peerj.com/computer-science/

PeerJ Computer Science

Table 5 Definition of the experimental scenarios.

Number of cores Utilisation Number of tasks Number of broadcasting tasks Interference over WCET (%) Scenario
2 1.1 4 2 10 1
20 2
30 3
1.5 10 4
20 5
30 6
4 2.1 12 3 10 7
20 8
30 9
3 10 10
20 11
30 12
8 4.1 20 5 10 13
20 14
30 15
6 10 16
20 17
30 18
10 5.1 28 7 10 19
20 20
30 21
7.5 10 22
20 23
30 24

U., because it does not consider the interference. Therefore, the increased utilisation is
measured as:
!
UL -,

that is, it is the ratio between the actual utilisation and the theoretical utilisation.

Experimental results
This study leverages the Gurobi solver, which is accessible for students, faculty, and
researchers at no expense, enabling them to engage in mathematical optimisation. We will
be using Gurobi to solve the previously developed MILP algorithms. The experiments are
conducted on a system equipped with an Intel Core i7 3.2 GHz processor and 32 GB RAM,
utilising Gurobi 11.0.1 as the Mixed-Integer Linear Programming (MILP) solver.

For validating our results we have proposed three different metrics, schedulability,
number of context switches and mean increased utilisation. All this metrics have been
evaluated in a set of scenarios depicted on Table 5.

Ortiz et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2609 14/22

http://dx.doi.org/10.7717/peerj-cs.2609
https://peerj.com/computer-science/

PeerJ Computer Science

% schedulable

% schedulable

100

80

60

20

(a) Percentage of schedulability for 2 cores

3
Scenarios Scenarios

. G
80 . WF

60 4

% schedulable

204

4 7 8 9 10 1 12

(b) Percentage of schedulability for 4 cores

(c) Percentage of schedulability for 8 cores

1

15

mm G mm G
. WF . WF

% schedulable

16 17 18 19 20 21 22 23 24

Scenarios Scenarios

(d) Percentage of schedulability for 10 cores

Figure 5 Schedulability for different core configurations.

Full-size k&l DOT: 10.7717/peerj-cs.2609/fig-5

The results are depicted for schedulability in Fig. 5, where the y-axis represents the
percentage of schedulability for each of the scenario’ number (x-axis) defined in Table 5.
Upon comparative analysis of the two allocators, it is evident that MILP allocator
consistently achieves slight superior schedulability rates in contrast to the WFDU’
allocator. This disparity becomes more pronounced as core or loads are increased.
However, it is noteworthy an exception to this trend in the instance of scheduling 10 cores,
wherein the challenge of scheduling such amount of cores, mitigates the observed
performance advantage in heavily loaded systems. Although the WEDU’ allocator should
balance the load hence increasing the schedulability, due to the assignation of three types
of criticality and the assignation to cores depending on the partition, there might be no
load balancing effect compared to the use of WFDU.

The primary objective of this study was to minimise the number of partition context
switches. Although the results presented in Fig. 6 may not immediately appear promising;
where the y-axis represents the number of partition context switches for each of the
scenario’ number (x-axis) defined in Table 5; some considerations need to be made. Firstly,
the comparison exclusively accounts for cases where both allocators generated a valid

Ortiz et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2609

I 1522

http://dx.doi.org/10.7717/peerj-cs.2609/fig-5
http://dx.doi.org/10.7717/peerj-cs.2609
https://peerj.com/computer-science/

PeerJ Computer Science

o/ ™= G 2001 oo G
- WF 1751 EEE WF
e n
.QC) = g 15.0
S O
- Pt
.; -; 125
n ° n
- o 100
X =
3. 9 s
c 5
o . o 5.0
25
0 0.0
1 2 3) 4 7 8 9) 10 1 12
Scenarios Scenarios
(a) PCS for 2 cores (b) PCS for 4 cores
10 mm G
 WF
3 D os
< <
= g
% % 06
+ +
X
3 § 0.4
c c
O O .
0.0
15 . 16 21 . 22 23 24
Scenarios Scenarios
(c) PCS for 8 cores (d) PCS for 10 cores
Figure 6 Partition context switches for different core configurations. Full-size K&l DOT: 10.7717/peerj-cs.2609/fig-6

schedule. Secondly, the limited number of criticality levels (only 3) implies that partitions
have the opportunity to exclusively occupy a core, particularly in scenarios characterised
by lower core loads or a substantial number of cores. Consequently, attention should be
directed towards configurations involving two and four cores, especially on the heavy
loaded ones, where the cores might be outnumbered by the possible partitions.

The impact on the increase in utilisation should also be taken into account. MILP
allocator introduces a lower amount of utilisation to the system, based on Eq. (15), in Fig. 7
it can be appreciated that the maximum increased utilisation is around 6% in scenario 3,
where as with WFDU’ is slightly higher. In this figure the y-axis represents the increased
utilisation for each of the scenario’ number (x-axis) defined in Table 5. This is due to the
fact that WFDU’ allocations tend to be more balanced in terms of load than MILP
allocations. Then, as the load is shared among cores, there is more chance that tasks will
interfere with each other. Therefore, the actual utilisation of the system will increase to a
greater extent than MILP does.

Ortiz et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2609 I [16/22

http://dx.doi.org/10.7717/peerj-cs.2609/fig-6
http://dx.doi.org/10.7717/peerj-cs.2609
https://peerj.com/computer-science/

PeerJ Computer Science

. G
. WF
S <
T T
3 i 4 9 10 11 12
Scenarios Scenarios
(a) Mean increased utilisation for 2 cores (b) Mean increased utilisation for 4 cores
. G . G
. WF . WF
4
—~ —~ B
X X
5 S,
1
o
15 16 19 20 21 22 23 24
Scenarios Scenarios
(c) Mean increased utilisation for 8 cores (d) Mean increased utilisation for 10 cores
Figure 7 Mean increased utilisation for different core configurations. Full-size k&l DOT: 10.7717/peerj-cs.2609/fig-7

Runtime and complexity of the algorithms
This article introduces three algorithms designed for task allocation across computing
cores. In this section the runtime and complexity of each of this would be explained.

Algorithm 1 employs a Mixed-Integer Linear Programming (MILP) formulation, where
the problem size scales quadratically with the number of tasks. The real complexity of the
problem can not be accurately determined because of its strong dependence on the
effectiveness of the pruning heuristic that Gurobi applies internally. On the other hand, an
experimental analysis (7ill et al., 2003), as shown in Fig. 8, reveals that increasing the
number of cores leads to an increase in execution time in an abrupt manner with a
noticeable peak when 10 cores are used. For the complexity and runtime experiments, the
parameters also defined in Table 5 have been used.

Comparatively, the tasks-to-cores algorithm (described as a procedure in Algorithm
1-line 6), also based on MILP but featuring an iterative structure across a set of solutions,
nSol, and its complexity is dominated by: nSol, the length of the scheduling plan
(hyperperiod H), and the number of cores m, resulting in an approximate complexity of O

Ortiz et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2609 I [17/22

http://dx.doi.org/10.7717/peerj-cs.2609/fig-7
http://dx.doi.org/10.7717/peerj-cs.2609
https://peerj.com/computer-science/

PeerJ Computer Science

500 4

400

O 300 4

S

—~

Time

200

100 4

Averaé_;e_zc Avera'ge_4c Average_8C Average_10C
Number of cores

Figure 8 Runtime Algorithm 1.

Full-size K&l DOT: 10.7717/peerj-cs.2609/fig-8

200

175 4

150 4

50 4

254

Averaée_zc Average_4C Average_8C Average_10C
Number of cores

Figure 9 Runtime of tasks-to-cores algorithm.

Full-size] DOT: 10.7717/peerj-cs.2609/fig-9

0.008 -

0.006

Time (s)

0.002

0.000 -

0.004 4

Average_2C Average_4C Average_8C Average_10C
Number of cores

Figure 10 Runtime algorithm WFDU’.

Full-size K&l DOT: 10.7717/peerj-cs.2609/fig-10

Ortiz et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2609

18/22

http://dx.doi.org/10.7717/peerj-cs.2609/fig-8
http://dx.doi.org/10.7717/peerj-cs.2609/fig-10
http://dx.doi.org/10.7717/peerj-cs.2609/fig-9
http://dx.doi.org/10.7717/peerj-cs.2609
https://peerj.com/computer-science/

PeerJ Computer Science

(nSol- H- m). This escalation in problem complexity manifests in substantially longer
execution times, as depicted in Fig. 9. It is important to note that a significant increase in
complexity occurs when using 10 cores or higher, which leads to a diminishing number of
feasible solutions. Consequently, this results in a reduction in the computation time
required for further processing.

In contrast to the MILP-based approaches, a heuristic method such as WFDU’ offers an
alternative allocation strategy. As depicted in Fig. 10, this heuristic demonstrates markedly
reduced computational requirements. Specifically, it operates approximately 20,000 times
faster than tasks-to-cores algorithm, underscoring its computational efficiency in
comparison to exact MILP formulations.

CONCLUSIONS

In this article, we have explored different techniques to allocate tasks of diverse criticality
to cores in hard real-time systems. Our goal was the reduction of PCS, that we achieved by
the combination of a two step allocator. We have proposed a first MILP technique that
tries to group into partitions the tasks of the same level of criticality, what is the key part of
this article since it produces major reduction. Secondly we proposed two methods for
allocating partitions to cores, one based on MILP techniques and the other one a
modification of WFDU, both delivering great performance in the reduction. The
conclusion is that the most important factor in reducing partition context switches is to
pack in the cores the minimal amount of different partitions. As possible expansions of the
presented work, we could model the impact of the time of swapping partitions, also since
we are working with a model that contains the interference, modifications on the maximal
quantity of utilisation of a core can be proposed.

As future work, the use of MILP techniques to reduce not only context switches but also
other parameters as interference is proposed, in the framework of partitioned systems.
Also, we are considering include in future MILP models the possibility of frequency scaling
in order to reduce power consumption while being in idle states. On the other hand, the
exploration of Artificial Intelligence techniques for such tasks is to be considered, since it
may be able to find a way to balance this reductions.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was supported by Grant PID2021-1245020B-C41 funded by MCIN/AEI/
10.13039/501100011033 and, by “ERDF A way of making Europe”, by the “European
Union”. This work was also supported by PAID-10-20 (UPV). There was no additional
external funding received for this study. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
PID2021-1245020B-C41.

Ortiz et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2609 19/22

http://dx.doi.org/10.7717/peerj-cs.2609
https://peerj.com/computer-science/

PeerJ Computer Science

MCIN/AEI/10.13039/501100011033.
“ERDF A way of making Europe”.
“European Union”.

PAID-10-20 (UPV).

Competing Interests
The authors declare that they have no competing interests.

Author Contributions

e Luis Ortiz conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

» Ana Guasque conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

» Patricia Balbastre conceived and designed the experiments, authored or reviewed drafts
of the article, and approved the final draft.

* José Simd conceived and designed the experiments, authored or reviewed drafts of the
article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code is available at Gitlab and Zenodo:

- https://git.upv.es/gii-ai2-open/allocationpeerj.git.

- Ortiz, L., Guasque, A., Balbastre, P., & Simo, J. (2024). Allocation algorithms for
multicore partitioned mixed-criticality real-time systems. Zenodo. https://doi.org/10.5281/
zenodo.12731185.

REFERENCES

Aceituno JM, Guasque A, Balbastre P, Sim¢ J, Crespo A. 2021. Hardware resources contention-
aware scheduling of hard real-time multiprocessor systems. Journal of Systems Architecture
118(3):102223 DOI 10.1016/j.sysarc.2021.102223.

Aceituno JM, Guasque A, Balbastre P, Simo J, Crespo A. 2022. Interference-aware schedulability
analysis and task allocation for multicore hard real-time systems. Electronics 11(9):1313
DOI 10.3390/electronics11091313.

Baruah S. 2020. Work in progress: the ilp-tractability of schedulability analysis problems. In: 2020
IEEE Real-Time Systems Symposium (RTSS). Piscataway: IEEE, 391-394.

Baruah S, Bonifaci V, DAngelo G, Li H, Marchetti-Spaccamela A, van der Ster S, Stougie L.
2012. The preemptive uniprocessor scheduling of mixed-criticality implicit-deadline sporadic
task systems. In: 2012 24th Euromicro Conference on Real-Time Systems, 145-154.

Baruah S, Chattopadhyay B, Li H, Shin I. 2014. Mixed-criticality scheduling on multiprocessors.
Real-Time Systems 50(1):142-177 DOI 10.1007/s11241-013-9184-2.

Burns A, Davis RI. 2017. A survey of research into mixed criticality systems. ACM Computing
Surveys 50(6):82 DOI 10.1145/3131347.

Ortiz et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2609 20/22

https://git.upv.es/gii-ai2-open/allocationpeerj.git.
https://doi.org/10.5281/zenodo.12731185
https://doi.org/10.5281/zenodo.12731185
http://dx.doi.org/10.1016/j.sysarc.2021.102223
http://dx.doi.org/10.3390/electronics11091313
http://dx.doi.org/10.1007/s11241-013-9184-2
http://dx.doi.org/10.1145/3131347
http://dx.doi.org/10.7717/peerj-cs.2609
https://peerj.com/computer-science/

PeerJ Computer Science

Coffman EG, Garey MR, Johnson DS. 1996. Approximation algorithms for bin packing: a survey.
United Kingdom: PWS Publishing Co.

Cplex, IBM ILOG. 2009. V12. 1: user’s manual for cplex. International Business Machines
Corporation 46(53):157.

Dasari D, Akesson B, Nélis V, Awan MA, Petters SM. 2013. Identifying the sources of
unpredictability in cots-based multicore systems. In: 2013 8th IEEE International Symposium on
Industrial Embedded Systems (SIES). Piscataway: IEEE, 39-48.

Davare A, Chong J, Zhu Q, Densmore DM, Sangiovanni-Vincentelli AL. 2006. Classification,
customization, and characterization: using milp for task allocation and scheduling. Available at
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-166.html.

Davis RI, Burns A. 2009. Priority assignment for global fixed priority pre-emptive scheduling in
multiprocessor real-time systems. In: 2009 30th IEEE Real-Time Systems Symposium.
Piscataway: IEEE, 398-409.

Davis RI, Burns A. 2011. A survey of hard real-time scheduling for multiprocessor systems. ACM
Computing Surveys 43(4):1-44 DOI 10.1145/1978802.1978814.

Davis RI, Zabos A, Burns A. 2008. Efficient exact schedulability tests for fixed priority real-time
systems. IEEE Transactions on Computers 57(9):1261-1276 DOI 10.1109/TC.2008.66.

Ernst R, Natale MD. 2016. Mixed criticality systems—a history of misconceptions? IEEE Design
Test 33(5):65-74 DOI 10.1109/MDAT.2016.2594790.

Garey M, Johnson D. 1979. Computers and intractability: a guide to the theory of NP-
completeness. In: Mathematical Sciences Series. Dallas, Texas: Freeman.

Gu C, Guan N, Deng Q, yi W. 2014. Partitioned mixed-criticality scheduling on multiprocessor
platforms. In: Design Automation and Test in Europe, 1-6.

Guasque A, Tohidi H, Balbastre P, Aceituno JM, Simé J, Crespo A. 2020. Integer programming
techniques for static scheduling of hard real-time systems. IEEE Access 8:170389-170403
DOI 10.1109/ACCESS.2020.3024698.

Gurobi Optimization, LLC. 2023. Gurobi optimizer reference manual.

Hanen C, Munier A. 1993. Cyclic scheduling on parallel processors: an overview. Princeton: John
Wiley & Sons.

Johnson DS. 1973. Near-optimal bin packing algorithms. PhD Thesis, Massachusetts Institute of
Technology, Department of Mathematics, Cambridge.

Lisper B, Mellgren P. 2001. Response-time calculation and priority assignment with integer
programming methods.

Liu CL, Layland JW. 1973. Scheduling algorithms for multiprogramming in a hard-real-time
environment. Journal of the ACM 20(1):46-61 DOI 10.1145/321738.321743.

Mangeruca L, Baleani M, Ferrari A, Sangiovanni-Vincentelli A. 2007. Uniprocessor scheduling
under precedence constraints for embedded systems design. ACM Transactions on Embedded
Computing Systems 7(1):1-30 DOI 10.1145/1324969.1324975.

Masmano M, Ripoll I, Crespo A, Metge J. 2009. Xtratum: a hypervisor for safety critical
embedded systems. In: 11th Real-Time Linux Workshop. Vol. 9.

OhY, Son SH. 1995. Allocating fixed-priority periodic tasks on multiprocessor systems. Real-Time
Systems 9(3):207-239 DOI 10.1007/BF01088806.

Peng D-T, Shin K, Abdelzaher T. 1997. Assignment and scheduling communicating periodic tasks
in distributed real-time systems. IEEE Transactions on Software Engineering 23(12):745-758
DOI 10.1109/32.637388.

Ortiz et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2609 21/22

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-166.html
http://dx.doi.org/10.1145/1978802.1978814
http://dx.doi.org/10.1109/TC.2008.66
http://dx.doi.org/10.1109/MDAT.2016.2594790
http://dx.doi.org/10.1109/ACCESS.2020.3024698
http://dx.doi.org/10.1145/321738.321743
http://dx.doi.org/10.1145/1324969.1324975
http://dx.doi.org/10.1007/BF01088806
http://dx.doi.org/10.1109/32.637388
http://dx.doi.org/10.7717/peerj-cs.2609
https://peerj.com/computer-science/

PeerJ Computer Science

Rierson L. 2017. Developing safety-critical software: a practical guide for aviation software and DO-
178C compliance. Boca Raton, FL: CRC Press.

Rivas JM, Gutiérrez JJ, Guasque A, Balbastre P. 2024. Gradient descent algorithm for the
optimization of fixed priorities in real-time systems. Journal of Systems Architecture
153(1):103198 DOI 10.1016/j.sysarc.2024.103198.

Senoussaoui I, Zahaf H-E, Benhaoua MK, Lipari G, Olejnik R. 2020. Allocation of real-time tasks
onto identical core platforms under deferred fixed preemption-point model. In: Proceedings of
the 28th International Conference on Real-Time Networks and Systems, RTNS 20. New York:
Association for Computing Machinery, 34-43.

Till J, Engell S, Panek S, Stursberg O. 2003. Empirical complexity analysis of a milp-approach for
optimization of hybrid systems. IFAC Proceedings Volumes 36(6):129-134 IFAC Conference on
Analysis and Design of Hybrid Systems 2003, St Malo, Brittany, France, 16-18 June 2003.
DOI 10.1016/51474-6670(17)36419-4.

Vestal S. 2008. Preemptive scheduling of multi-criticality systems with varying degrees of
execution time assurance. In: IEEE Real-Time Systems Symposium. Piscataway: IEEE, 239-243.

Ye F, Kelly T. 2004. Criticality analysis for cots software components. In: Proceedings of 22nd
International System Safety Conference (ISSC’04).

Zeng H, Di Natale M. 2013. An efficient formulation of the real-time feasibility region for design
optimization. IEEE Transactions on Computers 62(4):644-661 DOI 10.1109/TC.2012.21.

Zhao Y, Zeng H. 2017. The virtual deadline based optimization algorithm for priority assignment
in fixed-priority scheduling. In: 2017 IEEE Real-Time Systems Symposium (RTSS). Piscataway:
IEEE, 116-127.

Zhu Q, Zeng H, Zheng W, Natale MD, Sangiovanni-Vincentelli A. 2013. Optimization of task
allocation and priority assignment in hard real-time distributed systems. ACM Transactions on
Embedded Computing Systems (TECS) 11(4):1-30 DOI 10.1145/2362336.2362352.

Ortiz et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2609 22/22

http://dx.doi.org/10.1016/j.sysarc.2024.103198
http://dx.doi.org/10.1016/S1474-6670(17)36419-4
http://dx.doi.org/10.1109/TC.2012.21
http://dx.doi.org/10.1145/2362336.2362352
http://dx.doi.org/10.7717/peerj-cs.2609
https://peerj.com/computer-science/

	Allocation algorithms for multicore partitioned mixed-criticality real-time systems
	Introduction
	Related works
	Task model and problem definition
	Methods
	Example
	Results
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

